WorldWideScience

Sample records for lps-induced airway constriction

  1. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    International Nuclear Information System (INIS)

    Lin, C.-H.; Lai, Y.-L.

    2005-01-01

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H 1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C 4 (LTC 4 ) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV 0.1 ) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV 0.1 , indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC 4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction

  2. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  3. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    Science.gov (United States)

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  4. Stenting of major airway constriction

    International Nuclear Information System (INIS)

    Wu Xiaomei

    2002-01-01

    Objective: To investigate the correlated issues in the stenting treatment of major airway constriction. Methods: Nineteen cases of major airway stenting procedure were studied retrospectively. The clinical choice of stents of different advantages or deficiencies were discussed. The importance of intravenous anesthesia supporting, life-parameters monitoring during the procedures and the prevention of complications were analysed. Results: Under intravenous and local anesthesia, 19 Wallstents had been successively placed and relieved 19 cases of major airway constrictions due to malignant or benign diseases (15 of tumors, 3 of tuberculosis, 1 of tracheomalacia). Intravenous anesthesia and life-parameters monitoring had made the procedures more safe and precise. Conclusions: Major airway stenting is an reliable method for relieving tracheobronchial stenosis; and intravenous anesthesia supporting and life-parameters monitoring guarantee the satisfactions of procedures

  5. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  6. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    Science.gov (United States)

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  7. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    Science.gov (United States)

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  8. Maximum opening of the mouth by mouth prop during dental procedures increases the risk of upper airway constriction

    Directory of Open Access Journals (Sweden)

    Hiroshi Ito

    2010-05-01

    Full Text Available Hiroshi Ito1, Hiroyoshi Kawaai1, Shinya Yamazaki1, Yosuke Suzuki21Division of Systemic Management, Department of Oral Function, 2Division of Radiology and Diagnosis, Department of Medical Sciences, Ohu University, Post Graduate School of Dentistry, Koriyama City, Fukushima Prefecture, JapanAbstract: From a retrospective evaluation of data on accidents and deaths during dental procedures, it has been shown that several patients who refused dental treatment died of asphyxia during dental procedures. We speculated that forcible maximum opening of the mouth by using a mouth prop triggers this asphyxia by affecting the upper airway. Therefore, we assessed the morphological changes of the upper airway following maximal opening of the mouth. In 13 healthy adult volunteers, the sagittal diameter of the upper airway on lateral cephalogram was measured between the two conditions; closed mouth and maximally open mouth. The dyspnea in each state was evaluated by a visual analog scale. In one subject, a computed tomograph (CT was taken to assess the three-dimensional changes in the upper airway. A significant difference was detected in the mean sagittal diameter of the upper airway following use of the prop (closed mouth: 18.5 ± 3.8 mm, maximally open mouth: 10.4 ± 3.0 mm. All subjects indicated upper airway constriction and significant dyspnea when their mouth was maximally open. Although a CT scan indicated upper airway constriction when the mouth was maximally open, muscular compensation was admitted. Our results further indicate that the maximal opening of the mouth narrows the upper airway diameter and leads to dyspnea. The use of a prop for the patient who has communication problems or poor neuromuscular function can lead to asphyxia. When the prop is used for patient refusal in dentistry, the respiratory condition should be monitored strictly, and it should be kept in mind that the “sniffing position” is effective for avoiding upper airway

  9. Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18

    Directory of Open Access Journals (Sweden)

    Lyons C Rick

    2007-03-01

    Full Text Available Abstract Background The resolution of inflammatory responses in the lung has not been described in detail and the role of specific cytokines influencing the resolution process is largely unknown. Methods The present study was designed to describe the resolution of inflammation from 3 h through 90 d following an acute injury by a single intratracheal instillation of F344/N rats with LPS. We documented the inflammatory cell types and cytokines found in the bronchoalveolar lavage fluid (BALF, and epithelial changes in the axial airway and investigated whether IL-18 may play a role in the resolution process by reducing its levels with anti-IL-18 antibodies. Results Three major stages of inflammation and resolution were observed in the BALF during the resolution. The first stage was characterized by PMNs that increased over 3 h to 1 d and decreased to background levels by d 6–8. The second stage of inflammation was characterized by macrophage influx reaching maximum numbers at d 6 and decreasing to background levels by d 40. A third stage of inflammation was observed for lymphocytes which were elevated over d 3–6. Interestingly, IL-18 and IL-9 levels in the BALF showed a cyclic pattern with peak levels at d 4, 8, and 16 while decreasing to background levels at d 1–2, 6, and 12. Depletion of IL-18 caused decreased PMN numbers at d 2, but no changes in inflammatory cell number or type at later time points. Conclusion These data suggest that IL-18 plays a role in enhancing the LPS-induced neutrophilic inflammation of the lung, but does not affect the resolution of inflammation.

  10. Poor outcome in radiation-induced constrictive pericarditis

    International Nuclear Information System (INIS)

    Karram, T.; Rinkevitch, D.; Markiewicz, W.

    1993-01-01

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 ± 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage

  11. Poor outcome in radiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Karram, T.; Rinkevitch, D.; Markiewicz, W. (Technion Medical School, Haifa (Israel))

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  12. Hydralazine-induced constrictive pericarditis

    NARCIS (Netherlands)

    Franssen, CFC; ElGamal, MIH; Gans, ROB; Hoorntje, SJ

    A 59-year-old man was diagnosed as having constrictive pericarditis 17 months after a typical hydralazine-induced autoimmune syndrome, This late complication of hydralazine has been reported only once. Ten years later the patient was found to have anti-neutrophil cytoplasmic antibodies directed

  13. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Science.gov (United States)

    Donovan, Chantal; Royce, Simon G; Vlahos, Ross; Bourke, Jane E

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  14. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The bacterial endotoxin, lipopolysaccharide (LPS has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  15. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  16. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  17. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  18. RNA interference prevents lipopolysaccharide-induced preprotachykinin gene expression

    International Nuclear Information System (INIS)

    Lai, Y.-L.; Yu, S.C.; Chen, M.-J.

    2003-01-01

    We showed previously that lipopolysaccharide (LPS) induces noncholinergic airway hyperreactivity to capsaicin via an upregulation of tachykinin synthesis. This study was designed to test whether double-stranded preprotachykinin (ds PPT) RNA, RNA interference (RNAi), prevents the LPS-induced alterations. First, cultured primary nodose ganglial cells of newborn Brown-Norway rats were divided into four groups: control; LPS; LPS+RNAi; and LPS+RNAi+liposome. Second, young Brown-Norway rats for the in vivo study were divided into three groups (control; LPS; and LPS+RNAi), and ds PPT RNA was microinjected bilaterally into the nodose ganglia in the LPS+RNAi group. Then, ganglial cells were collected from the culture whereas the nodose ganglia and lungs were sampled from the animals, and PPT mRNA and substance P (SP) levels were analyzed. Also, airway reactivity to capsaicin was performed in vivo. LPS induced significant increases in PPT mRNA and SP levels in vitro and in vivo and an increase in airway reactivity to capsaicin in vivo. However, ds PPT RNA, but not scrambled RNA, prevented all LPS-induced alterations. The effect of ds PPT RNA was not enhanced by liposome in vitro. Therefore, we demonstrated that the local application of RNAi prevents effectively the activation of the noncholinergic system modulating the lungs/airways

  19. Targeting Phosphoinositide 3-Kinase γ in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness

    Science.gov (United States)

    Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.

    2012-01-01

    We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031

  20. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    Science.gov (United States)

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  1. Role of macrophage migration inhibitory factor (MIF in allergic and endotoxin-induced airway inflammation in mice

    Directory of Open Access Journals (Sweden)

    M. Korsgren

    2000-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD. Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccaride (LPS-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-α (TNF-α and macrophage inflammatory protein–1 α (MIP–1 α. The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases.

  2. Aqueous Extract of Oldenlandia diffusa Suppresses LPS-Induced ...

    African Journals Online (AJOL)

    ... potential transcriptional factor for regulating the expression of iNOS, COX-2 and TNF-α. As expected, AEOD suppressed the LPS-induced degradation and phosphorylation of IκBα and sustained the expression of p65 in the cytosol. Furthermore, AEOD substantially inhibited the LPS-induced DNA binding activity of NF-κB.

  3. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  4. Effect of 60Co γ-rays on PWM and LPS induced lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Keliang; Liu Fenju

    1987-01-01

    The relationship between lymphocytes induced by PWM (pokeweed mitogen) and LPS (lipopolysaccharide) was investigated by means of 3 H-TdR incorporation. The study showed that, in vitro, PWM-induced cells were able to promote the stimulating effect of LPS to B lymphocytes. The stimulating effect of PWM-induced cells was obviously weakened after PWM cells being irradiated with γ-rays. When PWM-induced cells and LPS-induced cells were incubated together, with one kind of cells exposed to 60 Co γ-ray, incorporation value of 3 H-TdR became much smaller and the synergetic function disappeared, especially, when PWM-induced cells were irradiated. For patients suffering from carcinoma of nasopharynx, while treated with 60 Co γ-rays, the incorporation value in LPS-induced cells approached normal level, meanwhile, the incorporation value in PEM-induced cells reduced significantly and the stimulating effect of PWM-induced cells on LPS-induced cells became much weaker. The facts described above demonstrated that PWM-induced cells have the function of T-helper cells and play more important role in the synergy than LPS-induced cells

  5. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  6. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  7. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    Science.gov (United States)

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  8. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.

    Science.gov (United States)

    Dong, Shou-jin; Zhong, Yun-qing; Lu, Wen-ting; Li, Guan-hong; Jiang, Hong-li; Mao, Bing

    2015-08-01

    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted. We aim to investigate the anti-inflammatory effect of baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by baicalin. These findings suggest that the anti-inflammatory properties of baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of baicalin on inflammatory diseases in

  9. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  11. Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhang, Hailin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Wang, Xiumei; Wang, Yu; He, Zehong; Yao, Huan

    2016-08-15

    LPS sensitized mice are usually considered as an experimental model of endotoxin shock. The present study aims to evaluate effects of cavidine on LPS-induced endotoxin shock. Mice were intraperitoneally administrated with cavidine (1, 3 and 10 mg/kg) or DEX (5 mg/kg) at 1 and 12 h before injecting LPS (30 mg/kg) intraperitoneally. Blood samples, liver, lung and kidney tissues were harvested after LPS injection. The study demonstrated that pretreatment with cavidine reduced the mortality of mice during 72 h after endotoxin injection. In addition, cavidine administration significantly attenuated histological pathophysiology features of LPS-induced injury in lung, liver and kidney. Furthermore, cavidine administration inhibited endotoxin-induced production of pro-inflammatory cytokines including TNF-α, IL-6 and HMGB1. Moreover, cavidine pretreatment attenuated the phosphorylation of mitogen-activated protein kinase primed by LPS. In summary, cavidine protects mice against LPS-induced endotoxic shock via inhibiting early pro-inflammatory cytokine TNF-α, IL-6 and late-phase cytokine HMGB1, and the modulation of HMGB1 may be related with MAPK signal pathway. - Highlights: • Cavidine significantly reduced mortality in mice during 72 h after LPS injection. • Cavidine attenuated histopathological changes in lung, liver and kidney. • Cavidine decreased the level of early inflammatory cytokine TNF-α, IL-6 in LPS- stimulated mice. • Cavidine inhibited late inflammatory cytokine HMGB1 through MAPK pathway.

  12. Andrographolide Restores Steroid Sensitivity To Block Lipopolysaccharide/IFN-γ-Induced IL-27 and Airway Hyperresponsiveness in Mice.

    Science.gov (United States)

    Liao, Wupeng; Tan, W S Daniel; Wong, W S Fred

    2016-06-01

    LPS and IFN-γ alone or in combination have been implicated in the development of steroid resistance. Combined LPS/IFN-γ strongly upregulates IL-27 production, which has been linked to steroid-resistant airway hyperresponsiveness (AHR). Andrographolide, a bioactive molecule isolated from the plant Andrographis paniculata, has demonstrated anti-inflammatory and antioxidant properties. The present study investigated whether andrographolide could restore steroid sensitivity to block LPS/IFN-γ-induced IL-27 production and AHR via its antioxidative property. The mouse macrophage cell line Raw 264.7, mouse primary lung monocytes/macrophages, and BALB/c mice were treated with LPS/IFN-γ, in the presence and absence of dexamethasone and/or andrographolide. Levels of IL-27 in vitro and in vivo were examined and mouse AHR was assessed. Dexamethasone alone failed to inhibit LPS/IFN-γ-induced IL-27 production and AHR in mice. Andrographolide significantly restored the suppressive effect of dexamethasone on LPS/IFN-γ-induced IL-27 mRNA and protein levels in the macrophage cell line and primary lung monocytes/macrophages, mouse bronchoalveolar lavage fluid and lung tissues, and AHR in mice. LPS/IFN-γ markedly reduced the nuclear level of histone deacetylase (HDAC)2, an essential epigenetic enzyme that mediates steroid anti-inflammatory action. LPS/IFN-γ also decreased total HDAC activity but increased the total histone acetyltransferase/HDAC activity ratio in mouse lungs. Andrographolide significantly restored nuclear HDAC2 protein levels and total HDAC activity, and it diminished the total histone acetyltransferase/HDAC activity ratio in mouse lungs exposed to LPS/IFN-γ, possibly via suppression of PI3K/Akt/HDAC2 phosphorylation, and upregulation of the antioxidant transcription factor NF erythroid-2-related factor 2 level and DNA binding activity. Our data suggest that andrographolide may have therapeutic value in resensitizing steroid action in respiratory disorders

  13. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  14. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes.

    Directory of Open Access Journals (Sweden)

    Mark K Nøhr

    Full Text Available Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS, originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning

  15. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes

  16. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015. Published by Elsevier B.V.

  17. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  18. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  19. C-glycosylflavones from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation.

    Science.gov (United States)

    De Melo, Giany O; Muzitano, Michelle F; Legora-Machado, Alexandre; Almeida, Thais A; De Oliveira, Daniela B; Kaiser, Carlos R; Koatz, Vera Lucia G; Costa, Sônia S

    2005-04-01

    The infusion of aerial parts (EI) of Eleusine indica Gaertn (Poaceae) is used in Brazil against airway inflammatory processes like influenza and pneumonia. Pre-treatment with 400 mg/kg of crude extract inhibited 98% of lung neutrophil recruitment in mice exposed to aerosols of lipopolysaccharide (LPS) from Gram-negative bacteria, in a dose-dependent manner. At 400 microg/kg, schaftoside (6-C-beta-glucopyranosyl-8-C-alpha-arabinopyranosylapigenin) and vitexin (8-C-beta-glucopyranosylapigenin), isolated from EI, inhibited 62% and 80% of lung neutrophil influx, respectively. These results may justify the popular use of E. indica against airway inflammatory processes.

  20. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    GURPREET KAUR

    2015-03-01

    Full Text Available The present study was designed to investigate the ameliorative potential of Ocimumsanctum and its saponin rich fraction in chronic constriction injury-induced neuropathic pain in rats. The chronic constriction injury was induced by placing four loose ligatures around the sciatic nerve, proximal to its trifurcation. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress and total calcium levels were measured. Chronic constriction injury was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia along with an increase in oxidative stress and calcium levels. However, administration of Ocimumsanctum (100 and 200 mg/kg p.o. and its saponin rich fraction (100 and 200 mg/kg p.o. for 14 days significantly attenuated chronic constriction injury-induced neuropathic pain as well as decrease the oxidative stress and calcium levels. It may be concluded that saponin rich fraction of Ocimum sanctum has ameliorative potential in attenuating painful neuropathic state, which may be attributed to a decrease in oxidative stress and calcium levels.

  1. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    Science.gov (United States)

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (Panorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  2. Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema.

    Science.gov (United States)

    Faggioni, R; Gatti, S; Demitri, M T; Delgado, R; Echtenacher, B; Gnocchi, P; Heremans, H; Ghezzi, P

    1994-03-01

    We studied the role of reactive oxygen intermediates (ROI) in lipopolysaccharide (LPS)-induced pulmonary edema. LPS treatment (600 micrograms/mouse, IP) was associated with a marked induction of the superoxide-generating enzyme xanthine oxidase (XO) in serum and lung. Pretreatment with the antioxidant N-acetylcysteine (NAC)--1 gm/kg orally, 45 minutes before LPS--or with the XO inhibitor allopurinol (AP)--50 mg/kg orally at -1 hour and +3 hours--was protective. On the other hand nonsteroidal antiinflammatory drugs (ibuprofen, indomethacin, and nordihydroguaiaretic acid) were ineffective. These data suggested that XO might be involved in the induction of pulmonary damage by LPS. However, treatment with the interferon inducer polyriboinosylic-polyribocytidylic acid, although inducing XO to the same extent as LPS, did not cause any pulmonary edema, indicating that XO is not sufficient for this toxicity of LPS. To define the possible role of cytokines, we studied the effect of direct administration of LPS (600 micrograms/mouse, IP), tumor necrosis factor (TNF, 2.5 or 50 micrograms/mouse, IV), interleukin-1 (IL-1 beta, 2.5 micrograms/mouse, IV), interferon-gamma (IFN-gamma, 2.5 micrograms/mouse, IV), or their combination at 2.5 micrograms each. In addition to LPS, only TNF at the highest dose induced pulmonary edema 24 hours later. LPS-induced pulmonary edema was partially inhibited by anti-IFN-gamma antibodies but not by anti-TNF antibodies, anti-IL-1 beta antibodies, or IL-1 receptor antagonist (IL-1Ra).

  3. Soluble β-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests.

    Science.gov (United States)

    Pardo-Ruiz, Zenia; Menéndez-Sardiñas, Dalia E; Pacios-Michelena, Anabel; Gabilondo-Ramírez, Tatiana; Montero-Alejo, Vivian; Perdomo-Morales, Rolando

    2016-01-01

    In the present study, we aimed to determine the influence of β-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that β-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same β-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, β-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, β-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while β-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of turbulent models in the case of a constricted tube

    Directory of Open Access Journals (Sweden)

    Elcner Jakub

    2017-01-01

    Full Text Available The validation of a proper solution is an indispensable phase of every numerical simulation. Nowadays, many turbulent models are available, whose application leads to slightly different solution of flow behaviour depending on the boundary conditions of a specific problem. It is essential to select the proper turbulence model appropriate for the given situation. The aim of this study is to select the most suitable two-equation eddy-viscosity model, which can be further used during calculations of airflow in human airways. For this purpose, geometry of a constricted tube with well-documented experimental measurements was chosen. The flow in the constricted tube was calculated using Spallart-Almaras, k-omega, k-epsilon and SST model approach using commercial software. The outcome of the comparison is a choice of the suitable model which is capable of simulating the transition of the boundary layer from laminar to turbulent flow. This transition typically arises in the upper part of the respiratory system, where the airways are constricted, specifically in the area, where the oral cavity continues through the glottis to trachea. The simulations were performed in a commercial solver Star-CCM+.

  5. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  6. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sildenafil (Viagra(®)) prevents and restores LPS-induced inflammation in astrocytes.

    Science.gov (United States)

    de Santana Nunes, Ana Karolina; Rapôso, Catarina; Björklund, Ulrika; da Cruz-Höfling, Maria Alice; Peixoto, Christina Alves; Hansson, Elisabeth

    2016-09-06

    Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10μM for 4h and then sildenafil 1 or 10μM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10μM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  9. Deubiquitinase USP12 promotes LPS induced macrophage responses through inhibition of IκBα

    International Nuclear Information System (INIS)

    Nayak, Tapan Kumar Singh; Alamuru-Yellapragada, Neeraja P.; Parsa, Kishore V.L.

    2017-01-01

    Post translational modifications, ubiquitination and its reversal by deubiquitination play an important role in regulating innate immune system. USP12 is a poorly studied deubiquitinase reported to regulate T-cell receptor signalling however the functional role of USP12 in macrophages, the principal architects of inflammation, is unknown. Thus, in this study we probed the involvement of USP12 in macrophage mediated inflammatory responses using bacterial endotoxin, LPS, as the model system. Here, we observed that the expression of USP12 was altered in time dependent manner in LPS stimulated RAW 264.7 macrophages at both mRNA and protein levels as revealed by qPCR and western blot analysis, respectively. Further analysis showed that LPS reduced the levels of Sp1 which enhanced the transcriptional levels of USP12. We observed that siRNA mediated ablation of USP12 expression in mouse macrophages suppressed the induction of LPS-induced iNOS and IL-6 expression but failed to alter IFN-β synthesis, oxidative stress and phagocytic ability of macrophages. Mechanistic analysis suggest that USP12 may be required for the activation of NFκB pathway as knockdown of USP12 reduced the inhibitory phosphorylation of IκBα, a well characterized inhibitor of NFκB nuclear translocation. Further, USP12 was observed to be required for LPS elicited phosphorylation of ERK1/2 and p38. Collectively, our data suggest that USP12 may be a key mediator of LPS stimulated macrophage responses. - Highlights: • USP12 levels are significantly altered in LPS stimulated macrophages. • USP12 is required for LPS induced iNOS and IL6 expression. • USP12 is crucial for LPS induced phosphorylation of IκBα, ERK1/2, p38.

  10. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  11. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide.

    Science.gov (United States)

    Shin, Na-Rae; Kim, Sung-Ho; Ko, Je-Won; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Jong-Choon; Shin, In-Sik

    2017-03-01

    HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-α, interleukin (IL)-6 and IL-1β in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD.

  12. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  13. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    Science.gov (United States)

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  14. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    Science.gov (United States)

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The NALP3/Cryopyrin-Inflammasome Complex is Expressed in LPS-Induced Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    José F. González-Benítez

    2008-01-01

    Full Text Available In the inflammosome complex, NALP3 or NALP1 binds to ASC and activates caspase-1 which induces IL-1β. In murine LPS-induced ocular inflammation, the production of IL-1β is increased. We suggest that NALP3- or NALP1-inflammasome complex can be participating in the LPS-induced ocular inflammation. In this work, eye, brain, testis, heart, spleen, and lung were obtained from C3H/HeN mice treated with LPS for 3 to 48 hours, and the expression of NALP1b, NALP3, ASC, caspase-1, IL-1β, and IL-18 was determined. Infiltrated leukocytes producing IL-1β in the anterior chamber were found at 12-hour posttreatment. A high upregulated expression of NALP3, ASC, caspase-1, IL-1β, and IL-18 was found at the same time when infiltrated leukocytes were observed. NALP1b was not detected in the eye of treated mice. NALP3 was also overexpressed in heart and lung. These results suggest that NALP3-, but not NALP1-inflammosome complex, is participating in the murine LPS-induced ocular inflammation.

  16. Inhibition of LPS-induced splenocyte proliferation by ortho-substituted polychlorinated biphenyl congeners

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Smith, Andrew; Quensen, John F.; Stack, Allison; London, Lucille; Morris, Pamela J.

    2003-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and their ubiquitous nature has prompted studies of their potential health hazards. As a result of their lipophilic nature, PCBs accumulate in breast milk and subsequently affect the health of offspring of exposed individuals. Biological effects of PCBs in animals have mostly been attributed to coplanar congeners, although effects of ortho congeners also have been demonstrated. To investigate the relationship of immunotoxicity and chlorine substitution pattern, the effects of PCB congeners and mixtures of ortho and non-ortho-substituted constituents of Aroclor 1242 on splenocytes from C57B1/6 mice were examined. The immunotoxic endpoints investigated included splenocyte viability, lipopolysaccharide (LPS)-induced splenocyte proliferation, and LPS-induced antibody secretion. Congeners with multiple ortho chlorines preferentially inhibited splenocyte proliferation as compared with non- or mono-ortho-substituted congeners. However, mixtures of non- and mono-ortho-substituted congeners and multi-ortho-substituted congeners inhibited LPS-induced splenocyte proliferation and antibody secretion at similar concentrations. Exposure of splenocytes to these mixtures did not activate the aryl hydrocarbon receptor (AhR) signal transduction pathway. These results suggest individual multi-ortho-substituted congeners preferentially inhibit LPS-induced splenocyte proliferation, while congeners not exhibiting an effect individually may have additive effects in a mixture to produce an immunotoxic response through an AhR-independent pathway

  17. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    International Nuclear Information System (INIS)

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang

    2006-01-01

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy

  18. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  19. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Science.gov (United States)

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  20. The LPS-induced neutrophil recruitment into rat air pouches is mediated by TNFα: likely macrophage origin

    Directory of Open Access Journals (Sweden)

    C-D. Arreto

    1997-01-01

    Full Text Available The role of resident cells during the lipopolysaccharide (LPS-induced neutrophil recruitment into rat air pouches was investigated. In this model, LPS (Escherichia coli, O55: B5 strain; 2–2000 ng induced a dose– and time-dependent neutrophil recruitment accompanied by the generation of a tumour necrosis factor-α (TNFα-like activity. Dexamethasone (0.05–5 mug and cycloheximide (6 ng, injected 2 h before LPS into the pouches, inhibited the neutrophil recruitment and the generation of the TNFα-like activity, while the H1-receptor antagonist mepyramine (1 and 4 mg/kg, i.p., 0.5 h before LPS and the PAF-receptor antagonist WEB 2170 (0.05 and 1 mg/kg, i.p., 0.5 h before LPS had no effect. Purified alveolar macrophages (AM were used to replenish the pouches of cycloheximide-treated recipient rats. AM provided by PBS-treated animals led to the recovery of the LPS-induced neutrophil recruitment and of the TNFα-like formation contrasting with those from cycloheximide-treated animals (1 mg/kg, i.p.. When delivered in situ, liposome-encapsulated clodronate, a macrophage depletor, significantly impaired both the LPSinduced neutrophil recruitment and the TNFα-like activity. An anti-murine TNFα polyclonal antibody (0.5 h before LPS was also effective. These results emphasize the pivotal role of macrophages for LPS-induced neutrophil recruitment via the formation of TNFα.

  1. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish

    Directory of Open Access Journals (Sweden)

    Liling Yang

    2017-10-01

    Full Text Available Background/Aims: Forsythia suspensa Vahl. (Oleaceae fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN, the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF

  2. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Xichun Wang

    2018-01-01

    Full Text Available Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS- induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg, and a dexamethasone (DEX (5 mg/kg group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  3. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Science.gov (United States)

    Feng, Shibin; Ding, Nana; He, Yanting; Li, Cheng; Li, Manman; Ding, Xuedong; Ding, Hongyan; Li, Jinchun

    2018-01-01

    Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  4. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  5. Impact of training status on LPS-induced acute inflammation in humans

    DEFF Research Database (Denmark)

    Olesen, Jesper; Biensø, Rasmus Sjørup; Meinertz, S.

    2015-01-01

    The aim of the present study was to examine the impact of training status on the ability to induce a lipopolysaccharide (LPS)-induced inflammatory response systemically as well as in skeletal muscle (SkM) and adipose tissue (AT) in human subjects. Methods: Seventeen young (23.8 ± 2.5 years of age......) healthy male subjects were included in the study with eight subjects assigned to a trained (T) group and nine subjects assigned to an untrained (UT) group. On the experimental day, catheters were inserted in the femoral artery and vein of one leg for blood sampling and a bolus of 0.3 ng LPS•kg-1 body...... weight was injected into an antecubital vein in the forearm. Femoral arterial blood flow was measured before (Pre) the LPS injection and continuously throughout the experiment by Ultrasound Doppler and arterial and venous blood samples were drawn Pre and 30, 60, 90 and 120 min after the LPS injection...

  6. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Roh, Eunmiri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hyun Soo [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Baek, Seung-Il [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Choi, Nam Song [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  7. Radiation induced changes in the airway - anaesthetic implications ...

    African Journals Online (AJOL)

    Radiation induced changes in the airway - anaesthetic implications: case report. Mallika Balakrishnan, Renju Kuriakose, Rachel Cherian Koshy. Abstract. Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. Osteoradionecrosis (ORN) of the mandible, a severe consequence of ...

  8. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    International Nuclear Information System (INIS)

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-01-01

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β 2 -AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β 2 -AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production

  9. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Department of Infectious Diseases, Peking University Third Hospital, Beijing (China); Zhang, Yuan [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Xu, Ming; Zhang, You-Yi [Department of Institute of Vascular Medicine and Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing (China); He, Bei, E-mail: puh3_hb@bjmu.edu.cn [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China)

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  10. The effect of 60Co γ-rays on con A and LPS induced lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Keliang; Ma Xiangrui

    1987-01-01

    The effect of 60 Co γ-rays on lymphocytes induced by Con A and LPS and the relationship between these two groups of cells were investigated by means of 3 H-TdR incorporation. The study showed that in vitro, Con A cells were able to promote the inducing effect of LPS to B cells. When Con A cells were irradiated by 10 Gy γ-rays, the 3 H-TdR incorporation value reduced significantly and the stimulating effect of Con A cells on LPS cells disappeared. Having been irradiated by γ-rays, LPS cells were not be able to be stimulated by normal Con A cells. When the groups of cells were incubated together after irradiation, the synergistic function disappeared, furthermore the suppressive effect of Con A cells on LPS cells emerged. When these two groups of cells were investigated by means of agar culture, the suppressive effect of 10 Gy γ-rays on lymphocytes colony formation was more obvious. Tests on 7 patients who were suffering from carcinoma of nasoparynx showed that after a course of treatment with 60 Co γ-rays, the incorporation value in Con A cells became much smaller, the stimulating effect of Con A cells on LPS cells disappeared. LPS cells could not be stimulated by normal Con A cells. The study demonstrated that the radiosensitivity of Con A cells is higher than that of LPS cells

  11. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  12. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  13. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  14. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  15. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    Science.gov (United States)

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  16. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  17. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs. Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.

  18. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  1. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  2. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  3. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  5. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  6. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats

    International Nuclear Information System (INIS)

    Stefan, Marius; Melnig, Viorel; Pricop, Daniela; Neagu, Anca; Mihasan, Marius; Tartau, Liliana; Hritcu, Lucian

    2013-01-01

    The impact of nanoparticles in medicine and biology has increased rapidly in recent years. Gold nanoparticles (AuNP) have advantageous properties such as chemical stability, high electron density and affinity to biomolecules. However, the effects of AuNP on human body after repeated administration are still unclear. Therefore, the purpose of the present study was to evaluate the effects of gold-11.68 nm (AuNP1, 9.8 μg) and gold-22.22 nm (AuNP2, 19.7 μg) nanoparticles capped with chitosan on brain and liver tissue reactivity in male Wistar rats exposed to lipopolysaccharide (LPS from Escherichia coli serotype 0111:B4, 250 μg) upon 8 daily sessions of intraperitoneal administration. Our results suggest that the smaller size of chitosan-capped AuNP shows the protective effects against LPS-induced toxicity, suggesting a very high potential for biomedical applications. - Highlights: ► Smaller size of chitosan-capped gold nanoparticles acts against LPS-induced toxicity. ► Larger size of chitosan-capped gold nanoparticles agglomerated inside neurons and induced toxicity in combination with LPS. ► Chitosan has excellent biocompatible proprieties. ► Smaller size of chitosan-capped gold nanoparticles demonstrates great potential in biomedical applications.

  7. Effect of parenchymal stiffness on canine airway size with lung inflation.

    Directory of Open Access Journals (Sweden)

    Robert H Brown

    2010-04-01

    Full Text Available Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H(2O. Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness.

  8. Investigating the CYP2E1 Potential Role in the Mechanisms Behind INH/LPS-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hozeifa M. Hassan

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression

  9. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  10. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  12. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  13. Acrolein inhalation suppresses lipopolysaccharide-induced inflammatory cytokine production but does not affect acute airways neutrophilia.

    Science.gov (United States)

    Kasahara, David Itiro; Poynter, Matthew E; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-07-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.

  14. Allergen-induced changes in airway responsiveness are related to baseline airway responsiveness

    NARCIS (Netherlands)

    deBruinWeller, MS; Weller, FR; RijssenbeekNouwens, LHM; Jansen, HM; deMonchy, JGR

    In the literature, bronchial allergen challenge is usually reported to result in an increase in histamine-induced airway responsiveness (AR). The present study investigated the relation between baseline AR and allergen-induced changes in AR. The effect of allergen challenge on AR was investigated in

  15. Pregnancy complicating irradiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Bakri, Younes N.; Martan, Ahmed; Amri, Aladin (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Obstetrics and Gynecology); Amri, M. (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Cardiovascular Diseases)

    1992-01-01

    A case is reported of a 24 year-old primigravida who had severe effusive constrictive pericarditis secondary to mediastinal irradiation following chemotherapy for Hodgkins disease. Pregnancy was threatened by serious maternal cardiovascular complications and a non-viable fetus was born spontaneously and prematurely. Patient was completely asymptomatic before pregnancy. (au).

  16. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    Becker, Susanne; Mundandhara, Sailaja; Devlin, Robert B.; Madden, Michael

    2005-01-01

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  17. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  18. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  19. Intratracheal administration of bacterial lipopolysaccharide elicits pulmonary hypertension in broilers with primed airways.

    Science.gov (United States)

    Lorenzoni, A G; Wideman, R F

    2008-04-01

    Broilers reared under commercial conditions inhale irritant gases and aerosolized particulates contaminated with gram-negative bacteria and bacterial lipopolysaccharide (LPS). Previous studies demonstrated that i.v. injections of LPS can trigger an increase in the pulmonary arterial pressure (PAP); however, the pulmonary hemodynamic response to aerosolized LPS entering via the most common route, the respiratory tract, had not been evaluated in broilers. In experiment 1, broilers reared on new wood shavings litter in clean environmental chambers either were not pretreated (control group) or were pretreated via aerosol inhalation of substances (food color dyes and propylene glycol) known to sensitize the airways. One day later, the broilers were anesthetized, catheterized to record the PAP, and an intratracheal aerosol spray of LPS (1 mL of 2 mg/mL of LPS) was administered. Broilers in the control group as well as broilers pretreated with aerosolized distilled water or yellow and blue food color dyes did not develop pulmonary hypertension (PH; an increase in PAP) after the intratracheal spray of LPS, whereas broilers that had been pretreated with red food color did develop PH in response to intratracheal LPS. In experiment 2, birds raised under commercial conditions on used wood shavings litter developed PH in response to intratracheal LPS regardless of whether they had been pretreated with aerosolized red food color dye. In experiment 3, broilers reared in clean environmental chambers on new wood shavings litter were used to demonstrate that Red Dye #3 and propylene glycol are capable of priming the responsiveness of the airways to a subsequent intratracheal LPS challenge. Common air contaminants such as LPS can result in PH leading to pulmonary hypertension syndrome (ascites) in broilers with appropriately primed airways.

  20. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  1. Vicks VapoRub induces mucin secretion, decreases ciliary beat frequency, and increases tracheal mucus transport in the ferret trachea.

    Science.gov (United States)

    Abanses, Juan Carlos; Arima, Shinobu; Rubin, Bruce K

    2009-01-01

    Vicks VapoRub (VVR) [Proctor and Gamble; Cincinnati, OH] is often used to relieve symptoms of chest congestion. We cared for a toddler in whom severe respiratory distress developed after VVR was applied directly under her nose. We hypothesized that VVR induced inflammation and adversely affected mucociliary function, and tested this hypothesis in an animal model of airway inflammation. [1] Trachea specimens excised from 15 healthy ferrets were incubated in culture plates lined with 200 mg of VVR, and the mucin secretion was compared to those from controls without VVR. Tracheal mucociliary transport velocity (MCTV) was measured by timing the movement of 4 microL of mucus across the trachea. Ciliary beat frequency (CBF) was measured using video microscopy. [2] Anesthetized and intubated ferrets inhaled a placebo or VVR that was placed at the proximal end of the endotracheal tube. We evaluated both healthy ferrets and animals in which we first induced tracheal inflammation with bacterial endotoxin (a lipopolysaccharide [LPS]). Mucin secretion was measured using an enzyme-linked lectin assay, and lung water was measured by wet/dry weight ratios. [1] Mucin secretion was increased by 63% over the controls in the VVR in vitro group (p < 0.01). CBF was decreased by 35% (p < 0.05) in the VVR group. [2] Neither LPS nor VVR increased lung water, but LPS decreased MCTV in both normal airways (31%) and VVR-exposed airways (30%; p = 0.03), and VVR increased MCTV by 34% in LPS-inflamed airways (p = 0.002). VVR stimulates mucin secretion and MCTV in the LPS-inflamed ferret airway. This set of findings is similar to the acute inflammatory stimulation observed with exposure to irritants, and may lead to mucus obstruction of small airways and increased nasal resistance.

  2. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  5. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, A.; Khajuria, A.; Sidiq, T.; AshokKumar; Thakur, N.L.; Naik, D.; Vishwakarma, R.A.

    . The effect of Lawsonone (1) was elucidated on the immune cells (splenocytes and macrophages) collected from BALB/c mice. Study was carried out to find the effect of Lawsonone (1) on Con-A and LPS stimulated splenocyte proliferation, LPS-induced NO, IL-1beta...

  6. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Yamada, Masahide; Oritani, Kenji; Kaisho, Tsuneyasu; Ishikawa, Jun; Yoshida, Hitoshi; Takahashi, Isao; Kawamoto, Shinichirou; Ishida, Naoko; Ujiie, Hidetoshi; Masaie, Hiroaki; Botto, Marina; Tomiyama, Yoshiaki; Matsuzawa, Yuji

    2004-01-01

    We show here that C1q suppresses IL-12p40 production in LPS-stimulated murine bone marrow-derived dendritic cells (BMDC). Serum IL-12p40 concentration of C1q-deficient mice was higher than that of wild-type mice after intraperitoneal LPS-injection. Because neither globular head of C1q (gC1q) nor collagen-like region of C1q (cC1q) failed to suppress LPS-induced IL-12p40 production, both gC1q and cC1q, and/or some specialized conformation of native C1q may be required for the inhibition. While C1q did not affect mRNA expression of Toll-like receptor 4 (TLR4), MD-2, and myeloid differentiation factor 88 (MyD88), BMDC treated with C1q showed the reduced activity of NF-kappaB and the delayed phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase after LPS-stimulation. CpG oligodeoxynucleotide-induced IL-12p40 and TNF-alpha production, another MyD88-dependent TLR-mediated signal, was also suppressed by C1q treatment. Therefore, C1q is likely to suppress MyD88-dependent pathway in TLR-mediated signals. In contrast, C1q failed to suppress colony formation of B cells responding to LPS or LPS-induced CD40 and CD86 expression on BMDC in MyD88-deficient mice, indicating that inhibitory effects of C1q on MyD88-independent pathways may be limited. Taken together, C1q may regulate innate and adaptive immune systems via modification of signals mediated by interactions between invading pathogens and TLR.

  7. Protective Effect of Argan and Olive Oils against LPS-Induced Oxidative Stress and Inflammation in Mice Livers

    Directory of Open Access Journals (Sweden)

    Soufiane El Kamouni

    2017-10-01

    Full Text Available Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS. Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO or olive oil (OO for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx. Hematoxylin–eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT and aspartate transaminase (AST. Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6 and Tumor Necrosis Factor-α (TNF-α and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4 and Interleukin-10 (IL-10. OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs signaling and, under LPS, an anti-inflammatory IL-10/Liver

  8. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK.

    Science.gov (United States)

    Kim, Joungmin; Jeong, Seong-Wook; Quan, Hui; Jeong, Cheol-Won; Choi, Jeong-Il; Bae, Hong-Beom

    2016-02-01

    Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation.

  9. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling.

    Science.gov (United States)

    Rivas, Priscila M S; Vechiato, Fernanda M V; Borges, Beatriz C; Rorato, Rodrigo; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2017-07-01

    Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  11. Individual canine Airway Response Variability to a Deep Inspiration

    Directory of Open Access Journals (Sweden)

    Robert H. Brown

    2011-01-01

    Full Text Available In healthy individuals, a DI can reverse (bronchodilation or prevent (bronchoprotection induced airway constriction. For individuals with asthma or COPD, these effects may be attenuated or absent. Previous work showed that the size and duration of a DI affected the subsequent response of the airways. Also, increased airway tone lead to increased airway size variability. The present study examined how a DI affected the temporal variability in individual airway baseline size and after methacholine challenge in dogs using High-Resolution Computed Tomography. Dogs were anesthetized and ventilated, and on 4 separate days, HRCT scans were acquired before and after a DI at baseline and during a continuous intravenous infusion of methacholine (Mch at 3 dose rates (17, 67, and 200 μg/mm. The Coefficient of Variation was used as an index of temporal variability in airway size. We found that at baseline and the lowest dose of Mch, variability decreased immediately and 5 minutes after the DI ( P < 0.0001. In contrast, with higher doses of Mch, the DI caused a variable response. At a rate of 67 μg/min of Mch, the temporal variability increased after 5 minutes, while at a rate of 200 μg/min of Mch, the temporal variability increased immediately after the DI. Increased airway temporal variability has been shown to be associated with asthma. Although the mechanisms underlying this temporal variability are poorly understood, the beneficial effects of a DI to decrease airway temporal variability was eliminated when airway tone was increased. If this effect is absent in asthmatics, this may suggest a possible mechanism for the loss of bronchoprotective and bronchodilatory effects after a DI in asthma.

  12. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW improves the outcome of lipopolysaccharide (LPS-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p. or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10. In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line, suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.

  13. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury.

    Science.gov (United States)

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats.

    Science.gov (United States)

    da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle

    2016-12-01

    Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  15. Intermedin attenuates LPS-induced inflammation in the rat testis.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD, also known as adrenomedullin 2 (ADM2, is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2. IMD decreased both plasma and testicular levels of reactive oxygen species (ROS production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα, interleukin 6 (IL6 and interleukin 1 beta (IL1β, rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  16. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  17. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  18. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  19. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. EOSINOPHIL INFLUX TO THE NASAL AIRWAY FOLLOWING LOCAL, LOW-LEVEL LPS CHALLENGE IN HUMANS

    Science.gov (United States)

    Background: Recent obervations show that atopic asthmatic subjects have increased sensitivity to respirable endotoxin (or LPS) compared with normal persons. In vitro studies demonstrate that LPS enchances eosinophil survival. These obervations suggest that the effects of inhal...

  1. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  2. Flux nucleation in the current-induced resistive state of a constricted type I superconductor

    International Nuclear Information System (INIS)

    Selig, K.P.; Huebener, R.P.

    1981-01-01

    The current-induced resistive state in a constricted type I superconductor is characterized by a train of flux tubes traversing the sample perpendicular to the direction of the applied current following its nucleation at the sample edge. The temporal structure of the nucleation process can be investigated by attempting to synchronize this process with small periodic current pulses superimposed on the direct bias current. The resistive dc voltage is then to be measured as a function of the pulse parameters such as frequency and width. We have performed such experiments at 4.2 K on constricted Pb films of 6--8 μm thickness and 100 μm width. Simultaneously with the electrical measurements the dynamic behavior of the flux tubes was directly observed using a stroboscopic magnetooptical method for magnetic flux detection. Our electrical measurements clearly show how the size of the nucleated flux tubes varies with the direct bias current and the nucleation frequency. The positive wall energy in the Pb films results in a lower limit for this size as expected. The influence of the preceding flux tubes still existing within the constriction upon the flux nucleation process is revealed in detail. All observations can be understood from a consideration of the energy balance during the flux nucleation process

  3. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  4. Surgical treatment of 2 cases of irradiation induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, Hiroshi; Takahashi, Wataru; Yoshii, Shinpei [Yamanashi Medical Univ., Tamaho (Japan)] (and others)

    1999-11-01

    A 72-years-old man underwent radiation therapy (62 Gy) for esophageal carcinoma. Twelve months later, symptoms of heart failure such as syncope, cough and hepatomegaly manifested. On catheter study, a dip and plateau pattern of right ventricular pressure curve was evident. Pericardiectomy without extracorporeal circulation was performed. Operative findings and pathological results were compatible with radiation-induced constrictive pericarditis. He recovered from the heart failure, and has been doing well 3 months after the surgery. A 54-years-old man underwent thymectomy for malignant thymoma. He underwent a radiation therapy (52 Gy) postoperatively. After 12 months from the irradiation, syncope and dyspnea manifested. On catheter study, a dip and plateau pattern of right ventricular pressure curve was observed. Pericardiectomy with extracorporeal circulation was performed. He recovered from the heart failure after pericardiectomy, however he died of radiation-induced pneumonitis 6 months later. (author)

  5. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    Science.gov (United States)

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  6. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    Full Text Available Nuclear factor-κB (NF-κB is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro.In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro.These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.

  7. Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB

    Science.gov (United States)

    Zhu, Tao; Wang, Dao-xin; Zhang, Wei; Liao, Xiu-qing; Guan, Xian; Bo, Hong; Sun, Jia-yang; Huang, Ni-wen; He, Jing; Zhang, Yun-kun; Tong, Jing; Li, Chang-yi

    2013-01-01

    Background Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro. Methods and Results In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro. Conclusions These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI. PMID:23437127

  8. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  9. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-01-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876

  10. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-07-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.

  11. Inducible Laryngeal Obstruction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal Obstruction

    Science.gov (United States)

    2017-10-20

    REPORT TYPE 10/20/2017 Poster 4. TITLE AND SUBTITLE Inducible Laryngeal Obstrnction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal...REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES 3. DATES COVERED (From - To) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. MiR-125b Inhibits LPS-Induced Inflammatory Injury via Targeting MIP-1α in Chondrogenic Cell ATDC5

    Directory of Open Access Journals (Sweden)

    Jinling Jia

    2018-03-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is largely responsible for cartilage degeneration in osteoarthritis (OA. MicroRNAs (miRNAs play an important role in chondrogenesis and cartilage remodeling. This study explored the effect of miR-125b on inflammatory injury in chondrogenic cells. Methods: LPS was used to simulate inflammatory injury in murine chondrogenic ATDC5 cell lines. Targeting effect of miR-125b on MIP-1α 3’UTR was assessed by dual luciferase activity assay. Regulatory effect of miR-125b on MIP-1α expression and the potential regulatory mechanism on inflammatory injury were assessed by Western blot. Results: miR-125b expression was decreased in LPS-induced ATDC5 cells and overexpression of miR-125b inhibited LPS-induced cell viability decline, the rise of apoptosis and inflammatory factors’ productions. MIP-1α expression was negatively related to miR-125b, and miR-125b directly targeted with 3’UTR of MIP-1α. Knockdown of miR-125b promoted LPS-induced inflammatory response via upregulation of MIP-1α. miR-125b expression in LPS-induced ATDC5 cells was negatively related with activations of NF-κB and JNK signaling pathways. Overexpression of miR-125b inhibited LPS-induced inflammation injury via suppressing MIP-1α expression and inhibiting activations of NF-κB and JNK signaling pathways. Conclusion: miR-125b could play an important role in inflammatory injury of chondrogenic cells and miR-125b affected inflammatory injury of ATDC5 cells via regulating expression of MIP-1α and regulating NF-κB and JNK signaling pathways.

  13. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  14. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  15. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    Science.gov (United States)

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  16. The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice

    Directory of Open Access Journals (Sweden)

    Soo-Jung Kim

    2012-01-01

    Full Text Available Apamin, a peptide component of bee venom (BV, has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip injections of lipopolysaccharide (LPS, 2 mg/kg to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF-α, vascular cell adhesion molecule (VCAM-1, and intracellular cell adhesion molecule (ICAM-1, as well as the nuclear factor kappa B (NF-κB signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+ levels, and TNF-α in the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.

  17. Effects of Flavin7 on allergen induced hyperreactivity of airways

    Directory of Open Access Journals (Sweden)

    Franova S

    2009-12-01

    Full Text Available Abstract Some studies have suggested that the polyphenolic compounds might reduce the occurrence of asthma symptoms. The aim of our experiments was to evaluate the effects of 21 days of the flavonoid Flavin7 administration on experimentally induced airway inflammation in ovalbumin-sensitized guinea pigs. We assessed tracheal smooth muscle reactivity by an in vitro muscle-strip method; changes in airway resistance by an in vivo plethysmographic method; histological picture of tracheal tissue; and the levels of interleukin 4 (IL-4, and interleukin 5 (IL-5 in bronchoalveolar lavage fluid (BALF. Histological investigation of tracheal tissue and the concentrations of the inflammatory cytokines IL-4 and IL-5 in BALF were used as indices of airway inflammation. Administration of Flavin7 caused a significant decrease of specific airway resistance after histamine nebulization and a decline in tracheal smooth muscle contraction amplitude in response to bronchoconstricting mediators. Flavin7 minimized the degree of inflammation estimated on the basis of eosinophil calculation and IL-4 and IL-5 concentrations. In conclusion, administration of Flavin7 showed bronchodilating and anti-inflammatory effects on allergen-induced airway inflammation.

  18. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    Science.gov (United States)

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  19. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  20. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  1. Antithyroid drug-induced agranulocytosis complicated by pneumococcal sepsis and upper airway obstruction.

    Science.gov (United States)

    Ishimaru, Naoto; Ohnishi, Hisashi; Nishiuma, Teruaki; Doukuni, Ryota; Umezawa, Kanoko; Oozone, Sachiko; Kuramoto, Emi; Yoshimura, Sho; Kinami, Saori

    2013-01-01

    Streptococcus pneumoniae is a rare pathogen of sepsis in patients with antithyroid drug-induced agranulocytosis. We herein describe a case of antithyroid drug-induced agranulocytosis complicated by pneumococcal sepsis and upper airway obstruction. A 27-year-old woman who was previously prescribed methimazole for nine months presented with a four-day history of a sore throat. She nearly choked and was diagnosed with febrile agranulocytosis. She was successfully treated with intubation, intravenous antibiotics and granulocyte colony-stimulating factor. Her blood cultures yielded S. pneumoniae. Emergency airway management, treatment of sepsis and the administration of granulocyte colony-stimulating factor can improve the clinical course of antithyroid drug-induced pneumococcal sepsis in patients with airway obstruction.

  2. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice.

    Science.gov (United States)

    Gong, Xiaobao; Yang, You; Huang, Ligua; Zhang, Qingyan; Wan, Rong-Zhen; Zhang, Peng; Zhang, Baoshun

    2017-05-01

    To evaluate the hepatoprotective effects and potential mechanisms of paeonol (Pae) against acute liver failure (ALF) induced by lipopolysaccharide (LPS)/d-galactosamine (d-GalN) in mice, we examined anti-oxidative, anti-inflammatory and anti-apoptotic activities of Pae. We found that Pae pretreatment markedly reduced the activities of alanine transaminase and aspartate transaminase as well as the histopathological changes induced by LPS/d-GalN. Catalase, glutathione and superoxide dismutase activities increased and reactive oxygen species activity decreased after Pae treatment compared with LPS/d-GalN treatment. Pretreatment with Pae also significantly inhibited the expression levels of iNOS, nitric oxide (NO), COX-2 and prostaglandin E 2 (PGE 2 ). In addition, Pae administration prevented the phosphorylated expression of IκB kinase, inhibitor kappa B in the nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed the phosphorylated expression of extracellular signal-regulated kinase (ERK), c-jun-N-terminal kinase and p38 in the MAPK signaling pathway. Pretreatment with Pae also inhibited hepatocyte apoptosis by reducing the expression of caspases 3, 8, 9, and Bax, and increasing Bcl-2. In total, protective effects of Pae against LPS/d-GalN-induced ALF in mice are attributed to its antioxidative effect, inflammatory suppression in NF-κB and MARK signaling pathways, and inhibition of hepatocyte apoptosis inhibition. Therefore, Pae can be a potential therapeutic agent in attenuating LPS/d-GalN-induced ALF in the future. Copyright © 2017. Published by Elsevier B.V.

  3. Antithetic regulation by β-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway β-agonist paradox

    OpenAIRE

    McGraw, Dennis W.; Almoosa, Khalid F.; Paul, Richard J.; Kobilka, Brian K.; Liggett, Stephen B.

    2003-01-01

    β-adrenergic receptors (βARs) relax airway smooth muscle and bronchodilate, but chronic β-agonist treatment in asthma causes increased sensitivity to airway constriction (hyperreactivity) and is associated with exacerbations. This paradox was explored using mice with ablated βAR genes (βAR–/–) and transgenic mice overexpressing airway smooth muscle β2AR (β2AR-OE) representing two extremes: absence and persistent activity of airway βAR. Unexpectedly, βAR–/– mice, lacking these bronchodilating ...

  4. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.

    Science.gov (United States)

    Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E

    2013-08-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.

  5. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  6. Training induces cognitive bias: the case of a simulation-based emergency airway curriculum.

    Science.gov (United States)

    Park, Christine S; Stojiljkovic, Ljuba; Milicic, Biljana; Lin, Brian F; Dror, Itiel E

    2014-04-01

    Training-induced cognitive bias may affect performance. Using a simulation-based emergency airway curriculum, we tested the hypothesis that curriculum design would induce bias and affect decision making. Twenty-three novice anesthesiology residents were randomized into 2 groups. The primary outcome measure was the initiation of supraglottic airway and cricothyroidotomy techniques in a simulated cannot-ventilate, cannot-intubate scenario during 3 evaluation sessions. Secondary outcomes were response times for device initiation. After a baseline evaluation and didactic lecture, residents received an initial practical training in either surgical cricothyroidotomy (CRIC group) or supraglottic airway (SGA group). After the midtest, the groups switched to receive the alternate training. From baseline to midtest, the SGA group increased initiation of supraglottic airway but not cricothyroidotomy. The CRIC group increased initiation of cricothyroidotomy but not supraglottic airway. After completion of training in both techniques, the SGA group increased initiation of both supraglottic airway and cricothyroidotomy. In contrast, the CRIC group increased initiation of cricothyroidotomy but failed to change practice in supraglottic airway. Final test response times showed that the CRIC group was slower to initiate supraglottic airway and faster to initiate cricothyroidotomy. Practical training in only 1 technique caused bias in both groups despite a preceding didactic lecture. The chief finding was an asymmetrical effect of training sequence even after training in both techniques. Initial training in cricothyroidotomy caused bias that did not correct despite subsequent supraglottic airway training. Educators must be alert to the risk of inducing cognitive bias when designing curricula.

  7. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-κB translocation

    International Nuclear Information System (INIS)

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-01-01

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 μM after 48 h incubation. Pretreatment with 100 μM PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and IκBα, as well as the nuclear translocation of NF-κB primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-κB nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers

  8. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  9. Occupational (? constrictive bronchiolitis with normal physical, functional and image findings

    Directory of Open Access Journals (Sweden)

    Sandra Figueiredo

    2009-07-01

    Full Text Available Constrictive bronchiolitis is characterized by alterations in the walls of membranous and respiratory bronchioles. These changes lead to concentric narrowing or complete obliteration of the airway lumen. Suspicion of possible bronchiolar disorders may arise from clinical, funcional, and radiologic findings. However, constrictive bronchiolitis may be present even with normal physical, functional and image findings, which turns the diagnosis difficult. A high index of suspicion is necessary to justify invasive tests that lead to pulmonary biopsy. In this report, we describe a patient with cough and dyspnoea, with normal physical, functional and image findings, whose work-up leaded to the diagnosis of constrictive bronchiolitis. Resumo: A bronquiolite constritiva é caracterizada por alterações das paredes dos bronquíolos membranosos e respiratórios. Estas alterações incluem um espectro de alterações que podem variar, desde a inflamação à fibrose concêntrica progressiva, com obstrução completa do lúmen bronquiolar. O diagnóstico pode ser sugerido pela história clínica e por alterações radiológicas e funcionais. No entanto, o exame físico e os exames complementares de diagnóstico podem ser normais, o que dificulta o diagnóstico, sendo necessário um elevado índice de suspeita para se sujeitar o doente a exames invasivos, tal como a biópsia pulmonar cirúrgica. Os autores apresentam um caso clínico de uma doente com quadro arrastado de tosse e dispneia, com exame físico, funcional e imagiológico normais, cujo estudo exaustivo veio a revelar o diagnóstico de bronquiolite constritiva. Key-words: Constrictive bronchiolitis, iron oxide, Palavras-chave: Bronquiolite constritiva, óxido de ferro

  10. Radiation induced changes in the airway - anaesthetic implications

    African Journals Online (AJOL)

    Adele

    CASE REPORT. Southern African Journal of Anaesthesia & Analgesia - May 2004. 19. Radiation ... Summary: Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. ... Mask holding and ventilation is.

  11. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  12. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  13. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-κB activation in the development of lung injury and RAW 264.7 macrophages

    International Nuclear Information System (INIS)

    Kim, Hee J.; Lee, Hui S.; Chong, Young H.; Kang, Jihee Lee

    2006-01-01

    Clarification of the key regulatory steps that lead to nuclear factor-kappa B (NF-κB) under cellular and pathological conditions is very important. The action of p38 mitogen-activated protein kinase (MAPK) on the upstream of NF-κB activation remains controversial. To examine this issue using an in vivo lung injury model, SB203580, a p38 MAPK inhibitor was given intraorally 1 h prior to lipopolysaccharide (LPS) treatment (intratracheally). The mice were sacrificed 4 h after LPS treatment. SB203580 substantially suppressed LPS-induced rises in p38 MAPK phosphorylation, neutrophil recruitment, total protein content in bronchoalveolar lavage fluid, and apoptosis of bronchoalveolar cells. Furthermore, SB203580 blocked LPS-induced NF-κB activation in lung tissue through down-regulation of serine phosphorylation, degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that, in cultured RAW 264.7 macrophages, SB203580 also blocked LPS-induced NF-κB activation in a dose-dependent manner. SB203580 inhibited LPS-induced serine phosphorylation, degradation of IκB-α, and tyrosine phosphorylation of p65 NF-κB. These data indicate that p38 MAPK acts upstream of LPS-induced NF-κB activation by modulating the phosphorylation of IκB-α and p65 NF-κB during acute lung injury. Because LPS-stimulated macrophages may contribute to inflammatory lung injury, the inhibition of the p38 MAPK-mediated intracellular signaling pathway leading to NF-κB activation represents a target for the attenuation of lung inflammation and parenchymal damage

  14. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS.

    Science.gov (United States)

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-02-01

    In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. © 2014 The British Pharmacological Society.

  15. Rhizoma coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFB-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Remppis

    2010-01-01

    Full Text Available Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP-1 production in RAW cells. Activation of the transcription factors AP-1 and NFB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine.

  16. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  17. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  18. Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries.

    Science.gov (United States)

    Eid, A H; Maiti, K; Mitra, S; Chotani, M A; Flavahan, S; Bailey, S R; Thompson-Torgerson, C S; Flavahan, N A

    2007-09-01

    Raynaud's phenomenon, which is characterized by intense cold-induced constriction of cutaneous arteries, is more common in women compared with men. Cold-induced constriction is mediated in part by enhanced activity of alpha(2C)-adrenoceptors (alpha(2C)-ARs) located on vascular smooth muscle cells (VSMs). Experiments were therefore performed to determine whether 17beta-estradiol regulates alpha(2C)-AR expression and function in cutaneous VSMs. 17beta-Estradiol (0.01-10 nmol/l) increased expression of the alpha(2C)-AR protein and the activity of the alpha(2C)-AR gene promoter in human cultured dermal VSMs, which was assessed following transient transfection of the cells with a promoter-reporter construct. The effect of 17beta-estradiol was associated with increased accumulation of cAMP and activation of the cAMP-responsive Rap2 GTP-binding protein. Transient transfection of VSMs with a dominant-negative mutant of Rap2 inhibited the 17beta-estradiol-induced activation of the alpha(2C)-AR gene promoter, whereas a constitutively active mutant of Rap2 increased alpha(2C)-AR promoter activity. The effects of 17beta-estradiol were inhibited by the estrogen receptor (ER) antagonist, ICI-182780 (1 micromol/l), and were mimicked by a cell-impermeable form of the hormone (estrogen:BSA) or by the selective ER-alpha receptor agonist 4,4',4'''-(4-propyl-[(1)H]-pyrazole-1,3,5-triyl)tris-phenol (PPT; 10 nmol/l) or the selective ER-beta receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nmol/l). Therefore, 17beta-estradiol increased expression of alpha(2C)-ARs by interacting with cell surface receptors to cause a cAMP/Rap2-dependent increase in alpha(2C)-AR transcription. In mouse tail arteries, 17beta-estradiol (10 nmol/l) increased alpha(2C)-AR expression and selectively increased the cold-induced amplification of alpha(2)-AR constriction, which is mediated by alpha(2C)-ARs. An estrogen-dependent increase in expression of cold-sensitive alpha(2C)-ARs may contribute

  19. ST2 suppresses IL-6 production via the inhibition of IκB degradation induced by the LPS signal in THP-1 cells

    International Nuclear Information System (INIS)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko; Aoki, Shinsuke; Yanagisawa, Ken; Endo, Hitoshi; Tominaga, Shin-ichi

    2006-01-01

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-κB to the IL-6 promoter. Furthermore, the degradation of IκB in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated that ST2 negatively regulates LPS-induced IL-6 production via the inhibition of IκB degradation in THP-1 cells

  20. The effect of disease and respiration on airway shape in patients with moderate persistent asthma.

    Directory of Open Access Journals (Sweden)

    Spyridon Montesantos

    Full Text Available Computational models of gas transport and aerosol deposition frequently utilize idealized models of bronchial tree structure, where airways are considered a network of bifurcating cylinders. However, changes in the shape of the lung during respiration affect the geometry of the airways, especially in disease conditions. In this study, the internal airway geometry was examined, concentrating on comparisons between mean lung volume (MLV and total lung capacity (TLC. A set of High Resolution CT images were acquired during breath hold on a group of moderate persistent asthmatics at MLV and TLC after challenge with a broncho-constrictor (methacholine and the airway trees were segmented and measured. The airway hydraulic diameter (Dh was calculated through the use of average lumen area (Ai and average internal perimeter (Pi at both lung volumes and was found to be systematically higher at TLC by 13.5±9% on average, with the lower lobes displaying higher percent change in comparison to the lower lobes. The average internal diameter (Din was evaluated to be 12.4±6.8% (MLV and 10.8±6.3% (TLC lower than the Dh, for all the examined bronchi, a result displaying statistical significance. Finally, the airway distensibility per bronchial segment and per generation was calculated to have an average value of 0.45±0.28, exhibiting high variability both between and within lung regions and generations. Mixed constriction/dilation patterns were recorded between the lung volumes, where a number of airways either failed to dilate or even constricted when observed at TLC. We conclude that the Dh is higher than Din, a fact that may have considerable effects on bronchial resistance or airway loss at proximal regions. Differences in caliber changes between lung regions are indicative of asthma-expression variability in the lung. However, airway distensibility at generation 3 seems to predict distensibility more distally.

  1. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    Science.gov (United States)

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration. Copyright © 2016 Elsevier B.V. All rights

  2. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Yong Chan; Song, Seok Bean; Lee, Sang Kyu; Park, Sang Min; Kim, Young Sang

    2014-04-01

    Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

  3. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  4. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  5. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  6. Antioxidant and anti-inflammatory effects of cauliflower leaf powder-enriched diet against LPS induced toxicity in rabbits.

    Science.gov (United States)

    Larocca, Marilena; Perna, Anna Maria; Simonetti, Amalia; Gambacorta, Emilio; Iannuzzi, Alessandra; Perucatti, Angela; Rossano, Rocco

    2017-09-20

    Brassica phytochemicals exert a broad spectrum of health-promoting activities. The aim of this study was to investigate the possible beneficial effects of a cauliflower leaf powder (CLP)-enriched diet to prevent inflammation and oxidative stress resulting from injection of lipopolysaccharide (LPS) into rabbits. Animals (24 rabbits) were randomly divided into two groups and fed with a standard diet (SD) or a standard diet supplemented with a 100 g kg -1 diet of CLP. After 60 days, six rabbits of both groups received a LPS injection (100 μg per kg body weight). Serum samples collected after 90 min of LPS injection were assessed for their content of both inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and matrix-metalloproteinases (MMP-2 and MMP-9) and oxidative stress biomarkers such as thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). LPS increased the levels of TNF-α, IL-6, and TBARS as well as MMP-2 and MMP-9 activities, whereas it decreased the GSH levels and SOD and CAT activities. In conclusion, preventive supplementation with CLP can protect rabbits from the inflammation and oxidative stress induced by LPS.

  7. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  8. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium

    NARCIS (Netherlands)

    Post, S.; Rozeveld, D.; Jonker, M. R.; Bischoff, R.; van Oosterhout, A. J.; Heijink, I. H.

    2015-01-01

    Background: House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. Objective: As a disintegrin and metalloprotease (ADAM)s have

  9. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    Science.gov (United States)

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  10. Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness.

    Science.gov (United States)

    Devouassoux, Gilles; Lévy, Patrick; Rossini, Eliane; Pin, Isabelle; Fior-Gozlan, Michèle; Henry, Mireille; Seigneurin, Daniel; Pépin, Jean-Louis

    2007-03-01

    Obstructive sleep apnea syndrome (OSA) is associated with systemic and upper airway inflammation. Pharyngeal inflammation has a potential role in upper airway collapse, whereas systemic inflammation relates to cardiovascular morbidity. However, the presence of an inflammatory involvement of lower airway has been poorly investigated. The aim of the study was to demonstrate an inflammatory process at the bronchial level in patients with OSA and to analyze effects of continuous positive airway pressure (CPAP) application and humidification on bronchial mucosa. The study was conducted by using sequential induced sputum for cell analysis and IL-8 production, nitric oxide exhalation measurement, and methacholine challenge before and after CPAP. Bronchial neutrophilia and a high IL-8 concentration were observed in untreated OSA compared with controls (75% +/- 20% vs 43% +/- 12%, P Obstructive sleep apnea syndrome is associated with bronchial inflammation. Our data demonstrate CPAP effect on the development of AHR, possibly facilitated by the pre-existing inflammation. Both issues should be evaluated during long-term CPAP use. Results showing a spontaneous bronchial inflammation in OSA and the development of a CPAP-related AHR require a long-term follow-up to evaluate consequences on chronic bronchial obstruction.

  11. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  12. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Bacterial lipopolysaccharide (LPS induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3, methylation (H3K4, H3K9, H3K27 and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene.

  13. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone.

    Directory of Open Access Journals (Sweden)

    Julieta Aisemberg

    Full Text Available Lipopolysaccharide (LPS administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF, which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.

  14. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tatiane Oliveira

    2015-01-01

    Full Text Available Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE and quercetin (Qt on osteoclastogenesis under inflammatory conditions (LPS-induced. Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL, and treated with AcE (50–1000 µg/mL or Qt (1.25, 2.5, or 5 µM. Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced via attenuation of RANKL/PgLPS-induced NF-κB activation.

  15. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    Science.gov (United States)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  16. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  17. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens

    Directory of Open Access Journals (Sweden)

    Yoshihisa Hiraishi

    2016-10-01

    Conclusions: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.

  18. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats.

    Science.gov (United States)

    Wang, T; Liu, Y; Chen, L; Wang, X; Hu, X-R; Feng, Y-L; Liu, D-S; Xu, D; Duan, Y-P; Lin, J; Ou, X-M; Wen, F-Q

    2009-05-01

    Airway inflammation with mucus overproduction is a distinguishing pathophysiological feature of many chronic respiratory diseases. Phosphodiesterase (PDE) inhibitors have shown anti-inflammatory properties. In the present study, the effect of sildenafil, a potent inhibitor of PDE5 that selectively degrades cyclic guanosine 3',5'-monophosphate (cGMP), on acrolein-induced inflammation and mucus production in rat airways was examined. Rats were exposed to acrolein for 14 and 28 days. Sildenafil or distilled saline was administered intragastrically prior to acrolein exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell count and the detection of pro-inflammatory cytokine levels. Lung tissue was examined for cGMP content, nitric oxide (NO)-metabolite levels, histopathological lesion scores, goblet cell metaplasia and mucin production. The results suggested that sildenafil pretreatment reversed the significant decline of cGMP content in rat lungs induced by acrolein exposure, and suppressed the increase of lung NO metabolites, the BALF leukocyte influx and pro-inflammatory cytokine release. Moreover, sildenafil pretreatment reduced acrolein-induced Muc5ac mucin synthesis at both mRNA and protein levels, and attenuated airway inflammation, as well as epithelial hyperplasia and metaplasia. In conclusion, sildenafil could attenuate airway inflammation and mucus production in the rat model, possibly through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, and, thus, might have a therapeutic potential for chronic airway diseases.

  19. Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide.

    Science.gov (United States)

    Mousavi, Seyyedeh Elaheh; Saberi, Pegah; Ghasemkhani, Naeemeh; Fakhraei, Nahid; Mokhtari, Rezvan; Dehpour, Ahmad Reza

    2018-01-01

    Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, possesses antioxidant, antiapoptotic, neuroprotective, and anti-inflammatory properties. The aim of the present study was to investigate the effect of licofelone on lipopolysaccharide (LPS)-induced depression in a mouse model and also a possible role for nitric oxide (NO). To elucidate the role of NO on this effect of licofelone (5 and 20 mg/kg, i.p.), L-NAME, a non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), a specific inducible NOS (iNOS) inhibitor; 7-nitroindazole (7-NI) a preferential neuronal NOS inhibitor (nNOS) and; L-arginine (L-Arg), as a NO donor, were used. The animal's behaviors were evaluated employing forced swimming test (FST), tail suspension test (TST) and open field test (OFT). LPS (0.83 mg/kg, i.p.) induced depressive-like behavior increasing immobility time in FST and TST. Conversely, licofelone (20 mg/kg i.p.) reversed the depressive effect of LPS and lowered the immobility time in FST and TST. On the other hand, pretreatment with L-Arg also reversed the antidepressant-like effect of licofelone (20 mg/kg) in FST and TST. On the other hand, L-NAME (10 and 30 mg/kg), AG (50 and 100 mg/kg) and 7-NI (60 mg/kg) could potentiate licofelone (5 mg/kg) and lowered the immobility duration. NO down-regulation possibly through iNOS and nNOS inhibition may involve in the antidepressant property of licofelone. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  20. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    Science.gov (United States)

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  1. Dataset of red light induced pupil constriction superimposed on post-illumination pupil response

    Directory of Open Access Journals (Sweden)

    Shaobo Lei

    2016-09-01

    Full Text Available We collected and analyzed pupil diameter data from of 7 visually normal participants to compare the maximum pupil constriction (MPC induced by “Red Only” vs. “Blue+Red” visual stimulation conditions.The “Red Only” condition consisted of red light (640±10 nm stimuli of variable intensity and duration presented to dark-adapted eyes with pupils at resting state. This condition stimulates the cone-driven activity of the intrinsically photosensitive retinal ganglion cells (ipRGC. The “Blue+Red” condition consisted of the same red light stimulus presented during ongoing blue (470±17 nm light-induced post-illumination pupil response (PIPR, representing the cone-driven ipRGC activity superimposed on the melanopsin-driven intrinsic activity of the ipRGCs (“The Absence of Attenuating Effect of Red light Exposure on Pre-existing Melanopsin-Driven Post-illumination Pupil Response” Lei et al. (2016 [1].MPC induced by the “Red Only” condition was compared with the MPC induced by the “Blue+Red” condition by multiple paired sample t-tests with Bonferroni correction. Keywords: Pupil light reflex, Chromatic pupillometry, Melanopsin, Post-illumination pupil response

  2. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    OpenAIRE

    Li, Jing; Luo, Li; Wang, Xiaoyun; Liao, Bin; Li, Guoping

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Androg...

  3. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  4. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition

    International Nuclear Information System (INIS)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-01-01

    Highlights: ► Quince peel polyphenols inhibit LPS-induced secretion of TNF-α and IL-8. ► Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. ► Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-α is partially mediated by IL-6. ► The anti-inflammatory effects of quince polyphenols pass through NF-κB, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-α and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-α secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-κB), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.

  5. EZH2 Inhibition Ameliorates Transverse Aortic Constriction-Induced Pulmonary Arterial Hypertension in Mice

    Directory of Open Access Journals (Sweden)

    Zhan-Li Shi

    2018-01-01

    Full Text Available Background. EPZ005687 is a selective inhibiter of methyltransferase EZH2. In this article, we investigated the protective role and mechanism of EPZ005687 in transverse aortic constriction-induced pulmonary arterial hypertension in mice. Methods. We assigned 15 (6–8 weeks old male balb/c mice to 3 groups randomly: Sham control + DMSO group, TAC + DMSO group, and TAC + EPZ005687 group (10 mg kg−1, once a week for 4 weeks. On day 28 following TAC operation, the right ventricular systolic blood pressure (RVSBP was measured, and lung tissues were collected for laboratory examinations (DHE, Western blot, real-time PCR, and ChIP. Results. Murine PAH model was successfully created by TAC operation as evidenced by increased RVSBP and hypertrophic right ventricle. Compared with the sham control, TAC-induced PAH markedly upregulated the expression of EZH2 and ROS deposition in lungs in PAH mice. The inhibiter of methyltransferase EZH2, EPZ005687 significantly inhibits the development of TAC-induced PAH in an EZH2-SOD1-ROS dependent manner. Conclusion. Our data identified that EZH2 serves a fundamental role in TAC-induced PAH, and administration of EPZ005687 might represent a novel therapeutic target for the treatment of TAC-induced PAH.

  6. Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression.

    Science.gov (United States)

    Yang, Shengqian; Yu, Ziru; Yuan, Tianyi; Wang, Lin; Wang, Xue; Yang, Haiguang; Sun, Lan; Wang, Yuehua; Du, Guanhua

    2016-11-01

    Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Nicole S., E-mail: Nicole.olgun02@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Hanna, Nazeeh, E-mail: Nhanna@winthrop.org [Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Department of Pediatrics, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Reznik, Sandra E., E-mail: Rezniks@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Department of Obstetrics and Gynecology and Women' s Health, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  8. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    International Nuclear Information System (INIS)

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-01-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET A receptor. We have previously shown that antagonism of the ET A receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET A receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET A receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET A blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue

  9. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  10. Inhibition of breast cancer resistance protein (ABCG2 in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Breast cancer resistance protein (ABCG2, a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs. ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  11. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  12. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10.

    Science.gov (United States)

    Olgun, Nicole S; Hanna, Nazeeh; Reznik, Sandra E

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11-12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ETA receptor. We have previously shown that antagonism of the ETA receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS+BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12h. We discovered that BQ-123, when administered 10h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ETA receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ETA receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. Copyright © 2014. Published by Elsevier Inc.

  13. More Relaxation by Deep Breath on Methacholine- Than on Exercise-Induced bronchoconstriction during the Routine Testing of Asthmatic Children

    Directory of Open Access Journals (Sweden)

    Iulia Ioan

    2017-10-01

    Full Text Available Deep inspiration (DI dilates normal airway precontracted with methacholine. The fact that this effect is diminished or absent in asthma could be explained by the presence of bronchial inflammation. The hypothesis was tested that DI induces more relaxation in methacholine induced bronchoconstriction—solely determined by the smooth muscle contraction—than in exercise induced bronchoconstriction, which is contributed to by both smooth muscle contraction and airway wall inflammation. The respiratory conductance (Grs response to DI was monitored in asthmatic children presenting a moderately positive airway response to challenge by methacholine (n = 36 or exercise (n = 37, and expressed as the post- to pre-DI Grs ratio (GrsDI. Both groups showed similar change in FEV1 after challenge and performed a DI of similar amplitude. GrsDI however was significantly larger in methacholine than in exercise induced bronchoconstriction (p < 0.02. The bronchodilatory effect of DI is thus less during exercise- than methacholine-induced bronchoconstriction. The observation is consistent with airway wall inflammation—that characterizes exercise induced bronchoconstriction—rendering the airways less responsive to DI. More generally, it is surmised that less relief of bronchoconstriction by DI is to be expected during indirect than direct airway challenge. The current suggestion that airway smooth muscle constriction and airway wall inflammation may result in opposing effects on the bronchomotor action of DI opens important perspective to the routine testing of asthmatic children. New crossover research protocols comparing the mechanical consequences of the DI maneuver are warranted during direct and indirect bronchial challenges.

  14. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    Science.gov (United States)

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-06-01

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG 2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Jeon, Minji; Kim, Min-Kyung; Han, Sang-Mi; Park, Kwan-Kyu

    2018-02-05

    Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis ( P. gingivalis ) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects.

  16. Macrophages are related to goblet cell hyperplasia and induce MUC5B but not MUC5AC in human bronchus epithelial cells.

    Science.gov (United States)

    Silva, Manuel A; Bercik, Premysl

    2012-06-01

    Airway goblet cell hyperplasia (GCH)--detectable by mucin staining--and abnormal macrophage infiltrate are pathological features present in many chronic respiratory disorders. However, it is unknown if both factors are associated. Using in-vivo and in-vitro models, we investigated whether macrophages are related with GCH and changes in mucin immunophenotypes. Lung sections from Sprague-Dawley rats treated for 48 h with one intra-tracheal dose of PBS or LPS (n=4-6 per group) were immunophenotyped for rat-goblet cells, immune, and proliferation markers. Human monocyte-derived macrophages (MDM) were pre-treated with or without LPS, immunophenotyped, and their supernatant, as well as cytokines at levels equivalent to supernatant were used to challenge primary culture of normal human bronchus epithelial cells (HBEC) in air-liquid interface, followed by MUC5B and MUC5AC mucin immunostaining. An association between increased bronchiolar goblet cells and terminal-bronchiolar proliferative epithelial cells confirmed the presence of GCH in our LPS rat model, which was related with augmented bronchiolar CD68 macrophage infiltration. The in-vitro experiments have shown that MUC5AC phenotype was inhibited when HBEC were challenged with supernatant from MDM pre-treated with or without LPS. In contrast, TNF-α and interleukin-1β at levels equivalent to supernatant from LPS-treated MDM increased MUC5AC. MUC5B was induced by LPS, supernatant from LPS-treated MDM, a mix of cytokines including TNF-α and TNF-α alone at levels present in supernatant from LPS-treated MDM. We demonstrated that macrophages are related with bronchiolar GCH, and that they induced MUC5B and inhibited MUC5AC in HBEC, suggesting a role for them in the pathogenesis of airway MUC5B-related GCH.

  17. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism.

    Science.gov (United States)

    Birrell, M A; McCluskie, K; Wong, S; Donnelly, L E; Barnes, P J; Belvisi, M G

    2005-05-01

    Consumption of a naturally occurring polyphenol, resveratrol, in particular through drinking moderate amounts of red wine, has been suggested to be beneficial to health. A plethora of in vitro studies published demonstrate various anti-inflammatory actions of resveratrol. The aim of this research was to determine whether any of these anti-inflammatory effects translate in vivo in a rodent model of LPS induced airway inflammation. Resveratrol reduced lung tissue neutrophilia to a similar magnitude as that achieved by treatment with budesonide. This was associated with a reduction in pro-inflammatory cytokines and prostanoid levels. Interestingly, the reduction did not appear to be due to an impact on NF-kappaB activation or the expression of the respective genes as suggested by various in vitro publications. These results suggest that resveratrol may possess anti-inflammatory properties via a novel mechanism. Elucidation of this mechanism may lead to potential new therapies for the treatment of chronic inflammation.

  18. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  19. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  20. Classical and quantum transport through entropic barriers modeled by hardwall hyperboloidal constrictions

    International Nuclear Information System (INIS)

    Hales, R.; Waalkens, H.

    2009-01-01

    We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schroedinger equation and the classical equations of motion for these geometries, we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.

  1. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  2. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  3. Bromodomain and Extra Terminal (BET Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation.

    Directory of Open Access Journals (Sweden)

    Thi Hiep Nguyen

    Full Text Available Exacerbations of asthma are linked to significant decline in lung function and are often poorly controlled by corticosteroid treatment. Clinical investigations indicate that viral and bacterial infections play crucial roles in the onset of steroid-resistant inflammation and airways hyperresponsiveness (AHR that are hallmark features of exacerbations. We have previously shown that interferon γ (IFNγ and lipopolysaccharide (LPS cooperatively activate pulmonary macrophages and induce steroid-resistant airway inflammation and AHR in mouse models. Furthermore, we have established a mouse model of respiratory syncytial virus (RSV-induced exacerbation of asthma, which exhibits macrophage-dependent, steroid-resistant lung disease. Emerging evidence has demonstrated a key role for bromo- and extra-terminal (BET proteins in the regulation of inflammatory gene expression in macrophages. We hypothesised that BET proteins may be involved in the regulation of AHR and airway inflammation in our steroid-resistant exacerbation models.We investigated the effects of a BET inhibitor (I-BET-762 on the development of steroid-resistant AHR and airway inflammation in two mouse models. I-BET-762 administration decreased macrophage and neutrophil infiltration into the airways, and suppressed key inflammatory cytokines in both models. I-BET treatment also suppressed key inflammatory cytokines linked to the development of steroid-resistant inflammation such as monocyte chemoattractant protein 1 (MCP-1, keratinocyte-derived protein chemokine (KC, IFNγ, and interleukin 27 (IL-27. Attenuation of inflammation was associated with suppression of AHR.Our results suggest that BET proteins play an important role in the regulation of steroid-resistant exacerbations of airway inflammation and AHR. BET proteins may be potential targets for the development of future therapies to treat steroid-resistant inflammatory components of asthma.

  4. Lipopolysaccharide hyperpolarizes guinea pig airway epithelium by increasing the activities of the epithelial Na(+) channel and the Na(+)-K(+) pump.

    Science.gov (United States)

    Dodrill, Michael W; Fedan, Jeffrey S

    2010-10-01

    Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.

  5. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  6. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  7. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    Science.gov (United States)

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  8. Expression of lung vascular and airway ICAM-1 after exposure to bacterial lipopolysaccharide

    DEFF Research Database (Denmark)

    Beck-Schimmer, B; Schimmer, R C; Warner, R L

    1997-01-01

    model. This increase was reduced by 81% after treatment of animals with anti-tumor necrosis factor-alpha (TNF-alpha) antibody and by 37% after treatment with anti-interleukin-1 (IL-1) antibody. The same interventions reduced whole-lung ICAM-1 protein by 85% and 25%, respectively. The studies were...... extended to assess the locale in lung of ICAM-I upregulation. Lung vascular ICAM-1 content, which was assessed by vascular fixation of [125I]anti-ICAM-1, rose 4-fold after airway instillation of LPS. This rise was also TNF-alpha-dependent. Under the same experimental conditions, fixation of [125I...... lavage fluids (BALFs) of animals after intratracheal instillation of LPS. Retrieved alveolar macrophages showed a small, significant, and transient increase in surface expression of ICAM-1. These data indicate, at the very least, a dual compartmentalized (vascular and airway) upregulation of ICAM-1 after...

  9. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    Science.gov (United States)

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  10. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  11. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. Copyright © 2013 Elsevier Inc. All rights

  12. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Science.gov (United States)

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10 μM) but not high (>10 μM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5 μM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. PMID:23770200

  13. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner

    LENUS (Irish Health Repository)

    Minogue, Aedín M

    2012-06-14

    AbstractBackgroundCompelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNFα, IL-6 and IL-1β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κB (NFκB) complex and the Janus kinases (JAKs)\\/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS).MethodsWe examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats.ResultsTNFα was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NFκB signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK\\/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNFα induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNFα receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNFα and IL-1β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release.ConclusionsThese data indicate that TNFα may regulate IL-6 production through activation of JAK\\/STAT signaling and that the subsequent production of IL-6 may impact on the release of

  14. T cell subsets in human airways prior to and following endobronchial administration of endotoxin

    DEFF Research Database (Denmark)

    Ronit, Andreas; Plovsing, Ronni R; Gaardbo, Julie C

    2015-01-01

    BACKGROUND AND OBJECTIVES: Bronchial instillation of lipopolysaccharide (LPS) provides a reversible model of lung inflammation that may resemble early stages of acute respiratory distress syndrome (ARDS). We investigated the distributions of T-cell subsets in the human airways and sought to deter...

  15. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  16. Preservation of renal blood flow by the antioxidant EUK-134 in LPS-treated pigs.

    Science.gov (United States)

    Magder, Sheldon; Parthenis, Dimitrios G; Ghouleh, Imad Al

    2015-03-25

    Sepsis is associated with an increase in reactive oxygen species (ROS), however, the precise role of ROS in the septic process remains unknown. We hypothesized that treatment with EUK-134 (manganese-3-methoxy N,N'-bis(salicyclidene)ethylene-diamine chloride), a compound with superoxide dismutase and catalase activity, attenuates the vascular manifestations of sepsis in vivo. Pigs were instrumented to measure cardiac output and blood flow in renal, superior mesenteric and femoral arteries, and portal vein. Animals were treated with saline (control), lipopolysaccharide (LPS; 10 µg·kg-1·h-1), EUK-134, or EUK-134 plus LPS. Results show that an LPS-induced increase in pulmonary artery pressure (PAP) as well as a trend towards lower blood pressure (BP) were both attenuated by EUK-134. Renal blood flow decreased with LPS whereas superior mesenteric, portal and femoral flows did not change. Importantly, EUK-134 decreased the LPS-induced fall in renal blood flow and this was associated with a corresponding decrease in LPS-induced protein nitrotyrosinylation in the kidney. PO2, pH, base excess and systemic vascular resistance fell with LPS and were unaltered by EUK-134. EUK-134 also had no effect on LPS-associated increase in CO. Interestingly, EUK-134 alone resulted in higher CO, BP, PAP, mean circulatory filling pressure, and portal flow than controls. Taken together, these data support a protective role for EUK-134 in the renal circulation in sepsis.

  17. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  18. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  19. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    Directory of Open Access Journals (Sweden)

    Ju Hee Lee

    2015-01-01

    Full Text Available The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549 and the major constituent, methyl protodioscin (MP, also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF- α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS- induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders.

  20. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Xibao Zhao; Xibao Zhao; Debing Pu; Debing Pu; Zizhao Zhao; Huihui Zhu; Hongrui Li; Hongrui Li; Yaping Shen; Xingjie Zhang; Ruihan Zhang; Jianzhong Shen; Weilie Xiao; Weilie Xiao; Weilin Chen

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflamm...

  1. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  2. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction.

    Directory of Open Access Journals (Sweden)

    Elena Rampanelli

    Full Text Available Acute kidney injury (AKI is a common complication during systemic inflammatory response syndrome (SIRS, a potentially deadly clinical condition characterized by whole-body inflammatory state and organ dysfunction. CD44 is a ubiquitously expressed cell-surface transmembrane receptor with multiple functions in inflammatory processes, including sterile renal inflammation. The present study aimed to assess the role of CD44 in endotoxic shock-induced kidney inflammation and dysfunction by using CD44 KO and WT mice exposed intraperitoneally to LPS for 2, 4, and 24 hours . Upon LPS administration, CD44 expression in WT kidneys was augmented at all time-points. At 2 and 4 hours, CD44 KO animals showed a preserved renal function in comparison to WT mice. In absence of CD44, the pro-inflammatory cytokine levels in plasma and kidneys were lower, while renal expression of the anti-inflammatory cytokine IL-10 was higher. The cytokine levels were associated with decreased leukocyte influx and endothelial activation in CD44 KO kidneys. Furthermore, in vitro assays demonstrated a role of CD44 in enhancing macrophage cytokine responses to LPS and leukocyte migration. In conclusion, our study demonstrates that lack of CD44 impairs the early pro-inflammatory cytokine response to LPS, diminishes leukocyte migration/chemotaxis and endothelial activation, hence, delays endotoxic shock-induced AKI.

  3. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  4. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  5. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  6. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  7. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  8. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  9. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Wigenstam, Elisabeth [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Koch, Bo [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden)

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  10. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  12. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  13. Cluster-guided imaging-based CFD analysis of airflow and particle deposition in asthmatic human lungs

    Science.gov (United States)

    Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long

    2017-11-01

    The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.

  14. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Qianran Yin

    2017-12-01

    Full Text Available Background/Aims: Lipopolysaccharide (LPS is a potent activator of vascular smooth muscle cells (VSMCs proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4 and Ras-related C3 botulinum toxin substrate 1 (Rac1 expression using small interfering RNA (siRNA in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. Methods: VSMCs proliferation was monitored by 5-ethynyl-2’-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA, smooth muscle 22α (SM22α, myosin heavy chain (MYH and transient receptor potential channel 1 (TRPC1 were detected by qRT-PCR. The expression of total Akt, p-Akt (308, p-Akt (473, SM22α, MYH and TRPC1 protein was analysed by Western blot. Results: Treatment with TLR4 siRNA (siTLR4 or Rac1 siRNA (siRac1 significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. Conclusion: This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect.

  15. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NF?B-Dependent Pathway

    OpenAIRE

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was anal...

  16. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  17. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Background: To evaluate the possibility of airway management using a laryngeal mask airway (LMA) during dental procedures on mentally retarded (MR) patients and patients with genetic diseases. Design: A prospective pilot study. Setting: University Hospital. Methods: A pilot study was designed to induce general ...

  18. Echocardiography: pericardial thickening and constrictive pericarditis.

    Science.gov (United States)

    Schnittger, I; Bowden, R E; Abrams, J; Popp, R L

    1978-09-01

    A total of 167 patients with pericardial thickening noted on M node echocardiography were studied retrospectively. After the echocardiogram, 72 patients underwent cardiac surgery, cardiac catheterization or autopsy for various heart diseases; 96 patients had none of these procedures. In 49 patients the pericardium was directly visualized at surgery or autopsy; 76 percent of these had pericardial thickening or adhesions. In another 8 percent, pericardial adhesions were absent, but no comment had been made about the appearance of the pericardium itself. In the remaining 16 percent, no comment had been made about the pericardium or percardial space. Cardiac catheterization in 64 patients revealed 24 with hemodynamic findings of constrictive pericarditis or effusive constrictive disease. Seven echocardiographic patterns consistent with pericardial adhesions or pericardial thickening are described and related when possible to the subsequent findings at heart surgery or autopsy. The clinical diagnoses of 167 patients with pericardial thickening are presented. The hemodynamic diagnosis of constrictive pericardial disease was associated with the echocardiographic finding of pericardial thickening, but there were no consistent echocardiographic patterns of pericardial thickening diagnostic of constriction. However, certain other echocardiographic abnormalities of left ventricular posterior wall motion and interventricular septal motion and a high E-Fo slope were suggestive of constriction.

  19. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yoon-Hee [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Baek, Jong Min; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  20. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes.

    Science.gov (United States)

    Wu, Jinfeng; Zhou, Junmin; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika A; Wei, Sheng; Dong, Jingcheng

    2012-01-01

    To evaluate the anti-inflammatory potential of ICT in LPS stimulated human innate immune cells. 3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)-flavone (ICT) is a novel derivative of icariin, the major active ingredient of Herba Epimedii, an herb used in traditional Chinese medicine. We previously demonstrated its anti-inflammatory potential in a murine macrophage cell line as well as in mouse models. We measured TNF-α production by ELISA, TLR4/CD14 expression by flow cytometry, and NF-κB and MAPK activation by western blot all in LPS-stimulated PBMC, human monocytes, or THP-1 cells after treatment with ICT. ICT inhibited LPS-induced TNF-α production in THP-1 cells, PBMCs and human monocytes in a dose-dependent manner. ICT treatment resulted in down-regulation of the expression of CD14/TLR4 and attenuated NF-κB and MAPK activation induced by LPS. We illustrate the anti-inflammatory property of ICT in human immune cells, especially in monocytes. These effects were mediated, at least partially, via inhibition of the CD14/TLR4 signaling pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia.

    Science.gov (United States)

    Ghaly, Tammer; Rabadi, May M; Weber, Mia; Rabadi, Seham M; Bank, Michael; Grom, John M; Fallon, John T; Goligorsky, Michael S; Ratliff, Brian B

    2011-10-01

    Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.

  2. Acrolein Inhalation Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production but Does Not Affect Acute Airways Neutrophilia1

    OpenAIRE

    Kasahara, David Itiro; Poynter, Matthew E.; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-01-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 μg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either befo...

  3. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  4. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  5. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  6. Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xiaolong Xu

    2016-01-01

    Full Text Available Hydroxysafflor yellow A (HSYA is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM. Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages.

  7. Effect of Class III bone anchor treatment on airway.

    Science.gov (United States)

    Nguyen, Tung; De Clerck, Hugo; Wilson, Michael; Golden, Brent

    2015-07-01

    To compare airway volumes and minimum cross-section area changes of Class III patients treated with bone-anchored maxillary protraction (BAMP) versus untreated Class III controls. Twenty-eight consecutive skeletal Class III patients between the ages of 10 and 14 years (mean age, 11.9 years) were treated using Class III intermaxillary elastics and bilateral miniplates (two in the infra-zygomatic crests of the maxilla and two in the anterior mandible). The subjects had cone beam computed tomographs (CBCTs) taken before initial loading (T1) and 1 year out (T2). Twenty-eight untreated Class III patients (mean age, 12.4 years) had CBCTs taken and cephalograms generated. The airway volumes and minimum cross-sectional area measurements were performed using Dolphin Imaging 11.7 3D software. The superior border of the airway was defined by a plane that passes through the posterior nasal spine and basion, while the inferior border included the base of the epiglottis to the lower border of C3. From T1 to T2, airway volume from BAMP-treated subjects showed a statistically significant increase (1499.64 mm(3)). The area in the most constricted section of the airway (choke point) increased slightly (15.44 mm(2)). The airway volume of BAMP patients at T2 was 14136.61 mm(3), compared with 14432.98 mm(3) in untreated Class III subjects. Intraexaminer correlation coefficients values and 95% confidence interval values were all greater than .90, showing a high degree of reliability of the measurements. BAMP treatment did not hinder the development of the oropharynx.

  8. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  9. Toward Defining "Vocal Constriction": Practitioner Perspectives.

    Science.gov (United States)

    Lemon-McMahon, Belinda; Hughes, Diane

    2018-01-01

    This research investigated the terminology used in relation to constriction of the singing voice from a range of practitioner perspectives. It focused on the locality, causes, consequences, management, trends, identification, and vocabulary of constriction. The research aimed to develop a holistic understanding of the term "vocal constriction" from participant experiences and perceptions (N = 10). Data collection occurred through in-depth, semi-structured interviews with a range of voice care professionals. Participants included three professional groups: (1) Ear, Nose, and Throat medical specialists or laryngologists, (2) speech pathologists or speech therapists, and (3) singing teachers. Purposive sampling was used to ensure that the participants from groups 1 and 2 had extensive experience with singers in their practice. The singing teachers were experienced in either classical or contemporary styles, or both. Participant responses highlighted a discrepancy in preferred terminology, with "constriction" being less favored overall. Several anatomical locations were identified including postural, supraglottic (anteroposterior and false fold), articulatory, and in the intrinsic and extrinsic laryngeal musculature; psychological issues were also identified. Primary causes, secondary causes, and influencing factors were identified. Inefficient technique and poor posture or alignment were considered primary causes; similarly, emotion and anxiety or stress were identified as influencing factors by the majority of participants. There was less uniformity in responses regarding other causes. The major findings of this research are the respective participant group distinctions, an uncertainty regarding anteroposterior constriction, and that the location and effects of constriction are individual to the singer and must be considered contextually. A definition is offered, and areas for further research are identified. Copyright © 2018 The Voice Foundation. Published by

  10. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Dudele, Anete; Poulsen, Morten M

    2016-01-01

    we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered...... through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b......, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during...

  11. Emu Oil Reduces LPS-Induced Production of Nitric Oxide and TNF-α but not Phagocytosis in RAW 264 Macrophages.

    Science.gov (United States)

    Miyashita, Tadayoshi; Minami, Kazuhiro; Ito, Minoru; Koizumi, Ryosuke; Sagane, Yoshimasa; Watanabe, Toshihiro; Niwa, Koichi

    2018-04-01

    Emu is the second-largest extant bird native to Australia. Emu oil, obtained from the emu's fat deposits, is used as an ingredient in cosmetic skincare products. Emu oil has been reported to improve several inflammatory symptoms; however, the mechanisms of these anti-inflammatory effects are largely unknown. This study investigated the effects of emu oil on the inflammatory macrophage response in vitro. A murine macrophage cell line, RAW 264, was incubated in culture media supplemented with or without emu oil and stimulated with lipopolysaccharide (LPS). We determined phagocytic activity by measuring the number of fluorescent microspheres taken up by the cells. The phagocytic activity of RAW 264 cells in the presence of LPS was unaffected by emu oil. We also determined production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in the culture medium using the Griess reaction and an enzyme-linked immunosorbent assay, respectively, and the protein expression of inducible NO synthase (iNOS) using western blotting. The results indicated that emu oil reduced the LPS-induced production of NO, TNF-α, and iNOS expression in a dose-dependent manner. The results suggested that emu oil does not reduce the phagocytic clearance rate of inflammatory matter; however, it does reduce the production of NO and TNF-α in macrophages. These latter products enhance the inflammatory response and emu oil thereby demonstrated anti-inflammatory properties.

  12. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  13. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  14. Efek ekstrak daun singkong (Manihot utilissima terhadap ekspresi COX-2 pada monosit yang dipapar LPS E.coli (The effect of Manihot utilissima extracts on COX-2 expression of monocytes induced by LPS E. coli

    Directory of Open Access Journals (Sweden)

    Zahara Meilawaty

    2013-12-01

    Full Text Available Background: Periodontal disease is a common and widespread disease in the community. Gram negative bacteria have a role inperiodontitis. These bacteria secrete a variety of products such as endotoxin lipopolysaccharide (LPS, which causes the occurrenceof inflammation or infection. The body defense responses are neutrophils and mononuclear cells (monocytes and macrophages. Inresponse to defense mechanism, the body will be expressed enzyme cyclooxygenase (COX which functions convert arachidonic acidto prostaglandins. Cassava leaf cells known to play a role in reducing inflammation, but the mechanism for inhibiting COX-2, is notknown. Purpose: The study was aimed to determine the effect of cassava leaf extract (Manihot utilissima on expression of enzyme COX-2 in monocytes which were exposed by LPS E. coli. Methods: This study was in vitro experimental studies with the design of posttestonly control group design. The sample was the cassava leaves extract (Manihot utilissima at concentration of 12.5 % and 25 %. Theexpression of COX-2 was determined by immunocytochemistry method. Isolated monocytes were incubated in cassava leaf extract, andthen exposed to LPS, after washing imunostaning procedure was performed using a monoclonal antibody (MAb anti-human COX-2.The research data was the number of monocytes that express COX-2. Results: Expression of COX-2 in the group cassava leaf extractwas higher than the group that induced by LPS E. coli only. Conclusion: Cassava leaf extract did not inhibit the expression of COX-2in monocytes which were exposed by LPS E. coli.Latar belakang: Penyakit periodontal merupakan penyakit umum dan tersebar luas di masyarakat. Bakteri yang banyak berperanpada periodontitis adalah Gram negatif. Bakteri ini mengeluarkan berbagai produk antara lain endotoksin lipopolisakarida (LPS yangmenyebabkan inflamasi atau infeksi. Respon pertahanan tubuh pertama adalah netrofil dan sel mononuklear (monosit dan makrofag.Pada respon

  15. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  16. Functional high-resolution computed tomography of pulmonary vascular and airway reactions

    International Nuclear Information System (INIS)

    Herold, C.J.; Johns Hopkins Medical Institutions, Baltimore, MD; Brown, R.H.; Johns Hopkins Medical Institutions, Baltimore, MD; Johns Hopkins Medical Institutions, Baltimore, MD; Wetzel, R.C.; Herold, S.M.; Zeerhouni, E.A.

    1993-01-01

    We describe the use of high-resolution computed tomography (HRCT) for assessment of the function of pulmonary vessels and airways. With its excellent spatial resolution, HRCT is able to demonstrate pulmonary structures as small as 300 μm and can be used to monitor changes following various stimuli. HRCT also provides information about structures smaller than 300 μm through measurement of parenchymal background density. To date, sequential, spiral and ultrafast HRCT techniques have been used in a variety of challenges to gather information about the anatomical correlates of traditional physiological measurements, thus making anatomical-physiological correlation possible. HRCT of bronchial reactivity can demonstrate the location and time course of aerosol-induced broncho-constriction and may show changes not apparent on spirometry. HRCT of the pulmonary vascular system visualized adaptations of vessels during hypoxia and intravascular volume loading and elucidates cardiorespiratory interactions. Experimental studies provide a basis for potential clinical applications of this method. (orig.) [de

  17. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    -dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  18. Study of the flow unsteadiness in the human airway using large eddy simulation

    Science.gov (United States)

    Bernate, Jorge A.; Geisler, Taylor S.; Padhy, Sourav; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-08-01

    The unsteady flow in a patient-specific geometry of the airways is studied. The geometry comprises the oral cavity, orophrarynx, larynx, trachea, and the bronchial tree extending to generations 5-8. Simulations are carried out for a constant inspiratory flow rate of 60 liters/min, corresponding to a Reynolds number of 4213 for a nominal tracheal diameter of 2 cm. The computed mean flow field is compared extensively with magnetic resonance velocimetry measurements by Banko et al. [Exp. Fluids 56, 117 (2015), 10.1007/s00348-015-1966-y] carried out in the same computed-tomography-based geometry, showing good agreement. In particular, we focus on the dynamics of the flow in the bronchial tree. After becoming unsteady at a constriction in the oropharynx, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal airways in which the Reynolds numbers are as low as 300. An inertial range signature is present in the trachea but not in the bronchial tree where a narrower range of scales is observed. The unsteadiness is attributed to the convection of turbulent structures produced at the larynx as well as to local kinetic energy production throughout the bronchial tree. Production occurs predominantly at shear layers bounding geometry-induced separation regions.

  19. Quantum transport through MoS2 constrictions defined by photodoping

    Science.gov (United States)

    Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph

    2018-05-01

    We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.

  20. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  1. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  2. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Xu, Ling; Gong, Changguo; Li, Guangming; Wei, Jue; Wang, Ting; Meng, Wenying; Shi, Min; Wang, Yugang

    2018-05-01

    Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

  3. In vivo and in vitro effects of lysine clonixinate on nitric oxide synthase in LPS-treated and untreated rat lung preparations.

    Science.gov (United States)

    Franchi, A M; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A

    2001-04-01

    Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions. Copyright 2001 Academic Press.

  4. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  5. Prenatal Exposure to LPS Alters The Intrarenal RAS in Offspring, Which Is Ameliorated by Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Ding, Xian-Fei; Sun, Mou; Guan, Fang-Xia; Guo, Li-Na; Zhang, Yan-Yan; Wan, You-Dong; Zhang, Xiao-Juan; Yu, Yan-Wu; Ma, Shan-Shan; Yao, Hai-Mu; Yao, Rui; Zhang, Rui-Fang; Sun, Tong-Wen; Kan, Quan-Cheng

    2017-11-06

    Prenatal lipopolysaccharide (LPS) exposure causes hypertension in rat offspring through an unknown mechanism. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) in hypertension induced by prenatal LPS exposure and also explored whether adipose tissue-derived mesenchymal stem cells (ADSCs) can ameliorate the effects of prenatal LPS exposure in rat offspring. Sixty-four pregnant rats were randomly divided into 4 groups (n = 16 in each), namely, a control group and an LPS group, which were intraperitoneally injected with vehicle and 0.79 mg/kg LPS, respectively, on the 8th, 10th, and 12th days of gestation; an ADSCs group, which was intravenously injected with 1.8 × 107 ADSCs on the 8th, 10th, and 12th days of gestation; and an LPS + ADSCs group, which received a combination of the treatments administered to the LPS and ADSCs groups. Prenatal LPS exposure increased blood pressure, Ang II expression, Ang II-positive, monocyte and lymphocyte, apoptotic cells in the kidney, and induced renal histological changes in offspring; however, the LPS and control groups did not differ significantly with respect to plasma renin activity levels, Ang II levels, or renal function. ADSCs treatment attenuated the blood pressure and also ameliorated the other effects of LPS-treated adult offspring. Prenatal exposure to LPS activates the intrarenal RAS but not the circulating RAS and thus induces increases in blood pressure in adult offspring; however, ADSCs treatment attenuates the blood pressure increases resulting from LPS exposure and also ameliorates the other phenotypic changes induced by LPS treatment by inhibiting intrarenal RAS activation. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation.

    Directory of Open Access Journals (Sweden)

    Tresa George

    Full Text Available The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2 reduces signalling from G-protein-coupled receptors (GPCRs that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs and long-acting β2-adrenoceptor agonists (LABAs such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance. While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57% compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11 release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.

  7. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    Energy Technology Data Exchange (ETDEWEB)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N. (INSERM U 28, Hopital Broussais, Paris (France))

    1990-12-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes.

  8. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    International Nuclear Information System (INIS)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N.

    1990-01-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes

  9. Bioactive Components from Qingwen Baidu Decoction against LPS-Induced Acute Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-04-01

    Full Text Available Qingwen Baidu Decoction (QBD is an extraordinarily “cold” formula. It was traditionally used to cure epidemic hemorrhagic fever, intestinal typhoid fever, influenza, sepsis and so on. The purpose of this study was to discover relationships between the change of the constituents in different extracts of QBD and the pharmacological effect in a rat model of acute lung injury (ALI induced by lipopolysaccharide (LPS. The study aimed to discover the changes in constituents of different QBD extracts and the pharmacological effects on acute lung injury (ALI induced by LPS. The results demonstrated that high dose and middle dose of QBD had significantly potent anti-inflammatory effects and reduced pulmonary edema caused by ALI in rats (p < 0.05. To explore the underlying constituents of QBD, we assessed its influence of six different QBD extracts on ALI and analyzed the different constituents in the corresponding HPLC chromatograms by a Principal Component Analysis (PCA method. The results showed that the pharmacological effect of QBD was related to the polarity of its extracts, and the medium polarity extracts E2 and E5 in particular displayed much better protective effects against ALI than other groups. Moreover, HPLC-DAD-ESI-MSn and PCA analysis showed that verbascoside and angoroside C played a key role in reducing pulmonary edema. In addition, the current study revealed that ethyl gallate, pentagalloylglucose, galloyl paeoniflorin, mudanpioside C and harpagoside can treat ALI mainly by reducing the total cells and infiltration of activated polymorphonuclear leukocytes (PMNs.

  10. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  11. Repeated exposure to intra-amniotic LPS partially protects against adverse effects of intravenous LPS in preterm lambs.

    Science.gov (United States)

    Gisslen, Tate; Hillman, Noah H; Musk, Gabrielle C; Kemp, Matthew W; Kramer, Boris W; Senthamaraikannan, Paranthaman; Newnham, John P; Jobe, Alan H; Kallapur, Suhas G

    2014-02-01

    Histologic chorioamnionitis, frequently associated with preterm births and adverse outcomes, results in prolonged exposure of preterm fetuses to infectious agents and pro-inflammatory mediators, such as LPS. Endotoxin tolerance-type effects were demonstrated in fetal sheep following repetitive systemic or intra-amniotic (i.a.) exposures to LPS, suggesting that i.a. LPS exposure would cause endotoxin tolerance to a postnatal systemic dose of LPS in preterm sheep. In this study, randomized pregnant ewes received either two i.a. injections of LPS or saline prior to preterm delivery. Following operative delivery, the lambs were treated with surfactant, ventilated, and randomized to receive either i.v. LPS or saline at 30  min of age. Physiologic variables and indicators of systemic and lung inflammation were measured. Intravenous LPS decreased blood neutrophils and platelets values following i.a. saline compared to that after i.a. LPS. Intra-amniotic LPS prevented blood pressure from decreasing following the i.v. LPS, but also caused an increased oxygen index. Intra-amniotic LPS did not cause endotoxin tolerance as assessed by cytokine expression in the liver, lung or plasma, but increased myeloperoxidase-positive cells in the lung. The different compartments of exposure to LPS (i.a. vs i.v.) are unique to the fetal to newborn transition. Intra-amniotic LPS incompletely tolerized fetal lambs to postnatal i.v. LPS.

  12. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  13. Comparative conventional- and quantum dot-labelling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts

    Directory of Open Access Journals (Sweden)

    Londiwe Siphephise Mgcina

    2015-05-01

    Full Text Available Lipopolysaccharide (LPS from Gram-negative bacteria is recognized as a microbe-associated molecular pattern (MAMP and not only induces an innate immune response in plants, but also stimulates the development of characteristic defense responses. However, identification and characterization of a cell surface LPS-receptor/binding site, as described in mammals, remains elusive in plants. As an amphiphilic, macromolecular lipoglycan, intact LPS potentially contains three MAMP-active regions, represented by the O-polysaccharide chain, the core and the lipid A. Binding site studies with intact labelled LPS were conducted in Arabidopsis thaliana protoplasts and quantified using flow cytometry fluorescence changes. Qdots, which allow non-covalent, hydrophobic labelling were used as a novel strategy in this study and compared to covalent, hydrophilic labelling with Alexa 488. Affinity for LPS-binding sites was clearly demonstrated by concentration-, temperature- and time-dependent increases in protoplast fluorescence following treatment with the labelled LPS. Moreover, this induced fluorescence increase was convincingly reduced following pre-treatment with excess unlabeled LPS, thereby indicating reversibility of LPS binding. Inhibition of the binding process is also reported using endo- and exocytosis inhibitors. Here, we present evidence for the anticipated presence of LPS-specific binding sites in Arabidopsis protoplasts, and furthermore propose Qdots as a more sensitive LPS-labelling strategy in comparison to the conventional Alexa 488 hydrazide label for binding studies.

  14. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    Science.gov (United States)

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  15. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  16. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Sebastian Molinett

    2015-01-01

    Full Text Available The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day and then subjected to LPS-induced liver injury (5 mg/kg. Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  17. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats.

    Science.gov (United States)

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  18. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Science.gov (United States)

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mesenchymal Stem Cells Alleviate LPS-Induced Acute Lung Injury in Mice by MiR-142a-5p-Controlled Pulmonary Endothelial Cell Autophagy

    Directory of Open Access Journals (Sweden)

    Zichao Zhou

    2016-01-01

    Full Text Available Background/Aims: Damages of pulmonary endothelial cells (PECs represent a critical pathological process during acute lung injury (ALI, and precede pulmonary epithelial cell injury, and long-term lung dysfunction. Transplantation of mesenchymal stem cells (MSCs has proven therapeutic effects on ALI, whereas the underlying mechanisms remain ill-defined. Method: We transplanted MSCs in mice and then induced ALI using Lipopolysaccharides (LPS. We analyzed the changes in permeability index and lung histology. Mouse PECs were isolated by flow cytometry based on CD31 expression and then analyzed for autophagy-associated factors LC3 and Beclin-1 by Western blot. Beclin-1 mRNA was determined by RT-qPCR. In vitro, we performed bioinformatics analyses to identify the MSCs-regulated miRNAs that target Beclin-1, and confirmed that the binding was functional by 3'-UTR luciferase reporter assay. Results: We found that MSCs transplantation significantly reduced the severity of LPS-induced ALI in mice. MSCs increased autophagy of PECs to promote PEC survival. MSCs increased Beclin-1 protein but not mRNA. MiR-142a-5p was found to target the 3'-UTR of Beclin-1 mRNA to inhibit its protein translation in PECs. MSCs reduced the levels of miR-142a-5p in PECs from LPS-treated mice. Conclusion: MSCs may alleviate LPS-ALI through downregulation of miR-142a-5p, which allows PECs to increase Beclin-1-mediated cell autophagy.

  20. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  1. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  2. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  3. Ventilation and Perfusion Lung Scintigraphy of Allergen-Induced Airway Responses in Atopic Asthmatic Subjects

    Directory of Open Access Journals (Sweden)

    Krishnan Parameswaran

    2007-01-01

    Full Text Available BACKGROUND: Both ventilation (V and perfusion (Q of the lungs are altered in asthma, but their relationships with allergen-induced airway responses and gas exchange are not well described.

  4. Compound list: LPS [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available LPS LPS 00A07 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro.../LPS.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/LPS.Rat.in..._vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/LPS.Rat.in_vivo.Liver.Single.zip ...

  5. Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    Directory of Open Access Journals (Sweden)

    Chung-Hung Shih

    2012-01-01

    Full Text Available Hesperetin, a selective phosphodiesterase (PDE4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA- induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD. Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p. dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF. It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation.

  6. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun

    2018-01-01

    In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.

  7. Changes of the eye optics after iris constriction

    Directory of Open Access Journals (Sweden)

    Robert Montés-Micó

    2010-10-01

    Conclusion: Iris constriction slightly modifies the optics of the eye. The small hyperopic shift of the best image plane after iris constriction may be explained by a change in the lens shape and/or position.

  8. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  9. Indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, Abigail S. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Anderson, Amy L. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States); Rice, Charles D., E-mail: cdrice@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States)

    2013-01-01

    Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties, on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages. -- Highlights: ► RAW 264.7 macrophages were treated with 1 μM Indirubin E804, 1 μg/ml LPS, or both. ► E804 suppresses LPS-induced expression of i

  10. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    Science.gov (United States)

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  11. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP and CCL11/eotaxin-1 in human asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Gustavo Nino

    Full Text Available Thymic stromal lymphoproetin (TSLP is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state.Primary human bronchial epithelial cells (HBEC from control (n = 3 and asthmatic (n = 3 donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI conditions and treated apically with dsRNA (viral surrogate or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC from normal (n = 3 and asthmatic (n = 3 donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20 vs. non-asthmatic uninfected controls (n = 20. Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay.Our data demonstrate that: 1 Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2 TSLP exposure induces unidirectional (apical secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3 Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1.There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  12. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  13. A pressure-gradient mechanism for vortex shedding in constricted channels

    Science.gov (United States)

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  14. [Permanent constrictions of the jaws (author's transl)].

    Science.gov (United States)

    Dupuis, A; Michaud, J

    1981-01-01

    Permanent constrictions of the jaws are of various types depending on the site of the lesion: temporomaxillary ankylosis, extra-articular constrictions of bone, skin, muscle, or mucosal origin, and those arising from tumors. The commonest cause is injury, those due to infection being currently less frequently observed, which cannot be said for those of tumoral origin. The consequences are difficulty in taking foud and poor buccodental hygiene, while temporomaxillary ankylosis in children provokes mandibular growth disturbances. Surgical treatment is aimed at removing the constriction. Total resection of the ankylosed block is essential to avoid recurrences, while reeducation of buccal opening must be started early and continued for long periods in all cases.

  15. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  16. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi Eun Kim

    2017-11-01

    Full Text Available The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS-induced nitric oxide (NO production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  17. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik

    2017-11-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  18. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  20. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    Directory of Open Access Journals (Sweden)

    Miguel Pinilla-Vera

    Full Text Available Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq. LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages.

  1. The ability of lipopolysaccharide (LPS) of Pasteurella multocida B:2 to induce clinical and pathological lesions in the nervous system of buffalo calves following experimental inoculation.

    Science.gov (United States)

    Marza, Ali Dhiaa; Jesse Abdullah, Faez Firdaus; Ahmed, Ihsan Muneer; Teik Chung, Eric Lim; Ibrahim, Hayder Hamzah; Zamri-Saad, Mohd; Omar, Abdul Rahman; Abu Bakar, Md Zuki; Saharee, Abdul Aziz; Haron, Abdul Wahid; Alwan, Mohammed Jwaid; Mohd Lila, Mohd Azmi

    2017-03-01

    Lipopolysaccharide (LPS) of P. multocida B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffaloes, is considered as the main virulence factor and contribute in the pathogenesis of the disease. Recent studies provided evidences about the involvement of the nervous system in pathogenesis of HS. However, the role of P. multocida B:2 immunogens, especially the LPS is still uncovered. Therefore, this study was designed to investigate the role of P. multocida B:2 LPS to induce pathological changes in the nervous system. Nine eight-month-old, clinically healthy buffalo calves were used and distributed into three groups. Calves of Group 1 and 2 were inoculated orally and intravenously with 10 ml of LPS broth extract represent 1 × 10 12  cfu/ml of P. multocida B:2, respectively, while calves of Group 3 were inoculated orally with 10 ml of phosphate buffer saline as a control. Significant differences were found in the mean scores for clinical signs, post mortem and histopathological changes especially in Group 2, which mainly affect different anatomic regions of the nervous system, mainly the brain. On the other hand, lower scores have been recorded for clinical signs, gross and histopathological changes in Group 1. These results provide for the first time strong evidence about the ability of P. multocida B:2 LPS to cross the blood brain barrier and induce pathological changes in the nervous system of the affected buffalo calves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats.

    Science.gov (United States)

    Li, Guowei; Chen, Tao; Zhu, Yingxian; Xiao, Xiaoyu; Bu, Juyuan; Huang, Zongwen

    2018-03-01

    Recent studies revealed that microRNAs (miRNAs) may play crucial roles in the responses and pathologic processes of spinal cord injury (SCI). This study aimed to investigate the effect and the molecular basis of miR-103 on LPS-induced injuries in PC12 cells in vitro and SCI rats in vivo . PC12 cells were exposed to LPS to induce cell injuries to mimic the in vitro model of SCI. The expression of miR-103 and SOX2 in PC12 cells were altered by transient transfections. Cell viability and apoptotic cell rate were measured by CCK-8 assay and flow cytometry assay. Furthermore, Western blot analysis was performed to detect the expression levels of apoptosis- and autophagy- related proteins, MAPK/ERK pathway- and JAK/STAT pathway-related proteins. In addition, we also assessed the effect of miR-103 agomir on SCI rats. LPS exposure induced cell injuries in PC12 cells. miR-103 overexpression significantly increased cell viability, reduced cell apoptosis and autophagy, and opposite results were observed in miR-103 inhibition. miR-103 attenuated LPS-induced injuries by indirect upregulation of SOX2. SOX2 overexpression protected PC12 cells against LPS-induced injuries, while SOX2 inhibition expedited LPS-induced cell injuries. Furthermore, miR-103 overexpression inhibited MAPK/ERK pathway and JAK/STAT pathway through upregulation of SOX2. We also found that miR-103 agomir inhibited cell apoptosis and autophagy in SCI rats. This study demonstrates that miR-103 may represent a protective effect against cell apoptosis and autophagy in LPS-injured PC12 cells and SCI rats by upregulation of SOX2 expression.

  3. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  4. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice.

    Science.gov (United States)

    Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin

    2017-11-04

    Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    VENKATA R.K. THIAGARAJAN

    2014-09-01

    Full Text Available The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS, reduced glutathione (GSH and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.

  6. Propionibacterium acnes: A Treatable Cause of Constrictive Pericarditis

    Directory of Open Access Journals (Sweden)

    Daniel Cruz

    2015-01-01

    Full Text Available In this case report we share a case of infective Pericarditis caused by Propionibacterium acnes (P. acnes in an immune-competent, nonsurgical patient. This case and review will illustrate the importance of considering P. acnes as a cause of idiopathic pericardial effusion and effusive constrictive disease. The patient was a 61-year-old male with history of osteoarthritis of the knee. He received an intra-articular steroid injection in July 2013. Two months later, he presented with atrial fibrillation and heart failure. He was found to have pericardial and bilateral pleural effusions which grew P. acnes. This organism was initially considered to be contaminant; however, as P. acnes was isolated from both pleural and pericardial fluids, he was started on oral amoxicillin. He was noted to have recurrence of effusions within 2 weeks with evidence of constrictive physiology by echocardiography. Treatment was subsequently changed to intravenous Penicillin G with marked symptomatic improvement, resolution of pericardial/pleural effusions, and no echocardiographic evidence of constrictive pericarditis at 10 weeks follow-up. Pursuit and treatment of P. acnes could lead to prevention of constrictive pericarditis. We believe that further studies are needed to assess prevalence of P. acnes and response to intravenous Penicillin G in patients presenting with effusive constrictive disease.

  7. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure.

    Directory of Open Access Journals (Sweden)

    Ihssane Zouikr

    Full Text Available Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis during postnatal day (PND 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG as well as rostral and caudal axes of the ventrolateral PAG (VLPAG. Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb as compared to medial habenula (MHb, however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.

  8. Altered Formalin-Induced Pain and Fos Induction in the Periaqueductal Grey of Preadolescent Rats following Neonatal LPS Exposure

    Science.gov (United States)

    Zouikr, Ihssane; James, Morgan H.; Campbell, Erin J.; Clifton, Vicki L.; Beagley, Kenneth W.; Dayas, Christopher V.; Hodgson, Deborah M.

    2014-01-01

    Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process. PMID:24878577

  9. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    Science.gov (United States)

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  10. Penile constriction injury: An experience of four cases

    Directory of Open Access Journals (Sweden)

    Ajit Somaji Sawant

    2016-01-01

    Full Text Available Penile injury due to constriction by a foreign object is a rare known complication, commonly seen in pediatric age group. We report four cases of penile constriction injury in adults due to various foreign objects and different indications. Between October 2014 and March 2016, four patients (mean age 42.5 years presented with penile constriction injury with duration at presentation ranging from 18 h to 2 months. One patient had complete transection of the corpus and penile urethra. Three patients were managed successfully with daily dressings followed by split-skin grafting in one patient. One patient required delayed primary suturing after the resolution of local edema. The outcome was satisfactory in all patients with retained erectile function. Early medical attention and management is the key to success in penile constriction injury cases and to avoid complications and morbidity. Prompt removal can be challenging in cases of metal foreign bodies.

  11. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages.

    Science.gov (United States)

    Korneev, Kirill V; Kondakova, Anna N; Sviriaeva, Ekaterina N; Mitkin, Nikita A; Palmigiano, Angelo; Kruglov, Andrey A; Telegin, Georgy B; Drutskaya, Marina S; Sturiale, Luisa; Garozzo, Domenico; Nedospasov, Sergei A; Knirel, Yuriy A; Kuprash, Dmitry V

    2018-01-01

    Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni , the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  12. Vasopressin-induced constriction of the isolated rat occipital artery is segment-dependent

    Science.gov (United States)

    Chelko, Stephen P.; Schmiedt, Chad W.; Lewis, Tristan H.; Lewis, Stephen J.; Robertson, Tom P.

    2014-01-01

    Background Circulating factors delivered to the nodose ganglion (NG) by the occipital artery (OA) have shown to affect vagal afferent activity, and thus the contractile state of the OA may influence blood flow to the NG. Methods OA were isolated and bisected into proximal and distal segments, relative to the external carotid artery. Results Bisection, highlighted stark differences between maximal contractile responses and OA sensitivity. Specifically, maximum responses to vasopressin and the V1 receptor agonist, were significantly higher in distal than proximal segments. Distal segments were significantly more sensitive to 5-HT and the 5-HT2 receptor agonist than proximal segments. AT2, V2 and 5-HT1B/1D receptor agonists did not elicit vascular responses. Additionally, AT1 receptor agonists elicited mild, yet not significantly different maximal responses between segments. Conclusion The results of this study are consistent with contractile properties of rat OA being mediated via AT1, V1 and 5-HT2 receptors, and are dependent upon the OA segment. Furthermore, vasopressin-induced constriction of the OA, regardless of a bolus dose or a first and second concentration response curve retained this unique segmental difference and therefore we hypothesize this may be a pathophysiological response in the regulation of blood flow through the OA. PMID:24192548

  13. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Chim-Kei Chan

    2017-06-01

    Full Text Available Elephantopus scaber L. (family: Asteraceae has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF on the release of pro-inflammatory mediators in lipopolysaccharide (LPS-induced microglia cells (BV-2. Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.

  14. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Quensen, John F.; Smith, Andrew; Kurtz, David T.; London, Lucille; Morris, Pamela J.

    2004-01-01

    Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the preferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G 0 /G 1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern

  15. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Kirill V. Korneev

    2018-02-01

    Full Text Available Toll-like receptor 4 (TLR4 initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS, the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  16. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  17. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  18. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  19. The role of Rho-kinase and calcium ions in constriction triggered by ET-1.

    Science.gov (United States)

    Wiciński, Michał; Szadujkis-Szadurska, Katarzyna; Węclewicz, Mateusz M; Malinowski, Bartosz; Matusiak, Grzegorz; Walczak, Maciej; Wódkiewicz, Eryk; Grześk, Grzegorz; Pawlak-Osińska, Katarzyna

    2018-05-05

    Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca 2+ related to activation of IP3 receptors and to Rho-kinase activity. Copyright © 2018. Published by Elsevier Inc.

  20. Ameliorative effect of ethyl pyruvate in neuropathic pain induced by chronic constriction injury of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Varsha J. Bansode

    2014-01-01

    Full Text Available Objective: The present study was designed to investigate the ameliorative effects of ethyl pyruvate (EP in chronic constriction injury (CCI-induced painful neuropathy in rats. Materials and Methods: EP 50 and 100 mg/kg was administered for 21 consecutive days starting from the day of surgery. The effects of EP in the paw pressure, acetone drop, and tail heat immersion tests were assessed, reflecting the degree of mechanical hyperalgesia, cold allodynia, and spinal thermal sensation, respectively. Axonal degeneration of the sciatic nerve was assessed histopathologically. The levels of thiobarbituric acid reactive species, reduced glutathione (GSH, catalase (CAT, and superoxide dismutase (SOD were determined to assess oxidative stress. Key Findings: Administration of 50 and 100 mg/kg EP attenuated the reduction of nociceptive threshold in the paw pressure, acetone drop, and tail heat immersion tests. EP 100 mg/kg significantly attenuated reactive changes in histopathology and increase in oxidative stress. Conclusion: EP 100 mg/kg showed beneficial activity against nerve trauma-induced neuropathy. Hence, it can be used as a better treatment option in neuropathic pain (NP. The observed antinociceptive effects of EP may possibly be attributed to its antioxidant and anti-inflammatory activity.

  1. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You Ah Kim

    2015-08-01

    Full Text Available The inhibitory effect of three chromones 1–3 and two coumarins 4–5 on the production of nitric oxide (NO was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1, a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2 production and expression of cytokines such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6.

  2. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  3. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  4. Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Eastwood Peter R

    2010-01-01

    Full Text Available Abstract Background Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity. Heterogeneity can occur at different airway generations and at branching points in the bronchial tree. Whilst heterogeneity has been detected by previous experimental approaches, its spatial relationship either within or between airways is unknown. Methods In this study, distribution of airway narrowing responses across a portion of the porcine bronchial tree was determined in vitro. The portion comprised contiguous airways spanning bronchial generations (#3-11, including the associated side branches. We used a recent optical imaging technique, anatomical optical coherence tomography, to image the bronchial tree in three dimensions. Bronchoconstriction was produced by carbachol administered to either the adventitial or luminal surface of the airway. Luminal cross sectional area was measured before and at different time points after constriction to carbachol and airway narrowing calculated from the percent decrease in luminal cross sectional area. Results When administered to the adventitial surface, the degree of airway narrowing was progressively increased from proximal to distal generations (r = 0.80 to 0.98, P Conclusions Our findings demonstrate that the bronchial tree expresses intrinsic serial heterogeneity, such that narrowing increases from proximal to distal airways, a relationship that is influenced by the route of drug administration but not by structural variations accompanying branching sites.

  5. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  6. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components.

    Science.gov (United States)

    Hu, Yang; Ren, Jie; Wang, Lei; Zhao, Xin; Zhang, Mian; Shimizu, Kuniyoshi; Zhang, Chaofeng

    2018-05-01

    Dendrobium crepidatum was one of the sources of Herba Dendrobii, a famous and precious traditional Chinese medicine. Indolizine-type alkaloids are the main characteristic ingredients of D. crepidatum, which possesses a variety of changeable skeletons. In the present study, we found that the total alkaloids of D. crepidatum (TAD) can inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated macrophages and showed protective effects against LPS-induced acute lung injury (ALI) in mice through downregulating the TLR4-mediated MyD88/MAPK signaling pathway. Further phytochemical study showed that six previously undescribed indolizine-type compounds, including a racemic mixture (dendrocrepidine A-E) were isolated from TAD. Meanwhile, dendrocrepidine F was separated into a pair of enantiomers by a chiral chromatography, and their absolute configurations were assigned by single-crystal X-ray diffraction analysis. The isomer (-)-dendrocrepidine F showed higher anti-inflammatory effects by inhibiting NO production in LPS-treated macrophages with an IC 50 value of 13.3 μM. Taken together, indolizine-type alkaloids are the active components of D. crepidatum through downregulating the TLR4-mediated pathway, indicating some kind of therapy of TAD for ALI treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  8. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    Science.gov (United States)

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  9. An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1.

    Directory of Open Access Journals (Sweden)

    Kelly A Shipkowski

    Full Text Available Multi-walled carbon nanotubes (MWCNTs represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2 cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased

  10. Vasopressin-induced constriction of the isolated rat occipital artery is segment dependent.

    Science.gov (United States)

    Chelko, Stephen P; Schmiedt, Chad W; Lewis, Tristan H; Lewis, Stephen J; Robertson, Tom P

    2013-01-01

    Circulating factors delivered to the nodose ganglion (NG) by the occipital artery (OA) have been shown to affect vagal afferent activity, and thus the contractile state of the OA may influence blood flow to the NG. OA were isolated and bisected into proximal and distal segments relative to the external carotid artery. Bisection highlighted stark differences between maximal contractile responses and OA sensitivity. Specifically, maximum responses to vasopressin and the V1 receptor agonist were significantly higher in distal than proximal segments. Distal segments were significantly more sensitive to 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor agonist than proximal segments. Angiotensin II (AT)2, V2 and 5-HT(1B/1D) receptor agonists did not elicit vascular responses. Additionally, AT1 receptor agonists elicited mild, yet not significantly different maximal responses between segments. The results of this study are consistent with contractile properties of rat OA being mediated via AT1, V1 and 5-HT2 receptors and dependent upon the OA segment. Furthermore, vasopressin-induced constriction of the OA, regardless of a bolus dose or a first and second concentration-response curve, retained this unique segmental difference. We hypothesize that these segmental differences may be important in the regulation of blood flow through the OA in health and disease. © 2013 S. Karger AG, Basel.

  11. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-01-01

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  12. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  13. Congenital constriction ring syndrome of the limbs: A prospective ...

    African Journals Online (AJOL)

    In the upper limb malformations involved 42 digits; in the lower limb malformations involved 33 toes, one foot and fi ve legs. Four main types of lesions were found: constriction rings, intrauterine amputations, acrosyndactyly, and simple syndactyly. Conclusion: Congenital constriction ring syndrome is of uncertain aetiology ...

  14. Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius).

    Science.gov (United States)

    Penning, David A; Dartez, Schuyler F

    2016-03-01

    Constriction is a prey-immobilization technique used by many snakes and is hypothesized to have been important to the evolution and diversification of snakes. However, very few studies have examined the factors that affect constriction performance. We investigated constriction performance in ball pythons (Python regius) by evaluating how peak constriction pressure is affected by snake size, sex, and experience. In one experiment, we tested the ontogenetic scaling of constriction performance and found that snake diameter was the only significant factor determining peak constriction pressure. The number of loops applied in a coil and its interaction with snake diameter did not significantly affect constriction performance. Constriction performance in ball pythons scaled differently than in other snakes that have been studied, and medium to large ball pythons are capable of exerting significantly higher pressures than those shown to cause circulatory arrest in prey. In a second experiment, we tested the effects of experience on constriction performance in hatchling ball pythons over 10 feeding events. By allowing snakes in one test group to gain constriction experience, and manually feeding snakes under sedation in another test group, we showed that experience did not affect constriction performance. During their final (10th) feedings, all pythons constricted similarly and with sufficiently high pressures to kill prey rapidly. At the end of the 10 feeding trials, snakes that were allowed to constrict were significantly smaller than their non-constricting counterparts. © 2016 Wiley Periodicals, Inc.

  15. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    International Nuclear Information System (INIS)

    Russe, Otto Quintus; Möser, Christine V.; Kynast, Katharina L.; King, Tanya S.; Olbrich, Katrin; Grösch, Sabine; Geisslinger, Gerd; Niederberger, Ellen

    2014-01-01

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells

  16. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  17. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-κBα degradation in RAW 264.7 cells

    International Nuclear Information System (INIS)

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-01

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-κB activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  18. PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells.

    Science.gov (United States)

    Russo, Antonella; Schmid, Evi; Nurbaeva, Meerim K; Yang, Wenting; Yan, Jing; Bhandaru, Madhuri; Faggio, Caterina; Shumilina, Ekaterina; Lang, Florian

    2013-08-02

    The function of dendritic cells (DCs) is modified by glycogen synthase kinase GSK3 and GSK3 inhibitors have been shown to protect against inflammatory disease. Regulators of GSK3 include the phosphoinositide 3 kinase (PI3K) pathway leading to activation of protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit GSK3. The present study explored, whether PKB/SGK-dependent inhibition of GSK3 contributes to the regulation of cytosolic Ca(2+) concentration following stimulation with bacterial lipopolysaccharides (LPS). To this end DCs from mutant mice, in which PKB/SGK-dependent GSK3α,β regulation was disrupted by replacement of the serine residues in the respective SGK/PKB-phosphorylation consensus sequence by alanine (gsk3(KI)), were compared to DCs from respective wild type mice (gsk3(WT)). According to Western blotting, GSK3 phosphorylation was indeed absent in gsk3(KI) DCs. According to flow cytometry, expression of antigen-presenting molecule major histocompatibility complex II (MHCII) and costimulatory molecule CD86, was similar in unstimulated and LPS (1μg/ml, 24h)-stimulated gsk3(WT) and gsk3(KI) DCs. Moreover, production of cytokines IL-6, IL-10, IL-12 and TNFα was not significantly different in gsk3(KI) and gsk3(WT) DCs. In gsk3(WT) DCs, stimulation with LPS (1μg/ml) within 10min led to transient phosphorylation of GSK3. According to Fura2 fluorescence, LPS (1μg/ml) increased cytosolic Ca(2+) concentration, an effect significantly more pronounced in gsk3(KI) DCs than in gsk3(WT) DCs. Conversely, GSK3 inhibitor SB216763 (3-[2,4-Dichlorophenyl]-4-[1-methyl-1H-indol-3-yl]-1H-pyrrole-2,5-dione, 10μM, 30min) significantly blunted the increase of cytosolic Ca(2+) concentration following LPS exposure. In conclusion, PKB/SGK-dependent GSK3α,β activity participates in the regulation of Ca(2+) signaling in dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. LPS Catch and Effort Estimation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data collected from the LPS dockside (LPIS) and the LPS telephone (LPTS) surveys are combined to produce estimates of total recreational catch, landings, and fishing...

  20. Effects of female gonadal hormones and LPS on depressive-like behavior in rats

    Directory of Open Access Journals (Sweden)

    Mitić Miloš

    2015-01-01

    Full Text Available Considerable evidence shows an association of depression with the immune system and emphasizes the importance of gender in the etiology of the disease and the response to inflammatory stimuli. We examined the influence of immune-challenged systems on depressive-like behavior in female rats in the context of gonadal hormones. We used a neuroinflammatory model of depression elicited by lipopolysaccharide (LPS administration on naive and ovariectomized (OVX female rats, and examined the effects of estradiol (E2 and/or progesterone (P4 replacement therapy on animal behavior, as assessed by the forced swimming test (FST. We found that LPS and OVX increase immobility in the FST, while LPS also decreased body weight in naive female rats. Further, even though P4 application alone showed beneficial effects on the behavioral profile (it reduced immobility and increased climbing, supplementation of both hormones (E2 and P4 together to OVX rats failed to do so. When OVX rats were exposed to LPS-induced immune challenge, neither hormone individually nor their combination had any effect on immobility, however, their joint supplementation increased climbing behavior. In conclusion, our study confirmed that both LPS and OVX induced depressive-like behavior in female rats. Furthermore, our results potentiate P4 supplementation in relieving the depressive-like symptomatology in OVX rats, most likely through fine-tuning of different neurotransmitter systems. In the context of an activated immune system, the application of E2 and/or P4 does not provide any advantageous effects on depressive-like behavior.

  1. Inherent and antigen-induced airway hyperreactivity in NC mice

    OpenAIRE

    Tetsuto Kobayashi; Toru Miura; Tomoko Haba; Miyuki Sato; Masao Takei; Isao Serizawa

    1999-01-01

    In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those st...

  2. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  3. Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet

    Science.gov (United States)

    Schröder, Daniel; Burhenn, Sebastian; Kirchheim, Dennis; Schulz-von der Gathen, Volker

    2013-11-01

    We report on the propagation of a constricted discharge feature in a repetitively self-pulsing microplasma jet operated in helium with a 0.075 vol% molecular oxygen admixture in ambient air environment. The constricted discharge is about 1 mm in width and repetitively ignites at the point of smallest electrode distance in a wedge-shaped electrode configuration, propagates through the discharge channel towards the nozzle, extinguishes, and re-ignites at the inlet at frequencies in the kHz range. It co-exists with a homogeneous, volume-dominated low temperature (T ⋍ 300 K) α-mode glow. Time-resolved measurements of nitrogen molecule C-state and nitrogen molecule ion B-state emission bands reveal an increase of the rotational temperature within the constricted discharge to about 600 K within 50 µs. Its propagation velocity was determined by phase-resolved diagnostics to be similar to the gas velocity, in the order of 40 m s-1. Two-photon absorption laser-induced fluorescence spectroscopy synchronized to the self-pulsing reveals spatial regions of increased oxygen atom densities co-propagating with the constricted discharge feature. The generated oxygen pulse density is about ten times higher than in the co-existing homogeneous α-mode. Densities reach about 1.5 × 1016 cm-3 at average temperatures of 450 K at the nozzle. This enhanced dissociation of about 80% is attributed to the continuous interaction of the constricted discharge to the co-propagating gas volume.

  4. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  5. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  6. Atypical Presentation of Constrictive Pericarditis in a Holstein Heifer

    Directory of Open Access Journals (Sweden)

    Mohamed M. Elhanafy

    2012-01-01

    Full Text Available The field diagnosis of constrictive pericardial effusion is often established on the pertinent pathognomonic physical examination findings, but the condition cannot be ruled out based on absence of these cardinal signs. Constrictive pericardial effusion is not always manifested by bilateral jugular venous distention and pulsation, brisket edema, and muffled heart sounds, all of which are considered the key points in the field diagnosis of pericardial effusion and hardware disease. This case will also document that the outcomes of hematology, serum biochemistry panels, and blood gas analysis can be totally inconsistent with passive venous congestion and constrictive pericardial effusion in cattle. Chest radiographic findings revealed radio dense, wire-like objects; the findings were suggestive but not conclusive for pericardial or pleural effusions, due to indistinguishable diaphragmatic outline and cardiopulmonary silhouette. Cardiac ultrasonography was found to be an excellent paraclinical diagnostic procedure for cases that potentially have traumatic pericarditis and constrictive pericardial effusion. Ultrasound-guided pericardiocentesis was also a valuable diagnostic aid in establishing a definitive diagnosis.

  7. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    Science.gov (United States)

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  8. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    OpenAIRE

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats...

  10. Ginkgolide A Ameliorates LPS-Induced Inflammatory Responses In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available Ginkgolide A (GA is a natural compound isolated from Ginkgo biloba and has been used to treat cardiovascular diseases and diabetic vascular complications. However, only a few studies have been conducted on the anti-inflammatory effects of GA. In particular, no related reports have been published in a common inflammation model of lipopolysaccharide (LPS-stimulated macrophages, and the anti-inflammatory mechanisms of GA have not been fully elucidated. In the present study, we extensively investigated the anti-inflammatory potential of GA in vitro and in vivo. We showed that GA could suppress the expression of pro-inflammatory mediators (cyclooxygenase-2 (COX-2 and nitric oxide (NO and pro-inflammatory cytokines (tumor necrosis factor (TNF-α, interleukin (IL-6 and IL-1β in LPS-treated mouse peritoneal macrophages, mouse macrophage RAW264.7 cells, and differentiated human monocytes (dTHP-1 in vitro. These effects were partially carried out via downregulating Nuclear factor kappa-B (NF-κB, Mitogen-activated protein kinases (MAPKs (p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK, but not c-Jun N-terminal kinase (JNK, and activating the AMP-activated protein kinase (AMPK signaling pathway also seems to be important. Consistently, GA was also shown to inhibit the LPS-stimulated release of TNF-α and IL-6 in mice. Taken together, these findings suggest that GA can serve as an effective inflammatory inhibitor in vitro and in vivo.

  11. Anti-inflammation effect of methyl salicylate 2-O-β-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells.

    Science.gov (United States)

    Zhang, Xue; Sun, Jialin; Xin, Wenyu; Li, Yongjie; Ni, Lin; Ma, Xiaowei; Zhang, Dan; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

    2015-03-01

    Methyl salicylate 2-O-β-D-lactoside (MSL) is a derivative of natural salicylate isolated from Gaultheria yunnanensis (Franch.) Rehder, which is widely used for treating rheumatoid arthritis (RA), swelling and pain. The aim of the present study was to investigate the effect of MSL on the progression of adjuvant-induced arthritis (AIA) in rat in vivo and explore the anti-inflammatory effects and mechanism of MSL in lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells in vitro. Our results showed that MSL significantly inhibited the arthritis progression in AIA rats, decreasing the right hind paw swelling and ankle diameter, attenuating histopathological changes and suppressing the plasma levels of TNF-α and IL-1β in AIA rats. Besides, MSL had potent anti-inflammatory effects on the LPS-activated RAW264.7. MSL dose-dependently inhibited the activity of COX-1, and COX-2. Moreover, MSL prominently inhibited LPS-induced activation of MAPK in RAW264.7 cells by blocking phosphorylation of p38 and ERK. Our study suggests that MSL may be effective in the treatment of inflammatory diseases by inhibiting the pro-inflammatory cytokine production and regulating the MAPK signal pathway. Copyright © 2015. Published by Elsevier B.V.

  12. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  13. Rapidly progressive effusive constrictive pericarditis caused by methicillin sensitive Staphylococcus aureus (MSSA). samraakhtar@hotmail.com.

    Science.gov (United States)

    Akhtar, Naveed; Khalid, Ayesha; Ahmed, Waqas; Rasheed, Khalid

    2010-04-01

    Effusive-constrictive pericarditis is a clinical syndrome characterized by concurrent pericardial effusion and pericardial constriction, where constrictive hemodynamics are persistent after effusion is drained. It may present at any point along the clinical course, from the occurrence of an effusion to the development of chronic pericardial constriction. We refer an unusual case of effusive constrictive pericarditis developing rapidly within days, following purulent pericarditis secondary to chest trauma.

  14. PERCEPTION OF AIRWAY-OBSTRUCTION IN A RANDOM-POPULATION SAMPLE - RELATIONSHIP TO AIRWAY HYPERRESPONSIVENESS IN THE ABSENCE OF RESPIRATORY SYMPTOMS

    NARCIS (Netherlands)

    BRAND, PLP; RIJCKEN, B; SCHOUTEN, JP; KOETER, GH; WEISS, ST; POSTMA, DS

    Subjects with asymptomatic airway hyperresponsiveness in epidemiologic studies may have variable airway obstruction that is not perceived as dyspnea. We tested the hypothesis that such subjects are less likely to report an increase in dyspnea during histamine-induced bronchoconstriction than

  15. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS

    Science.gov (United States)

    Di Lorenzo, Flaviana; Palmigiano, Angelo; Paciello, Ida; Pallach, Mateusz; Garozzo, Domenico; Bernardini, Maria-Lina; La Cono, Violetta; Yakimov, Michail M.; Molinaro, Antonio; Silipo, Alba

    2017-01-01

    The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS. PMID:28653982

  16. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    International Nuclear Information System (INIS)

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-01-01

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model

  18. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Dong [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cheon, So Yeong [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Park, Tae-Yoon; Shin, Bo-Young [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Hyunju; Ghosh, Sankar [Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Koo, Bon-Nyeo, E-mail: koobn@yuhs.ac [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  19. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis.

    Science.gov (United States)

    Chee, MacKenzie E; Majumder, Kaustav; Mine, Yoshinori

    2017-07-26

    Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.

  20. Inflammatory Mediators in Induced Sputum and Airway Hyperresponsiveness in Cough Variant Asthma during Long-Term Inhaled Corticosteroid Treatment

    Directory of Open Access Journals (Sweden)

    Meixuan Liu

    2012-01-01

    Full Text Available Objective. This study aimed to investigate improvements in inflammatory mediator levels in induced sputum and airway hyperresponsiveness (AHR in cough variant asthma (CVA during long-term inhaled corticosteroid (ICS treatment. Patients and Methods. Patients with CVA (=35 and classic asthma (=26 and healthy subjects (=24 were recruited into this study. All patients were treated with budesonide (400 μg/day. Measurement of inflammatory mediators in induced sputum and PD20-FEV1 (the accumulated provocative dose resulting in a 20% decrease in FEV1 in histamine-challenged subjects was performed every three months after the start of medication. Interleukin- (IL- 5 and IL-10 were assayed by ELISA, and the percentage of eosinophils was detected with Giemsa stain. Trends during the follow-up period were analyzed using a general linear model. Results. Inflammatory mediator levels in induced sputum and PD20-FEV1 in patients with CVA and classic asthma differed from those in the control group, although no differences were found in the two asthmatic groups. PD20-FEV1 significantly increased in CVA patients after ICS treatment for 3 months, while classic asthma patients exhibited a delayed change in AHR. After ICS treatment, levels of IL-5 and IL-10 as well as the percentage of eosinophils in the CVA group were altered at 3 months and 6 months, respectively. Accordingly, the level of inflammatory mediators in classic asthma changed more slowly. Conclusion. CVA has a greater improvement in airway inflammation and airway hyperresponsiveness (AHR than classic asthma with respect to inhaled corticosteroid (ICS. Short-term ICS considerably reduces AHR although longer treatment is required for complete control of airway inflammation.

  1. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    Energy Technology Data Exchange (ETDEWEB)

    Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  2. L-ornithine derived polyamines in cystic fibrosis airways.

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    Full Text Available Increased arginase activity contributes to airway nitric oxide (NO deficiency in cystic fibrosis (CF. Whether down-stream products of arginase activity contribute to CF lung disease is currently unknown. The objective of this study was to test whether L-ornithine derived polyamines are present in CF airways and contribute to airway pathophysiology. Polyamine concentrations were measured in sputum of patients with CF and in healthy controls, using liquid chromatography-tandem mass spectrometry. The effect of spermine on airway smooth muscle mechanical properties was assessed in bronchial segments of murine airways, using a wire myograph. Sputum polyamine concentrations in stable CF patients were similar to healthy controls for putrescine and spermidine but significantly higher for spermine. Pulmonary exacerbations were associated with an increase in sputum and spermine levels. Treatment for pulmonary exacerbations resulted in decreases in arginase activity, L-ornithine and spermine concentrations in sputum. The changes in sputum spermine with treatment correlated significantly with changes in L-ornithine but not with sputum inflammatory markers. Incubation of mouse bronchi with spermine resulted in an increase in acetylcholine-induced force and significantly reduced nitric oxide-induced bronchial relaxation. The polyamine spermine is increased in CF airways. Spermine contributes to airways obstruction by reducing the NO-mediated smooth muscle relaxation.

  3. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Jingyu He

    2018-02-01

    Full Text Available The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and inhibited the levels of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, TNF-α and IL-6 messenger RNA (mRNA expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α, p38, extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways, which provided useful information for its application and development.

  4. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    International Nuclear Information System (INIS)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan; Cui, Yong-Yao

    2012-01-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  5. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis

    Science.gov (United States)

    Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L.

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  6. Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals.

    Science.gov (United States)

    Shin, Na-Rae; Ryu, Hyung-Won; Ko, Je-Won; Park, Sung-Hyeuk; Yuk, Heung-Joo; Kim, Ha-Jung; Kim, Jong-Choon; Jeong, Seong-Hun; Shin, In-Sik

    2017-09-14

    Artemisia argyi is a traditional herbal medicine in Korea and commonly called as mugwort. It is traditionally used as food source and tea to control abdominal pain, dysmenorrhea, uterine hemorrhage, and inflammation. We investigated the effects of A. argyi (TOTAL) and dehydromatricarin A (DA), its active component on ovalbumin (OVA)-induced allergic asthma. The animals were sensitized on day 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On day 21, 22 and 23 after the initial sensitization, the animals received an airway challenge with OVA for 1h using an ultrasonic nebulizer. TOTAL (50 and 100mg/kg) or DA (10 and 20mg/kg) were administered to mice by oral gavage once daily from day 18-23. Airway hyperresponsiveness (AHR) was measured 24h after final OVA challenge. TOTAL and DA treated animals reduced inflammatory cell counts, cytokines and AHR in asthmatic animals, which was accompanied with inflammatory cell accumulation and mucus hypersecretion. Furthermore, TOTAL and DA significantly declined Erk phosphorylation and the expression of MMP-9 in asthmatic animals. In conclusion, we indicate that Total and DA suppress allergic inflammatory responses caused by OVA challenge. It was considered that A. argyi has a potential for treating allergic asthma. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared.We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel.These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  8. Induction of IgG3 to LPS via Toll-like receptor 4 co-stimulation.

    Directory of Open Access Journals (Sweden)

    Francisco J Quintana

    Full Text Available B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise.

  9. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  10. Oil-in-water emulsions flow through constricted micro-capillarities

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Oswaldo Robles; Carvalho, Marcio da Silveira [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering

    2010-07-01

    The effect of the oil concentration and the drop size distribution on the characteristics of the flow of an emulsion through a constricted capillary was experimentally analyzed and quantified by the ratio of the pressure drop of the continuous phase flow to the pressure drop of the emulsion flow, at the same flow rate. The results confirm that the ratio between the capillary constriction diameter and the oil drop size is one of the most important parameters for this flow. For large oil drop size emulsions, the deformation of the drop as it flows through the constriction leads to a high extra pressure drop at low capillary numbers. For small oil drop size emulsions, the extra pressure drop is a function of the viscosity ratio and the disperse phase concentration. (author)

  11. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism

    Science.gov (United States)

    Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

    2014-01-01

    We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

  12. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Shuai; Zhou, Xian-li; Wang, Cui-juan; Wang, You-song; Xiao, Feng; Shan, Lian-hai; Guo, Zhi-yun; Weng, Jie

    2013-09-01

    Six pyrrolizidine alkaloids were isolated from the whole herb of Liparis nervosa together with two previously known ones. Their structures were elucidated by extensive spectroscopic analyses and chemical reactions. The cytotoxicity of the isolates was evaluated against A549, HepG2, and MCF-7 human cancer cell lines; however, no significant growth inhibition was observed. All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, and most significantly inhibited NO production with IC50 values in the range of 2.16-38.25 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Invariant NKT cells are required for airway inflammation induced by environmental antigens

    OpenAIRE

    Wingender, Gerhard; Rogers, Paul; Batzer, Glenda; Lee, Myung Steve; Bai, Dong; Pei, Bo; Khurana, Archana; Kronenberg, Mitchell; Horner, Anthony A.

    2011-01-01

    Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on V?14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway ...

  14. Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2

    Directory of Open Access Journals (Sweden)

    Charo Israel F

    2004-09-01

    Full Text Available Abstract Background Asthma is characterized by type 2 T-helper cell (Th2 inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2 and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. Methods To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. Results We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. Conclusion We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.

  15. Airway remodeling and its reversibility in equine asthma

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    2017-06-01

    Full Text Available Despite effective therapies for controlling its clinical manifestations, human asthma remains an incurable disease. It is now recognized that inflammation induced structural changes (remodeling of the airways are responsible for the progressive loss of lung function in asthmatic patients. However, the peripheral airways, where most of the remodeling occurs in severe asthmatic patients, cannot be safely sampled in humans, and therefore, little is known of the effects of current therapies at reversing the established asthmatic remodeling, especially those occurring in the peripheral airways. Animal models have been studied to unravel etiological, immunopathological, and genetic attributes leading to asthma. However, experiments in which the disease is artificially induced have been shown to have limited translational potential for humans. To the contrary, horses naturally suffer from an asthma-like condition which shares marked similarities with human asthma making this model unique to investigate the kinetics, reversibility, as well as the physiological consequences of tissue remodeling (Bullone and Lavoie 2015. We reported an increased deposition of smooth muscle, collagen and elastic fibers in the peripheral airways of affected horses, which was correlated with the lung function (Herszberg et al., 2006; Setlakwe et al., 2014. The airway subepithelial collagen depositions were almost completely reversed with 6 to 12 months of treatment with either antigen avoidance or inhaled corticosteroids (ICS administration, and there was a modest (30% on average decrease in airway smooth muscle (Leclere et al., 2011. A recent study also found that ICS combined with long-acting ß2-agonists drugs (LABA and ICS monotherapy similarly induced a 30% decrease of the airway smooth muscle mass at 3 months (Buollone, 2017. However, only ICS/LABA and antigen avoidance decreased airway luminal neutrophilia. The findings indicate the enhance therapeutic effect of ICS

  16. Nanoscale constrictions in superconducting coplanar waveguide resonators

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  17. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  18. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  19. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    Science.gov (United States)

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  20. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  1. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  2. Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walters, D.M.; Breysse, P.N.; Wills-Karp, M. [Childrens Hospital, Cincinnati, OH (United States). Medical Centre, Division of Immunobiology

    2001-10-15

    Airborne particulate matter (PM) is hypothesized to play a role in increases in asthma prevalence, although a causal relationship has yet to be established. To investigate the effects of real-world PM exposure on airway reactivity (AHR) and bronchoalveolar lavage (BAL) cellularity, mice were exposed to a single dose (0.5 mg/ mouse) of ambient PM, coal fly ash, or diesel PM. It was found that ambient PM exposure induced increases in AHR and BAL cellularity, whereas diesel PM induced significant increases in BAL cellularity, but not AHR. On the other hand, coal fly ash exposure did not elicit significant changes in either of these parameters. Ambient PM-induced temporal changes in AHR, BAL cells, and lung cytakine levels over a 2-wk period were then examined. Ambient PM-induced AHR was sustained over 7 d. The increase in AHR was preceded by dramatic increases in BAL eosinophils, whereas a decline in AHR was associated with increases in macrophages. It is concluded that ambient PM can induce asthmalike parameters in mice, suggesting that PM exposure may be an important factor in increases in asthma prevalence.

  3. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    Science.gov (United States)

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with

  4. Insulin induces airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, R.; Ris, J. M.; Zaagsma, J.; Meurs, H.; Nelemans, S. A.

    Background and purpose: Recently, the use of inhaled insulin formulations for the treatment of type I and type II diabetes has been approved in Europe and in the United States. For regular use, it is critical that airway function remains unimpaired in response to insulin exposure. Experimental

  5. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR.

    Science.gov (United States)

    Danyal, Karamatullah; de Jong, Willem; O'Brien, Edmund; Bauer, Robert A; Heppner, David E; Little, Andrew C; Hristova, Milena; Habibovic, Aida; van der Vliet, Albert

    2016-11-01

    Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca 2+ -dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens. Copyright © 2016 the American Physiological Society.

  6. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    M. Allegra

    2014-01-01

    A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h modest inhibition, followed by a progressive (3–12 h concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  7. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  8. Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits.

    Science.gov (United States)

    Bigliani, María C; Rossetti, Víctor; Grondona, Ezequiel; Lo Presti, Silvina; Paglini, Patricia M; Rivero, Virginia; Zunino, María P; Ponce, Andrés A

    2012-07-01

    The main purpose was to investigate the effects of essential plant-oil of Schinus areira L. on hemodynamic functions in rabbits, as well as myocardial contractile strength and airways inflammation associated to bacterial endotoxin lipopolysaccharide (LPS) in mice. This study shows the important properties of the essential oil (EO) of S. areira studied and these actions on lung with significant inhibition associated to LPS, all of which was assessed in mice bronchoalveolar lavage fluid and evidenced by stability of the percentage of alveolar macrophages, infiltration of polymorphonuclear leukocytes and tumor necrosis factor-α concentration, and without pathway modifications in conjugated dienes activity. Clinical status (morbidity or mortality), macroscopic morphology and lung/body weight index were unaffected by the administration of the EO S. areira. Furthermore, the ex vivo analysis of isolated hearts demonstrated the negative inotropic action of the EO of S. areira in a mice model, and in rabbits changes in the hemodynamic parameters, such as a reduction of systolic blood pressure. We conclude that EO S. areira could be responsible for modifications on the cardiovascular and/or airway parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  10. Effects of drug treatment on inflammation and hyperreactivity of airways and on immune variables in cats with experimentally induced asthma.

    Science.gov (United States)

    Reinero, Carol R; Decile, Kendra C; Byerly, Jenni R; Berghaus, Roy D; Walby, William E; Berghaus, Londa J; Hyde, Dallas M; Schelegle, Edward S; Gershwin, Laurel J

    2005-07-01

    To compare the effects of an orally administered corticosteroid (prednisone), an inhaled corticosteroid (flunisolide), a leukotriene-receptor antagonist (zafirlukast), an antiserotonergic drug (cyproheptadine), and a control substance on the asthmatic phenotype in cats with experimentally induced asthma. 6 cats with asthma experimentally induced by the use of Bermuda grass allergen (BGA). A randomized, crossover design was used to assess changes in the percentage of eosinophils in bronchoalveolar lavage fluid (BALF); airway hyperresponsiveness; blood lymphocyte phenotype determined by use of flow cytometry; and serum and BALF content of BGA-specific IgE, IgG, and IgA determined by use of ELISAs. Mean +/- SE eosinophil percentages in BALF when cats were administered prednisone (5.0 +/- 2.3%) and flunisolide (2.5 +/- 1.7%) were significantly lower than for the control treatment (33.7 +/- 11.1%). We did not detect significant differences in airway hyperresponsiveness or lymphocyte surface markers among treatments. Content of BGA-specific IgE in serum was significantly lower when cats were treated with prednisone (25.5 +/- 5.4%), compared with values for the control treatment (63.6 +/- 12.9%); no other significant differences were observed in content of BGA-specific immunoglobulins among treatments. Orally administered and inhaled corticosteroids decreased eosinophilic inflammation in airways of cats with experimentally induced asthma. Only oral administration of prednisone decreased the content of BGA-specific IgE in serum; no other significant local or systemic immunologic effects were detected among treatments. Inhaled corticosteroids can be considered as an alternate method for decreasing airway inflammation in cats with asthma.

  11. Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice.

    Directory of Open Access Journals (Sweden)

    Gabriel Espinosa-Carrasco

    Full Text Available Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.

  12. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    Science.gov (United States)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  13. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    Science.gov (United States)

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  14. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  15. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  16. Relationship between conductive hearing loss and maxillary constriction.

    Science.gov (United States)

    Peyvandi, A A; Jamilian, A; Moradi, E

    2014-09-01

    To evaluate the relationship between conductive hearing loss and maxillary constriction. A total of 120 people, aged from 7 to 40 years, who were referred to an audiologist when taking out health insurance or for school pre-registration check-up, were selected for this study. A total of 60 participants who had hearing threshold levels greater than 15 dB in both ears were chosen as the conductive hearing loss group. The remaining 60, with normal hearing thresholds of less than 15 dB, were used as the control group. All participants were referred to an orthodontic clinic. Participants who had a posterior crossbite and high palatal vault were considered to suffer from maxillary constriction. There were no significant differences between the sex ratios and mean ages of the groups. However, participants with conductive hearing loss were 3.5 times more likely than controls to suffer from maxillary constriction. Patients who suffer from conductive hearing loss are likely to show a maxillary abnormality when examined by an orthodontist.

  17. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape......, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP...

  18. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  19. NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer

    Science.gov (United States)

    Kisseleva, Tatiana; Song, Li; Vorontchikhina, Marina; Feirt, Nikki; Kitajewski, Jan; Schindler, Christian

    2006-01-01

    The transcription factor NF-κB is an important regulator of homeostatic growth and inflammation. Although gene-targeting studies have revealed important roles for NF-κB, they have been complicated by component redundancy and lethal phenotypes. To examine the role of NF-κB in endothelial tissues, Tie2 promoter/enhancer–IκBαS32A/S36A transgenic mice were generated. These mice grew normally but exhibited enhanced sensitivity to LPS-induced toxemia, notable for an increase in vascular permeability and apoptosis. Moreover, B16-BL6 tumors grew significantly more aggressively in transgenic mice, underscoring a new role for NF-κB in the homeostatic response to cancer. Tumor vasculature in transgenic mice was extensive and disorganized. This correlated with a marked loss in tight junction formation and suggests that NF-κB plays an important role in the maintenance of vascular integrity and response to stress. PMID:17053836

  20. Occult constrictive pericardial disease emerging 40 years after chest radiation therapy: a case report.

    Science.gov (United States)

    Goten, Chiaki; Murai, Hisayoshi; Takashima, Shin-Ichiro; Kato, Takeshi; Usui, Soichiro; Furusho, Hiroshi; Saeki, Takahiro; Sakagami, Satoru; Takemura, Hirofumi; Kaneko, Shuichi; Takamura, Masayuki

    2018-05-31

    The main etiology of constrictive pericarditis (CP) has changed from tuberculosis to therapeutic mediastinal radiation and cardiac surgery. Occult constrictive pericardial disease (OCPD) is a covert disease in which CP is manifested in a condition of volume overload. A 60-year-old patient with a history of thoracic radiation therapy for non-Hodgkin's lymphoma (40 years earlier) was transferred to our hospital for treatment of repeated congestive heart failure. For a preoperative hemodynamic study, pre-hydration with intravenous normal saline (50 mL/hour) was used to manifest the pericardial disease and prevent contrast-induced nephropathy. The hemodynamic study showed a right ventricular dip-plateau pattern and discordance of right and left ventricular systolic pressures during inspiration, which was not seen in the volume-controlled state. These responses were concordant with OCPD. A pericardiectomy, aortic valve replacement, and mitral and tricuspid valve repair were performed. Postoperatively, the heart failure was controlled with standard medication. This case revealed a volume-induced change in hemodynamics in OCPD with severe combined valvular heart disease, which suggests the importance of considering OCPD in patients who had undergone radiation therapy 40 years before.

  1. Swimming pool exposure is associated with autonomic changes and increased airway reactivity to a beta-2 agonist in school aged children: A cross-sectional survey

    Science.gov (United States)

    Paciência, Inês; Silva, Diana; Martins, Carla; Madureira, Joana; de Oliveira Fernandes, Eduardo; Padrão, Patrícia; Moreira, Pedro; Delgado, Luís; Moreira, André

    2018-01-01

    Background Endurance swimming exercises coupled to disinfection by-products exposure has been associated with increased airways dysfunction and neurogenic inflammation in elite swimmers. However, the impact of swimming pool exposure at a recreational level on autonomic activity has never been explored. Therefore, this study aimed to investigate how swimming pool attendance is influencing lung and autonomic function in school-aged children. Methods A total of 858 children enrolled a cross sectional survey. Spirometry and airway reversibility to beta-2 agonist, skin-prick-tests and exhaled nitric oxide measurements were performed. Pupillometry was used to evaluate autonomic nervous function. Children were classified as current swimmers (CS), past swimmers (PS) and non-swimmers (NS), according to the amount of swimming practice. Results Current swimmers group had significantly lower maximum and average pupil constriction velocities when compared to both PS and NS groups (3.8 and 5.1 vs 3.9 and 5.3 vs 4.0 and 5.4 mm/s, p = 0.03 and p = 0.01, respectively). Moreover, affinity to the beta-2 agonist and levels of exhaled nitric oxide were significantly higher in CS when compared to NS (70 vs 60 mL and 12 vs 10 ppb, pswimming practice, particularly in atopic individuals (β = 1.12, 1.40 and 1.31, respectively). After case-case analysis, it was possible to observe that results were not influenced by the inclusion of individuals with asthma. Conclusions Concluding, swimming pool attendance appears to be associated with autonomic changes and increased baseline airway smooth muscle constriction even in children without asthma. PMID:29529048

  2. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima.

    Directory of Open Access Journals (Sweden)

    Francisco Ramírez-Gómez

    2009-07-01

    Full Text Available Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS. The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50 unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7 of these sequences represented homologues of known proteins, while the remaining (43 had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin, metabolic enzymes (GAPDH, Ahcy and Gnmt, metal ion transport/metabolism (major yolk protein and defense/recognition (fibrinogen-like protein. The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.

  3. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    2009-08-01

    Full Text Available The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results

  4. DMPD: Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available eptor for LPS/LBP complexes: a short review. Schumann RR. Res Immunol. 1992 Jan;143(1):11-5. (.png) (.svg) (...ride (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. Authors Schuma.../LBP complexes: a short review. PubmedID 1373512 Title Function of lipopolysaccha....html) (.csml) Show Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS

  5. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  6. Constrictive pericarditis in a contemporary Danish cohort

    DEFF Research Database (Denmark)

    Landex, Nadia Lander; Ihlemann, Nikolaj; Olsen, Peter Skov

    2015-01-01

    OBJECTIVES: The aetiology and outcome of constrictive pericarditis vary between geographic regions and has changed over time. We describe the diagnostic work-up and outcome in a contemporary cohort of Danish patients with constrictive pericarditis. DESIGN: Hospital databases were searched...... and inflammatory disease were the most prevalent underlying conditions. Diagnosis was made primarily by echocardiography and right- and left-sided cardiac catheterisation. Echocardiography was particularly notable for dilated inferior caval vein, increased E/A ratio, and high septal tissue velocity in addition...... to the presence of septal bounce. Pericardiectomy was performed in 47 patients with a 30-day mortality of 8.5%. Clinical improvement was noted in 69% of cases. Several echocardiographic parameters normalised with time, including markers of diastolic function. CONCLUSIONS: Long-term outcome after pericardiectomy...

  7. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Kroager, Toke P; Sanggaard, Kristian W

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from...

  8. LPS: a rule-based, schema-oriented knowledge representation system

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Y; Mitsuya, Y; Nakajima, S; Ura, S

    1981-01-01

    A new knowledge representation system called LPS is presented. The global control structure of LPS is rule-based, but the local representational structure is schema-oriented. The present version of LPS was designed to increase the understandability of representation while keeping time efficiency reasonable. Pattern matching through slot-networks and meta-actions from among the implemented facilities of LPS, are especially described in detail. 7 references.

  9. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenwen; Zheng, Xuexing [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Liu, Shue [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Ouyang, Hongsheng [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Levitt, Roy C.; Candiotti, Keith A. [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Hao, Shuanglin, E-mail: shao@med.miami.edu [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  10. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2015-01-01

    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  11. Airway responses towards allergens - from the airway epithelium to T cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Hansen, Søren; Würtzen, Peter A

    2015-01-01

    -damaged, healthy epithelium lowers the DCs ability to induce inflammatory T cell responses towards allergens. The purpose of this review is to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2 cell responses...

  12. Exercise induced dyspnea in the young. Larynx as the bottleneck of the airways.

    Science.gov (United States)

    Røksund, Ola Drange; Maat, Robert Christiaan; Heimdal, John Helge; Olofsson, Jan; Skadberg, Britt Torunn; Halvorsen, Thomas

    2009-12-01

    Exercise induced asthma may symptomatically be difficult to differentiate from exercise related obstruction in the upper airways, sometimes leading to diagnostic confusion and inappropriate treatment. Larynx accounts for a significant fraction of total airway resistance, but its role as a limiting factor for airflow during exercise has been hampered by lack of diagnostic tools. We aimed to study laryngeal function in exercising humans by transnasal laryngoscopy. Continuous video recording of the larynx was performed in parallel with continuous film recording of the upper part of the body and recording of breath sounds in subjects running to respiratory distress or exhaustion on a treadmill. A successful examination was obtained in 20 asymptomatic volunteers and 151 (91%) of 166 young patients with a history of inspiratory distress or stridor during exercise. At rest, six patients had abnormal laryngeal findings. During exercise, a moderate or severe adduction of laryngeal structures was observed in parallel with increasing inspiratory distress in 113 (75%) patients. In 109 of these, adduction started within supraglottic structures, followed by adduction of the vocal cords in 88. In four patients, laryngeal adduction started in the vocal cords, involving supraglottic structures secondarily in three. Larynx can safely be studied throughout a maximum intensity exercise treadmill test. A characteristic laryngeal response pattern to exercise was visualised in a large proportion of patients with suspected upper airway obstruction. Laryngoscopy during ongoing symptoms is recommended for proper assessment of these patients.

  13. Metabolically induced liver inflammation leads to NASH and differs from LPS-or IL-1β-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, W.; Lindeman, J.H.; Menke, A.L.; Koonen, D.P.; Morrison, M.; Havekes, L.M.; Hoek, A.M. van den; Kleemann, R.

    2014-01-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β

  14. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1 beta-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, Wen; Lindeman, Jan H.; Menke, Aswin L.; Koonen, Debby P.; Morrison, Martine; Havekes, Louis M.; van den Hoek, Anita M.; Kleemann, Robert

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1 beta

  15. Cardiac magnetic resonance radiofrequency tissue tagging for diagnosis of constrictive pericarditis: A proof of concept study.

    Science.gov (United States)

    Power, John A; Thompson, Diane V; Rayarao, Geetha; Doyle, Mark; Biederman, Robert W W

    2016-05-01

    Invasive cardiac catheterization is the venerable "gold standard" for diagnosing constrictive pericarditis. However, its sensitivity and specificity vary dramatically from center to center. Given the ability to unequivocally define segments of the pericardium with the heart via radiofrequency tissue tagging, we hypothesize that cardiac magnetic resonance has the capability to be the new gold standard. All patients who were referred for cardiac magnetic resonance evaluation of constrictive pericarditis underwent cardiac magnetic resonance radiofrequency tissue tagging to define visceral-parietal pericardial adherence to determine constriction. This was then compared with intraoperative surgical findings. Likewise, all preoperative cardiac catheterization testing was reviewed in a blinded manner. A total of 120 patients were referred for clinical suspicion of constrictive pericarditis. Thirty-nine patients were defined as constrictive pericarditis positive solely via radiofrequency tissue-tagging cardiac magnetic resonance, of whom 21 were positive, 4 were negative, and 1 was equivocal for constrictive pericarditis, as defined by cardiac catheterization. Of these patients, 16 underwent pericardiectomy and were surgically confirmed. There was 100% agreement between cardiac magnetic resonance-defined constrictive pericarditis positivity and postsurgical findings. No patients were misclassified by cardiac magnetic resonance. In regard to the remaining constrictive pericarditis-positive patients defined by cardiac magnetic resonance, 10 were treated medically, declined, were ineligible for surgery, or were lost to follow-up. Long-term follow-up of those who were constrictive pericarditis negative by cardiac magnetic resonance showed no early or late crossover to the surgery arm. Cardiac magnetic resonance via radiofrequency tissue tagging offers a unique, efficient, and effective manner of defining clinically and surgically relevant constrictive pericarditis

  16. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Science.gov (United States)

    Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang

    2012-01-01

    The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food

  17. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Directory of Open Access Journals (Sweden)

    Qiang-Song Wang

    Full Text Available The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO and prostaglandin E(2 (PGE(2 were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, interleukin (IL-6, and tumor necrosis factor alpha (TNF-α was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB α, Inhibitor of NF-κB Kinase (IKK α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional

  18. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    International Nuclear Information System (INIS)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-01

    Highlights: ► Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. ► Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. ► Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. ► Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  19. Differential distribution of inflammatory cells in large and small airways in smokers

    NARCIS (Netherlands)

    Battaglia, Salvatore; Mauad, Thais; van Schadewijk, Annemarie M.; Vignola, Antonia M.; Rabe, Klaus F.; Bellia, Vincenzo; Sterk, Peter J.; Hiemstra, Pieter S.

    2007-01-01

    BACKGROUND: Smoking induces structural changes in the airways, and is considered a major factor in the development of airflow obstruction in chronic obstructive pulmonary disease. However, differences in inflammatory cell distribution between large airways (LA) and small airways (SA) have not been

  20. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata; Kalita, Mridul [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States); Kaphalia, Bhupendra S. [Department of Pathology, University of Texas Medical Branch, Galveston, TX (United States); Calhoun, William J., E-mail: William.Calhoun@utmb.edu [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States)

    2016-02-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  1. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.; Calhoun, William J.

    2016-01-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  2. AAV-mediated knock-down of HRC exacerbates transverse aorta constriction-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Chang Sik Park

    Full Text Available Histidine-rich calcium binding protein (HRC is located in the lumen of sarcoplasmic reticulum (SR that binds to both triadin (TRN and SERCA affecting Ca(2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca(2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca(2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV-mediated HRC knock-down (KD systems, respectively.AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH to examine whether HRC-KD could enhance cardiac function in failing heart (FH. Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH, since predesigned siRNA-mediated HRC-KD enhanced Ca(2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca(2+ load in neonatal rat ventricular cells (NRVCs and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.Increased Ca(2+ leak and cytosolic Ca(2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through

  3. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR, an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs and mouse lung fibroblasts (mLFs.Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s of airway remodeling.In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.

  4. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Airways obstruction, coal mining, and disability.

    OpenAIRE

    Lapp, N L; Morgan, W K; Zaldivar, G

    1994-01-01

    It has recently been suggested that the inhalation of coal in the absence of complicated coal workers' pneumoconiosis (CWP) or smoking can lead to disabling airways obstruction. The cause of such obstruction has been variously attributed to emphysema or bronchitis. The frequency of significant airways obstruction in a group of United States coal miners seeking compensation for occupationally induced pulmonary impairment was therefore determined. In a sample of 611 "Black Lung" claimants there...

  6. Analgesic and anti-inflammatory activity of the aqueous extract of Rheedia longifolia Planch & Triana

    Directory of Open Access Journals (Sweden)

    Valber da Silva Frutuoso

    2007-02-01

    Full Text Available Rheedia longifolia Planch et Triana belongs to the Clusiaceae family. This plant is widely distributed in Brazil, but its chemical and pharmacological properties have not yet been studied. We report here that leaves aqueous extract of R. longifolia (LAE shows analgesic and anti-inflammatory effects. Oral or intraperitoneal administration of this extract dose-dependently inhibited the abdominal constrictions induced by acetic acid in mice. The analgesic effect and the duration of action were similar to those observed with sodium diclofenac, a classical non-steroidal analgesic. In addition to the effect seen in the abdominal constriction model, LAE was also able to inhibit the hyperalgesia induced by lipopolysaccharide from gram-negative bacteria (LPS in rats. We also found that R. longifolia LAE inhibited an inflammatory reaction induced by LPS in the pleural cavity of mice. Acute toxicity was evaluated in mice treated with the extract for seven days with 50 mg/kg/day. Neither death, nor alterations in weight, blood leukocyte counts or hematocrit were noted. Our results suggest that aqueous extract from R. longifolia leaves has analgesic and anti-inflammatory activity with minimal toxicity and are therefore endowed with a potential for pharmacological control of pain and inflammation.

  7. GS143, an IκB ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-01-01

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma

  8. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    International Nuclear Information System (INIS)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-01-01

    kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo

  9. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Alok R. [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Peirce, Susan K. [Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Joshi, Shweta [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Durden, Donald L., E-mail: ddurden@ucsd.edu [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Division of Pediatric Hematology-Oncology, UCSD Rady Children' s Hospital, La Jolla, CA (United States)

    2014-09-10

    -3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo.

  10. Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5.

    Science.gov (United States)

    Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Zähringer, Ulrich; Koch, Michel H J

    2016-04-01

    Lipopolysaccharides (LPS) belong to the strongest immune-modulating compounds known in nature, and are often described as pathogen-associated molecular patterns (PAMPs). In particular, at higher concentrations they are responsible for sepsis and the septic shock syndrome associated with high lethality. Since most data are indicative that LPS aggregates are the bioactive units, their supramolecular structures are considered to be of outmost relevance for deciphering the molecular mechanisms of its bioactivity. So far, however, most of the data available addressing this issue, were published only for the lipid part (lipid A) and the core-oligosaccharide containing rough LPS, representing the bioactive unit. By contrast, it is well known that most of the LPS specimen identified in natural habitats contain the smooth-form (S-form) LPS, which carry additionally a high-molecular polysaccharide (O-chain). To fill this lacuna and going into a more natural system, here various wild-type (smooth form) LPS including also some LPS fractions were investigated by small-angle X-ray scattering with synchrotron radiation to analyze their aggregate structure. Furthermore, the influence of a recently designed synthetic anti-LPS peptide (SALP) Pep19-2.5 on the aggregate structure, on the binding thermodynamics, and on the cytokine-inducing activity of LPS were characterized, showing defined aggregate changes, high affinity binding and inhibition of cytokine secretion. The data obtained are suitable to refine our view on the preferences of LPS for non-lamellar structures, representing the highest bioactive forms which can be significantly influenced by the binding with neutralizing peptides such as Pep19-2.5. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role of IFN-gamma and LPS on Neuron/Glial Co-Cultures Infected by Neospora caninum

    Directory of Open Access Journals (Sweden)

    Erica Etelvina Viana De Jesus

    2014-10-01

    Full Text Available Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 μg/mL of LPS on infected rat neuron/glial co-cultures. After 72 hours of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not, meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001, this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%. The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in CNS

  12. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    Science.gov (United States)

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  13. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    Science.gov (United States)

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  14. Transpalatal distraction for the management of maxillary constriction in pediatric patients

    OpenAIRE

    Adolphs, Nicolai; Ernst, Nicole; Hoffmeister, Bodo; Raguse, Jan-Dirk

    2015-01-01

    Context: The management of severe maxillary constriction can be challenging. For that purpose surgically assisted maxillary expansion by transpalatal distraction (TPD) can typically be recommended after skeletal maturity. However in selected cases bone borne transpalatal distraction devices can contribute to improve maxillary constriction considerably earlier already during mixed dentition. Aims: To assess the possibility of bone borne transpalatal distraction in pediatric patients. Settings ...

  15. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    Science.gov (United States)

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  16. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    Science.gov (United States)

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Enhancement of antinociception by coadminstration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis

    Directory of Open Access Journals (Sweden)

    Masocha Willias

    2010-12-01

    Full Text Available Abstract Background Minocycline and a non-steroidal anti-inflammatory drug (NSAID indomethacin, have anti-inflammatory activities and are both used in the management of rheumatoid arthritis. However, there are no reports on whether coadministration of these drugs could potentiate each other's activities in alleviating pain and weight bearing deficits during arthritis. Methods LPS was injected to BALB/c mice intraperitoneally (i.p. to induce thermal hyperalgesia. The hot plate test was used to study thermal nociception in naïve BALB/c and C57BL/6 mice and BALB/c mice with LPS-induced thermal hyperalgesia and to evaluate antinociceptive effects of drugs administered i.p. Monoarthritis was induced by injection of LPS intra-articularly into the right hind (RH limb ankle joint of C57BL/6 mice. Weight bearing changes and the effect of i.p. drug administration were analyzed in freely moving mice using the video-based CatWalk gait analysis system. Results In naïve mice indomethacin (5 to 50 mg/kg had no significant activity, minocycline (25 to 100 mg/kg produced hyperalgesia to thermal nociception, however, coadministration of minocycline 50 mg/kg with indomethacin 5 or 10 mg/kg produced significant antinociceptive effects in the hot plate test. A selective inhibitor of COX-1, FR122047 (10 mg/kg and a selective COX-2 inhibitor, CAY10404 (10 mg/kg had no significant antinociceptive activities to thermal nociception in naïve mice, however, coadministration of minocycline, with CAY10404 but not FR122047 produced significant antinociceptive effects. In mice with LPS-induced hyperalgesia vehicle, indomethacin (10 mg/kg or minocycline (50 mg/kg did not produce significant changes, however, coadministration of minocycline plus indomethacin resulted in antinociceptive activity. LPS-induced RH limb monoarthritis resulted in weight bearing (RH/left hind (LH limb paw pressure ratios and RH/LH print area ratios deficits. Treatment with indomethacin (1 mg/kg or

  18. Effects of lipopolysaccharide (LPS) induced inflammatory response on early embryo survival in ewes

    Science.gov (United States)

    Early pregnant ewes were used to determine the effects of endogenous (through LPS activation) and exogenous TNF-alpha tumor necrosis factor-alpha (TNF-alpha) on embryonic loss. Thirty-eight Dorset x Texel ewes were synchronized for estrus and bred to fertile rams (d0). On d5/6, ewes were assigned t...

  19. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Transpalatal distraction for the management of maxillary constriction in pediatric patients.

    Science.gov (United States)

    Adolphs, Nicolai; Ernst, Nicole; Hoffmeister, Bodo; Raguse, Jan-Dirk

    2015-01-01

    The management of severe maxillary constriction can be challenging. For that purpose surgically assisted maxillary expansion by transpalatal distraction (TPD) can typically be recommended after skeletal maturity. However in selected cases bone borne transpalatal distraction devices can contribute to improve maxillary constriction considerably earlier already during mixed dentition. To assess the possibility of bone borne transpalatal distraction in pediatric patients. Clinical paper. Since 2010 TPD has been applied to six pediatric patients during mixed dentition when severe maxillary constriction was present and conventional orthodontic widening has already failed. Individually selected devices (Surgitec, Belgium) were inserted in general anaesthesia and distraction was performed according to well known parameters. Maxillary constriction could be improved in all six patients without any drawbacks by bone borne devices during mixed dentition. Skeletal conditions were obviously improved for subsequent orthodontic or orthognathic therapy without functional impairment. Follow-up is up to 36 months after device removal. Transpalatal Distraction is recommendable in selected pediatric patients if massive growth disturbance is present or has to be expected. TPD allows for individually adapted maxillary expansion by selection and positioning of appropriate devices in combination with intraoperative testing of maxillary movements and controlled bone removal.

  1. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  2. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Differential effects of allergen challenge on large and small airway reactivity in mice.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways. Balb/C mice were sensitised (days 0, 14 and challenged (3 times/week, 6 weeks with ovalbumin. Airway reactivity was compared with saline-challenged controls in vivo assessing whole lung resistance, and in vitro measuring the force of tracheal contraction and the magnitude/rate of small airway narrowing within lung slices. Increased airway inflammation, epithelial remodelling and fibrosis were evident following allergen challenge. In vivo hyperresponsiveness to methacholine was maintained in isolated trachea. In contrast, methacholine induced slower narrowing, with reduced potency in small airways compared to controls. In vitro incubation with IL-1/TNFα did not alter reactivity. The hyporesponsiveness to methacholine in small airways within lung slices following chronic ovalbumin challenge was unexpected, given hyperresponsiveness to the same agonist both in vivo and in vitro in tracheal preparations. This finding may reflect the altered interactions of small airways with surrounding parenchymal tissue after allergen challenge to oppose airway narrowing and closure.

  4. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  5. Airway Management Dilemma in a Patient with Maxillofacial Injury ...

    African Journals Online (AJOL)

    He had tracheostomy and repair of the laceration under general anaesthesia. Anaesthesia was induced with intravenous ketamine with the patient in the left lateral position while traction on the tongue using a Magill's forceps ensured patency of the airway. A classical laryngeal mask airway was subsequently inserted to ...

  6. Methylene-tetrahydrofolate reductase contributes to allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Environmental exposures strongly influence the development and progression of asthma. We have previously demonstrated that mice exposed to a diet enriched with methyl donors during vulnerable periods of fetal development can enhance the heritable risk of allergic airway disease through epigenetic changes. There is conflicting evidence on the role of folate (one of the primary methyl donors in modifying allergic airway disease.We hypothesized that blocking folate metabolism through the loss of methylene-tetrahydrofolate reductase (Mthfr activity would reduce the allergic airway disease phenotype through epigenetic mechanisms.Allergic airway disease was induced in C57BL/6 and C57BL/6Mthfr-/- mice through house dust mite (HDM exposure. Airway inflammation and airway hyperresponsiveness (AHR were measured between the two groups. Gene expression and methylation profiles were generated for whole lung tissue. Disease and molecular outcomes were evaluated in C57BL/6 and C57BL/6Mthfr-/- mice supplemented with betaine.Loss of Mthfr alters single carbon metabolite levels in the lung and serum including elevated homocysteine and cystathionine and reduced methionine. HDM-treated C57BL/6Mthfr-/- mice demonstrated significantly less airway hyperreactivity (AHR compared to HDM-treated C57BL/6 mice. Furthermore, HDM-treated C57BL/6Mthfr-/- mice compared to HDM-treated C57BL/6 mice have reduced whole lung lavage (WLL cellularity, eosinophilia, and Il-4/Il-5 cytokine concentrations. Betaine supplementation reversed parts of the HDM-induced allergic airway disease that are modified by Mthfr loss. 737 genes are differentially expressed and 146 regions are differentially methylated in lung tissue from HDM-treated C57BL/6Mthfr-/- mice and HDM-treated C57BL/6 mice. Additionally, analysis of methylation/expression relationships identified 503 significant correlations.Collectively, these findings indicate that the loss of folate as a methyl donor is a modifier of

  7. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  8. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    Science.gov (United States)

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  9. Functional high-resolution computed tomography of pulmonary vascular and airway reactions. Experimental results. Funktionelle HR-CT der Lunge. Experimentelle Untersuchungen pulmonaler Gefaess- und Atemwegsreaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Herold, C.J. (Universitaetsklinik fuer Radiodiagnostik, Vienna (Austria) Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology); Brown, R.H. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Anesthesiology and Intensive Care Medicine Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Physiology); Wetzel, R.C.; Herold, S.M. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Anesthesiology and Intensive Care Medicine); Zeerhouni, E.A. (Johns Hopkins Medical Institutions, Baltimore, MD (United States). Dept. of Radiology)

    1993-03-01

    We describe the use of high-resolution computed tomography (HRCT) for assessment of the function of pulmonary vessels and airways. With its excellent spatial resolution, HRCT is able to demonstrate pulmonary structures as small as 300 [mu]m and can be used to monitor changes following various stimuli. HRCT also provides information about structures smaller than 300 [mu]m through measurement of parenchymal background density. To date, sequential, spiral and ultrafast HRCT techniques have been used in a variety of challenges to gather information about the anatomical correlates of traditional physiological measurements, thus making anatomical-physiological correlation possible. HRCT of bronchial reactivity can demonstrate the location and time course of aerosol-induced broncho-constriction and may show changes not apparent on spirometry. HRCT of the pulmonary vascular system visualized adaptations of vessels during hypoxia and intravascular volume loading and elucidates cardiorespiratory interactions. Experimental studies provide a basis for potential clinical applications of this method. (orig.).

  10. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Ardiles, Alejandro E., E-mail: ale_csic@gmail.com [Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife (Spain); Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939 (Chile); Arroba, Ana I., E-mail: aarroba@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Hernández-Jiménez, Enrique, E-mail: enheji@gmail.com [Tumor Immunology Laboratory (IdiPAZ), 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERres), ISCIII, 28029 Madrid (Spain); and others

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  11. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    International Nuclear Information System (INIS)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E.; Arroba, Ana I.; Hernández-Jiménez, Enrique

    2016-01-01

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  12. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  13. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Science.gov (United States)

    Deshpande, Deepak A.; Guedes, Alonso G. P.; Graeff, Richard; Dogan, Soner; Subramanian, Subbaya; Walseth, Timothy F.

    2018-01-01

    Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed. PMID:29576747

  14. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Science.gov (United States)

    Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H

    2014-01-01

    Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  15. Brothers with constrictive pericarditis – A novel mutation in a rare disease

    Directory of Open Access Journals (Sweden)

    Devendra V. Patil

    2016-09-01

    Full Text Available Familial constrictive pericarditis is extremely rare. We report a case of two brothers both suffering constrictive pericarditis along with having multiple painless joint deformities. Genetic workup confirmed the clinical diagnosis of camptodactyly-arthropathy-coxa vara-pericarditis (CACP syndrome CACP syndrome and also revealed a rare mutation in the causative gene.

  16. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  17. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Carla M. P. Ribeiro

    2017-01-01

    Full Text Available Cystic fibrosis (CF pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR. This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.

  18. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  19. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice.

    Science.gov (United States)

    Ruan, Guoran; Ren, Haojin; Zhang, Chi; Zhu, Xiaogang; Xu, Chao; Wang, Liyue

    2018-01-01

    QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis

  20. Effect of inhaled hydrosoluble curcumin on inflammatory markers in broncho-alveolar lavage fluid of horses with LPS-induced lung neutrophilia

    OpenAIRE

    Sandersen, Charlotte; Bienzle, Dorothee; Cerri, Simona; Franck, Thierry; Derochette, Sandrine; Neven, Philippe; Mouytis-Mickalad, Ange; Serteyn, Didier

    2015-01-01

    Background Horses commonly suffer from chronic respiratory disease and are also used in large animal models of spontaneous or induced airway inflammation. The anti-inflammatory properties of curcumin are largely described but its low bioavailability precludes its clinical use. NDS27, a lysin salt of curcumin incorporated in beta-cyclodextrine, has high bioavailability and can be administered by inhalation. The aim of this study was to investigate the effects of inhaled NDS27 on inflammatory c...

  1. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour

    International Nuclear Information System (INIS)

    Cardoso, Ana P.; Pinto, Marta L.; Pinto, Ana T.; Pinto, Marta T.; Monteiro, Cátia; Oliveira, Marta I.; Santos, Susana G.; Relvas, João B.; Seruca, Raquel; Mantovani, Alberto; Mareel, Marc; Barbosa, Mário A.; Oliveira, Maria J.

    2015-01-01

    The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was

  2. Study on Characteristics of Constricted DC Plasma Using Particle-In-Cell Simulator

    International Nuclear Information System (INIS)

    Jo, Jong Gap; Park, Yeong Shin; Hwang, Yong Seok

    2010-01-01

    In dc glow discharge, when anode size is smaller than cathode, very small and bright plasma ball occurs in front of anode. This plasma is called constricted dc plasma and characterized by a high plasma density in positive glow, so called plasma ball, compared to the conventional dc plasma. For the reason, this plasma is utilized to ion or electron beam sources since the beam currents are enhanced by the dense anode glow. However, correlations between characteristics of the plasma (plasma density, electron temperature and space potential) and discharge conditions (anode size, discharge voltage, discharge current, pressure) have been a little investigated definitely clear in previous study because of the trouble of a diagnosis. The plasma ball which is the most essential part of the constricted plasma is too small to diagnose precisely without disturbing plasma. Therefore, we tried to analyze the constricted plasma through computer simulation with Particle-In-Cell (PIC) code. In this study, simulation result of constricted dc plasma as well as conventional dc glow discharge will be addressed and compared with each others

  3. Infectious endocardial intracardiac defibrillator lead, infectious pericarditis, and delayed constrictive pericarditis

    Directory of Open Access Journals (Sweden)

    Mohsen Mir Mohammad Sadeghi

    2013-01-01

    Full Text Available The usage of Implantable Cardiac Defibrillator (ICD since 1980s is becoming more popular these days. The rate of both, endocarditis and constrictive pericarditis are low but it still needs attention. We are reporting a rare case of ICD endocarditis as a result of toe infection in a diabetic patient. This was followed by infectious pericarditis after device removal by open heart surgery and then delayed constrictive pericarditis.

  4. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro.

    Science.gov (United States)

    Brown, Russell; Imran, Syed A; Wilkinson, Michael

    2009-04-30

    Adipokines that modulate metabolic and inflammatory responses, such as resistin (rstn) and fasting-induced adipose factor (fiaf), are also expressed in mouse brain and pituitary gland. Since lipopolysaccharide (LPS)-induced endotoxinemia provokes an anorectic response via a hypothalamic-dependent mechanism we hypothesized that LPS would also modify hypothalamic adipokine expression. Challenging male CD-1 mice with LPS (5 mg/kg; s.c.) significantly reduced bodyweight (24 h) and realtime RT-PCR revealed time- and tissue-dependent increases in rstn, fiaf and suppressor of cytokine signaling-3 (socs-3) mRNA in hypothalamic, pituitary, cortical and adipose tissues. Gene expression was rapidly increased (3-6 h) in the hypothalamus and pituitary, but returned to normal within 24 h. In contrast, with the exception of rstn in fat, the expression of target genes remained elevated in cortex and visceral fat at 24 h post-injection. In order to more specifically examine the hypothalamic response to LPS we investigated its effects directly on N-1 hypothalamic neurons in vitro. LPS (25 microg/mL; 3 h) had no effect on rstn mRNA, but significantly stimulated fiaf and socs-3 expression. Although various toll-like receptor 4 (TLR4) antagonists (parthenolide, PD098059, and SB202190) did not prevent the LPS-induced increases in fiaf and socs-3, they did partially attenuate its stimulatory effects. We conclude that LPS treatment increases the expression of central, and possibly neuronal, adipokine genes which may influence local tissue repair and function, but could also have downstream consequences on the hypothalamic control of appetite and energy metabolism following an inflammatory insult.

  5. Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW 246.7 macrophages

    Directory of Open Access Journals (Sweden)

    Tadahiro Etoh

    2013-06-01

    Full Text Available ABSTRACTBackground: Formulated Citrus Peel Extract (GL made from the peels of six citrus fruits available in Japan, namely navel oranges, citrus hassaku, citrus limon, citrus natsudaidai, citrus miyauchi and satsuma, was initially developed as a cosmetic product to protect skin from UV irradiation. Anecdotal evidences of anti-cancer property of GL have been reported by consumers based on the cases such as topical application for melanoma, and oral ingestion for prostate, lung and liver cancers.Those anecdotal reports stimulated us to investigate anti-tumorigenesis activity of GL. In the previous study, we reported that the topical application of GL inhibited DMBA/TPA-induced skin tumor formation by decreasing inflammatory gene parameters.Objective: In this study, we mainly investigated the effect of GL on translocation of NF-kB together with production of nitric-oxide and TNF-α induced by LPS in RAW 264.7 cells.Results: This investigation showed that GL decreased the release of TNF-α and nitric oxide from macrophage RAW264.7 cells stimulated by LPS in a dose-dependent manner. In addition, GL suppressed the expression of iNOS and nuclear translocation of NF-kB in RAW264.7 cells, inhibited the degradation of IκB-α, and scavenged hydroxyl radicals (DMPO/OH adduct in vitro.Conclusions: Our findings suggest that GL suppresses the inflammation in vitro, and exerts chemopreventive activity through the inhibition of production of TNF-α and iNOS proteins due to the inhibition of nuclear translocation of NF-kB and oxidative stress. GL appears to be a novel functional natural product capable of preventing inflammation and inflammation-associated tumorigenesis.Keywords: GL, Citrus peel extract, anti-inflammation, Nitric oxide, iNOS, NF-kB, TNF-α

  6. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    Science.gov (United States)

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  7. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  8. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Noah H Hillman

    Full Text Available Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA LPS or Ureaplasma parvum (UP. Epidermal growth factor receptor (EGFR ligands participate in lung development, and angiotensin converting enzyme (ACE 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG, epiregulin (EREG, heparin binding epidermal growth factor (HB-EGF, and betacellulin (BTC mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  9. [Effect of airway humidification on lung injury induced by mechanical ventilation].

    Science.gov (United States)

    Song, Junjie; Jiang, Min; Qi, Guiyan; Xie, Yuying; Wang, Huaiquan; Tian, Yonggang; Qu, Jingdong; Zhang, Xiaoming; Li, Haibo

    2014-12-01

    To explore the effect of airway humidification on lung injury as a result of mechanical ventilation with different tidal volume (VT). Twenty-four male Japanese white rabbits were randomly divided into four groups: low VT with airway humidification group, high VT with airway humidification group, low VT and high VT group without humidification, with 6 rabbits in each group. Mechanical ventilation was started after intubation and lasted for 6 hours. Low VT denoted 8 mL/kg, while high VT was 16 mL/kg, fraction of inspired oxygen (FiO₂) denoted 0.40, positive end-expiratory pressure (PEEP) was 0. Temperature at Y piece of circuit in airway humidification groups was monitored and controlled at 40 centigrade. Arterial blood gas analysis, including pH value, arterial partial pressure of oxygen (PaO₂), arterial partial pressure of carbon dioxide (PaCO₂), lung mechanics indexes, including peak airway pressure (P(peak)) and airway resistance (Raw), and lung compliance was measured at 0, 2, 4, 6 hours of mechanical ventilation. The levels of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in plasma and bronchoalveolar lavage fluid (BALF) were determined by enzyme linked immunosorbent assay (ELISA). The animals were sacrificed at the end of mechanical ventilation. The wet to dry (W/D) ratio of lung tissues was calculated. Histopathologic changes in the lung tissueies were observed with microscope, and lung injury score was calculated. Scanning and transmission electron microscopies were used to examine the integrity of the airway cilia and the tracheal epithelium. Compared with low V(T) group, pH value in high V(T) group was significantly increased, PaCO₂was significantly lowered, and no difference in PaO₂was found. P(peak), Raw, and lung compliance were significantly increased during mechanical ventilation. There were no significant differences in blood gas analysis and lung mechanics indexes between low V(T) with airway humidification group and low V

  10. Multidisciplinary emergent removal of a metal penoscrotal constriction device

    LENUS (Irish Health Repository)

    Nason, GJ

    2017-03-01

    Strangulation of the genital organs is a rare presentation to the emergency department which requires urgent intervention to avoid long term complications. Penoscrotal constriction devices are either used for autoerotic stimulus or to increase sexual performance by maintaining an erection for a longer period. We report a case of a man who presented with penile strangulation following the application of a titanium penoscrotal constriction ring during sexual intercourse seven hours previously. The Fire Brigade department attended with an electric operated angle grinder to facilitate removal of the ring as standard medical equipment (orthopaedic saws, bolt and bone cutters) were insufficient. Fully functional recovery was achieved.

  11. Sirt1 S-nitrosylation induces acetylation of HMGB1 in LPS-activated RAW264.7 cells and endotoxemic mice.

    Science.gov (United States)

    Kim, Young Min; Park, Eun Jung; Kim, Hye Jung; Chang, Ki Churl

    2018-06-18

    Excessive inflammation plays a detrimental role in endotoxemia. A recent study indicated that alarmins such as high mobility group box 1 (HMGB1) have drawn attention as therapeutic targets of sepsis. Post-translational modification (i.e., acetylation of lysine residues) of HMGB1 leads to the release of HMGB1 into the cellular space, operating as a warning signal that induces inflammation. Sirtuin 1 (SIRT1) has been shown to negatively regulate HMGB1 hyperacetylation and its extracellular release in sepsis. Therefore, we hypothesized that the S-nitrosylation (SNO) of SIRT1 may disrupt the ability of SIRT1 to negatively regulate the hyperacetylation of HMGB1. As long as the S-nitrosylation of SIRT1 occurs during septic conditions, it may worsen the situation. We found that the activity of SIRT1 decreased as the SNO-SIRT1 levels increased, resulting in HMGB1 release by LPS in RAW264.7 cells. Both the iNOS inhibitor (1400 W) and silencing iNOS significantly inhibited SNO-SIRT1, allowing increases in SIRT1 activity that decreased the HMGB1 release by LPS. SNAP, a NO donor, significantly increased both SNO-SIRT1 levels and the HMGB1 release that was accompanied by decreased sirt1 activity. However, sirtinol, a Sirt1 inhibitor, by itself decreased Sirt1 activity compared to that of the control, so that it did not affect already increased SNO-SIRT levels by SNAP. Most importantly, in lung tissues of LPS-endotoxic mice, significantly increased levels of SNO-SIRT were found, which was inhibited by 1400 W treatment. Plasma nitrite and HMGB1 levels were significantly higher than those in the sham controls, and the elevated levels were significantly lowered in the presence of 1400 W. We concluded that the S-nitrosylation of Sirt1 under endotoxic conditions may uninhibit the acetylation of HMGB1 and its extracellular release. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  13. Quantifying Compressibility and Slip in Multiparticle Collision (MPC Flow Through a Local Constriction

    Directory of Open Access Journals (Sweden)

    Tahmina Akhter

    2014-01-01

    Full Text Available The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.

  14. The pharmacological efficacy of the anti-IL17 scFv and sTNFR1 bispecific fusion protein in inflammation mouse stimulated by LPS.

    Science.gov (United States)

    Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping

    2017-08-01

    Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The plant extract Isatis tinctoria L. extract (ITE) inhibits allergen-induced airway inflammation and hyperreactivity in mice.

    Science.gov (United States)

    Brattström, A; Schapowal, A; Kamal, M A; Maillet, I; Ryffel, B; Moser, R

    2010-07-01

    The herbal Isatis tinctoria extract (ITE) inhibits the inducible isoform of cyclooxygenase (COX-2) as well as lipoxygenase (5-LOX) and therefore possesses anti-inflammatory properties. The extract might also be useful in allergic airway diseases which are characterized by chronic inflammation. ITE obtained from leaves by supercritical carbon dioxide extraction was investigated in ovalbumin (OVA) immunised BALB/c mice given intranasally together with antigen challenge in the murine model of allergic airway disease (asthma) with the analysis of the inflammatory and immune parameters in the lung. ITE given with the antigen challenge inhibited in a dose related manner the allergic response. ITE diminished airway hyperresponsiveness (AHR) and eosinophil recruitment into the bronchoalveolar lavage (BAL) fluid upon allergen challenge, but had no effect in the saline control mice. Eosinophil recruitment was further assessed in the lung by eosinophil peroxidase (EPO) activity at a dose of 30 microg ITE per mouse. Microscopic investigations revealed less inflammation, eosinophil recruitment and mucus hyperproduction in the lung in a dose related manner. Diminution of AHR and inflammation was associated with reduced IL-4, IL-5, and RANTES production in the BAL fluid at the 30 microg ITE dose, while OVA specific IgE and eotaxin serum levels remained unchanged. ITE, which has been reported inhibiting COX-2 and 5-LOX, reduced allergic airway inflammation and AHR by inhibiting the production of the Th2 cytokines IL-4 and IL-5, and RANTES. (c) 2009 Elsevier GmbH. All rights reserved.

  16. LPS infusion suppresses serum FGF21 levels in healthy adult volunteers

    DEFF Research Database (Denmark)

    Lauritzen, Esben Stistrup; Rittig, Nikolaj; Bach, Ermina

    2017-01-01

    circulating levels of FGF21 after lipopolysaccharide (LPS) infusion. DESIGN: Two randomized, single blinded, placebo-controlled crossover trials were used. SETTING: The studies were performed at a university hospital clinical research center. PATIENTS AND INTERVENTIONS: Study 1 (LPS bolus): Eight young......, healthy, lean males were investigated two times: 1) after isotonic saline injection, and 2) after LPS injection (bolus of 1 ng/kg). Each study day lasted 4 hours. Study 2 (continuous LPS infusion): Eight, healthy males were investigated two times: 1) during continuously isotonic saline infusion, and 2......) during continuously LPS infusion (0.06 ng/kg/h). Each study day lasted 4 hours. Circulating FGF21 levels were quantified every second hour by an immunoassay. RESULTS: A LPS bolus resulted in a late suppression (t = 240 minutes) of serum FGF21 (P=0.035). Continuous LPS infusion revealed no significant...

  17. Awake insertion of a Laryngeal Mask Airway-Proseal™ as alternative to awake fiberoptic intubation in management of anticipated difficult airway in ambulatory surgery

    Directory of Open Access Journals (Sweden)

    Matilde Zaballos

    Full Text Available Abstract Background and objectives The decision whether to manage an ambulatory patient with a previously documented difficult airway with a supraglottic device remain controversial. We report an awake insertion of a Laryngeal Mask Airway Proseal™ in a patient with known difficult airway scheduled for ambulatory surgery. Case report A 46-yr-old woman was programmed as a day case surgery for breast nodule resection. Her anesthetic record included an impossible intubation with cancelation of surgery and subsequent awake fibroscopic intubation. She reported emotional distress with the previous experience and declined this approach. In view of the previous experience, an awake airway control with a Laryngeal Mask Airway Proseal™ was planned after explaining and reassuring the patient. After adequate topicalisation, a size 4 Laryngeal Mask Airway Proseal™ was successfully inserted after two attempts, and their patency was confirmed by capnography. Anesthesia was induced intravenously and the surgery was uneventful. Conclusion We describe a feasible alternative strategy to awake intubation in a patient with known difficult airway undergoing ambulatory surgery. In this specific clinical situation, if tracheal intubation is deemed unnecessary, awake supraglottic airway might allow adequate ventilation and their use should be considered.

  18. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway.

    Science.gov (United States)

    Li, Yu; He, Shengnan; Tang, Jishun; Ding, Nana; Chu, Xiaoyan; Cheng, Lianping; Ding, Xuedong; Liang, Ting; Feng, Shibin; Rahman, Sajid Ur; Wang, Xichun; Wu, Jinjie

    2017-01-01

    Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF- κ B was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF- κ B, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF- α , IL-6, and IL-1 β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF- κ B activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF- κ B/MAPK signaling pathway and the induction of proinflammatory cytokines.

  19. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-01-01

    Full Text Available Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f. Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS- induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR, respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA. The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

  20. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  1. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab

    Science.gov (United States)

    Roth, Michael; Zhao, Feng; Zhong, Jun; Lardinois, Didier; Tamm, Michael

    2015-01-01

    Background Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC) activity deposing extracellular matrix. Objective We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies. Methods Isolated human ASMC were exposed to serum obtained from: (i) healthy controls, or patients with (ii) allergic asthma, (iii) non-allergic asthma, and (iv) atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days. Results Serum from patients with allergies significantly stimulated: (i) ASMC proliferation, (ii) deposition of collagen type-I (48 hours) and (iii) of fibronectin (24 hours). One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects. Conclusion and Clinical Relevance Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC. PMID:26332463

  2. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab.

    Directory of Open Access Journals (Sweden)

    Michael Roth

    Full Text Available Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC activity deposing extracellular matrix.We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies.Isolated human ASMC were exposed to serum obtained from: (i healthy controls, or patients with (ii allergic asthma, (iii non-allergic asthma, and (iv atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days.Serum from patients with allergies significantly stimulated: (i ASMC proliferation, (ii deposition of collagen type-I (48 hours and (iii of fibronectin (24 hours. One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects.Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC.

  3. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hiroki Tashiro

    Full Text Available Interleukin-33 (IL-33 activates group 2 innate lymphoid cells (ILC2, resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation.BALB/c mice were sensitized and challenged with a house dust mite (HDM preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes.The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung.IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.

  4. Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Neil McInnes

    2016-03-01

    Full Text Available The bronchial airway epithelial cell (BAEC is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS or house dust mite allergen (HDM or particulates extracted from side stream cigarette smoke (SSCS. BAEC were obtained from 24 children (mean age 7.0 years and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons. There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023. There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures.

  5. Possible role of differential growth in airway wall remodeling in asthma

    KAUST Repository

    Moulton, D. E.

    2011-01-20

    Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol 110: 1003-1012, 2011. First published January 20, 2011; doi:10.1152/japplphysiol.00991.2010.- Airway remodeling in patients with chronic asthma is characterized by a thickening of the airway walls. It has been demonstrated in previous theoretical models that this change in thickness can have an important mechanical effect on the properties of the wall, in particular on the phenomenon of mucosal folding induced by smooth muscle contraction. In this paper, we present a model for mucosal folding of the airway in the context of growth. The airway is modeled as a bilayered cylindrical tube, with both geometric and material nonlinearities accounted for via the theory of finite elasticity. Growth is incorporated into the model through the theory of morphoelasticity. We explore a range of growth possibilities, allowing for anisotropic growth as well as different growth rates in each layer. Such nonuniform growth, referred to as differential growth, can change the properties of the material beyond geometrical changes through the generation of residual stresses. We demonstrate that differential growth can have a dramatic impact on mucosal folding, in particular on the critical pressure needed to induce folding, the buckling pattern, as well as airway narrowing. We conclude that growth may be an important component in airway remodeling. Copyright © 2011 the American Physiological Society.

  6. CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN

    Directory of Open Access Journals (Sweden)

    Diana Legarda

    2016-06-01

    Full Text Available Tumor necrosis factor (TNF induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS-induced necroptosis was abrogated in Tnf−/− macrophages, a soluble TNF antagonist was not able to do so in Tnf+/+ macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk.

  7. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the ...

  8. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  9. Recurrent tongue tip constriction in a captive giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Steinmetz, Hanspeter W; Clauss, Marcus; Feige, Karsten; Thio, Tanja; Isenbügel, Ewald; Hatt, Jean-Michel

    2007-03-01

    A male giant anteater (Myrmecophage tridactyla) was treated twice for tongue tip constrictions. Clinical signs were partial anorexia, soft stool, bleeding from the mouth, and intermittent lingual discomfort. In the first presentation, wood fibers constricting the distal part of the tongue were detected by endoscopy and were removed. In the second presentation, bands of collagenous fibers were identified and resected. Dietary elements were responsible for both cases: elongated wood fibers were present in peat, which was included as a supplement to improve stool consistency, and collagenous fibers originated from fascias of lean meat, which served as a protein source in this diet. Preventive measures included sieving of the peat to eliminate long fibers and grinding of the meat, respectively, prior to diet presentation. A homogenous diet, utilizing cellulose rather than peat and dry cat food rather than meat, will avoid tongue tip constriction as described in these cases.

  10. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    Science.gov (United States)

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1 beta and IL-6

    LENUS (Irish Health Repository)

    Murray, Carol L

    2011-05-17

    Abstract Background Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. Methods ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg\\/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg\\/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. Results LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg\\/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. Conclusions These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to

  12. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema......-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter...... and emphysema, respectively. Conclusions – Airway distensibility decreases significantly with increasing severity of both GOLD status and emphysema, indicating that in COPD the dynamic change in airway calibre during respiration is compromised. Chronic bronchitis and emphysema appear to be interacting...

  13. The LPS trigger system

    International Nuclear Information System (INIS)

    Benotto, F.; Costa, M.; Staiano, A.; Zampieri, A.; Bollito, M.; Isoardi, P.; Pernigotti, E.; Sacchi, R.; Trapani, P.P.; Larsen, H.; Massam, T.; Nemoz, C.

    1996-03-01

    The Leading Proton Spectrometer (LPS) has been equipped with microstrip silicon detectors specially designed to trigger events with high values of x L vertical stroke anti p' p vertical stroke / vertical stroke anti p p vertical stroke ≥0.95 where vertical stroke anti p' p vertical stroke and vertical stroke anti p p vertical stroke are respectively the momenta of outgoing and incoming protons. The LPS First Level Trigger can provide a clear tag for very high momentum protons in a kinematical region never explored before. In the following we discuss the physics motivation in tagging very forward protons and present a detailed description of the detector design, the front end electronics, the readout electronics, the Monte Carlo simulation and some preliminary results from 1995 data taking. (orig.)

  14. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.

    Science.gov (United States)

    Wang, Rongyang; Wei, Yikun; Wu, Chuanyu; Sun, Liang; Zheng, Wenguang

    2018-01-01

    The immersed boundary-lattice Boltzmann method (IB-LBM) was used to examine the motion and deformation of three elastic red blood cells (RBCs) during Poiseuille flow through constricted microchannels. The objective was to determine the effects of the degree of constriction and the Reynolds (Re) number of the flow on the physical characteristics of the RBCs. It was found that, with decreasing constriction ratio, the RBCs experienced greater forced deformation as they squeezed through the constriction area compared to at other parts of the microchannel. It was also observed that a longer time was required for the RBCs to squeeze through a narrower constriction. The RBCs subsequently regained a stable shape and gradually migrated toward the centerline of the flow beyond the constriction area. However, a sick RBC was observed to be incapable of passing through a constricted vessel with a constriction ratio ≤1/3 for Re numbers below 0.40.

  15. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in guinea pigs.

    Science.gov (United States)

    Chen, Zhe; Chen, Hui; Chen, Fagui; Gu, Dachuan; Sun, Lejia; Zhang, Weitao; Fan, Linfeng; Lin, Yong; Dong, Rong; Lai, Kefang

    2017-12-20

    Neuronal activity in the medulla oblongata and neurogenic inflammation of airways were investigated in a guinea pig model induced by repeated intra-esophageal instillation of hydrochloric acid (HCl) after vagotomy. Unilateral vagotomy was performed in the vagotomy group, while a sham-operation was performed in the sham group. Operation was not conducted in sham control group. Airway inflammation was observed with hematoxylin and eosin (HE) staining. C-fos protein was measured by immunohistochemistry (IHC) and Western blot (WB). Substance P was examined by IHC and enzyme-linked immuno sorbent assay (ELISA). Airway microvascular permeability was detected by evans blue dye (EBD) fluorescence. Inflammation of airway was observed in the trachea and bronchi after chronic HCl perfusion into the lower esophagus, and was alleviated after unilateral vagotomy. C-fos expression in the medulla oblongata was lower in the vagotomy group compared to the sham control and sham groups. Substance P-like immunoreactivity (SP-li), concentration and microvascular leakage in airway were lower in the vagotomy group than that in the other groups. Our results suggest that vagotomy improved neurogenic inflammation of airways and decreased neuronal activities, the afferent nerves and neurons in medulla oblongata may be involved in neurogenic inflammation of airways mediated by esophageal-bronchial reflex.

  16. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

    OpenAIRE

    Shin, Na-Rae; Kim, Sung-Ho; Ko, Je-Won; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Jong-Choon; Shin, In-Sik

    2017-01-01

    HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inf...

  17. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    Science.gov (United States)

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    Epidemiological studies have reported that elevated levels of particulate air pollution in urban communities are associated with increases in attacks of asthma based on evidence from hospital admissions and emergency department visits. Principal pathologic features of chronic airway diseases, like asthma, are airway inflammation and mucous hypersecretion with excessive amounts of luminal mucus and increased numbers of mucus-secreting cells in regions of the respiratory tract that normally have few or no mucous cells (ie, mucous cell metaplasia). The overall goal of the present project was to understand the adverse effects of urban air fine particulate matter (PM2.5; pollutants in the outdoor air of a local Detroit community with a high incidence of childhood asthma; (2) determine the effects of this community-based PM2.5 on the airway epithelium in normal rats and rats compromised with preexisting hypersecretory airway diseases (ie, animal models of human allergic airway disease--asthma and chronic bronchitis); and (3) identify the chemical or physical components of PM2.5 that are responsible for PM2.5 -induced airway inflammation and epithelial alterations in these animal models. Two animal models of airway disease were used to examine the effects of PM2.5 exposure on preexisting hypersecretory airways: neutrophilic airway inflammation induced by endotoxin challenge in F344 rats and eosinophilic airway inflammation induced by ovalbumin (OVA) challenge in BN rats. A mobile air monitoring and exposure laboratory equipped with inhalation exposure chambers for animal toxicology studies, air pollution monitors, and particulate collection devices was used in this investigation. The mobile laboratory was parked in a community in southwestern Detroit during the summer months when particulate air pollution is usually high (July and September 2000). We monitored the outdoor air pollution in this community daily, and exposed normal and compromised rats to concentrated PM2

  18. Transport in constricted quantum Hall systems: beyond the Kane-Fisher paradigm

    International Nuclear Information System (INIS)

    Lal, Siddhartha

    2007-08-01

    A simple model of edge transport in a constricted quantum Hall system with a lowered local fi lling factor is studied. The current backscattered from the constriction is explained from a matching of the properties of the edge-current excitations in the constriction (ν 2 ) and bulk (ν 1 ) regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model, stressing the importance of boundary conditions in elucidating the nature of current transport. By invoking a generalised quasiparticle-quasihole symmetry of the quantum Hall circuit system, we fi nd that a competition between two tunneling process determines the fate of the low-bias transmission conductance. A novel generalisation of the Kane-Fisher quantum impurity model is found, describing transitions from a weak-coupling theory at partial transmission to strong- coupling theories for perfect transmission and reflection as well as a new symmetry dictated fixed point. These results provide satisfactory explanations for recent experimental results at fi lling-factors of 1/3 and 1. (author)

  19. Diffuse and constricted modes of a dc discharge in neon: Simulation of the hysteresis transition

    International Nuclear Information System (INIS)

    Shkurenkov, I. A.; Mankelevich, Yu. A.; Rakhimova, T. V.

    2008-01-01

    Results are presented from theoretical studies of high-pressure (∼100 Torr) dc discharges in neon. The diffuse and constricted discharge modes are studied using a model including the equation of balance for charged and excited particles, heat conduction equations for the neutral gas and plasma electrons, and Poisson's equation for the radial electric field at a fixed total discharge current. A specific feature of the constricted mode in the investigated range of low fields and high degrees of ionization is that the excitation and ionization rates in the center of the discharge tube and at the periphery differ by several orders of magnitude. This implies that, in the constricted mode, the region where the electron energy distribution function is Maxwellian due to electron-electron collisions may adjoin the region (beyond the constriction zone) where the high-energy part of the distribution function is depleted. The hysteresis transition between the diffuse and constricted modes is analyzed. A transition from the constricted to the diffuse mode can be regarded as a manifestation of the nonlocal character of the formation of the electron distribution function, specifically, the diffusion of high-energy electrons capable of producing gas ionization from the central (constricted) region toward the periphery. The nonlocal formation of the distribution function is described by a nonlocal kinetic equation accounting for electron-electron collisions and electron transport along the radius of the discharge tube. Since only high-energy electrons produce gas ionization, the effect of the nonlocal formation of the electron distribution function is taken into account by introducing the effective temperature of the high-energy part of the distribution function and solving the equation for the radial profile of the high-energy part of the distribution function. This approach allows one to approximately take into account the nonlocal character of the electron distribution

  20. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Ying Lei

    Full Text Available In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.