WorldWideScience

Sample records for lowest rydberg states

  1. Rydberg states

    International Nuclear Information System (INIS)

    Brouillard, F.

    1983-01-01

    This chapter considers the formation of Rydberg atoms; their radiative decay; their behavior in electric and electromagnetic fields; and their collisions with atoms and ions. Discusses electron capture into high excited states; laser excitation of Rydberg states; Stark shift and Stark mixing; field ionization; ionization in oscillating fields; thermal collisions of Rydberg atoms; fast collisions of Rydberg atoms; n-changing collisions; and charge exchange. Points out that a large amount of experimental work has been done on collisions of Rydberg atoms with neutral perturbers at thermal energies, and most of it concerns the destruction of Rydberg alkali atoms in collisions with rare gases

  2. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Univ. Lille, UMR 8523–Physique des Lasers Atomes et Molécules, F-59000 Lille (France); CNRS, UMR 8523, F-59000 Lille (France); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Śmiałek, M. A. [Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Department of Physical Sciences, The Open University, Walton Hall, MK7 6AA Milton Keynes (United Kingdom); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Brunger, M. J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-21

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3–10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3sσ/σ{sup ∗}(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth’s atmosphere (0–50 km).

  3. Two electron Rydberg states

    International Nuclear Information System (INIS)

    Cooke, W.E.

    1981-01-01

    This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed

  4. Metastability and Rydberg states of triatomic hydrogen

    International Nuclear Information System (INIS)

    Helm, H.

    1991-01-01

    The np,nd and nf Rydberg series of H 3 have been studied by one- or two-photon excitation from the lowest metastable state of H 3 :B2p 2 A 2 ''. The lifetime of the metastable state has been measured and the influence of an external electric field on the Rydberg states has been studied under both aspects of dynamics (field-ionization and field-induced predissociation) and structure (Strak effect)

  5. Autoionizing np Rydberg states of H2

    International Nuclear Information System (INIS)

    Xu, E.Y.; Helm, H.; Kachru, R.

    1989-01-01

    We report a study of the autoionizing np Rydberg states near the lowest ionization threshold of H 2 . Using resonant two-photon excitation, intermediate states in specific rotovibrational levels in the double well, E,F 1 Σ/sub g/ + states are prepared. Then, a second, tunable laser is used to photoionize via excitation of the np Rydberg states. Because of the stepwise laser excitation scheme employed in our experiment the photoionization occurs from states with vibrational wave functions very similar to those of the H 2 + core. As a consequence, the autoionizing states appear as nearly symmetric resonances, rather than the highly asymmetric Beutler-Fano profiles observed from the direct photoexcitation from the ground state of H 2 . Our experiments show that the J = 1 np states are broader than the J = 3 np states converging to the same limit, suggesting that the two states autoionize into the epsilon-cp and epsilon-cf continuum, respectively. We compare our observations with a theoretical analysis using a multichannel quantum defect theory. The J = 1 states reveal the profound effect caused by the perturbation of the autoionizing Rydberg series converging to the lowest vibrational and rotational state of H 2 + by low-n states converging to higher vibrational states of the H 2 -ion core

  6. Accurate values of polarizabilities from Rydberg states

    International Nuclear Information System (INIS)

    Patil, S.H.

    1997-01-01

    From the theoretical point of view, there are several properties of Rydberg states which are of interest, interaction of Rydberg atoms with each other, scattering of electrons from Rydberg atoms, interaction of Rydberg atoms with external electromagnetic fields, etc. In this paper the discussion is confined to the particular aspect: the deviations of the energies of Rydberg states from hydrogenic energies, their calculations and their implications from the properties of the core, i.e. the system that remains after Rydberg electron is removed

  7. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    Eliel, E.R.

    1982-01-01

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1 S 0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  8. Theoretical Analysis of Rydberg and Autoionizing State Spectra of Antimony

    Institute of Scientific and Technical Information of China (English)

    Shuang-Fei Lv; Ruohong Li; Feng-Dong Jia; Xiao-Kang Li; Jens Lassen; Zhi-Ping Zhong

    2017-01-01

    We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory.Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states.The perturbation effects on line intensity,variation and line profile are discussed.Assignments of the perturber states and autoionizing states are presented.

  9. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    Science.gov (United States)

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

  10. Radiative lifetime measurements of rubidium Rydberg states

    International Nuclear Information System (INIS)

    Branden, D B; Juhasz, T; Mahlokozera, T; Vesa, C; Wilson, R O; Zheng, M; Tate, D A; Kortyna, A

    2010-01-01

    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 ≤ n ≤ 45. To enable long-lived states to be measured, our experiment uses slow-moving (∼100 μK) 85 Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target nl Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition to a higher energy 'monitor state', n'l'. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the nl target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a method which is more prone to systematic error, and are also in excellent agreement with theory.

  11. Rydberg-Stark states of Positronium for atom optics

    International Nuclear Information System (INIS)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B

    2015-01-01

    Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)

  12. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Mauger, S; Millen, J; Jones, M P A

    2007-01-01

    We report on the all-optical detection of Rydberg states in an effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high spectroscopic resolution offered by this method, we have measured isotope shifts of the 5s18d 1 D 2 and 5s19s 1 S 0 Rydberg states. This technique could be applied to high-resolution, non-destructive measurements of ultra-cold Rydberg gases and plasmas. (fast track communication)

  13. D-state Rydberg electrons interacting with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  14. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  15. Radio-frequency-modulated Rydberg states in a vapor cell

    Science.gov (United States)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  16. Correlated Photon Emission from Multiatom Rydberg Dark States

    DEFF Research Database (Denmark)

    Pritchard, J.D.; Adams, C.S.; Mølmer, Klaus

    2012-01-01

    We consider three-level atoms driven by two resonant light fields in a ladder scheme where the upper level is a highly excited Rydberg state. We show that the dipole-dipole interactions between Rydberg excited atoms prevents the formation of single particle dark states and leads to strongly corre...... correlated photon pairs from atoms separated by distances large compared to the emission wavelength. For a pair of atoms, this enables realization of an efficient photon-pair source with on average one pair every 30 μs....

  17. Formation of Rydberg states in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Kanter, E.P.; Vager, Z.; Gemmell, D.; Koch, P.; Mariani, D.; Van de Water, W.

    1983-01-01

    Previous results from beam-foil spectroscopy and from experiments using field ionization techniques have shown that a significant fraction of fast ionic projectiles traversing solid targets can be excited to high Rydberg states. We report an experimental investigation of Rydberg states formed in atomic and molecular ion beams (MeV) emerging from thin-carbon foils. Different field arrangements, including μ-wave fields, have been applied to study the effects of field ionization. The yields of electrons produced via field ionization are compared for different projectile atoms and molecules

  18. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  19. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  20. Stimulated adiabatic passage in a dissipative ensemble of atoms with strong Rydberg-state interactions

    DEFF Research Database (Denmark)

    Petrosyan, David; Molmer, Klaus

    2013-01-01

    We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg exci...... for deterministic creation and, possibly, extraction of Rydberg atoms or ions one at a time. The sympathetic monitoring via decay of ancilla particles may find wider applications for state preparation and probing of interactions in dissipative many-body systems.......We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...

  1. Auto transfer to Rydberg states during ion-atom collisions

    International Nuclear Information System (INIS)

    Bachau, H.; Harel, C.; Barat, M.; Roncin, P.; Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Benoit-Cattin, P.; Gleizes, A.; Benhenni, M.

    1993-01-01

    Electron capture by slow multiply charged ions colliding on rare-gas targets is known to populate highly excited states of the projectile. On the basis of experimental measurement of energy and angle differential cross-sections we have shown that capture to a resonant doubly excited state may lead to Autoionizing Double Capture (ADC) as well as to True Double Capture (TDC). In this model TDC appears as a two step post-collisional process, the state populated by the collision decays to (or delutes into) a dense adjacent Rydberg series, followed by radiative deexcitation of the inner electron of the (3,n) Rydberg states. We report here new experimental observations in electron spectra measured in N 7+ +He. Auto transfer to Rydber states has also important consequences on the determination of the lifetime of the autoionizing states, some discrepancies between theoretical width values for low N 5+ (4,4) resonant states will be discussed and partially resolved

  2. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  3. Autoionizing process of double rydberg states in atom

    International Nuclear Information System (INIS)

    Xu, X. Y.; Huang, W.; Xu, C. B.; Xue, P.; Chen, D. Y.

    1997-01-01

    We have studied the autoionization distribution of penetrating double Rydberg (DR) states NLnl(N< n;L,l<4) experimentally in calcium by using five-laser resonance excitation and sequential ionization with a pulsed and a strong constant electric field, as well as theoretically in helium by using the hyperspherical close-coupling method. We have found the DR states autoionize with the ejected electron having its average kinetic energy nearly independent of n but apparently related to the binding energy of the ionic Rydberg orbit NL. We have also discussed the dynamics in DR states and described two types of autoionizing processes, i.e., 'penetration autoionization' and 'polarization autoionization' in DR states

  4. Theoretical study of the lowest-lying electronic states of Aluminium monoiodide

    International Nuclear Information System (INIS)

    Taher, F.; Kabbani, A.; Ani-El Houte, W.

    2004-01-01

    Full text.The spectroscopic study of Aluminium monohalides, especially the Aluminium monoiodide, is important for monitoring such species in high temperature fast-flow reactors. Theoretical calculations of AlI are not available, whereas several studies have been done for the other aluminium monohalides. In this work, CAS-SCF/MRCI calculations are performed for the lowest-lying electronic states of AlI in a range of internuclear distance between 2.30 A and 2.80 A. Ab-initio calculations have been effectuated by using the computational chemistry program Molpro. The basis set used in this study for aluminium atom is that used by Langhoff for aluminium monohalides, of contractions using atomic natural orbitals and a pseudopotential is used for iode. Accurate theoretical spectroscopic constants and potential curves are obtained for the ground state X 1 Σ + and the first excited states a 3 Π and A 1 Π. The calculated values of Te, ωe, ωexe and re of these states are compatible with the experimental results. An ordering of states is represented for the lowest five predicted singlet and lowest five predicted triplet states. These results provide a big support to determine the analogy in the ordering of the electronic states in AlF, AlBr and AlI respectively at lower energies. These theoretical results identify a set of electronic singlet and triplet states unobserved experimentally

  5. Systematics in Rydberg state excitations for ion-atom collisions

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.

    1976-01-01

    Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)

  6. Alkali Rydberg states in electromagnetic fields: computational physics meets experiment

    International Nuclear Information System (INIS)

    Krug, A.

    2001-11-01

    We study highly excited hydrogen and alkali atoms ('Rydberg states') under the influence of a strong microwave field. As the external frequency is comparable to the highly excited electron's classical Kepler frequency, the external field induces a strong coupling of many different quantum mechanical energy levels and finally leads to the ionization of the outer electron. While periodically driven atomic hydrogen can be seen as a paradigm of quantum chaotic motion in an open (decaying) quantum system, the presence of the non-hydrogenic atomic core - which unavoidably has to be treated quantum mechanically - entails some complications. Indeed, laboratory experiments show clear differences in the ionization dynamics of microwave driven hydrogen and non-hydrogenic Rydberg states. In the first part of this thesis, a machinery is developed that allows for numerical experiments on alkali and hydrogen atoms under precisely identical laboratory conditions. Due to the high density of states in the parameter regime typically explored in laboratory experiments, such simulations are only possible with the most advanced parallel computing facilities, in combination with an efficient parallel implementation of the numerical approach. The second part of the thesis is devoted to the results of the numerical experiment. We identify and describe significant differences and surprising similarities in the ionization dynamics of atomic hydrogen as compared to alkali atoms, and give account of the relevant frequency scales that distinguish hydrogenic from non-hydrogenic ionization behavior. Our results necessitate a reinterpretation of the experimental results so far available, and solve the puzzle of a distinct ionization behavior of periodically driven hydrogen and non-hydrogenic Rydberg atoms - an unresolved question for about one decade. Finally, microwave-driven Rydberg states will be considered as prototypes of open, complex quantum systems that exhibit a complicated temporal decay

  7. Asymptotics of Rydberg states for the hydrogen atom

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1997-01-01

    The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)

  8. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  9. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  10. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    International Nuclear Information System (INIS)

    Singh, Param Jeet; Shastri, Aparna; D’Souza, R.; Jagatap, B.N.

    2013-01-01

    The VUV photoabsorption spectra of CHCl 3 and CDCl 3 in the energy region 6.2–11.8 eV (50,000–95,000 cm −1 ) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a 2 , 4a 1 , 4e, 3e, orbitals of CHCl 3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500–76,500 cm −1 have been reassigned to ν 3 and combination modes of ν 3 +ν 6 belonging to the 1a 2 →4p transition in contrast to earlier studies where they were assigned to a ν 3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl 3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν 3 and ν 6 modes in the 4p Rydberg state of CHCl 3 (CDCl 3 ) are proposed to be ∼454 (409) cm −1 and∼130 (129) cm −1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform. -- Highlights: •VUV photoabsorption spectra of CHCl 3 and CDCl 3 studied using synchrotron radiation. •Quantum defect analysis of Rydberg series converging to first four ionization limits. •Vibronic bands in 72,500–76,500 cm −1 region assigned to 1a 2 →4p Rydberg transition. •Vibrational progressions assigned to ν 3 and ν 3 +ν 6 using ab initio calculations. •Excellent agreement of TDDFT vertical excited energies with experimental spectrum

  11. High-fidelity Rydberg quantum gate via a two-atom dark state

    DEFF Research Database (Denmark)

    Petrosyan, David; Motzoi, Felix; Saffman, Mark

    2017-01-01

    We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong, resonant dipole-dipole exchange interaction between two Rydberg excited atoms. Our gate exhibits...

  12. Auto transfer to Rydberg states during ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bachau, H.; Harel, C. (Laboratoire des Collisions Atomiques, Unite Propre de Recherche 260 du CNRS, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence (France)); Barat, M.; Roncin, P. (Laboratoire des Collisions Atomiques et Moleculaires, Unite associee 281 du CNRS, Universite de Paris Sud, Batiment 351, 91405 Orsay (France)); Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Benoit-Cattin, P.; Gleizes, A.; Benhenni, M. (IRSAMC, Unite associee 770 du CNRS, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France))

    1993-06-05

    Electron capture by slow multiply charged ions colliding on rare-gas targets is known to populate highly excited states of the projectile. On the basis of experimental measurement of energy and angle differential cross-sections we have shown that capture to a resonant doubly excited state may lead to Autoionizing Double Capture (ADC) as well as to True Double Capture (TDC). In this model TDC appears as a two step post-collisional process, the state populated by the collision decays to (or delutes into) a dense adjacent Rydberg series, followed by radiative deexcitation of the inner electron of the (3,n) Rydberg states. We report here new experimental observations in electron spectra measured in [ital N][sup 7+]+[ital He]. Auto transfer to Rydber states has also important consequences on the determination of the lifetime of the autoionizing states, some discrepancies between theoretical width values for low [ital N][sup 5+](4,4) resonant states will be discussed and partially resolved.

  13. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    Science.gov (United States)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  14. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    Science.gov (United States)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  15. Some MCHF results for Rydberg States

    International Nuclear Information System (INIS)

    Fischer, C.F.; Hansen, J.E.

    1979-01-01

    The multiconfiguration Hartree-Fock method (MCHF) was applied to a study of the 3s nd, n = 4 to 8, states in the 3 F 0 series of Al II with the well-known 3p 3d perturber. Procedures were devised to stabilize the calculation in the presence of strong interactions with a perturber and facilitate the calculation for a series. Basis states of the type 3s nf, pd, df, and pg were included. Excellent agreement was achieved with the statistically weighted observed energy relative to the ionization limit, except in the vicinity of the perturber. These calculations are compared with MQDT results of other authors

  16. Rabi Oscillations between Ground and Rydberg States with Dipole-Dipole Atomic Interactions

    International Nuclear Information System (INIS)

    Johnson, T. A.; Urban, E.; Henage, T.; Isenhower, L.; Yavuz, D. D.; Walker, T. G.; Saffman, M.

    2008-01-01

    We demonstrate Rabi oscillations of small numbers of 87 Rb atoms between ground and Rydberg states with n≤43. Coherent population oscillations are observed for single atoms, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms

  17. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    Science.gov (United States)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  18. Rydberg aggregates

    Science.gov (United States)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  19. Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System

    Science.gov (United States)

    Porto, J. V.

    2017-04-01

    The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.

  20. Microwave spectroscopy of high-L Rydberg states of nickel

    Science.gov (United States)

    Lindsay, Mark D.; Keele, Julie A.; Woods, Shannon L.; Lundeen, Stephen R.

    2010-03-01

    High-L non-penetrating Rydberg levels of nickel display a fine structure pattern consisting of six levels for each value of L. This pattern was studied recently with the optical RESIS technique, determining initial values of the quadrupole moment and polarizabilities of the ^2D5/2 ground state of Ni^+ [1]. Measurements are now in progress using the microwave RESIS technique [2], which promises much more precise measurements of the fine structure and of the related core properties, including the permanent hexadecapole moment.[4pt] [1] Julie A. Keele, et. al., to be published, Phys. Rev. A[0pt] [2] M.E. Hanni, et. al., Phys. Rev. A 78, 062510 (2008)

  1. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    Lahaije, C.T.W.

    1989-01-01

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  2. A theoretical investigation of valence and Rydberg electronic states of acrolein

    International Nuclear Information System (INIS)

    Aquilante, Francesco; Barone, Vincenzo; Roos, Bjoern O.

    2003-01-01

    The main features of the ultraviolet spectrum of acrolein have been studied by a multireference perturbative treatment and by a time dependent density functional approach. The valence and Rydberg transition energies have been calculated and the assignment of the experimental bands has been clarified. The different relaxation trends of the three lowest singlet and triplet excited states have been analyzed by unconstrained geometry optimizations. This has allowed, in particular, the characterization of a twisted 3 (ππ*) state, which is crucial for the interesting photophysics and photochemistry of the acrolein molecule and, more generally, of the α,β-enones. Solvatochromic shifts in aqueous solution have been investigated using a combined discrete/continuum approach based on the so called polarizable continuum model. The experimental trends are well reproduced by this approach and a closer degeneracy in the triplet manifold has been detected in solution with respect to gas phase

  3. Excitation of lowest electronic states of thymine by slow electrons

    Science.gov (United States)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  4. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    International Nuclear Information System (INIS)

    Wundt, B J; Jentschura, U D

    2010-01-01

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l +- 1/2).

  5. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Energy Technology Data Exchange (ETDEWEB)

    Wundt, B J; Jentschura, U D [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640 (United States)

    2010-06-14

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l {+-} 1/2).

  6. Rydberg states in a microwave field: regularity and chaos

    International Nuclear Information System (INIS)

    Buchleitner, A.

    1993-12-01

    We develop a theoretical formalism which provides a powerful tool for the detailed numerical analysis of the interaction of three-dimensional hydrogen atoms with an intense radiation field. The application of this approach to the microwave ionization of Rydberg states of hydrogen provides the most realistic numerical experiments ever made in this area. A thorough analysis of ionization signals and thresholds, of level dynamics and of the phase space projections of associated wave functions is provided for a one-dimensional model of the atom. The comparison to the ionization of three-dimensional atoms confirms the validity of the one-dimensional model for extended initial states and, hence, dynamical localization theory, as far as the ionization threshold is concerned. Three classes of three-dimensional initial states with distinct symmetries are identified and they appear to be more or less adapted to the symmetries of the eigenstates of the microwave problem. 'Scarred' wavefunctions of the three-dimensional hydrogen atom exposed to microwave field are shown. Finally, the dynamics of a circular state in a microwave and in an intense laser field are compared. (author)

  7. Combined theoretical and experimental study of the valence, Rydberg and ionic states of fluorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ (United Kingdom); Vrønning Hoffmann, Søren, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: Teng.Zhang@physics.uu.se, E-mail: biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: Teng.Zhang@physics.uu.se, E-mail: biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: Teng.Zhang@physics.uu.se, E-mail: biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [CNR-ISM, Basovizza Area Science Park, 1-34149 Trieste (Italy); De Simone, Monica, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: Teng.Zhang@physics.uu.se, E-mail: biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: Teng.Zhang@physics.uu.se, E-mail: biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others

    2016-05-28

    New photoelectron spectra (PES) and ultra violet (UV) and vacuum UV (VUV) absorption spectra of fluorobenzene recorded at higher resolution than previously, have been combined with mass-resolved (2 + 1) and (3 + 1) resonance enhanced multiphoton ionization (REMPI) spectra; this has led to the identification of numerous Rydberg states. The PES have been compared with earlier mass-analyzed threshold ionization and photoinduced Rydberg ionization (PIRI) spectra to give an overall picture of the ionic state sequence. The analysis of these spectra using both equations of motion with coupled cluster singles and doubles (EOM-CCSD) configuration interaction and time dependent density functional theory (TDDFT) calculations have been combined with vibrational analysis of both the hot and cold bands of the spectra, in considerable detail. The results extend several earlier studies on the vibronic coupling leading to conical intersections between the X{sup 2}B{sub 1} and A{sup 2}A{sub 2} states, and a further trio (B, C, and D) of states. The conical intersection of the X and A states has been explicitly identified, and its structure and energetics evaluated. The energy sequence of the last group is only acceptable to the present study if given as B{sup 2}B{sub 2}states forces reconsideration of the nature of the PIRI spectrum. The coupling between these two states is induced by the a{sub 2} modes, ν{sub 12} and ν{sub 14} and we propose that the 14{sup 1} band is observed in the B{sup 2}B{sub 2} band in the PES for the first time, because of the improved resolution. This same assignment is given to the lowest energy band in the PIRI spectrum which was previously assigned as the origin band and further conclude that the entire PIRI spectrum is induced by ν{sub 12} and ν{sub 14}. The relative intensities of

  8. Self-interaction corrected density functional calculations of molecular Rydberg states

    International Nuclear Information System (INIS)

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2013-01-01

    A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules

  9. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    Science.gov (United States)

    de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry

    2018-05-01

    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.

  10. The l-mixing cross section of Rydberg states of atomic Rb and the scaling LAW

    International Nuclear Information System (INIS)

    Liu Hong; Chen Aiqiu; Li Baiwen

    1991-01-01

    On the basis of impulse approximate method, a kind of analytical wavefunctions based on a potential model was used to calculate the l mixing cross section of thermal collision of Rydberg states of atomic Rb with rare gas (He, Ne). The results were compared with the experimental results and other theoretical values. These results show that there exists a kind of scaling law for the l mixing cross section of Rydberg alkali atoms

  11. Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions.

    Science.gov (United States)

    Jentschura, Ulrich D; Mohr, Peter J; Tan, Joseph N; Wundt, Benedikt J

    2008-04-25

    A comparison of precision frequency measurements to quantum electrodynamics (QED) predictions for Rydberg states of hydrogenlike ions can yield information on values of fundamental constants and test theory. With the results of a calculation of a key QED contribution reported here, the uncertainty in the theory of the energy levels is reduced to a level where such a comparison can yield an improved value of the Rydberg constant.

  12. Fundamental Constants and Tests of Theory in Rydberg States of Hydrogenlike Ions

    International Nuclear Information System (INIS)

    Jentschura, Ulrich D.; Mohr, Peter J.; Tan, Joseph N.; Wundt, Benedikt J.

    2008-01-01

    A comparison of precision frequency measurements to quantum electrodynamics (QED) predictions for Rydberg states of hydrogenlike ions can yield information on values of fundamental constants and test theory. With the results of a calculation of a key QED contribution reported here, the uncertainty in the theory of the energy levels is reduced to a level where such a comparison can yield an improved value of the Rydberg constant

  13. Giant angular resonance and the structure of the lowest-lying nuclear states

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.; Usmanov, P.N.; Yuldashbaeva, Eh.Kh.

    1987-01-01

    The analysis is given of the Hamiltonian of the two-rotor model, which is based on the assumption that the giant angular resonance exists, i.e. that it is possible to rotate the neutron component of a deformed nucleus as a whole with respect to the proton component. The realization of the projections on the intrinsic axes of the angular momentum operators is found, the Hamiltonian matrix is determined in the basis convenient for the case of strong neutron-proton coupling. The spectrum of the two-rotor model is determined taking into account the nondiagonal matrix elements in the lowest order of the perturbation theory. The g factors and the probabilities of the M1 transitions are discussed

  14. Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, Alexandr S. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Grüner, Barbara; Mudrich, Marcel [Physikalisches Institut, Universität Freiburg, D-79104 Freiburg (Germany); Kochubei, Sergei A. [Institute of Semiconductor Physics, ac. Lavrent' yev ave., 13, Novosibirsk 630090 (Russian Federation); Baklanov, Alexey V. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2014-03-28

    Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500–74 500 cm{sup −1} covering the bands of high-lying gerade Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g} has been applied. The ion signal was dominated by the atomic fragment ion I{sup +}. Up to 5 dissociation channels yielding I{sup +} ions with different kinetic energies were observed when the I{sub 2} molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I{sup +} and I{sup −} ions with equal kinetic energy indicating predissociation of I{sub 2} via ion-pair states. The contribution of this channel was up to about 50% of the total I{sup +} signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I{sup +} ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I{sub 2}, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0{sub g}{sup +} and D{sup ′}2{sub g} ion-pair states are concluded to be responsible for predissociation of Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g}, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s{sup 2}5p{sup 4}6s{sup 1}) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I{sub 2} molecule.

  15. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  16. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  17. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    International Nuclear Information System (INIS)

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-01-01

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ∼4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  18. A new method for detecting the contribution of high Rydberg states to electron-ion recombination

    International Nuclear Information System (INIS)

    Orban, I; Boehm, S; Fogle, M; Paal, A; Schuch, R

    2007-01-01

    A position sensitive detector for measuring field ionized electrons in the fringe field of a dipole magnet is presented. The detector provides a means to study, in a state selective fashion, recombination into high Rydberg states and offers a new method to investigate recombination enhancement effects. Several experimental considerations and possibilities are discussed in the text

  19. Rydberg-state reionization of multiply charged ions escaping from solid surfaces

    International Nuclear Information System (INIS)

    Nedeljkovic, Lj.D.; Nedeljkovic, N.N.

    2003-01-01

    Reionization rates of Rydberg states (n>>1 and l=0, 1, and 2) of multiply charged ionic projectiles escaping solid surfaces are calculated. These rates are obtained in an analytic form as a function of the ion-surface distance R. A phenomenological model of the reionization process, based on two-state quantum dynamics, is adopted for the vicinity of the potential barrier top. The results of calculations show that ionization rates for different Rydberg states are strictly localized and relatively separated. Universality of the reionization rate as a function of the scaling parameter α, describing the turning point configurations, is demonstrated. The reionization is discussed within the framework of a nonresonant population-reionization process at intermediate ionic velocities (v∼1 a.u.). The influence of reionization on the population of ionic Rydberg states is expressed in terms of a renormalized neutralization rate. It is demonstrated that the reionization effect significantly changes the population curves for all Rydberg states. The population curves obtained correlate with beam-foil experimental data concerning the S VI, Cl VII, and Ar VIII ions

  20. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    Science.gov (United States)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  1. Observation of electric quadrupole transitions to Rydberg nd states of ultracold rubidium atoms

    NARCIS (Netherlands)

    Tong, D.; Farooqi, S.M.; Kempen, van E.G.M.; Pavlovic, Z.; Stanojevic, J.; Coté, R.; Eyler, E.E.; Gould, P.L.

    2009-01-01

    We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high-Rydberg states in Rb. Using pulsed uv excitation of ultracold atoms in a magneto-optical trap, we excite 5s¿nd transitions over a range of principal quantum numbers n=27–59. Compared to

  2. Rydberg states in a microwave field: regularity and chaos; Atomes de rydberg en champ micro-onde: regularite et chaos

    Energy Technology Data Exchange (ETDEWEB)

    Buchleitner, A

    1993-12-15

    We develop a theoretical formalism which provides a powerful tool for the detailed numerical analysis of the interaction of three-dimensional hydrogen atoms with an intense radiation field. The application of this approach to the microwave ionization of Rydberg states of hydrogen provides the most realistic numerical experiments ever made in this area. A thorough analysis of ionization signals and thresholds, of level dynamics and of the phase space projections of associated wave functions is provided for a one-dimensional model of the atom. The comparison to the ionization of three-dimensional atoms confirms the validity of the one-dimensional model for extended initial states and, hence, dynamical localization theory, as far as the ionization threshold is concerned. Three classes of three-dimensional initial states with distinct symmetries are identified and they appear to be more or less adapted to the symmetries of the eigenstates of the microwave problem. 'Scarred' wavefunctions of the three-dimensional hydrogen atom exposed to microwave field are shown. Finally, the dynamics of a circular state in a microwave and in an intense laser field are compared. (author)

  3. Rydberg states in a microwave field: regularity and chaos; Atomes de rydberg en champ micro-onde: regularite et chaos

    Energy Technology Data Exchange (ETDEWEB)

    Buchleitner, A

    1993-12-15

    We develop a theoretical formalism which provides a powerful tool for the detailed numerical analysis of the interaction of three-dimensional hydrogen atoms with an intense radiation field. The application of this approach to the microwave ionization of Rydberg states of hydrogen provides the most realistic numerical experiments ever made in this area. A thorough analysis of ionization signals and thresholds, of level dynamics and of the phase space projections of associated wave functions is provided for a one-dimensional model of the atom. The comparison to the ionization of three-dimensional atoms confirms the validity of the one-dimensional model for extended initial states and, hence, dynamical localization theory, as far as the ionization threshold is concerned. Three classes of three-dimensional initial states with distinct symmetries are identified and they appear to be more or less adapted to the symmetries of the eigenstates of the microwave problem. 'Scarred' wavefunctions of the three-dimensional hydrogen atom exposed to microwave field are shown. Finally, the dynamics of a circular state in a microwave and in an intense laser field are compared. (author)

  4. Optical spectroscopy of high-L Rydberg states of argon

    International Nuclear Information System (INIS)

    Wright, L. E.; Snow, E. L.; Lundeen, S. R.; Sturrus, W. G.

    2007-01-01

    High-L fine structure patterns in n=9 and n=17 Rydberg levels of argon have been studied using a Doppler-tuned CO 2 laser and a fast beam of argon atoms. Analysis of the measured pattern using the polarization model yields the scalar dipole polarizability and quadrupole moment of the 2 P 3 at ∼sol∼ at 2 Ar + ion. The results are α S =6.83(8)a 0 3 and Q=-0.5177(15)ea 0 2 . Within the precision of this study, no vector component of the structure was observed

  5. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  6. Energy redistribution in the dissociation of low Rydberg states of HeH and 02

    International Nuclear Information System (INIS)

    Zande, W.J.A. van der.

    1988-01-01

    In this thesis the dissocation process is studied of the diatomic molecules, heliumhydride and molecular oxygen. In ch.'s 2-4 results on the spectroscopy and dissociative decay of the excited states of heliumhydride (HeH) are explained. The positions and dissociation pathways of the A 2 Σ + and B 2 Π states are determined and a theoretical description of the decay of these states are given. An isotope dependent dissociation behaviour of the C 2 /σ + Rydberg state is reported which explained with this theory. In ch.'s 5-7 observations are presented regarding the first Rydberg states of molecular oxygen. The spectroscopy of the (3sσ)d 1 Π g and C 3 Π g states is treated, and the stability and decay of these Rydberg states is discussed qualitatively. An experimental study is described of the (3sσ)d 1 Π g , v=4-8 states. By isotope studies and resolving rotational lines and the measurements of natural linewidths quantitative estimates have been acquired on coupling strengths, positions of repulsive valence states and perturbations reported in literature from REMPI experiments. The electronic coupling strengths between the C 3 Π g state and the 3 Π g valence state has been established. Observed spin-orbit interactions have been quantified and the dissociation of the multiplet states (C 3 Π g , ω=0-2 has been correlated with the multiplet states of the fragment O 3 P J=0-2 . The spectroscopy of the (3sσ3) Rydberg states which con- verge to and are formed in collisions with the O + 2 , a 4 Π μ ion state, is treated. The (3sσ) 5 /π μ state competition between auto-ionizations and (pre-)dissociation has been observed. 207 refs.; 36 figs.; 18 tabs

  7. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  8. Experimental efforts at NIST towards one-electron ions in circular Rydberg states

    International Nuclear Information System (INIS)

    Tan, Joseph N; Guise, Nicholas D; Brewer, Samuel M

    2011-01-01

    Experimental effort is underway at NIST to enable tests of theory with one-electron ions synthesized in circular Rydberg states from captured bare nuclei. Problematic effects that limit the accuracy of predicted energy levels for low-lying states are vanishingly small for high-angular-momentum (high-L) states; in particular, the nuclear size correction for high-L states is completely negligible for any foreseeable improvement of measurement precision. As an initial step towards realizing such states, highly charged ions are extracted from the NIST electron beam ion trap (EBIT) and steered through the electrodes of a Penning trap. The goal is to capture bare nuclei in the Penning trap for experiments to make one-electron atoms in circular Rydberg states with dipole (E1) transitions in the optical domain accessible to a frequency comb.

  9. Dynamic polarizabilities and Rydberg states of the argon isoelectronic sequence

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Das, A.K.; Castro, M.; Canuto, S.; Mukherjee, P.K.

    1993-01-01

    Dynamic dipole polarizabilities α d (ω) have been calculated within and beyond the normal-dispersion region for the isoelectronic members of argon up to Mn 7+ using time-dependent coupled Hartree-Fock theory. Excitation energies, oscillator strengths, and quantum-defect values have been estimated for the dipole-allowed transitions 3p 6 1 Se→3p 5 ( 2 P)ns 1 Po (n=4,...,7) and 3p 6 1 Se→3p 5 ( 2 P)nd 1 Po (n=3,...,7). Analytic representations of the singly excited Rydberg orbitals have been obtained. The results compare favorably with the existing theoretical and experimental data. The oscillator strengths show an interesting trend of variation along the isoelectronic sequence

  10. Auto transfer to Rydberg states and indirect stabilization following double capture

    Energy Technology Data Exchange (ETDEWEB)

    Roncin, P.; Gaboriaud, M.N.; Barat, M. (Paris-11 Univ., 91 - Orsay (France)); Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Benhenni, M. (Toulouse-3 Univ., 31 (France)); Bachau, H.; Harel, C. (Bordeaux-1 Univ., 33 (France))

    1993-11-28

    Two-electron capture by slow multiply charged ions colliding on rare-gas target at keV energies is known to populate doubly excited states of the projectile with large cross sections. Though these states are dominantly autoionizing, important radiative decay following double capture have been reported, among which the direct observation of the fluorescence from Rydberg states. A mechanism based on post-collisional effects was proposed, in which Rydberg states are fed from the quasi-symmetrical doubly excited states initially populated. In this paper, a quantitative analysis of this effect is developed leading to a simple model which is applied to N[sup 7+] on He and Ar collisions. (author).

  11. Auto transfer to Rydberg states and indirect stabilization following double capture

    International Nuclear Information System (INIS)

    Roncin, P.; Gaboriaud, M.N.; Barat, M.; Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Benhenni, M.; Bachau, H.; Harel, C.

    1993-01-01

    Two-electron capture by slow multiply charged ions colliding on rare-gas target at keV energies is known to populate doubly excited states of the projectile with large cross sections. Though these states are dominantly autoionizing, important radiative decay following double capture have been reported, among which the direct observation of the fluorescence from Rydberg states. A mechanism based on post-collisional effects was proposed, in which Rydberg states are fed from the quasi-symmetrical doubly excited states initially populated. In this paper, a quantitative analysis of this effect is developed leading to a simple model which is applied to N 7+ on He and Ar collisions. (author)

  12. Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state

    Science.gov (United States)

    Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert

    2011-10-01

    Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.

  13. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  14. Decay, excitation, and ionization of lithium Rydberg states by blackbody radiation

    Science.gov (United States)

    Ovsiannikov, V. D.; Glukhov, I. L.

    2010-09-01

    Details of interaction between the blackbody radiation and neutral lithium atoms were studied in the temperature ranges T = 100-2000 K. The rates of thermally induced decays, excitations and ionization were calculated for S-, P- and D-series of Rydberg states in the Fues' model potential approach. The quantitative regularities for the states of the maximal rates of blackbody-radiation-induced processes were determined. Approximation formulas were proposed for analytical representation of the depopulation rates.

  15. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  16. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  17. Lowest auto-detachment state of the water anion

    International Nuclear Information System (INIS)

    Houfek, K.; Cizek, M.

    2016-01-01

    Because of the abundance of water in living tissue the reactive low-energy electron collisions with the water molecule represent an important step in the radiation damage of cells. In this paper, the potential energy surface of the ground state of the water anion H_2O"- is carefully mapped using multireference configuration interaction (MRCI) calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O"-+H_2 and OH"-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The auto-detachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O"- + H_2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slightly off the linear geometry and is separated by a saddle from the auto-detachment region. The auto-detachment region is directly accessible from the OH"-+H asymptote. For the molecular geometries in the auto-detachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication

  18. Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens

    International Nuclear Information System (INIS)

    Donovan, Robert J.; Lawley, Kenneth P.; Ridley, Trevor

    2015-01-01

    We report the identification of heavy Rydberg resonances in the ion-pair spectra of I 2 , Cl 2 , ICl, and IBr. Extensive vibrational progressions are analysed in terms of the energy dependence of the quantum defect δ(E b ) rather than as Dunham expansions. This is shown to define the heavy Rydberg region, providing a more revealing fit to the data with fewer coefficients and leads just as easily to numbering data sets separated by gaps in the observed vibrational progressions. Interaction of heavy Rydberg states with electronic Rydberg states at avoided crossings on the inner wall of the ion-pair potential is shown to produce distinctive changes in the energy dependence of δ(E b ), with weak and strong interactions readily distinguished. Heavy Rydberg behaviour is found to extend well below near-dissociation states, down to vibrational levels ∼18 000-20 000 cm −1 below dissociation. The rapid semi-classical calculation of δ(E b ) for heavy Rydberg states is emphasised and shows their absolute magnitude to be essentially the volume of phase space excluded from the vibrational motion by avoiding core-core penetration of the ions

  19. Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics

    Science.gov (United States)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu

    2017-12-01

    Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.

  20. Population of Rydberg states by electron capture in fast-ion--atom collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Dube, L.J.

    1985-01-01

    The l,m-substate distribution in low-lying Rydberg manifolds (nroughly-equal10) following electron capture H + +H(1s)→H(n)+H + is calculated at high velocities (v>1 a.u.) in the continuum-distorted-wave (CDW) approximation. The standard CDW approximation is modified to account for final-state Stark mixing of the Rydberg manifold in the exit channel using the post-collision-interaction model. The influence of multiple-scattering contributions is analyzed and comparison is made with sigma/sub l/m predicted by the Born approximation. We find that the double-scattering contribution, closely connected with the classical Thomas process, becomes visible in the CDW approximation at surprisingly low nonasymptotic velocities

  1. Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment

    Science.gov (United States)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2012-05-01

    The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.

  2. Strongly perturbed Rydberg series originating from Kr II 4p45s ionic states

    International Nuclear Information System (INIS)

    Petrov, I.D.; Demekhin, P.V.; Lagutin, B.M.; Sukhorukov, V.L.; Kammer, S.; Mickat, S.; Schartner, K.-H.; Ehresmann, A.; Klumpp, S.; Werner, L.; Schmoranzer, H.

    2004-01-01

    Full text:Dispersed fluorescence excitation spectra for KrII fluorescence transitions to the 4p 4 5s 4 P 3/2 , 5/2 states were observed after excitation out of the KrI ground state with photons of energies between 28.4 eV and 28.7 eV and very narrow exciting-photon bandwidth of 1.7 meV. With this energy resolution it was possible to observe Rydberg series of doubly excited atomic states. The observed series were assigned to the states 4p 4 5s( 4 P 1/2 )np and 4p 4 5s( 2 P 3/2 )np ,based on calculations performed within theory taking into account interaction between many resonances and many continua. Calculated and measured cross sections are compared for the 4p - level (upper panel, ion yield) and for the 4p 4 5s 4 P 5/2 level (lower panel). An analysis of the computed photoionization (PI) cross sections shows that high - n members of Rydberg series are strongly perturbed by interaction with low - n ones of other series. In particular, the series shown are well pronounced because they borrow intensity from the low - n 4p 4 5s( 2 D 5/2 )6p 3/2 doublyexcited state. The above Rydberg series are predicted to be observable in photoelectron experiments, too. FIG. 1 shows, e.g., that members of the 4p 4 5s( 2 P 3/2 )np series starting from n 14 could also be observed in the 4p 4 5s 4P 1/2 observer channel at low photoelectron energies

  3. Excited states of ethylene interpreted in terms of perturbed Rydberg series

    International Nuclear Information System (INIS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2003-01-01

    We have investigated the excited states of the ethylene molecule by the multireference configuration interaction (MRCI) method. In particular, the nature of the V state (1 1 B 1u π→π*) was interpreted in terms of perturbed Rydberg series. To clarify the role of the perturbers, we use pseudo-restricted Hartree-Fock natural orbitals (PRHFNO), which would be the most suitable molecular orbital set to describe Rydberg series. It is well known that the expectation value of x 2 for the V state is reduced from 44a 0 2 (RHF) to around 17a 0 2 by considering electron correlation effects, where x is the direction out of the molecular plane. In the present study, a reasonable 2 > value was obtained from small multireference configuration interaction with single excitations (MRCIS), where the π→π* configurations and a few perturbers were assigned as the reference configurations. The major perturbers were found to be five configurations represented by 3a g → 3b 1u , 1b 3g → 3b 2u , 2b 1u → 4a g , 2a g → 3b 1u , and 1b 2u → 2b 3g with respect to the ground state configuration. The V state can therefore be described as a scattering process of the π→π* state by these perturbers. Other low-lying excited states are also investigated by the MRCI method

  4. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  5. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  6. Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism

    International Nuclear Information System (INIS)

    Kaulakys, B.P.

    1982-01-01

    The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering

  7. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  8. Molecular detection using Rydberg, autoionizing, and cluster states. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, J.

    1989-08-17

    Continuing investigations of multiphoton ionization processes in naphthalene have established the geometry and spectroscopy of trimer and tetramer cluster states. A new, highly efficient ionization mechanism has been identified in the trimer. It is closely related to autoionization of 2-electron atoms by resonant 2-photon excitation and to exciton fusion in larger clusters.

  9. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-06-01

    Lifetimes of Rydberg states of triplet-series 5s ns[sup 3]S[sub 1] with n=19-23, 35 and 5s nd[sup 3]D[sub 3] with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the [sup 3]S[sub 1]-series show the expected n*[sup 3] dependence on the effective principal quantum number, while the [sup 3]D[sub 3]-series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.).

  10. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    International Nuclear Information System (INIS)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K.

    1993-01-01

    Lifetimes of Rydberg states of triplet-series 5s ns 3 S 1 with n=19-23, 35 and 5s nd 3 D 3 with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the 3 S 1 -series show the expected n* 3 dependence on the effective principal quantum number, while the 3 D 3 -series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.)

  11. Strongly perturbed Rydberg series originating from KrII 4p45s ionic states

    International Nuclear Information System (INIS)

    Petrov, I.D.; Demekhin, Ph.V.; Lagutin, B.M.; Sukhorukov, V.L.; Kammer, S.; Mickat, S.; Schartner, K.-H.; Ehresmann, A.; Klumpp, S.; Werner, L.; Schmoranzer, H.

    2005-01-01

    Photoionization cross-sections for the 4p 4 ( 3 P) 5s 4 P 5/2,3/2,1/2 satellites and 4s, 4p main levels of Kr II in the exciting-photon energy range between 28.48 and 28.70-bar eV with extremely narrow bandwidth (1.7-bar meV at 28.55-bar eV) of the monochromatized synchrotron radiation were measured utilizing the photon-induced fluorescence spectroscopy. The observed resonances were assigned to the 4p 4 5s( 4 P 1/2 )n p and 4p 4 5s( 2 P 3/2 )n p Rydberg series on the basis of calculations performed with taking into account core relaxation and interaction between many resonances and many continua. The calculation shows that the resonance structure in the photoionization channels exists due to 4p 4 ( 1 D) 5s 2 D 5/2 6p 3/2 promoter state which also strongly perturbs the above Rydberg series.

  12. Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution

    International Nuclear Information System (INIS)

    Glab, W.L.; Qin, K.

    1993-01-01

    We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states

  13. Combined theoretical and experimental study of the valence, Rydberg, and ionic states of chlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Vrønning Hoffmann, Søren, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [CNR-ISM, Basovizza Area Science Park, 1-34149 Trieste (Italy); De Simone, Monica, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others

    2016-03-28

    New photoelectron (PE) and ultra violet (UV) and vacuum UV (VUV) spectra have been obtained for chlorobenzene by synchrotron study with higher sensitivity and resolution than previous work and are subjected to detailed analysis. In addition, we report on the mass-resolved (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectra of a jet-cooled sample. Both the VUV and REMPI spectra have enabled identification of a considerable number of Rydberg states for the first time. The use of ab initio calculations, which include both multi-reference multi-root doubles and singles configuration interaction (MRD-CI) and time dependent density functional theoretical (TDDFT) methods, has led to major advances in interpretation of the vibrational structure of the ionic and electronically excited states. Franck-Condon (FC) analyses of the PE spectra, including both hot and cold bands, indicate much more complex envelopes than previously thought. The sequence of ionic states can be best interpreted by our multi-configuration self-consistent field computations and also by comparison of the calculated vibrational structure of the B and C ionic states with experiment; these conclusions suggest that the leading sequence is the same as that of iodobenzene and bromobenzene, namely: X{sup 2}B{sub 1}(3b{sub 1}{sup −1}) < A{sup 2}A{sub 2}(1a{sub 2}{sup −1}) < B{sup 2}B{sub 2}(6b{sub 2}{sup −1}) < C{sup 2}B{sub 1}(2b{sub 1}{sup −1}). The absorption onset near 4.6 eV has been investigated using MRD-CI and TDDFT calculations; the principal component of this band is {sup 1}B{sub 2} and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. The other low-lying absorption band near 5.8 eV is dominated by a {sup 1}A{sub 1} state, but an underlying weak {sup 1}B{sub 1} state (πσ{sup ∗}) is also found. The strongest band in the VUV spectrum near 6.7 eV is poorly resolved and is analyzed in terms of two ππ{sup ∗} states of

  14. Van-der-Waals interaction of atoms in dipolar Rydberg states

    Science.gov (United States)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  15. Periodically Driven Array of Single Rydberg Atoms

    Science.gov (United States)

    Basak, Sagarika; Chougale, Yashwant; Nath, Rejish

    2018-03-01

    An array of single Rydberg atoms driven by a temporally modulated atom-field detuning is studied. The periodic modulation effectively modifies the Rabi coupling, leading to unprecedented dynamics in the presence of Rydberg-Rydberg interactions, in particular, blockade enhancement, antiblockades, and state-dependent population trapping. Interestingly, the Schrieffer-Wolf transformation reveals a fundamental process in Rydberg gases, correlated Rabi coupling, which stems from the extended nature of the Rydberg-Rydberg interactions. Also, the correlated coupling provides an alternative depiction for the Rydberg blockade, exhibiting a nontrivial behavior in the presence of periodic modulation. The dynamical localization of a many-body configuration in a driven Rydberg lattice is discussed.

  16. The role of high Rydberg states in the generation of negative ions in negative-ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1995-01-01

    The generation of substantial yields of H - ions in a laser excited H 2 gas has been reported by Pinnaduwage and Christoforu. These H - yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10 -6 cm 3 sec -1 , values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper

  17. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  18. Investigation by high resolution electron spectroscopy of the helium-like 3lnl' Rydberg series in double capture processes at low collision velocity: auto transfer to Rydberg states and electron stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gonzalez, A.; Benhenni, M. (Toulouse-3 Univ., 31 (France)); Bachau, H.; Sanchez, I. (Bordeaux-1 Univ., 33 - Talence (France). Lab. des Collisions Atomiques)

    1994-09-28

    A high resolution electron spectrometry of the (3lnl') Ryberg series populated in N[sup 7+] + He and Ne[sup 10+] + He collisions at 10 q keV, 10[sup o] allows us to observe, for the first time by this method, two post-collisional effects. First, it is found with nitrogen ions that, when n increases from n = 4 to 9, the L-distribution peaks more and more on the high angular momentum states. This is qualitatively understood as a Stark deformation of the Rydberg orbit by the Coulomb field of the receding ion. Also, in the n range where the double capture process populates symmetrical 4l4l' states (n>9), an enhancement of the intensities of the 3lnl' Rydberg lines is observed for both collisonal systems. This is thought to be a signature of the so-called auto transfer to Rydberg states effect. The transfer of population from the 3l4l' to the 3lnl' states is found to be favoured against a direct autoionization of these 4l4l' states into the n = 2 continuum. These experimental findings together with preliminary spectroscopic calculations concerning the configuration interaction of the Ne[sup 8+] (4l4l') states with the Ne[sup 8+](3lnl') Rydberg series are also discussed within the context of the electron stabilization which follows a double capture. (Author).

  19. Investigation by high resolution electron spectroscopy of the helium-like 3lnl' Rydberg series in double capture processes at low collision velocity: auto transfer to Rydberg states and electron stabilization

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gonzalez, A.; Benhenni, M.; Bachau, H.; Sanchez, I.

    1994-01-01

    A high resolution electron spectrometry of the (3lnl') Ryberg series populated in N 7+ + He and Ne 10+ + He collisions at 10 q keV, 10 o allows us to observe, for the first time by this method, two post-collisional effects. First, it is found with nitrogen ions that, when n increases from n = 4 to 9, the L-distribution peaks more and more on the high angular momentum states. This is qualitatively understood as a Stark deformation of the Rydberg orbit by the Coulomb field of the receding ion. Also, in the n range where the double capture process populates symmetrical 4l4l' states (n>9), an enhancement of the intensities of the 3lnl' Rydberg lines is observed for both collisonal systems. This is thought to be a signature of the so-called auto transfer to Rydberg states effect. The transfer of population from the 3l4l' to the 3lnl' states is found to be favoured against a direct autoionization of these 4l4l' states into the n = 2 continuum. These experimental findings together with preliminary spectroscopic calculations concerning the configuration interaction of the Ne 8+ (4l4l') states with the Ne 8+ (3lnl') Rydberg series are also discussed within the context of the electron stabilization which follows a double capture. (Author)

  20. Oscillatory behaviour of Rydberg state total cross sections in the collisions Ne+-He and He+-Ne

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Veje, E.

    1976-01-01

    The Ne + -He and He + -Ne collisions have been studied by means of optical spectrometry in the projectile energy range 10-150 keV. Very similar and regular oscillations in the Rydberg state total cross sections are found for HeI in both collisions and for singlet as well as triplet excitation. These oscillations are well described by the Rosenthal model. The HeI 4d sup(1,3)D states display two superimposed oscillations for center-of-mass collision energies above 6.4 keV. This is interpreted as the opening of a third exit channel, believed to be the HeI 4f sup(1,3)F. No, or very little structure is found in the Rydberg state total cross sections for HeII, NeI, NeII and NeIII levels. (Auth.)

  1. Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He

    Science.gov (United States)

    Deller, A.; Hogan, S. D.

    2018-01-01

    The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.

  2. Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States.

    Science.gov (United States)

    Tajti, Attila; Szalay, Péter G

    2016-11-08

    Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.

  3. Generation of tunable coherent far-infrared radiation using atomic Rydberg states

    International Nuclear Information System (INIS)

    Bookless, W.

    1980-12-01

    A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm -1 with a demonstrated tunability of .63 cm -1 . The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy

  4. Properties of Fr-like Th^3+ from microwave spectroscopy of high-L Rydberg states of Th^2+

    Science.gov (United States)

    Keele, Julie; Smith, Chris; Woods, Shannon; Lundeen, Stephen; Fehrenbach, Charles

    2012-06-01

    Spectroscopy of high-L n= 28 Rydberg levels of Th^2+ was recently reported using the optical RESIS method [1]. Because the ground state of Fr-like Th^3+ is a ^2F5/2 level, each (n,L) Rydberg level of Th^2+ is split into six eigenstates whose relative positions are determined by long-range e-Th^3+ interactions. Measurements of those positions can be used to determine the Th^3+ properties that control those interactions, such as polarizabilities and permanent moments. We report a much improved study of n=28 levels with 9 Hanni, Shannon L. Woods, S.R. Lundeen, and C.W. Fehrenbach, Phys. Rev. A 83, 062501 (2011)[0pt] [2] U.I. Safronova, W.R. Johnson, and M.S. Safronova, Phys. Rev. A 74, 042511 (2006)

  5. Potential energies for the two lowest 1A' electronic states of H3+

    International Nuclear Information System (INIS)

    Ichihara, Akira; Yokoyama, Keiichi; Iwamoto, Osamu

    1998-11-01

    Potential energies for the two lowest 1 A' states of H 3 + at 701 different spatial geometries are tabulated. These energies have been calculated by the ab initio full configuration interaction method with a (8s6p2d1f) Gaussian type basis set. Features of avoided crossing of two surfaces as well as the potential well in the ground state can be produced by interpolating calculated energies. These ab initio energies are expressed as a function of three internuclear distances in the range from 0.6 to 10.0 bohr, and they are applicable to the molecular dynamics study for the H + + H 2 system. (author)

  6. An investigation of electronic states of some molecules and molecular cations using mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy

    Science.gov (United States)

    Hofstein, Jason David

    1999-11-01

    Mass analyzed threshold ionization (MATI) experiments have enabled mapping of the n-dependent Rydberg state survival probability for a series of molecules. Utilizing vacuum and extreme ultraviolet (VUV/XUV) photons, one photon Rydberg manifold spectra of argon, hydrogen chloride, nitrogen, benzene, and oxygen were produced, and the prospects of photoinduced Rydberg ionization (PIRI) experiments examined. It was found that the widths of Rydberg manifolds for the molecules studied are quite different. Hydrogen chloride and nitrogen have the narrowest manifold width, followed by benzene, and then oxygen. These varying widths are most strongly correlated with the angular momentum (i.e., quantum defect) of the initially prepared Rydberg orbital. PIRI experiments required the use of a static cell, rather than a molecular jet assembly, for the more efficient production of higher amounts of VUV/XUV radiation, and hence more Rydberg signal needed to observe PIRI. Armed with the ability to produce tunable VUV/XUV radiation, and to determine the feasibility of a PIRI experiment, the MATI and fragment PIRI spectra of trans-1,3-butadiene (BD) were recorded. The MATI spectrum is vibrationally resolved and was analyzed with the help of ab initio calculations and other published results. The fragment PIRI spectrum of the Aproduction of C3H3+ dominates, but at higher photon energies, C2H4 + is also produced. The production of each fragment showed a definite PIRI wavelength dependence.

  7. Rotational structure of the five lowest frequency fundamental vibrational states of dimethylsulfoxide

    Science.gov (United States)

    Cuisset, Arnaud; Drumel, Marie-Aline Martin; Hindle, Francis; Mouret, Gaël; Sadovskií, Dmitrií A.

    2013-10-01

    We report on the successful extended analysis of the high-frequency (200-700 GHz) part of the gas phase (sub)mm-wave spectra of dimethylsulfoxide (DMSO). The spectrum was recorded at 100 kHz resolution using a solid state subTHz spectrometer. The five lowest energy fundamental vibrational states of DMSO with frequencies below 400 cm-1 were observed as sidebands along with the main 0←0 band. Neglecting the internal rotation of methyls, our rotational Hamiltonian reproduced the spectrum to the subMHz accuracy. We have found that the asymmetric bending state ν23 is the only low frequency fundamental vibrational state with the "anomalous" rotational structure uncovered in Cuisset et al. [1]. dmsomw 2013-09-04 15:03

  8. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    Energy Technology Data Exchange (ETDEWEB)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  9. Charge-state-distributions of foil-excited heavy Rydberg atoms

    International Nuclear Information System (INIS)

    Faibis, A.; Kanter, E.P.; Koenig, W.; Zabransky, B.J.

    1985-01-01

    Studies of foil-excited fast (MeV/amu) heavy ions have demonstrated large yields of high Rydberg atoms formed in such beams. Further experiments have suggested a strong target-thickness dependence of the yields of such atoms. These results have been puzzling in view of the supposed short mean free paths of such atoms in solids. In an effort to better understand these results, the authors have measured the yields of Rydberg atoms (napprox.100-200) in foil-excited 32 S ions at an incident energy of 125 MeV

  10. Lowest vibrational states of 4He3He+: Non-Born-Oppenheimer calculations

    International Nuclear Information System (INIS)

    Stanke, Monika; Bubin, Sergiy; Kedziera, Dariusz; Molski, Marcin; Adamowicz, Ludwik

    2007-01-01

    Very accurate quantum mechanical calculations of the first five vibrational states of the 4 He 3 He + molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the α 2 relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm -1

  11. Dissociative electron attachment to vibrationally excited H2 molecules involving the 2Σg+ resonant Rydberg electronic state

    International Nuclear Information System (INIS)

    Celiberto, R.; Janev, R.K.; Wadehra, J.M.; Tennyson, J.

    2012-01-01

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v i = 0–5, 10 of the H 2 molecule. Highlights: ► We calculated electron–hydrogen dissociative attachment cross sections and rates coefficients. ► Collision processes occurring through a resonant Rydberg state are considered. ► Cross sections and rates were obtained for vibrationally excited hydrogen molecules. ► The cross sections exhibit pronounced oscillatory structures. ► A comparison with the process involving the electron–hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H 2 molecule taking place via the 2 Σ g + Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v i = 0–14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v i , when the process proceeds via the X 2 Σ u + shape resonance of H 2 , for the 2 Σ g + Rydberg resonance the cross sections increase only gradually up to v i = 3 and then decrease. Moreover, the cross sections for v i ⩾ 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v i levels are also calculated in the 0.5–1000 eV temperature range.

  12. Active vs. spectator modes in nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state

    Science.gov (United States)

    Xie, Changjian; Guo, Hua

    2018-01-01

    The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.

  13. revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour

  14. All Electron ab initio Investigations of the Three Lowest Lying Electronic States of the RuC Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, K. A.

    2000-01-01

    The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....

  15. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    Science.gov (United States)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  16. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    Science.gov (United States)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13

  17. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    Science.gov (United States)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.

  18. An isotope dependent study of acetone in its lowest excited triplet state

    International Nuclear Information System (INIS)

    Gehrtz, M.; Brauchle, C.; Voitlaender, J.

    1984-01-01

    The lowest excited triplet state T 1 of acetone-h 6 and acetone-d 6 was investigated with a pulsed dye laser equipped ODMR spectrometer. Acetone is found to be bent in T 1 and the out-of-plane distortion angle is estimated to be approx.= 38 0 . The observed zero-field splitting (ZFS) is surprisingly small. Both the spin-spin and the spin-orbit (SO) contribution to the ZFS are evaluated. The SO tensor contribution is calculated from a correlation between the deuterium effects on the ZFS parameters and the population rates. The sub-level selective kinetics of the acetone T 1 is largely determined by the mixing of the x- and z-level characteristics owing to magnetic axis rotation caused by the excited state out-of-plane distortion. Considerable deuterium effects are observed on the kinetic data and on the microwave transition frequencies. In all cases the spin-specific isotope effects (due to the promoting modes) and the global effects (due to the Franck-Condon factors) are specified. For the population rates and the SO contribution to ZFS, the inverse global isotope effects (deuterium factor > 1) was found for the first time. Based on the isotope dependence of the rates, the mechanisms of (vibrationally induced) SO coupling in acetone are discussed. It is concluded that non-adiabatic contributions have to be taken into account for the smallest population rate only, but that otherwise the adiabatic SO coupling mechanisms by far dominates in the acetone photophysics. (author)

  19. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  20. Selective-field-ionization dynamics of a lithium m=2 Rydberg state: Landau-Zener model versus quantal approach

    International Nuclear Information System (INIS)

    Foerre, M.; Hansen, J.P.

    2003-01-01

    The selective-field-ionization (SFI) dynamics of a Rydberg state of lithium with magnetic quantum number m=2 is studied in detail based on two different theoretical models: (1) a close coupling integration of the Schroedinger equation and (2) the multichannel (incoherent) Landau-Zener (MLZ) model. The m=2 states are particularly interesting, since they define a border zone between fully adiabatic (m=0,1) and fully diabatic (m>2) ionization dynamics. Both sets of calculations are performed up to, and above, the classical ionization limit. It is found that the MLZ model is excellent in the description of the fully diabatic dynamics while certain discrepancies between the time dependent quantal amplitudes appear when the dynamics become involved. Thus, in this region, the analysis of experimental SFI spectra should be performed with care

  1. CrossRef Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

    CERN Document Server

    McConnell, R; Kolthammer, WS; Richerme, P; Müllers, A; Walz, J; Grzonka, D; Zielinski, M; Fitzakerley, D; George, MC; Hessels, EA; Storry, CH; Weel, M

    2016-01-01

    Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is expected to be increased by a similar factor.

  2. Radiative stabilization of double-Rydberg states formed in slow Xeq+-Xe (15 ≤ q ≤ 35) collisions

    International Nuclear Information System (INIS)

    Anderson, H.; Cederquist, H.; Astner, G.; Hvelplund, P.; Pedersen, J.O.P.

    1990-01-01

    Electron capture processes, in which the projectile charge (q) is lowered by one unit, have been recorded by means of high-resolution energy-gain spectroscopy for 4q keV Xe q+ -Xe (15 ≤ q ≤ 35) collisions. The ratios, R, between the cross sections for the transfer ionisation and single-electron capture were extracted from the measured spectra. The quantity R increases slowly for charges up to q = 25 and decreases rapidly for higher q. Relying on the extended classical over-barrier model we relate R to the branching ratio for autoionisation, F, through R = k.F, and estimate the variation in k as a function of q. On the basis of the extended classical over-barrier model we ascribe the decrease in R at high q to an increase in radiative stabilization of double-Rydberg states formed in slow Xe q+ -Xe, q > 25, collisions. (orig.)

  3. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  4. Theory of the l-state population of Rydberg states formed in ion-solid collisions

    International Nuclear Information System (INIS)

    Kemmler, J.; Burgdoerfer, J.; Reinhold, C.O.

    1991-01-01

    The experimentally observed high-l-state population of ions excited in ion-solid interactions differs sharply from l-state populations produced in ion-atom collisions. We have studied the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O 2+ (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to be in very good agreement with experiment. Initial phase-space conditions have been obtained from both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence that the very-high-l-state populations produced in ion-solid collisions are the result of a diffusion to high-l states under the influence of multiple scattering in the bulk of the solid

  5. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  6. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  7. Calculation of Rydberg interaction potentials

    International Nuclear Information System (INIS)

    Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)

  8. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan; Civiš, S.

    2013-01-01

    Roč. 139, č. 10 (2013), s. 104314 ISSN 0021-9606 R&D Projects: GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : Gaussian distribution * helium * oscillator strengths * quantum chemistry * rotational states * Rydberg states * two-photon processes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.122, year: 2013

  9. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  10. Fast-responding property of electromagnetically induced transparency in Rydberg atoms

    Science.gov (United States)

    Zhang, Qi; Bai, Zhengyang; Huang, Guoxiang

    2018-04-01

    We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e., two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.

  11. Time-resolved resonance raman spectrum of all-trans-diphenylbutadiene in the lowest excited singlet state

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Langkilde, F.W.

    1984-01-01

    The resonance Raman spectrwn of all-trans-diphenylbutadiene in its lowest excited S1 state excited in resonance with the S1 → Sn absorption band at 650 nm in non-polar solvents is reported. Three vibrational bands at 1572, 1481 and 1165 cm−1 are observed. A possible assignment of the the 1481 cm−...

  12. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  13. Statistical electron correlation coefficients for the five lowest states of the heliumlike ions

    International Nuclear Information System (INIS)

    Thakkar, A.J.; Smith, V.H. Jr.

    1981-01-01

    Statistical correlation coefficients were introduced by Kutzelnigg, Del Re, and Berthier to provide overall measures of the difference between the electron pair density and the product of one-electron densities in atoms and molecules. Some properties of these coefficients are discussed, and it is shown that an angular correlation coefficient is experimentally accessible. Radial and angular correlation coefficients are computed from highly accurate wave functions for the 1 1 S, 2 3 S, 2 1 S, 2 3 P, and 2 1 P states of the heliumlike ions from He through Mg 10+ . It is found that positive angular correlation coefficients occur in the 2 1 P state of the two-electron positive ions but not in neutral helium. Moreover, the angular correlation coefficients for the 2 1 S and 2 3 S states of the positively charged two-electron ions show that a previously proposed reformulation of Hund's rule is incorrect

  14. Excitation of the lowest 1- state in 18O by scattering from 16O

    International Nuclear Information System (INIS)

    Carter, J.; Sellschop, J.P.F.; Clarkson, R.G.; Hnizdo, V.; Osterfeld, F.; Frahn, W.E.; Richter, A.

    1981-01-01

    The 1 - (4.45 MeV) state in 18 O, together with the 2 + (1.98 MeV) and 3 - (5.09 MeV) states, were excited by inelastic scattering from 16 O at E(lab)=35 MeV. In an attempt to understand the 1 - excitation, various macroscopic models, including a ralationship derived recently by Frahn, were considered. However, this excitation was found to be best explained by a microscopic description. A comparison is made with inelastic α-scattering from 18 O [af

  15. Millimeter-wave and Submillimeter-wave Spectra of Aminoacetonitrile in the Three Lowest Vibrational Excited States

    Energy Technology Data Exchange (ETDEWEB)

    Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna (Italy); Kobayashi, Kaori [Department of Physics, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Fujita, Chiho; Ozeki, Hiroyuki, E-mail: ozeki@env.sci.toho-u.ac.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 (Japan)

    2017-06-01

    It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, while the third one was unperturbed. The partition function was evaluated considering these new results.

  16. A laser system for the spectroscopy on highly charged ions, tellurium molecules, and Rydberg states of rubidium atoms; Ein Lasersystem zur Spektroskopie von hochgeladenen Ionen, Tellurmolekuelen und Rubidium-Rydberg-Zustaenden

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Sebastian

    2014-08-15

    Optical measuring methods allow the detection and identification of the atomic structure with extraordinary precision. Deviations to theoretical predictions can indicate unknown physical effects. Therefore, precise measurements on the atomic structure continue to be of large relevance. In this work, a laser system for precision spectroscopy on Bismuth ({sup 209}Bi{sup 82+}), Tellurium ({sup 130}Te{sub 2}) and Rydberg states of Rubidium ({sup 85}Rb) has been built and characterized. Spectroscopic measurements on Tellurium and Rubidium have been achieved with this setup. The system consists of a two-stage frequency doubled diode laser, stabilized via a cavity and an RF-offsetlock to arbitrary wavelengths with absolute high stability. The setup of the laser system will be presented and the systematic error caused by the refractive index of air inside the transfer cavity will be discussed. A stability of better then 6.14 MHz at 244 nm is obtained for planned experiments on the ground state hyperfine splitting of {sup 209}Bi{sup 82+}. This will allow an increase in precision of more then four orders of magnitude for this measurement. Further increase in precision can be achieved by using an evacuated cavity. The obtained stability is measured by comparison of the laser frequency to absorption lines of Tellurium ({sup 130}Te{sub 2}). Eight reference lines, known from literature, spanning the region from 613720.717 GHz to 616803.545 GHz have been measured. The frequency measurements of three lines, coinciding with the emission spectrum of an argon-ion-laser, show deviations with respect to the published frequencies. Further inconsistencies in literature are cleared. Part of this work is also the precise measurement of 843 Doppler-free {sup 130}Te{sub 2} reference lines spanning the frequency range from 613881.150 GHz to 616614.258 GHz at a precision of better then 4 MHz for most lines. Additionally, measurements on electromagnetically induced transparency (EIT) using

  17. Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani

    2013-01-01

    In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)

  18. Ionization of xenon Rydberg atoms at Si(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, H.R. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstra. 15, D-12489, Berlin (Germany); Lancaster, J.C. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Dunning, F.B. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu

    2007-03-15

    The ionization of xenon Rydberg atoms excited to the lowest states in the n = 17 and n = 20 Stark manifolds at Si(1 0 0) surfaces is investigated. It is shown that, under appropriate conditions, a sizable fraction of the incident atoms can be detected as ions. Although the onset in the ion signal is perturbed by stray fields present at the surface, the data are consistent with ionization rates similar to those measured earlier at metal surfaces.

  19. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  20. Ionization of Rydberg atoms by the kicks of half-cycle pulses

    Indian Academy of Sciences (India)

    Rydberg atom; half-cycle pulses; ionization; quantum mechanical model. ... packet which represents a non-stationary quantum state formed by coherent ...... Wetzels, Impulsive interactions of half cycle pulse radiation with Rydberg atoms, Ph.D.

  1. Scaling laws of Rydberg excitons

    Science.gov (United States)

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to

  2. One-Dimensional Rydberg Gas in a Magnetoelectric Trap

    International Nuclear Information System (INIS)

    Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter

    2007-01-01

    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms

  3. On the theoretical analysis of the lowest many-electron states for cyclic zigzag graphene nano-ribbons

    International Nuclear Information System (INIS)

    Álvarez-Collado, José R; Cantarero, Andrés

    2014-01-01

    We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree–Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs. (paper)

  4. On the theoretical analysis of the lowest many-electron states for cyclic zigzag graphene nano-ribbons

    Science.gov (United States)

    Álvarez-Collado, José R.; Cantarero, Andrés

    2014-09-01

    We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree-Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs.

  5. Theory and computation of the matrix elements of the full interaction of the electromagnetic field with an atomic state: Application to the Rydberg and the continuous spectrum

    International Nuclear Information System (INIS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2002-01-01

    We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states

  6. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  7. Lowest lying 2+ and 3- vibrational states in Pb, Sn, and Ni isotopes in relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Ansari, A.; Ring, P.

    2006-01-01

    The excitation energies and electric multipole decay rates of the lowest lying 2 + and 3 - vibrational states in Pb, Sn, and Ni nuclei are calculated following relativistic quasiparticle random-phase approximation formalism based on the relativistic Hartree-Bogoliubov mean field. Two sets of Lagrangian parameters, NL1 and NL3, are used to investigate the effect of the nuclear force. Overall there is good agreement with the available experimental data for a wide range of mass numbers considered here, and the NL3 set seems to be a better choice. However, strictly speaking, these studies point toward the need of a new set of force parameters that could produce more realistic single-particle levels, at least in vicinity of the Fermi surface, of a wide range of nuclear masses

  8. On calculation of collisional angular-momentum mixing of Rydberg states

    International Nuclear Information System (INIS)

    Oreg, J.; Strauss, M.; Hazak, G.

    1983-09-01

    Exact solutions of the coupled differential equations for collisional mixing probabilities are presented for a sodium-helium system. The results show that complete mixing is not reached in this model. The main contribution to the collisional mixing cross-section of the sodium ''nd'' state comes from impact parameters b within the range n 2 2 . The total cross-sections obtained are in agreement with the experiment. (author)

  9. Solid hydrogen and deuterium. I. Ground-state energy calculated by a lowest order constrained-variation method

    International Nuclear Information System (INIS)

    Pettersen, G.; Oestgaard, E.

    1988-01-01

    The ground-state energy of solid hydrogen and deuterium is calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp H 2 and D 2 are considered, and the calculations are done for five different two-body potentials. For solid H 2 we obtain theoretical results for the ground-state binding energy per particle from -74.9 K at an equilibrium particle density of 0.700 σ -3 or a molar volume of 22.3 cm 3 /mole to -91.3 K at a particle density of 0.725 σ -3 or a molar volume of 21.5 cm 3 /mole, where σ = 2.958 A. The corresponding experimental result is -92.3 K at a particle density of 0.688 σ -3 or a molar volume of 22.7 cm 3 /mole. For solid D 2 we obtain theoretical results for the ground-state binding energy per particle from -125.7 K at an equilibrium particle density of 0.830 σ -3 or a molar volume of 18.8 cm 3 /mole to -140.1 K at a particle density of 0.843 σ -3 or a molar volume of 18.5 cm 3 /mole. The corresponding experimental result is -137.9 K at a particle density of 0.797 σ -3 or a molar volume of 19.6 cm 3 /mole

  10. Expansion of an ultracold Rydberg plasma

    Science.gov (United States)

    Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.

    2018-04-01

    We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .

  11. Simulation of coherent interactions between Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F.; Hernandez, J.V.; Topcu, T.; Noordam, L.D.

    2004-01-01

    The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are reported. The atoms are assumed to move very little during the time range we investigate. We describe the basic interaction between atoms and show that (contrary to previous theoretical studies) the interaction between the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too strong for an essential states type of approximation. The relevance of our results to previous measurements in a Rydberg gas and to possible future experiments is discussed

  12. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H{sub 2}O and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, J-H [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Dulieu, F [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Baouche, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Lemaire, J-L [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Jochims, H W [Institut fuer Physikalische und Theoretische Chemie der Freien Universitaet Berlin, Takustrasse 3, D-14195 Berlin 33 (Germany); Leach, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France)

    2003-07-14

    The absorption cross section and the ionization quantum yield of H{sub 2}O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first A-tilde {sup 2}A{sub 1} and to the second B-tilde {sup 2}B{sub 2} excited states of H{sub 2}O{sup +}. Comparison with D{sub 2}O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  13. Correlations between interacting Rydberg atoms

    DEFF Research Database (Denmark)

    Paris-Mandoki, Asaf; Braun, Christoph; Hofferberth, Sebastian

    2018-01-01

    This paper is a short introduction to Rydberg physics and quantum nonlinear optics using Rydberg atoms. It has been prepared as a compliment to a series of lectures delivered during the Latin American School of Physics "Marcos Moshinsky" 2017. We provide a short introduction to the properties...... of individual Rydberg atoms and discuss in detail how the interaction potential between Rydberg atom pairs is calculated. We then discuss how this interaction gives rise to the Rydberg blockade mechanism. With the aid of hallmark experiments in the field applications of the blockade for creating correlated...

  14. Comparison of the target-thickness dependence of the convoy electron yield and the Rydberg electron yield measured in coincidence with exit charge states in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Gaither, C.C. III; Breinig, M.; Freyou, J.; Underwood, T.A.

    1988-01-01

    We have simultaneously measured the yield of convoy electrons and the yield of electrons in high Rydberg states of the projectile (n /approx gt/ 70), produced by 2MeV/u C projectiles passing through C foils, whose thicknesses range from 4--10 ug/cm 2 , for incident charge states q/sub i/ = 4--6 and exit charge states q/sub e/ = 4--6. We have found that these yields exhibit similar trends as a function of foil thickness, but that, nevertheless, the ratio of the number of convoy electrons detected in coincidence with ions of exit charge state q/sub e/ to the number of electrons detected in high Rydberg states of ions with the same exit charge state is a function of foil thickness. This may be due to a broadening of the convoy electron energy spectrum with increasing foil thickness. 6 refs., 3 figs

  15. Ab initio study of small He cluster ions Hen+, n=2, 3, 4, 5, and low-lying Rydberg states of He4

    International Nuclear Information System (INIS)

    Staemmler, V.

    1990-01-01

    SCF and CEPA calculations are applied to study the structure of small He cluster ions, He n 3 , n=2, 3, 4, 5 and some low-lying Rydberg states of He 4 . The effect of electron correlation upon the equilibrium structures and binding energies is discussed. He 3 + has a linear symmetric equilibrium geometry with a bond length of 2.35 a 0 and a binding energy D e =0.165 eV with respect to He 2 + +He (experimentally: D 0 =0.17 eV which corresponds to D e ≅0.20 eV). He 4 + is a very floppy molecular ion with several energetically very similar geometrical configurations. Our CEPA calculations yield a T-shaped form with a He 3 + centre (R e =2.35 a 0 ) and one inductively bound He atom (4.39 a 0 from the central He atom of He 3 + ) as equilibrium structure. Its binding energy with respect to He 3 + +He is 0.031 eV. A linear symmetric configuration consisting of a He 2 + centre with a bond length of 2.10 a 0 and two inductively bound He atoms (4.20 a 0 from the centre of He 2 + ) is only 0.02-0.03 eV higher in energy. We expect that in larger He cluster ions structures with He 2 + and He 3 + centres and n-2 or n-3 inductively bound He atoms have nearly the same energies. In He 4 a low-lying metastable Rydberg state ( 3 π symmetry for linear He 4 * , 3 B 1 for the T-shaped form) exists which is slightly stronger bound with respect to He 3 * +He than the corresponding ion. (orig.)

  16. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect

    International Nuclear Information System (INIS)

    Ghazi, Haddou El; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes

  17. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Haddou El, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco)

    2013-10-01

    External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes.

  18. Many-body physics with alkaline-earth Rydberg lattices

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, R; Nath, R; Pohl, T [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Millen, J; Jones, M P A, E-mail: rick@pks.mpg.de [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2011-09-28

    We explore the prospects for confining alkaline-earth Rydberg atoms in an optical lattice via optical dressing of the secondary core-valence electron. Focussing on the particular case of strontium, we identify experimentally accessible magic wavelengths for simultaneous trapping of ground and Rydberg states. A detailed analysis of relevant loss mechanisms shows that the overall lifetime of such a system is limited only by the spontaneous decay of the Rydberg state, and is not significantly affected by photoionization or autoionization. The van der Waals C{sub 6} coefficients for the Sr(5sns {sup 1}S{sub 0}) Rydberg series are calculated, and we find that the interactions are attractive. Finally we show that the combination of magic-wavelength lattices and attractive interactions could be exploited to generate many-body Greenberger-Horne-Zeilinger states.

  19. Relativistic four-component potential energy curves for the lowest 23 covalent states of molecular bromine (Br2).

    Science.gov (United States)

    Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme

    2014-08-07

    The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.

  20. Coopetition and manipulation of quantum correlations in Rydberg atoms

    International Nuclear Information System (INIS)

    Fan, Chu-Hui; Yan, Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2017-01-01

    We study the steady-state quantum correlations arising from the atom–field and interatomic interplays in two-level Rydberg atoms coherently driven by an external laser field. Three kinds of quantum correlations, i.e., atom–atom correlation, atom–field entanglement and photon–photon correlation, are simultaneously examined by considering dipole–dipole interactions (DDI) for pairwise Rydberg atoms. They are shown to be closely linked with single and double Rydberg excitations, which can be modulated to work in the blockade or antiblockade regime depending on the driving field frequency, the DDI strength and the Rydberg decay rate. As a result, we obtain strongly correlated atoms and highly antibunching photons (indispensable resources in applications of quantum information processing) intermediated with robust atom–field entanglement. (paper)

  1. Density effects on high-n molecular Rydberg states: CH3I and C6H6 in H2 and Ar

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; Rupnik, K.; McGlynn, S.P.; Ascarelli, G.

    1989-01-01

    The absorption spectra of high-n Rydberg states of methyl iodide and benzene perturbed by varying number densities of hydrogen or argon, range 0.9x10 20 --10.5x10 20 cm -3 for H 2 and 0.6x10 20 --7.5x10 20 cm -3 for Ar, have been investigated. The high-n molecular states of both absorbers were found to shift linearly with the number density of atomic Ar and molecular H 2 scatterers. The Fermi formula modified by the Alekseev--Sobel'man polarization term provides an excellent fit of the shift data. The electron scattering lengths obtained are: 0.93 a 0 for H 2 and -1.63 a 0 for Ar using the CH 3 I absorber; and 0.99 a 0 for H 2 and -1.57 a 0 for Ar using the C 6 H 6 absorber. The electron scattering lengths for H 2 and Ar agree with the results of an empirical model that correlates scattering lengths and the polarizabilities α(spherical) for inert atoms and α 2 (nonspherical) for H 2 molecule

  2. Electron impact excitation of the lowest doublet and quartet core-excited autoionizing states in Rb atoms

    International Nuclear Information System (INIS)

    Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K

    2013-01-01

    Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.

  3. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    Abstract. Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.

  4. The order of three lowest-energy states of the six-electron harmonium at small force constant

    Energy Technology Data Exchange (ETDEWEB)

    Strasburger, Krzysztof [Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland)

    2016-06-21

    The order of low-energy states of six-electron harmonium is uncertain in the case of strong correlation, which is not a desired situation for the model system being considered for future testing of approximate methods of quantum chemistry. The computational study of these states has been carried out at the frequency parameter ω = 0.01, using the variational method with the basis of symmetry-projected, explicitly correlated Gaussian (ECG) lobe functions. It has revealed that the six-electron harmonium at this confinement strength is an octahedral Wigner molecule, whose order of states is different than in the strong confinement regime and does not agree with the earlier predictions. The results obtained for ω = 0.5 and 10 are consistent with the findings based on the Hund’s rules for the s{sup 2}p{sup 4} electron configuration. Substantial part of the computations has been carried out on the graphical processing units and the efficiency of these devices in calculation of the integrals over ECG functions has been compared with traditional processors.

  5. Correlations between interacting Rydberg atoms

    Science.gov (United States)

    Paris-Mandoki, Asaf; Braun, Christoph; Hofferberth, Sebastian

    2018-04-01

    This paper is a short introduction to Rydberg physics and quantum nonlinear optics using Rydberg atoms. It has been prepared as a compliment to a series of lectures delivered during the Latin American School of Physics "Marcos Moshinsky" 2017. We provide a short introduction to the properties of individual Rydberg atoms and discuss in detail how the interaction potential between Rydberg atom pairs is calculated. We then discuss how this interaction gives rise to the Rydberg blockade mechanism. With the aid of hallmark experiments in the field applications of the blockade for creating correlated quantum systems are discussed. Our aim is to give an overview of this exciting and rapidly evolving field. The interested reader is referred to original work and more comprehensive reviews and tutorials for further details on these subjects.

  6. Experimental determination of EEDF and He{sub 2}{sup *} Rydberg-state density by Thomson scattering in a ns-pulsed atmospheric micro-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)

    2016-07-01

    An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.

  7. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  8. Observation of pendular butterfly Rydberg molecules

    Science.gov (United States)

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig

    2016-01-01

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143

  9. A Theoretical Study of the Photodissociation Mechanism of Cyanoacetylene in Its Lowest Singlet and Triplet Excited States

    Science.gov (United States)

    Luo, Cheng; Du, Wei-Na; Duan, Xue-Mei; Li, Ze-Sheng

    2008-11-01

    Cyanoacetylene (H5-C4 ≡ C3-C2 ≡ N1) is a minor constituent of the atmosphere of Titan, and its photochemistry plays an important role in the formation of the haze surrounding the satellite. In this paper, the complete active space self-consistent field (CASSCF) and multiconfigurational second-order perturbation (CASPT2) approaches are employed to investigate the photochemical processes for cyanoacetylene in its first singlet and triplet excited states with the cc-pVTZ basis set. Fissions of the C4-H5 and C2-C3 bonds in S1 yield H(2S) + CCCN(A2Π) and HCC(A2Π) + CN(X2Σ+), respectively. In T1, the corresponding dissociation products are H(2S) + CCCN(X2Σ+) and HCC(X2Σ) + CN(X2Σ+). At the CASPT2(14,13)//CASSCF(14,13) + ZPE level, the barriers for the adiabatic dissociation of the C4-H5 and C2-C3 bonds are 6.11 and 6.94 eV in S1 and 5.71 and 6.39 eV in T1, respectively, taking the energy of S0 minimum as reference. Based on the calculated potential energy surfaces, the existence of a metastable excited molecule is anticipated upon 260-230 nm photoexcitation, which provides a probable approach for cyanoacetylene to polymerize. The internal conversion (IC) process through vibronic interaction followed by C4-H5 fission in the ground state is found to account for the observed diffuse character in the UV absorption spectrum below 240 nm.

  10. Optimal control of Rydberg lattice gases

    Science.gov (United States)

    Cui, Jian; van Bijnen, Rick; Pohl, Thomas; Montangero, Simone; Calarco, Tommaso

    2017-09-01

    We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.

  11. Optimal control of Rydberg lattice gases

    DEFF Research Database (Denmark)

    Cui, Jian; Bijnen, Rick van; Pohl, Thomas

    2017-01-01

    the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques....... Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.......We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit...

  12. Molecular Rydberg transitions in carbon monoxide

    International Nuclear Information System (INIS)

    Fock, J.H.; Guertler, P.; Koch, E.E.

    1979-10-01

    The linear correlation between the term value and ionization energy for molecular Rydberg transitions is tested for the sequence of isoelectronic molecules BF, CO and N 2 based on a new measurement of the absorption spectrum of CO and data for BF and N 2 . For the npsigma series and npπ series converging on the first ionization potential, we find an excellent linear behavior (within 10 meV) corroborating (I) the correlation and (II) the individual assignments. For Rydberg series leading to the A 2 DELTA and B 2 EPSILON + states, where no data for BF are available, a comparison of term values for CO and N 2 is presented. (orig.)

  13. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  14. Topological matter with collective encoding and Rydberg blockade

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2010-01-01

    We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string-net condens......-net condensates and to create and study the properties of their quasi-particle-like fundamental excitations....

  15. Wave-packet approach to Rydberg resonances in dissociative recombination

    International Nuclear Information System (INIS)

    Morisset, Sabine; Pichl, Lukas; Orel, Ann E.; Schneider, Ioan F.

    2007-01-01

    We report the time-dependent approach to resonant electron capture into Rydberg states in collisions with molecular cations at low impact energy, as an alternative to the method based on multichannel quantum defect theory (MQDT), and present the results for the HD + ion. The propagation of the initial wave function on 13 Rydberg states (besides one valence state) correctly describes the indirect dissociative recombination mechanism in the time domain. Notably, the nonlocal coupling operator between the ionization and dissociation channels is accounted for in the indirect process, extending previous work on the case of direct coupling. The present approach compares to the MQDT framework with remarkable precision: resonant structures in the cross section correctly emerge from the wave-packet propagation; the time-dependent result also forms a cross section envelope for the dense series of ultrafine MQDT resonances corresponding to the quasicontinuous part of the Rydberg state manifold

  16. The dipole moment and magnetic hyperfine properties of the excited A 2Σ+(3sσ) Rydberg state of nitric oxide

    International Nuclear Information System (INIS)

    Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.

    1995-01-01

    The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics

  17. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  18. Janne Rydberg - his life and work

    International Nuclear Information System (INIS)

    Martinson, I.; Curtis, L.J.

    2005-01-01

    The Rydberg formula is emblematic of atomic spectroscopy. We review here the personal background, research accomplishments, and academic career of its discoverer, Janne Rydberg. Although his formula is often introduced as a generalization of the hydrogenic Balmer formula, Rydberg's work was independent of Balmer's, and displayed great ingenuity and a rare ability to recognize hidden patterns in complex numerical data. Although his discoveries attracted wide attention, experimental physics was then considered inseparable from measurement, and the fact that Rydberg's insightful formulations used the data of others impeded his academic career. Although Rydberg did not live to see the full theoretical implications of his discoveries, the vigorous study of Rydberg atoms continues today

  19. Rydberg dressing of atoms in optical lattices

    Science.gov (United States)

    Macrı, T.; Pohl, T.

    2014-01-01

    We study atoms in optical lattices whose electronic ground state is off-resonantly coupled to a highly excited state with strong binary interactions. We present a time-dependent treatment of the resulting quantum dynamics, which—contrary to recent predictions [36 Li, Ates, and Lesanovsky, Phys. Rev. Lett. 110, 213005 (2013), 10.1103/PhysRevLett.110.213005]—proves that the strong repulsion between the weakly admixed Rydberg states does not lead to atomic trap loss. This finding provides an important basis for creating and manipulating coherent long-range interactions in optical lattice experiments.

  20. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  1. Interactions of circular Rydberg atoms with charged particles

    International Nuclear Information System (INIS)

    Wang, J.

    1994-01-01

    Recent progress in experimental cross-field techniques has made it possible to produce oriented Rydberg atoms of any angular momentum l within a given n manifold. The largest angular momentum state l max = n - 1 of a given n manifold is of particular interest because of its semiclassical properties for n much-gt 1. The corresponding classical Kepler orbit is circular with highly localized phase space distribution. The circular Rydberg atoms afford the opportunity to study various interactions in the semiclassical regime. The authors report electron capture from circular Rydberg atoms by protons and positrons at speeds comparable to the electron orbital speed. They find orientation dependent, novel peak structures for both protons and positrons in the angular scattering of the particles. The structures may be understood in terms of quasi Thomas double scattering mechanism for capture. Other related aspects including final state population and orientation indulged scattering asymmetry will also be discussed

  2. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    Directory of Open Access Journals (Sweden)

    Møller K. B.

    2013-03-01

    Full Text Available In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s to (n,π* internal conversion involves direct motion in nuclear modes coupling the two states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer.

  3. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    DEFF Research Database (Denmark)

    Kuhlman, T. S.; Sauer, Stephan P. A.; Solling, T. I.

    2013-01-01

    In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s) to (n,π*) internal conversion involves direct motion in nuclear modes coupling the two st...... states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer....

  4. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.

    Science.gov (United States)

    Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A

    2017-07-01

    The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.

  5. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  6. Many-body quantum simulation with Rydberg atoms and ions

    International Nuclear Information System (INIS)

    Mueller, M.

    2010-01-01

    This thesis presents my work that is located at the interface between the fields of atomic physics, quantum optics and quantum information. The work was performed at the Institute of Theoretical Physics of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences under the supervision of Prof. Peter Zoller. The main topic of this thesis is the investigation of new schemes for quantum simulation of interacting many-body systems. The thesis is divided into three parts, which cover my work on i) chains of trapped Rydberg ions ii) quantum information processing and simulation with Rydberg atoms and iii) quantum simulation with ground state ions. The first part of this thesis is concerned with the study of Rydberg ions trapped in a linear Paul trap. The properties of ionic Rydberg states in the presence of the static and time-dependent electric trapping fields are investigated. First it is analyzed under which conditions laser-excited Rydberg ions can be trapped in a stable configuration. Furthermore, it is shown that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. These interactions can give rise to dynamics of Rydberg excitations through the ion crystal, which take place on a nanosecond timescale and can be described by effective spin-models. In addition, it is discussed how to achieve fast two-qubit entangling gates between pairs of Rydberg ions. In the second part of this thesis, novel possibilities of using neutral Rydberg atoms for quantum-information processing and quantum simulation are investigated. A new scheme for a multi-atom quantum gate is proposed and theoretically analyzed. This parallelized gate allows one to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond time scale. The operation relies on strong and long-ranged interactions between Rydberg atoms triggering a

  7. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  8. Formation of Antihydrogen Rydberg atoms in strong magnetic field traps

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.

    2008-01-01

    It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided

  9. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...

  10. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  11. Collisional destruction of fast hydrogen Rydberg atoms

    International Nuclear Information System (INIS)

    King, M.R.

    1984-01-01

    A new modulated electric field technique was developed to study Rydberg atom destruction processes in a fast beam. The process of destruction of a band of Rydberg atom destruction of a band of Rydberg atoms through the combined processes of ionization, excitation, and deexcitation was studied for collisions with gas targets. Rydberg atoms of hydrogen were formed by electron capture, and detected by field ionization. The modulated field technique described proved to be an effective technique for producing a large signal for accurate cross section measurements. The independent particle model for Rydberg atom destruction processes was found to hold well for collisions with molecular nitrogen, argon, and carbon dioxide. The resonances in the cross sections for the free electron scattering with these targets were found to also occur in Rydberg destruction. Suggestions for future investigations of Rydberg atom collision processes in the fast beam regime are given

  12. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    DEFF Research Database (Denmark)

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman

    2010-01-01

    The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly cou...

  13. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  14. Luminescence property and lowest excited singlet state level of various carotenes; Shuju no karochinrui no hako tokusei to saitei reiki -juko jotai jun'i

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. [Miyagi Midical Univ., Miyagi (Japan)

    2000-01-01

    Specification of the lowest excited singlet state (S{sub l}) of the butadiene which is the simplest {pi} electron conjugated system molecule has not sufficiently clarified at present. Recently, Andersson et al. found the weak light emission which was considered to be the S{sub 1} fluorescence in a near infrared region in a room temperature solution of {beta}- carotene (n=11), and specified the S{sub 1} level in 14,200{+-}500cm {sup -1}. And, Fujii et al. reported the S{sub 1} fluorescence of spheroidine (n=10). In very recent, Christensen et al. measured the comparatively clear fluorescence spectrum of carotenes n=5 to 11 separated by HPLC in EPA glass at 77K, and systematically examined the unique luminescence property observed in polyene. Christensen et al. issued the warning for the rough conventional method that the S{sub 1} level was estimated from the S{sub 1} fluorescence lifetime of the polyene molecule using the comprehensive energy gap law, because the ratio of quantum yield of the S{sub 1} and S{sub 2} fluorescence is different by the substituent type of the polyene end even if n is same. (NEDO)

  15. Determination of first ionization potential of samarium atom using Rydberg series convergence

    International Nuclear Information System (INIS)

    Jayasekharan, T.; Razvi, M.A.N.; Bhale, G.L.

    1999-01-01

    The study of Rydberg states has recently received more attention partially because an efficient isotope selective ionization is possible via these states. In addition, their investigation provides useful information on the atomic structure. An electron in a shell with a high principal quantum number is a sensitive probe for the interaction with the ionic core of the atom. Measurements of these Rydberg levels give valuable data on quantum defects, anomalies in fine structure splitting, polarizabilities, configuration interactions, ionization potentials etc

  16. High Angular Momentum Rydberg Wave Packets

    Science.gov (United States)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  17. Infrared laser spectroscopy of H2 and D2 Rydberg states. II. Diode laser spectra and assignment of 5g--4f, 6h--5g, and 8i--6h systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Guest, M.A.; Stickland, R.J.

    1990-01-01

    Infrared diode laser absorption spectra of portions of the 5g--4f, 6h--5g, and 8i--6h Rydberg bands of H 2 and D 2 have been measured at Doppler limited resolution in low pressure A. C. discharges. The spectra, arising from L uncoupled states of H 2 and D 2 , are assigned using an ab initio polarization model supported by intensity calculations. Details of the different implementations of this polarization model are given in the preceding paper. The most useful was the single channel vibrationally extended (1)/(2) V 6 model which became progressively better at higher n (and L). Results of multichannel calculations for a selected set of transitions are also reported

  18. Rydberg atoms in weak magnetic fields

    International Nuclear Information System (INIS)

    Kazantsev, A.P.; Pokrovsky, V.L.; Bergou, J.

    1983-01-01

    The quadratic Zeeman effect of Rydberg atoms in the framework of perturbation theory is dealt with and a special quasiclassical approximation scheme is applied. The Bohr-Sommerfeld quantization condition is given in terms of complete elliptic integrals. It is shown that part of the spectrum is doubly degenerate, the corresponding states are asymmetric with respect to the Coulomb centre and have a non-zero dipole moment; the rest of the spectrum is nondegenerate, the states are symmetric and their dipole-moment vanishes. The transition from the symmetric to the asymmetric region is similar to a phase transition and it gives an experimental possibility to distinguish between the two types of states. (author)

  19. Cooperative Excitation and Many-Body Interactions in a Cold Rydberg Gas

    DEFF Research Database (Denmark)

    Viteau, Matthieu; Huillery, Paul; Bason, Mark George

    2012-01-01

    of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations, of which some evidence has been found in previous experiments. Here we present experimental results on the dynamics and the counting statistics of Rydberg excitations of ultracold rubidium atoms both...... on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. We compare our results with numerical simulations using a novel theoretical model based on Dicke states of Rydberg atoms including dipole-dipole interactions, finding good agreement between experiment and theory.......The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states [ M. Saffman, T. G. Walker and K. Mølmer Rev. Mod. Phys. 82 2313 (2010); D. Comparat and P. Pillet J. Opt. Soc. Am. B 27 A208 (2010)]. One of the consequences...

  20. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    Science.gov (United States)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  1. Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms

    International Nuclear Information System (INIS)

    Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.

    2009-01-01

    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.

  2. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    Science.gov (United States)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  3. Many-body dynamics of holes in a driven, dissipative spin chain of Rydberg superatoms

    Science.gov (United States)

    Letscher, Fabian; Petrosyan, David; Fleischhauer, Michael

    2017-11-01

    Strong, long-range interactions between atoms in high-lying Rydberg states can suppress multiple Rydberg excitations within a micron-sized trapping volume and yield sizable Rydberg level shifts at larger distances. Ensembles of atoms in optical microtraps then form Rydberg superatoms with collectively enhanced transition rates to the singly excited state. These superatoms can represent mesoscopic, strongly interacting spins. We study a regular array of such effective spins driven by a laser field tuned to compensate the interaction-induced level shifts between neighboring superatoms. During the initial transient, a few excited superatoms seed a cascade of resonantly facilitated excitation of large clusters of superatoms. Due to spontaneous decay, the system then relaxes to the steady state having nearly universal Rydberg excitation density {ρ }{{R}}=2/3. This state is characterized by highly non-trivial equilibrium dynamics of quasi-particles—excitation holes in the lattice of Rydberg excited superatoms. We derive an effective many-body model that accounts for hole mobility as well as continuous creation and annihilation of holes upon collisions with each other. We find that holes exhibit a nearly incompressible liquid phase with highly sub-Poissonian number statistics and finite-range density-density correlations.

  4. Mean-field energy-level shifts and dielectric properties of strongly polarized Rydberg gases

    OpenAIRE

    Zhelyazkova, V.; Jirschik, R.; Hogan, S. D.

    2016-01-01

    Mean-field energy-level shifts arising as a result of strong electrostatic dipole interactions within dilute gases of polarized helium Rydberg atoms have been probed by microwave spectroscopy. The Rydberg states studied had principal quantum numbers n=70 and 72, and electric dipole moments of up to 14 050 D, and were prepared in pulsed supersonic beams at particle number densities on the order of 108 cm−3. Comparisons of the experimental data with the results of Monte Carlo calculations highl...

  5. Multibit CkNOT quantum gates via Rydberg blockade

    DEFF Research Database (Denmark)

    Isenhower, L.; Saffman, Mark; Mølmer, Klaus

    2011-01-01

    Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (CkNOT) neutral atom gate. This gate can be implemented using sequential or simult......Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (CkNOT) neutral atom gate. This gate can be implemented using sequential...... or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35....

  6. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  7. Quantum localization in the three-dimensional kicked Rydberg atom

    International Nuclear Information System (INIS)

    Persson, Emil; Yoshida, Shuhei; Burgdoerfer, Joachim; Tong, X.-M.; Reinhold, Carlos O.

    2003-01-01

    We study the three-dimensional (3D) unidirectionally kicked Rydberg atom. For parabolic initial states elongated in the direction of the kicks we show that the ionization of the quantum system is suppressed as compared to the classical counterpart and that the quantum wave function is localized along all degrees of freedom, whereas the classical system is globally diffusive. We discuss the connection to the previously studied one-dimensional (1D) model of the kicked Rydberg atom and verify that the 1D model is a good approximation to the 3D quantum case in the limiting case of the most elongated initial states. We further study the quantum phase-space distribution (Husimi distribution) of the eigenstates of the period-one time-evolution (Floquet) operator and show that the eigenstates are localized in phase space. For the most elongated parabolic initial state, we are able to identify the unstable periodic orbits around which Floquet states localize. We discuss the possibility of observing quantum localization in high Rydberg states in n>100

  8. Entropy and complexity analysis of hydrogenic Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rosa, S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Aplicada II, Universidad de Sevilla, 41012-Sevilla (Spain); Toranzo, I. V.; Dehesa, J. S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Sanchez-Moreno, P. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Matematica Aplicada, Universidad de Granada, 18071-Granada (Spain)

    2013-05-15

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Cramer-Rao, Fisher-Shannon, and Lopez Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n- 1), and quasicircular (l=n- 2) states is explicitly done.

  9. Entropy and complexity analysis of hydrogenic Rydberg atoms

    International Nuclear Information System (INIS)

    López-Rosa, S.; Toranzo, I. V.; Dehesa, J. S.; Sánchez-Moreno, P.

    2013-01-01

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Crámer-Rao, Fisher-Shannon, and López Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n− 1), and quasicircular (l=n− 2) states is explicitly done.

  10. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  11. Effects of confinement on the Rydberg molecule NeH

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Waz, D; Diercksen, G H F; Schreiner, E W S

    2005-01-01

    Ab initio potential energy curves of the Rydberg NeH molecule in the presence of cylindrical spatial confinement were computed by the method of multi-reference configuration interaction with extended basis sets. The influence of the applied potential to the structures and spectra of the ground and excited states of NeH was analysed in terms of perturbation theory. In addition, the phenomenon of field-induced ionization was discussed

  12. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  13. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...... to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source....

  14. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  15. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    Science.gov (United States)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  16. Orbital alignment effects in near-resonant Rydberg atoms-rare gas collisions

    International Nuclear Information System (INIS)

    Isaacs, W.A.; Morrison, M.A.

    1993-01-01

    Recent experimental and theoretical studies of near-resonant energy transfer collisions involving rare-gas atoms and alkali or alkaline earth atoms which have been initially excited to an aligned state via one or more linearly polarized rasters have yielded a wealth of insight into orbital alignment and related effects. We have extended this inquiry to initially aligned Rydberg states, examining state-to-state and alignment-selected cross sections using quantum collision theory augmented by approximations appropriate to the special characteristics of the Rydberg state (e.g., the quasi-free-electron model and the impulse approximation)

  17. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  18. Polyatomic Trilobite Rydberg Molecules in a Dense Random Gas.

    Science.gov (United States)

    Luukko, Perttu J J; Rost, Jan-Michael

    2017-11-17

    Trilobites are exotic giant dimers with enormous dipole moments. They consist of a Rydberg atom and a distant ground-state atom bound together by short-range electron-neutral attraction. We show that highly polar, polyatomic trilobite states unexpectedly persist and thrive in a dense ultracold gas of randomly positioned atoms. This is caused by perturbation-induced quantum scarring and the localization of electron density on randomly occurring atom clusters. At certain densities these states also mix with an s state, overcoming selection rules that hinder the photoassociation of ordinary trilobites.

  19. Quantum simulation of transverse Ising models with Rydberg atoms

    Science.gov (United States)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  20. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell.

    Science.gov (United States)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-18

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  1. Transient localization in the kicked Rydberg atom

    OpenAIRE

    Persson, E.; Fürthauer, S.; Wimberger, S.; Burgdörfer, J.

    2006-01-01

    We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg atom is shown to possess in addition to the quantum localization time $\\tau_L$ a second cross-over time $t_D$ where quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number at fixed kick strength increases. The survival probability...

  2. Mesoscopic Rydberg Gate Based on Electromagnetically Induced Transparency

    International Nuclear Information System (INIS)

    Mueller, M.; Lesanovsky, I.; Zoller, P.; Weimer, H.; Buechler, H. P.

    2009-01-01

    We demonstrate theoretically a parallelized C-NOT gate which allows us to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond time scale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering electromagnetically induced transparency. By this we can robustly implement a conditional transfer of all ensemble atoms between two logical states, depending on the state of the control atom. We outline a many-body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.

  3. Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule

    Science.gov (United States)

    Sung, Young Mo; Yoon, Min-Chul; Lim, Jong Min; Rath, Harapriya; Naoda, Koji; Osuka, Atsuhiro; Kim, Dongho

    2015-05-01

    The reversal of (anti)aromaticity in a molecule's triplet excited state compared with its closed-shell singlet ground state is known as Baird's rule and has attracted the interest of synthetic, physical organic chemists and theorists because of the potential to modulate the fundamental properties of highly conjugated molecules. Here we show that two closely related bis-rhodium hexaphyrins (R26H and R28H) containing [26] and [28] π-electron peripheries, respectively, exhibit properties consistent with Baird's rule. In the ground state, R26H exhibits a sharp Soret-like band and distinct Q-like bands characteristic of an aromatic porphyrinoid, whereas R28H exhibits a broad absorption spectrum without Q-like bands, which is typical of an antiaromatic porphyrinoid. In contrast, the T-T absorption of R26H is broad, weak and featureless, whereas that of R28H displays an intense and sharp Soret-like band. These spectral signatures, in combination with quantum chemical calculations, are in line with qualitative expectations based on Baird's rule.

  4. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  5. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    Science.gov (United States)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  6. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-π-acceptor structure

    International Nuclear Information System (INIS)

    Liu Xiaojun; Zhang Xiao; Hou Yanbing; Teng Feng; Lou Zhidong

    2011-01-01

    Graphical abstract: Within the 10 hybrids, M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy to investigate DCDPC. The figure displays absorption (red dash) and emission (green solid) spectra calculated in acetone for DCDPC using TD-M06 functional. Inserts are the structure of DCDPC. Research highlights: → Red emitter DCDPC is studied by density functional theory (DFT) and time dependent (TD)DFT. → The electronic and geometrical structures for the ground and first excited state are given. → The experimental absorption and fluorescence spectra are reproduced by calculations. → The performance of 10 exchange-correlation functionals is given. → M06 emerges as the most effective functionals. - Abstract: The ground and excited state properties of DCDPC, particularly designed as a red emitter for organic light emitting diodes applications have been studied by means of density functional theory (DFT) and time-dependent (TD)DFT. The electronic and geometrical structures of DCDPC in acetone, tetrahydrofuran and benzene solvents are reported for the first time. The experimental absorption and fluorescence spectra are reproduced by calculations. By comparison with experimental data, insight on the performance of 10 exchange correlation functionals is also given. M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy. Beside the good agreement between the calculational and experimental spectra proving the accuracy of the strategy, the calculations allow further insights into the electronic structure for the family of isophorone-based light emitting materials with D-π-A structure, especially the electronic and geometrical structures for the excited states.

  7. Ionization photophysics and Rydberg spectroscopy of diacetylene

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Gaie-Levrel, Franç ois; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    Photoionization of diacetylene was studied using synchrotron radiation over the range 8-24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IE ad=(10.17±0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE=(16.15±0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions C+ 4, C3H+, C+3 and C 4H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene in the 11-13 eV region were assigned to vibrational components of three new Rydberg series, R1(nsσg, n=4-11), R2(ndσg, n=4-7) and R3(ndδg, n=4-6) converging to the A2Πu state of the cation, and to a new series R01(nsσg, n=3) converging to the B' 2Σ+u state of the cation. The autoionization mechanisms and their consistence with specific selection rules are discussed. © 2012 Taylor and Francis.

  8. Ionization photophysics and Rydberg spectroscopy of diacetylene

    KAUST Repository

    Schwell, Martin

    2012-11-01

    Photoionization of diacetylene was studied using synchrotron radiation over the range 8-24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IE ad=(10.17±0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE=(16.15±0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions C+ 4, C3H+, C+3 and C 4H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene in the 11-13 eV region were assigned to vibrational components of three new Rydberg series, R1(nsσg, n=4-11), R2(ndσg, n=4-7) and R3(ndδg, n=4-6) converging to the A2Πu state of the cation, and to a new series R01(nsσg, n=3) converging to the B\\' 2Σ+u state of the cation. The autoionization mechanisms and their consistence with specific selection rules are discussed. © 2012 Taylor and Francis.

  9. Hispanics have the lowest stem cell transplant utilization rate for autologous hematopoietic cell transplantation for multiple myeloma in the United States: A CIBMTR report.

    Science.gov (United States)

    Schriber, Jeffrey R; Hari, Parameswaran N; Ahn, Kwang Woo; Fei, Mingwei; Costa, Luciano J; Kharfan-Dabaja, Mohamad A; Angel-Diaz, Miguel; Gale, Robert P; Ganguly, Siddharatha; Girnius, Saulius K; Hashmi, Shahrukh; Pawarode, Attaphol; Vesole, David H; Wiernik, Peter H; Wirk, Baldeep M; Marks, David I; Nishihori, Taiga; Olsson, Richard F; Usmani, Saad Z; Mark, Tomer M; Nieto, Yago L; D'Souza, Anita

    2017-08-15

    Race/ethnicity remains an important barrier in clinical care. The authors investigated differences in the receipt of autologous hematopoietic cell transplantation (AHCT) among patients with multiple myeloma (MM) and outcomes based on race/ethnicity in the United States. The Center for International Blood and Marrow Transplant Research database was used to identify 28,450 patients who underwent AHCT for MM from 2008 through 2014. By using data from the National Cancer Institute's Surveillance, Epidemiology, and End Results 18 registries, the incidence of MM was calculated, and a stem cell transplantation utilization rate (STUR) was derived. Post-AHCT outcomes were analyzed among patients ages 18 to 75 years who underwent melphalan-conditioned peripheral cell grafts (N = 24,102). The STUR increased across all groups from 2008 to 2014. The increase was substantially lower among Hispanics (range, 8.6%-16.9%) and non-Hispanic blacks (range, 12.2%-20.5%) compared with non-Hispanic whites (range, 22.6%-37.8%). There were 18,046 non-Hispanic whites, 4123 non-Hispanic blacks, and 1933 Hispanic patients. The Hispanic group was younger (P blacks (42%) compared with non-Hispanic whites (56%). A Karnofsky score 3 were more common in non-Hispanic blacks compared with Hispanic and non-Hispanic whites (P blacks (54%) and non-Hispanic whites (52%; P blacks (45%) and non-Hispanic whites (44%) had a very good partial response or better before transplantation (P = .005). Race/ethnicity did not impact post-AHCT outcomes. Although the STUR increased, it remained low and was significantly lower among Hispanics followed by non-Hispanic blacks compared with non-Hispanic whites. Race/ethnicity did not impact transplantation outcomes. Efforts to increase the rates of transplantation for eligible patients who have MM, with an emphasis on groups that underuse transplantation, are warranted. Cancer 2017;123:3141-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. Nonlinear spectroscopy of the Rydberg atoms

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.

    1984-01-01

    The results of investigation into perturbation of Rydberg states (RS) of atoms in an outer alternating field (OAF) are discussed. Both highly excited states of hydrogen atom at the energy Esub(n)=-1/2n -2 (n>>1 - basic quantum number) and excited states of compound atoms with energy Esub(nl)=-1/2(n*) -2 where n*=n-delta sub(e)-effective basic quantum number, delta sub(e)-quantum defect, are implied by RS. Perturbation of atomic state in the OAF is determined not only by field strength E, but by its frequency ω as well. During OAF inclusion the initial state Esub(lambda) transits to quasienergetic at the energy Esub(lambda)(E)+-kω, where K=0, +-1, +-2, .... Solutions of the problem of quasienergetic level population is obtained only for some simple particular cases. A simple case, when a real multilevel atom is replaced by a model system comprising one bound electron state with the basic quantum number n-model of the insulated level (MIL) is considered. Conditions of MIL applicability are discussed. Estimation of critical OAF strength at which MIL approximation becomes faulty are discussed. It is stated that any consideration of RS perturbation in OAF claiming to exceeding MIL frames should comprise consideration of ionization processes. If one keeps to the frames of OAF; the strength of which is lower than the determined critical values then MIL is true and use of this model permits to correctly describe the main features of RS perturbation in an alternating field

  11. Electromagnetically induced transparency of ultra-long-range Rydberg molecules

    DEFF Research Database (Denmark)

    Mirgorodskiy, Ivan; Christaller, Florian; Braun, Christoph

    2017-01-01

    We study the impact of Rydberg molecule formation on the storage and retrieval of Rydberg polaritons in an ultracold atomic medium. We observe coherent revivals appearing in the storage and retrieval efficiency of stored photons that originate from simultaneous excitation of Rydberg atoms and Ryd...

  12. Trapping of Rydberg atoms in tight magnetic microtraps

    NARCIS (Netherlands)

    Boetes, A.Q.G.; Skannrup, R.V.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2018-01-01

    We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to be influenced strongly by magnetic-field gradients. We show that there are regimes where Rydberg atoms can be trapped. Moreover, we show that

  13. Correlated Photon Dynamics in Dissipative Rydberg Media

    Science.gov (United States)

    Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2017-07-01

    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.

  14. Ionization of H Rydberg atoms

    International Nuclear Information System (INIS)

    Hillermier, C.F.; Bluemental, R.; Smilansky, U.

    1991-07-01

    Concepts from the theory of transient chaos are applied to study the classical ionization process of one dimensional model of kicked hydrogen Rydberg atoms. The phase-space dynamics is represented by a mapping T which is proved to be hyperbolic. The fraction of atoms not ionized after time t, P B (t), decays asymptotically according to P B (t)∼t -α with α ∼ 1.65. The observed algebraic decay, which seems to contradict the hyperbolicity of T, is explained by (i) the symbolic dynamics of T consists of a countably infinite number of symbols and (ii) the invariant manifold of phase-space points which never ionize is an anomalously scaling fractal. Therefore, the one-dimensional kicked hydrogen atom provides a counterexample to the hypothesis that algebraic decay marks regular dynamics, whereas hyperbolic systems decay exponentially. The algebraic decay is reproduced by an analytically solvable diffusion model which predicts α = 3/2. Replacing zero-width δ-kicks by smooth finite-width pulses, the mapping T is no longer completely hyperbolic, and a subset of phase-space is regular. For this case we observe that P B (t) shows a transition between two power-law decays with α ∼ 1.65 for short times and α ∼ 2.1 for long times where the effect of the regular domain is felt. (author)

  15. Wave packet fractional revivals in a one-dimensional Rydberg atom

    International Nuclear Information System (INIS)

    Veilande, Rita; Bersons, Imants

    2007-01-01

    We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time

  16. The kicked Rydberg atom: Regular and stochastic motion

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1988-01-01

    We have investigated the dynamics of a three-dimensional classical Rydberg atom driven by a sequence of pulses. Both the deterministic system with periodic pulses and the closely related ''noisy'' system with random pulses have been studied in parallel. The Lyapunov exponent is calculated as a function of pulse height and the angular momentum of the initial state. We find differences between noisy and deterministic perturbations to be most pronounced for small pulse heights. Low angular momentum orbits show enhanced diffusion in agreement with recent experimental data for ion-solid interaction. 22 refs., 6 figs

  17. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    International Nuclear Information System (INIS)

    Abdussalam, Wildan

    2017-01-01

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  18. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Abdussalam, Wildan

    2017-08-07

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  19. Nonadiabatic holonomic quantum computation using Rydberg blockade

    Science.gov (United States)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2018-04-01

    In this paper, we propose a scheme for realizing nonadiabatic holonomic computation assisted by two atoms and the shortcuts to adiabaticity (STA). The blockade effect induced by strong Rydberg-mediated interaction between two Rydberg atoms provides us the possibility to simplify the dynamics of the system, and the STA helps us design pulses for implementing the holonomic computation with high fidelity. Numerical simulations show the scheme is noise immune and decoherence resistant. Therefore, the current scheme may provide some useful perspectives for realizing nonadiabatic holonomic computation.

  20. Transient localization in the kicked Rydberg atom

    International Nuclear Information System (INIS)

    Persson, Emil; Fuerthauer, S.; Burgdoerfer, J.; Wimberger, S.

    2006-01-01

    We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg atom is shown to possess in addition to the quantum localization time τ L a second crossover time t D where quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number at fixed kick strength increases. The survival probability as a function of frequency in the transient localization regime τ L D is characterized by highly irregular, fractal-like fluctuations

  1. STARK-EFFECT IN BARIUM 6SND 1D2 RYDBERG STATES - EVIDENCE OF STRONG PERTURBATIONS IN THE 1F3 SERIES

    NARCIS (Netherlands)

    van Leeuwen, K.A.H.; Hogervorst, W.; Post, B.H.

    1983-01-01

    The scalar and tensor polarizabilities of the barium 6snd D21 states with principal quantum number n ranging from 14 to 30, as well as those of the 5d 7d D21 perturber state near n=26, have been measured with high-resolution laser-atomic-beam spectroscopy. The data are analyzed by calculating the

  2. Towards Quantum Simulation with Circular Rydberg Atoms

    Directory of Open Access Journals (Sweden)

    T. L. Nguyen

    2018-02-01

    Full Text Available The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, … and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1/2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an XXZ spin-1/2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We

  3. Towards Quantum Simulation with Circular Rydberg Atoms

    Science.gov (United States)

    Nguyen, T. L.; Raimond, J. M.; Sayrin, C.; Cortiñas, R.; Cantat-Moltrecht, T.; Assemat, F.; Dotsenko, I.; Gleyzes, S.; Haroche, S.; Roux, G.; Jolicoeur, Th.; Brune, M.

    2018-01-01

    The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, …) and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1 /2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an X X Z spin-1 /2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We discuss

  4. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  5. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    International Nuclear Information System (INIS)

    Hung, J; Sadeghi, H; Schulz-Weiling, M; Grant, E R

    2014-01-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range ℓ-mixing collisions, yielding states of high orbital angular momentum. The development of high-ℓ states promotes dipole–dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, n 0 ℓ 0 =42d, a 432 V cm −1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of ℓ-mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5×10 8 cm −3 . (paper)

  6. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    Science.gov (United States)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  7. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  8. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  9. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  10. Population coherent control of Rydberg potassium atom via adiabatic passage

    International Nuclear Information System (INIS)

    Jiang Li-Juan; Zhang Xian-Zhou; Jia Guang-Rui; Zhang Yong-Hui; Xia Li-Hua

    2013-01-01

    The time-dependent multilevel approach (TDMA) and B-spline expansion technique are used to study the coherent population transfer between the quantum states of a potassium atom by a single frequency-chirped microwave pulse. The Rydberg potassium atom energy levels of n = 6–15, l = 0–5 states in zero field are calculated and the results are in good agreement with other theoretical values. The time evolutions of the population transfer of the six states from n = 70 to n = 75 in different microwave fields are obtained. The results show that the coherent control of the population transfer from the lower states to the higher ones can be accomplished by optimizing the microwave pulse parameters. (atomic and molecular physics)

  11. Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems

    Science.gov (United States)

    Young, Jeremy T.; Boulier, Thomas; Magnan, Eric; Goldschmidt, Elizabeth A.; Wilson, Ryan M.; Rolston, Steven L.; Porto, James V.; Gorshkov, Alexey V.

    2018-02-01

    We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016), 10.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

  12. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  13. Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1 /2 Particles for the Quantum Simulation of Ising Models

    Science.gov (United States)

    de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine

    2018-03-01

    We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.

  14. Quantum localization of the kicked rydberg atom

    Science.gov (United States)

    Yoshida; Reinhold; Burgdorfer

    2000-03-20

    We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We find this quantum localization to be directly related to the existence of "scars" of the unstable periodic orbits of the system. The localization length is given by the energy excursion along the periodic orbits.

  15. Electric Dipole Echoes in Rydberg Atoms

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Burgdoerfer, J.; Zhao, W.; Mestayer, J. J.; Lancaster, J. C.; Dunning, F. B.

    2007-01-01

    We report the first observation of echoes in the electric dipole moment of an ensemble of Rydberg atoms precessing in an external electric field F. Rapid reversal of the field direction is shown to play a role similar to that of a π pulse in NMR in rephasing a dephased ensemble of electric dipoles resulting in the buildup of an echo. The mechanisms responsible for this are discussed with the aid of classical trajectory Monte Carlo simulations

  16. Cavity electromagnetically induced transparency with Rydberg atoms

    Science.gov (United States)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  17. Motion of Rydberg atoms with strong permanent-electric-dipole interactions

    International Nuclear Information System (INIS)

    Gonçalves, Luís Felipe; Thaicharoen, Nithiwadee; Raithel, Georg

    2016-01-01

    Using classical trajectories simulations, we investigate the dynamics of a cold sample of Rydberg atoms with high permanent electric dipole moments. The dipolar state can be created using an adiabatic passage through an avoided crossing between an S-like state and a linear Stark state. The simulations yield the pair-correlation functions (PCF) of the atom samples, which allow us to extract the motion of Rydberg-atom pairs in the many-body system. The results reveal the strength and the anisotropic character of the underlying interaction. The simulation is employed to test the suitability of experimental methods designed to derive interaction parameters from PCF. Insight is obtained about the stability of the method against variation of experimentally relevant parameters. Transient correlations due to interaction-induced heating are observed. (paper)

  18. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    Science.gov (United States)

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  19. The lowest-dose, extended-cycle combined oral contraceptive pill with continuous ethinyl estradiol in the United States: a review of the literature on ethinyl estradiol 20 µg/levonorgestrel 100 µg + ethinyl estradiol 10 µg

    Directory of Open Access Journals (Sweden)

    Sheila Krishnan

    2010-08-01

    Full Text Available Sheila Krishnan, Jessica KileyDepartment of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, USAAbstract: Extended-cycle oral contraceptives (OCs are increasing in popularity in the United States. A new extended-cycle OC that contains the lowest doses of ethinyl estradiol (EE and levonorgestrel (LNG + continuous EE throughout the cycle is now available. It provides 84 days of a low-dose, combined active pill containing levonorgestrel 100 µg and ethinyl estradiol 20 µg. Instead of 7 days of placebo following the active pills, the regimen delivers 7 days of ethinyl estradiol 10 µg. Existing studies reveal a similar efficacy and adverse effect profile compared with other extended-regimen OCs. Specifically, the unscheduled bleeding profile is similar to other extended-cycle OCs and improves with the increase in the duration of use. Although lower daily doses of hormonal exposure have potential benefit, to our knowledge, there are no published studies indicating that this specific regimen offers a lower incidence of hormone-related side effects or adverse events. In summary, this new extended-cycle OC provides patients a low-dose, extended-regimen OC option without sacrificing efficacy or tolerability.Keywords: continuous regimen, ethinyl estradiol, extended cycle, oral contraceptive

  20. Nuclear spin transitions in the kHz range in Rydberg matter clusters give precise values of the internal magnetic field from orbiting Rydberg electrons

    International Nuclear Information System (INIS)

    Holmlid, Leif

    2009-01-01

    Clusters of the electronically excited condensed matter Rydberg matter (RM) are planar and sixfold symmetric with specific magic numbers N as shown by rotational spectroscopy of potassium K N clusters [L. Holmlid, Mol. Phys. 105 (2007) 933; L. Holmlid, J. Mol. Struct. 885 (2008) 122]. In radio frequency emission spectra from such clusters, features are observed that are due to the hyperfine interaction between the atomic nucleus 39 K and two Rydberg electrons. These electrons exist in a doubly excited K atom at n'' = 5 or 6 in a 'sleeping-top' type rotating cluster. Such low excited electrons were observed recently in optical intra-cavity experiments in K(RM), where the electrons in the conduction band are involved in the angular momentum conservation in the stimulated emission. Here we show that the agreement with the theoretical description of circular Rydberg states is excellent within ±0.2% in the magnetic field, invoking angular momentum conservation by electrons in the condensed phase. Sleeping-top clusters may form stacks of clusters, and it is likely that such stacks are the emitting entities involved in the two nuclear spin series observed.

  1. Quasi-free scattering in the ionization and destruction of hydrogen and helium Rydberg atoms in collision with neutral targets

    International Nuclear Information System (INIS)

    Renwick, S.P.

    1992-01-01

    Hydrogen and helium Rydberg atoms (H** and He**), with principal quantum number n ranging from 10 to 20, have been used in collision experiments from 1 to 40 keV/amu. These were produced by electron capture in a charge-exchange cell and analyzed by ionization in a modulated electric field combined with phase-sensitive detection. Three experiments have been conducted. In the first, spectra of the band of H and He Rydberg states from electron capture were produced by the modulated field technique and compared. Considerable differences were found between the two. Both types of spectra were analyzed with calculations of Stark energies and field ionization rates. Attempts were made to simulate the spectra using this information and some assumptions about the state distribution produced in the electron capture. In the second experiment, destruction cross sections for H** incident on N 2 , Ar, and SF 6 were measured. This was a further test of the independent-particle model for Rydberg atom scattering; in this model, the atom is destroyed by quasi-free scattering of either the ionic core or the outer electron. Already proven valid for n = 20-35, this has been extended to n as low as 10, as measurements with n = 10 showed full compliance with the model. In the third experiment, not only destruction cross sections but also ionization cross sections for H** and He** incident on Xe, AR, and N 2 were measured. The ionization measurement is a more sensitive test of the quasi-free scattering of the Rydberg electron. This was especially important for the Xe and Ar targets, which exhibits a Ramsauer-Townsend minimum in their free-electron scattering cross sections. The quasi-free Rydberg electron should reproduce these data. Unmistakable deviations from the quasi-free prediction were seen in Xe and N 2 but not in Ar. This represents the first measurement of a breakdown of the Independent Particle Model for fast Rydberg atom scattering

  2. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  3. Microwave-to-optical frequency conversion with a Rydberg atom coupled to a coplanar waveguide

    Science.gov (United States)

    Gard, Bryan; Jacobs, Kurt; McDermott, Robert; Saffman, Mark

    2017-04-01

    A primary candidate for converting quantum information from microwave to optical frequencies is the use of Rydberg states of a single atom trapped near a surface. The fact that the Rydberg states possess both large electric dipole moments and microwave transition frequencies allows them to interact with superconducting mesoscopic circuits. By considering a concrete example, that of a Cesium atom, and using numerical search methods to optimize the control protocols, we determine the fidelities and transmission rates that could be achievable with such a device. We show that while protocols that exploit the adiabatic STIRAP mechanism provide the best raw transfer fidelities, the fastest communication speeds can be obtained by using heralding, which allows one to remove the adiabatic constraint. Support from Oak Ridge Associated Universities.

  4. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    Science.gov (United States)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  5. Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Bialynicka-Birula, Z.

    1996-01-01

    Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence

  6. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K; Miculis, K; Bezuglov, N N; Ekers, Aigars

    2016-01-01

    with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate

  7. A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Stener, M.; Decleva, P. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); CNR-IOM, Trieste (Italy); Coriani, S. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C (Denmark)

    2016-09-30

    Highlights: • The valence shell photoabsorption spectrum of s-triazine has been measured. • Electronic structure calculated with TDDFT and coupled cluster approaches. • Assignments proposed for Rydberg and valence states. • Mixing between Rydberg and valence states important. - Abstract: The absolute photoabsorption cross section of s-triazine has been measured between 4 and 40 eV, and is dominated by bands associated with valence states. Structure due to Rydberg excitations is both weak and irregular. Jahn-Teller interactions affect the vibronic structure observed in the Rydberg absorption bands due to excitation from the 1e″ or 6e′ orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important.

  8. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    Science.gov (United States)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  9. Many-body dynamics of driven-dissipative Rydberg cavity polaritons

    Science.gov (United States)

    Pistorius, Tim; Fan, Jingtao; Weimer, Hendrik

    2017-04-01

    The usage of photons as long-range information carriers has greatly increased the interest in systems with nonlinear optical properties in recent years. The nonlinearity is easily achievable in Rydberg mediums through the strong van der Waals interaction which makes them one of the best candidates for such a system. Here, we propose a way to analyze the steady state solutions of a Rydberg medium in a cavity through the combination of the variational principle for open quantum systems and the P-distribution of the density matrix. To get a better understanding of the many-body-dynamics a transformation into the polariton picture is performed and investigated. Volkswagen Foundation, Deutsche Forschungsgemeinschaft.

  10. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  11. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    Science.gov (United States)

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-03

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.

  12. Properties of Ni^+ from microwave spectroscopy of n=9 Rydberg levels of Nickel

    Science.gov (United States)

    Woods, Shannon; Keele, Julie; Smith, Chris; Lundeen, Stephen

    2012-06-01

    The microwave/RESIS method was used to determine the relative positions of 15 of the n=9 Rydberg levels of Nickel with L >= 6. Because the ground state of the Ni^+ ion is a ^2D5/2 level, each Rydberg level (n,L) splits into six eigenstates whose relative positions are determined by long-range e-Ni^+ interactions present in addition to the dominant Coulomb interaction. A previous study with the optical RESIS method determined these positions with precision of +/- 30 MHz [1]. Using the microwave/RESIS method improves that precision by a factor of 300, and leads to much improved determinations of the Ni+ properties that control the long-range interactions. [4pt] [1] Julie A. Keele, Shannon L. Woods, M.E. Hanni, and S.R. Lundeen Phys. Rev. 81, 022506 (2010)

  13. Ionization Spectroscopic Measurement of nP Rydberg Levels of 87Rb Cold Atoms

    Science.gov (United States)

    Li, Yufan; Zaheeruddin, Syed; Zhao, Dongmei; Ma, Xinwen; Yang, Jie

    2018-05-01

    We created an ultracold plasma via the spontaneous ionization of cold dense Rydberg atoms of 87Rb in a magneto-optical trap (MOT), and measured the nS1/2 (n = 50-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 49-96) Rydberg levels by detecting the electrons in the ultracold plasma. By fitting the energy levels of Rydberg states, the first ionization potential of 33690.950(11) cm-1 and the quantum defects of S, P, and D orbitals were obtained. The absolute transition energies of nS1/2 (n = 66-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 58-96) states of 87Rb, as well as the quantum defects for p1/2 and p3/2 series, are given for the first time.

  14. Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory

    International Nuclear Information System (INIS)

    Geng, L. S.; Camalich, J. Martin; Vacas, M. J. Vicente

    2009-01-01

    We present a calculation of the leading SU(3)-breaking O(p 3 ) corrections to the electromagnetic moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment of the Ω - . We predict μ Δ ++ =6.04(13) and μ Δ + =2.84(2), which agree well with the current experimental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare our results with those reported in large N c , lattice QCD, heavy-baryon chiral perturbation theory, and other models.

  15. Newton's Cradle and Entanglement Transport in a Flexible Rydberg Chain

    International Nuclear Information System (INIS)

    Wuester, S.; Ates, C.; Eisfeld, A.; Rost, J. M.

    2010-01-01

    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

  16. Autoionizing Rydberg series in alkali atoms

    International Nuclear Information System (INIS)

    Kulov, M.A.; Ivanov, V.K.; Cherepkov, N.A.

    2004-01-01

    Full text: The results of many-body calculations of autoionizing resonance structure in neutral potassium, rubidium and cesium associated with the ns 2 np 6 (n+1)s → nsnp 6 (n+1)smp Rydberg excitations are presented. The numerical method based on the Many-Body Perturbation Theory takes into account the dynamic polarization and screening of electron-electron interaction by collective motion of the whole electronic system. The many-electron effects are shown to determine the resonance shapes. The numerically obtained cross section for photoionization of 3p electrons in neutral K in the vicinity of the 3s threshold is presented. The structure has the complex shape of 3s → mp resonances due to different behavior of electrons with the opposite spin projections

  17. Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses

    International Nuclear Information System (INIS)

    Lugovskoy, A. V.; Bray, I.

    2006-01-01

    In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses

  18. Dynamical localization in the 3-D kicked Rydberg atom

    International Nuclear Information System (INIS)

    Persson, E.; Yoshida, S.; Tong, X.-M.; Reinhold, C.; Burgdoerfer, J.

    2001-01-01

    Full text: The dynamical localization for the 3D periodically kicked Rydberg atom is analyzed. For the 1D kicked atom, earlier work shows dynamical localization as the quantum suppression of classically fast ionization associated with unbounded chaotic trajectories. The corresponding wave functions localize around unstable periodic orbits. For the experimental observation, the crucial question is the dependence of the dynamical localization on the dimension. As the first step, we simulate the full 3D evolution of an extreme parabolic initial state elongated in the direction of the unidirectional kicks. We compare this simulation with the 1D model and find signatures of localization also in 3D. We further examine the dependence of quantum localization on the parabolic quantum number of the initial state. In the limit of high kick frequencies, the origin of the localization can be understood in terms of Stark states in the average field. We discuss conditions for where an experimental observation of the localization is most likely. (author)

  19. A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Holland, D.M.P.; Shaw, D.A.; Stener, Mauro

    2016-01-01

    absorption bands due to excitation from the 1e00 or 6e0 orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled...... cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important....

  20. Europe the continent with the lowest fertility

    NARCIS (Netherlands)

    Baird, D. T.; Collins, J.; Evers, J. L. H.; Leridon, H.; Lutz, W.; Velde, E. Te; Thevenon, O.; Crosignani, P. G.; Devroey, P.; Diedrich, K.; Fauser, B. C. J. M.; Fraser, L.; Geraedts, J. P. M.; Gianaroli, L.; Glasier, A.; Sunde, A.; Tarlatzis, B.; Van Steirteghem, A.; Veiga, A.

    2010-01-01

    INTRODUCTION: Although fertility rates are falling in many countries, Europe is the continent with the lowest total fertility rate (TFR). This review assesses trends in fertility rates, explores possible health and social factors and reviews the impact of health and social interventions designed to

  1. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Science.gov (United States)

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  2. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency doubled dye laser

    International Nuclear Information System (INIS)

    Becker, Th.; Germann, Th.; Thoumany, P.; Stania, G.; Urbonas, L.; Haensch, T.

    2008-01-01

    Full text: Rydberg atoms have played an important role in atomic physics and optical spectroscopy since many years. Due to their long lifetime and the big dipole matrix element between neighbouring Rydberg levels they are an essential tool in microwave cavity-qed experiments. Ultracold Rydberg gases are a promising candidate for realizing controlled quantum gates in atomic ensembles. In most experiments Rydberg atoms are detected destructively, where the optically excited atoms are first ionized followed by an electronic detection of the ionization products. A Doppler-free purely optical detection was reported in a room temperature cell and in an atomic beam apparatus using the technique of electromagnetically induced transparency. In all these experiments the Rydberg atoms are excited with two lasers in a two-step ladder configuration. Here we show that Doppler-free purely optical spectroscopy is also possible with a one step excitation scheme involving a UV laser at 297 nm. We excite the 85 Rb isotope from the 5S 1/2 ground state to the 63P 3/2 state with a frequency doubled dye laser in a room temperature gas cell without buffer gas. Rydberg transitions are detected by monitoring the absorption of 780 nm laser light which is superimposed on the UV light and resonant with one hyperfine component of the Rubidium D2 line. With these two lasers we realize a V-scheme and utilize the quantum amplification effect due to the different natural lifetimes of the upper levels of the two transitions: an excitation into the 63P level hinders many absorption-emission cycles of the D2 transition and leads to a reduced absorption on that line. We discuss the shape of the observed spectra in the context of electron shelving and EIT experiments. By applying a frequency modulation to the UV laser, we can obtain dispersive signals which can be used to stabilize the laser to a specific Rydberg transition. By shifting the frequency of the 780 nm laser to crossover resonances in the

  3. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  4. Probability of collective excited state decay

    International Nuclear Information System (INIS)

    Manykin, Eh.A.; Ozhovan, M.I.; Poluehktov, P.P.

    1987-01-01

    Decay mechanisms of condensed excited state formed of highly excited (Rydberg) atoms are considered, i.e. stability of so-called Rydberg substance is analyzed. It is shown that Auger recombination and radiation transitions are the basic processes. The corresponding probabilities are calculated and compared. It is ascertained that the ''Rydberg substance'' possesses macroscopic lifetime (several seconds) and in a sense it is metastable

  5. The lowest Landau level in QCD

    Directory of Open Access Journals (Sweden)

    Bruckmann Falk

    2017-01-01

    Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.

  6. Blueberry Galaxies: The Lowest Mass Young Starbursts

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  7. Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

    Science.gov (United States)

    Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.

    2018-05-01

    We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

  8. Two-electron excitation to Rydberg levels in fast I6+ on hydrogen collisions

    International Nuclear Information System (INIS)

    Liao, C.; Hagmann, S.; Zouros, T.J.M.; Montenegro, E.C.; Toth, G.; Richard, P.; Grabbe, S.; Bhalla, C.P.

    1995-01-01

    The emission of electrons in the forward direction in collisions of 0.3 MeV/u I 6+ with H 2 has been studied, and strong autoionization peaks are observed on the shoulder of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy. Using the electron projectile final charge state coincidence technique, we probe different collision mechanisms, which create continuum electrons that are slow in the projectile rest frame. We conclude that the observed autoionization lines are due to two electron excitation to projectile Rydberg levels. (orig.)

  9. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Christopher L., E-mail: holloway@boulder.nist.gov; Gordon, Joshua A. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, David A.; Miller, Stephanie A.; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-06-16

    We present a technique for measuring radio-frequency (RF) electric field strengths with sub-wavelength resolution. We use Rydberg states of rubidium atoms to probe the RF field. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect, and we detect the splitting via electromagnetically induced transparency (EIT). We use this technique to measure the electric field distribution inside a glass cylinder with applied RF fields at 17.04 GHz and 104.77 GHz. We achieve a spatial resolution of ≈100 μm, limited by the widths of the laser beams utilized for the EIT spectroscopy. We numerically simulate the fields in the glass cylinder and find good agreement with the measured fields. Our results suggest that this technique could be applied to image fields on a small spatial scale over a large range of frequencies, up into the sub-terahertz regime.

  10. Evidence of Antiblockade in an Ultracold Rydberg Gas

    Science.gov (United States)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  11. Asymptotically exact expression for the energies of the 3Se Rydberg series in a two-electron system

    International Nuclear Information System (INIS)

    Ivanov, I.A.; Bromley, M.W.J.; Mitroy, J.

    2002-01-01

    The 1sns 3 S e Rydberg series in a two-electron system with the charge of the nucleus, Z≅1, is treated by means of the quantum-defect theory. Comparison with configuration interaction calculations suggests that the quantum-defect expression for the energy levels becomes asymptotically exact as Z→1. This provides an analytic description of the disappearance of the 1sns 3 S e bound states when Z approaches the critical value of 1

  12. Trojan wavepackets in helium - by core-Rydberg interaction

    International Nuclear Information System (INIS)

    Kalinski, M.; Eberly, J.H.

    1996-01-01

    The authors exhibit the existence of core-induced shape invariant wave packets in helium analogous to the Trojan wave packets predicted for hydrogen. They show that the core dipole moment oscillating with the Rabi frequency in the presence of a laser field will cause both radical and angular confinement of an outer Rydberg electron moving around a nearly circular orbit if the parameters of the orbit are properly chosen. They find the relation between the Rabi frequency of the core electron oscillations, laser field strength and the parameters of the Rydberg orbit of the outer electron

  13. Resolving the radical cation formation from the lowest-excited singlet (S-1) state of terthiophene in a TiO2-SiO2 hybrid polymer matrix

    DEFF Research Database (Denmark)

    Helbig, M.; Ruseckas, A.; Grage, M.M.-L.

    1999-01-01

    and simultaneous rise of 3T(-)(+.) radical cation absorption. The observed kinetics of electron transfer are independent of excess vibrational energy in the S-1 state, and can be described by a biexponential function with time constants of similar to 1 ps (for similar to 62% of the excited 3T molecules...

  14. Ionization of nS, nP, and nD lithium, potassium, and cesium Rydberg atoms by blackbody radiation

    Science.gov (United States)

    Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B.; Bezuglov, N. N.; Ékers, A.

    2008-07-01

    The results of theoretical calculations of the blackbody ionization rates of lithium, potassium, and cesium atoms residing in Rydberg states are presented. The calculations are performed for nS, nP, and nD states in a wide range of principal quantum numbers, n = 8-65, for blackbody radiation temperatures T = 77, 300, and 600 K. The calculations are performed using the known quasi-classical formulas for the photoionization cross sections and for the radial matrix elements of transitions in the discrete spectrum. The effect of the blackbody-radiation-induced population redistribution between Rydberg states on the blackbody ionization rates measured under laboratory conditions is quantitatively analyzed. Simple analytical formulas that approximate the numerical results and that can be used to estimate the blackbody ionization rates of Rydberg atoms are presented. For the S series of lithium, the rate of population of high-lying Rydberg levels by blackbody radiation is found to anomalously behave as a function of n. This anomaly is similar to the occurrence of the Cooper minimum in the discrete spectrum.

  15. New innershell phenomena from Rydberg series of highly charged ions

    International Nuclear Information System (INIS)

    Rosmej, F.B.

    1997-01-01

    Dielectronic satellite spectra near the He-like resonance line W are investigated experimentally and theoretically. We propose that under certain plasma conditions the resonance line structure plays a minor role and can be mixed with the accumulation of Rydberg satellites. (orig.)

  16. New innershell phenomena from Rydberg series of highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [Bochum Univ. (Germany). Inst. fuer Experimentalphysik; Faenov, A.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation)

    1997-12-31

    Dielectronic satellite spectra near the He-like resonance line W are investigated experimentally and theoretically. We propose that under certain plasma conditions the resonance line structure plays a minor role and can be mixed with the accumulation of Rydberg satellites. (orig.). 7 refs.

  17. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields.

    Science.gov (United States)

    Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R

    2017-06-30

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

  18. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    Science.gov (United States)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  19. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    International Nuclear Information System (INIS)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-01-01

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n≅ 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-μK thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-μs time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  20. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  1. From the Rydberg constant to the fundamental constants metrology

    International Nuclear Information System (INIS)

    Nez, F.

    2005-06-01

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  2. Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field

    International Nuclear Information System (INIS)

    Bao Shanxia; Yang Wenguang; Zhang Hao; Zhang Linjie; Zhao Jianming; Jia Suotang

    2015-01-01

    We investigate the electromagnetically induced transparency (EIT) of 133 Cs vapor at the room temperature in a magnetic field. In a cascade three-level system involved Rydberg state, two collinearly counter-propagating and orthogonally linear-polarized laser fields act on cascaded two transitions, 6S 1/2 → 6P 3/2 and 6P 3/2 ↔ 47D 5/2 , respectively. The EIT window become broadening and split into several sub-EIT windows when the magnetic field is applied. The dependences of splitting shape and intervals of sub-EIT windows on magnetic field are measured experimentally and compared with the theoretical calculation considering the different magnetic effects on ground state, low excited state and Rydberg state. The splitting intervals of sub-EIT windows are well consistent with theoretical calculation. (author)

  3. Charge transfer rates for xenon Rydberg atoms at metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu; Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Dunham, H.R. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States); Lancaster, J.C. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)

    2007-05-15

    Recent progress in the study of charge exchange between xenon Rydberg atoms and surfaces is reviewed. Experiments using Au(1 1 1) surfaces show that under appropriate conditions each incident atom can be detected as an ion. The ionization dynamics, however, are strongly influenced by the perturbations in the energies and structure of the atomic states that occur as the ion collection field is applied and as the atom approaches the surface. These lead to avoided crossings between different atomic levels causing the atom to successively assume the character of a number of different states and lose much of its initial identity. The effects of this mixing are discussed. Efficient surface ionization is also observed at Si(1 0 0) surfaces although the ion signal is influenced by stray fields present at the surface.

  4. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  5. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  6. Photoionization of Rydberg hydrogen atom in a magnetic field

    International Nuclear Information System (INIS)

    Wang, Dehua; Cheng, Shaohao; Chen, Zhaohang

    2015-01-01

    Highlights: • The ionization of Rydberg hydrogen atom in a magnetic field has been studied. • Oscillatory structures appear in the electron probability density distributions. • This study can guide the experimental research on the photoionization microscopy. - Abstract: The ionization of Rydberg hydrogen atom in a magnetic field has been studied on the basis of a semiclassical analysis of photoionization microscopy. The photoionization microscopy interference patterns of the photoelectron probability density distribution on a given detector plane are calculated at different scaled energies. We find that due to the interference effect of different types of electron trajectories arrived at a given point on the detector plane, oscillatory structures appear in the electron probability density distributions. The oscillatory structure of the interference pattern, which contains the spatial component of the electronic wave function, evolves sensitively on the scaled energy, through which we gain a deep understanding on the probability density distribution of the electron wave function. This study provides some reference values for the future experiment research on the photoionization microscopy of the Rydberg atom in the presence of magnetic field

  7. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  8. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    Science.gov (United States)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant

  9. A Controlled-Phase Gate via Adiabatic Rydberg Dressing of Neutral Atoms

    Science.gov (United States)

    Keating, Tyler; Deutsch, Ivan; Cook, Robert; Biederman, Grant; Jau, Yuan-Yu

    2014-05-01

    The dipole blockade effect between Rydberg atoms is a promising tool for quantum information processing in neutral atoms. So far, most efforts to perform a quantum logic gate with this effect have used resonant laser pulses to excite the atoms, which makes the system particularly susceptible to decoherence through thermal motional effects. We explore an alternative scheme in which the atomic ground states are adiabatically ``dressed'' by turning on an off-resonant laser. We analyze the implementation of a CPHASE gate using this mechanism and find that fidelities of >99% should be possible with current technology, owing primarily to the suppression of motional errors. We also discuss how such a scheme could be generalized to perform more complicated, multi-qubit gates; in particular, a simple generalization would allow us to perform a Toffoli gate in a single step.

  10. Electromagnetically induced transparency in thermal Rydberg atoms: superatom model with finite Doppler broadening

    Science.gov (United States)

    Bai, Si-Yin; Bao, Qian-Qian; Tian, Xue-Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2018-04-01

    We study the steady optical responses of a cold atomic ensemble driven into the three-level ladder configuration involving a Rydberg state at finite temperatures. By improving the superatom model with thermal movement included, we calculate relevant atomic coherence effects and find that the residual Doppler broadening at the mK-K temperatures will weaken the nonclassical properties of transmitted probe photons. Furthermore, propagation directions of the probe and coupling fields have a great influence on various properties related to electromagnetically induced transparency. That is, the residual Doppler effect is more destructive to relevant atomic coherence effects in the co-propagation case but can be partially eliminated in the counter-propagation case.

  11. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  12. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms

    Science.gov (United States)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2018-03-01

    We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.

  13. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  14. Geometry and bonding in the ground and lowest triplet state of D{sub 6h} symmetric crenellated edged C{sub 6[3m(m-1)+1]}H{sub 6(2m-1)} (m = 2,..., 6) graphene hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, Michael R., E-mail: philpott@imr.edu [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan); Kawazoe, Yoshiyuki [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan)

    2009-03-30

    Ab initio plane wave all valence electron based DFT calculations were used to explore the dichotomy of perimeter vs. interior in the electronic and geometric structure of the D{sub 6h} singlet ground state and D{sub 2h} lowest triplet state of planar graphene hydrocarbon molecules with crenellated (arm chair) edges and the general formula C{sub 6[3m(m-1)+1]} H{sub 6(2m-1)} where m = 2,...,6. The largest molecule C{sub 546}H{sub 66} was 4.78 nm across and contained 2250 valence electrons. These molecules are nominally 'fully benzenoid hydrocarbons'. However with increasing size, the core of central atoms abandoned any fully benzenoid geometry they had in small systems and organized into single layer graphite (graphene) structure. The perimeter atoms of the crenellation adopted a conjugated geometry with unequal bonds and between core and perimeter there were some C{sub 6} rings retaining remnants of aromatic sextet-type properties. Compared to a zigzag edge the crenellated edge conferred stability in all the systems studied as measured by the singlet homo-lumo level gap BG{sub 0} and the singlet-lowest triplet energy gap {Delta}E{sub ST}. For the largest crenellated system (m = 6) BG{sub 0} and {Delta}E{sub ST} were approximately 0.7 eV, larger in value than for similarly sized hexagonal graphenes with zigzag edges. Triplet states were identified for all the molecules in the series and in the case of the m = 2 molecule hexabenzocoronene C{sub 42}H{sub 18}, two conformations with D{sub 2h} symmetry were identified and compared to features on the triplet state potential energy surface of benzene.

  15. Positronium in the AEgIS experiment: study on its emission from nanochanneled samples and design of a new apparatus for Rydberg excitations

    CERN Document Server

    Di Noto, Lea

    This experimental thesis has been done in the framework of AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), an experiment installed at CERN, whose primary goal is the measurement of the Earth's gravitational acceleration on anti-hydrogen. The antiatoms will be produced by the charge exchange reaction, where a cloud of Ps in Rydberg states interacts with cooled trapped antiprotons. Since the charge exchange cross section depends on Ps velocity and quantum number, the velocity distribution of Ps emitted by a positron-positronium converter as well as its excitation in Rydberg states have to be studied and optimized. In this thesis Ps cooling and emission into vacuum from nanochannelled silicon targets was studied by performing Time of Flight measurements with a dedicated apparatus conceived to receive the slow positron beam as produced at the Trento laboratory or at the NEPOMUC facility at Munich. Measurements were done by varying the positron implantation energy, the sample temperature and ...

  16. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  17. Lamb shift of Rydberg atoms in a resonator

    International Nuclear Information System (INIS)

    Belov, A.A.; Lozovik, Yu.E.; Pokrovsky, V.L.

    1988-08-01

    The Lamb shift of a Rydberg atom in a cavity is shown to be enhanced with the resonance interaction of a virtual atomic transition and cavity modes. The dependence of the Lamb shift on quantum numbers and atomic number changes drastically. Shifting cavity walls and scanning the atomic beam one can vary the Lamb shift. The value of the Lamb shift in a cavity may exceed a typical magnitude of the fine structure energy. For a rough resonance tuning the Coulumb multiplet occurs to be strongly mixed and a novel classification is necessary. (author). 8 refs, 2 figs

  18. Rydberg State Stark Spectroscopy and Applications to Plasma Diagnostics

    Science.gov (United States)

    1990-03-01

    Bayfield47 provides an excellent review of the AC Stark effect, in which the primary effect is Rabi splitting. Several authors48 , 49, 50 have...purity of the spectrum indicates that the field present is dominantly anisotropic . 53 n:26NEON LINE n=35 0 n= 40 p.- n=45 IL 0 31975 31950 31925 31900...applied (axial) electric field which is anisotropic , so pure polarization spectra can be recorded. The intensity profile of the Am = 0 polarization is

  19. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  20. Semiclassical study of the collision of a highly excited Rydberg atom with the molecules HF and HCl

    International Nuclear Information System (INIS)

    Kimura, M.; Lane, N.F.

    1990-01-01

    The semiclassical impact-parameter method is applied to the processes of state changing and energy transfer in the collision of a highly excited Rydberg atom (n≥20) with the polar molecules HF and HCl. The relative motion of the molecule and atomic nucleus is taken to be rectilinear; the electron-molecule and ion core-molecule interactions are represented by cutoff dipole forms. Cross sections for transitions involving quantum numbers n and l of the atom and rotational quantum number j of the molecule are obtained for a range of collision energies and initial atomic and molecular states. Comparisons are made with the results of earlier classical studies and with the quantum-mechanical impulse approximation. Collision rates are calculated and compared with experimental values for l mixing and n and j changing. The agreement between experiment and theory is shown to be satisfactory, within the uncertainties of both the measurements and the theory. Cases of agreement and disagreement between various theories are examined. One finding of the present work is that the quantum-mechanical impulse approximation appears to significantly overestimate the values of various state-changing cross sections when the internal energy defect is small. The validity of the impulse approximation for collisions of Rydberg atoms with polar molecules is discussed

  1. Analysis of high-n dielectronic Rydberg satellites in the spectra of Na-like Zn XX and Mg-like Zn XIX

    International Nuclear Information System (INIS)

    Fournier, K.B.; Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Murra, D.; Belyaev, V.S.; Vinogradov, V.I.; Kyrilov, A.S.; Matafonov, A.P.; Francucci, M.; Martellucci, S.; Petrocelli, G.

    2004-01-01

    We have observed spectra from highly charged zinc ions in a variety of laser-produced plasmas. Spectral features that are Na- and Mg-like satellites to high-n Rydberg transitions in the Ne-like Zn XXI spectrum are analyzed and modeled. Identifications and analysis are made by comparison with highly accurate atomic structure calculations and steady state collisional-radiative models. Each observed Zn XX and Zn XIX feature comprises up to ≅2 dozen individual transitions, these transitions are excited principally by dielectronic recombination through autoionizing levels in Na- and Mg-like Zn 19+ and Zn 18+ . We find these satellites to be ubiquitous in laser-produced plasmas formed by lasers with pulse lengths that span four orders of magnitude, from 1 ps to ≅10 ns. The diagnostic potential of these Rydberg satellite lines is demonstrated

  2. Electronic Rydberg wavepacket effects on molecular vibration

    International Nuclear Information System (INIS)

    Hughes, I.G.; Meacher, D.R.

    1994-01-01

    Electronic wavepacket states of molecular hydrogen are considered which represent the situation of a spectator electron orbiting a molecular core. A quantum defect theory approach is used to determine the energy level structure, wavefunctions and molecular potentials, which is valid in regions where the quantum defects approach zero. In such a region the orbital motion of the wavepacket leads to a periodic variation in the molecular vibration frequency of the order of 100 cm -1 . Possible detection schemes are discussed. (author)

  3. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  4. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  5. Lowest cost due to highest productivity and highest quality

    Science.gov (United States)

    Wenk, Daniel

    2003-03-01

    Since global purchasing in the automotive industry has been taken up all around the world there is one main key factor that makes a TB-supplier today successful: Producing highest quality at lowest cost. The fact that Tailored Blanks, which today may reach up to 1/3 of a car body weight, are purchased on the free market but from different steel suppliers, especially in Europe and NAFTA, the philosophy on OEM side has been changing gradually towards tough evaluation criteria. "No risk at the stamping side" calls for top quality Tailored- or Tubular Blank products. Outsourcing Tailored Blanks has been starting in Japan but up to now without any quality request from the OEM side like ISO 13919-1B (welding quality standard in Europe and USA). Increased competition will automatically push the quality level and the ongoing approach to combine high strength steel with Tailored- and Tubular Blanks will ask for even more reliable system concepts which enables to weld narrow seams at highest speed. Beside producing quality, which is the key to reduce one of the most important cost driver "material scrap," in-line quality systems with true and reliable evaluation is going to be a "must" on all weld systems. Traceability of all process related data submitted to interfaces according to customer request in combination with ghost-shift-operation of TB systems are tomorrow's state-of-the-art solutions of Tailored Blank-facilities.

  6. Ramsey interferometry of Rydberg ensembles inside microwave cavities

    Science.gov (United States)

    Sommer, Christian; Genes, Claudiu

    2018-06-01

    We study ensembles of Rydberg atoms in a confined electromagnetic environment such as is provided by a microwave cavity. The competition between standard free space Ising type and cavity-mediated interactions leads to the emergence of different regimes where the particle‑particle couplings range from the typical van der Waals r ‑6 behavior to r ‑3 and to r-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions into a characteristic signal such as intensity and contrast decay curves. As opposed to previous treatments requiring high-densities for considerable contrast and phase decay (Takei et al 2016 Nat. Comms. 7 13449; Sommer et al 2016 Phys. Rev. A 94 053607), the cavity scenario can exhibit similar behavior at much lower densities.

  7. The Rydberg constant and proton size from atomic hydrogen

    Science.gov (United States)

    Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas

    2017-10-01

    At the core of the “proton radius puzzle” is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

  8. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  9. Application of the Faddeev-Watson expansion to thermal collisions of Rydberg atoms with neutral particles

    International Nuclear Information System (INIS)

    de Prunele, E.

    1983-01-01

    The Faddeev-Watson expansion (FWE) for the T operator is applied to the study of thermal collisions between Rydberg atom and neutral atom. These collisions are considered as a three-body problem (the perturber, the Rydberg electron, and its parent core) and it is assumed, as already done in most theoretical works dealing with Rydberg-atom--atom collisions, that the core-perturber interaction can be neglected. Then the evaluation of the FWE first- and second-order terms is made tractable by using an appropriate separable potential for the Rydberg-electron--perturber interaction. The evaluation of the second-order term allows us to estimate the importance of taking into account explicitly the Rydberg-electron--core interaction in the expression of the (three-body) T operator for the thermal collisions considered. Detailed calculations for the process Rb(n, l = 0)+He →Rb(n',l')+He are presented and discussed. The FWE second-order term has been evaluated for the first time by taking the (two-body) t operator associated with the Rydberg atom (valence electron plus parent core) as the Coulomb potential. The contribution of the FWE second-order term to the scattering amplitude decreases as n increases and is found especially significant when both the momentum transfers involved in the collision are large and the values of l and l' are small

  10. Absolute high-resolution Se+ photoionization cross-section measurements with Rydberg-series analysis

    International Nuclear Information System (INIS)

    Esteves, D. A.; Bilodeau, R. C.; Sterling, N. C.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Red, E. C.; Aguilar, A.

    2011-01-01

    Absolute single photoionization cross-section measurements for Se + ions were performed at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the photo-ion merged-beams technique. Measurements were made at a photon energy resolution of 5.5 meV from 17.75 to 21.85 eV spanning the 4s 2 4p 3 4 S 3/2 o ground-state ionization threshold and the 2 P 3/2 o , 2 P 1/2 o , 2 D 5/2 o , and 2 D 3/2 o metastable state thresholds. Extensive analysis of the complex resonant structure in this region identified numerous Rydberg series of resonances and obtained the Se 2+ 4s 2 4p 23 P 2 and 4s 2 4p 21 S 0 state energies. In addition, particular attention was given to removing significant effects in the measurements due to a small percentage of higher-order undulator radiation.

  11. Lowest order Virtual Element approximation of magnetostatic problems

    Science.gov (United States)

    Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A.

    2018-04-01

    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field $\\mathbf{H}$ on each edge, and the vertex values of the Lagrange multiplier $p$ (used to enforce the solenoidality of the magnetic induction $\\mathbf{B}=\\mu\\mathbf{H}$). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\\'ed\\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions.

  12. The Excitation of Rydberg Atoms of Thallium in an Electric Field

    Science.gov (United States)

    Bokhan, P. A.; Zakrevskii, D. E.; Kim, V. A.; Fateev, N. V.

    2018-01-01

    The spectrum of excitation of Rydberg states of thallium atoms has been investigated using a collimated atomic beam in a two-step isotope selective laser scheme 62 P 1/2 → 62 D 3/2 → Tl** in the presence of an electric field with a strength of up to 1.5 kV/cm near the level 16 F 5/2. The optical transitions 6 D 3/2 → 18 D 3/2 and 6 D 3/2 → 16 G 7/2, which were induced by an external electric field and dipole-forbidden, have been studied experimentally. The values for the scalar polarizabilities (in units cm-1/(kV/cm)2) α0(16 F 5/2) = 3.71 ± 0.3, α0(18 D 3/2) = 11.70 ± 0.25, and α0(16 G 7/2) = 44.1 ± 0.9, which are compared with the calculated one, have been obtained. The new values of energy parameters for the states 18 D 3/2 and 16 G 7/2 have been determined.

  13. A photoionization study of OH and OD from 680A to 950A: An analysis of the Rydberg series

    Science.gov (United States)

    Cutler, J. N.; He, Z. X.; Samson, J. A. R.

    1994-01-01

    The photoionization spectra of OH(+) and OD(+) have been reported from 680 to 950 A (18.23 to 13.05 eV) at a wavelength resolution of 0.07 A. Through interpretation of both spectra, the Rydberg series and their higher vibrational members have been reported for three of the excited ionic states, a(sup 1)Delta, A(sup 3)Pi(i), and b(sup 1) Sigma(sup +). A vibrational progression has also been observed in both OH(+) and OD(+) which is apparently related to a fourth excited ionic state, c(sup 1)Pi. Finally, the dissociative ionization limits, corrected to 0 K,for H2O AND D2O have been measured to be 18.11+/-0.01 and 18.21+/-0.01 eV, respectively, and shown to be in good agreement with previously reported results.

  14. Measurements of the antineutrino spin asymmetry in beta decay of the neutron and restrictions on the male scattering at microelectronvolt energies using very-high-n Rydberg atoms

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Serebrov, A.P.; Stepanenko, I.V.; Alduschenkov, A.V.; Lasakov, M.S.; Kokin, A.A.; Mostovoi, Y.A.; Yerozolimsky, B.G.; Dewey, M.S.

    1995-01-01

    Atoms in very high Rydberg states, 100 approx-lt n approx-lt 1100, are used to investigate electron-molecule interactions at electron energies extending down to a few microelectronvolts. At such energies the cross section for electron capture by CCl 4 is observed to vary inversely with electron velocity, indicative of an s-wave process. Studies with the polar target CH 3 Cl suggest that dipole-supported states may be important in inelastic electron-polar molecule scattering at very low electron energies

  15. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Science.gov (United States)

    2010-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the contracting...

  16. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  17. Exciton Rydberg series in mono- and few-layer WS2

    Science.gov (United States)

    Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.

    2014-03-01

    Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.

  18. Robustness of high-fidelity Rydberg gates with single-site addressability

    Science.gov (United States)

    Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta

    2014-09-01

    Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.

  19. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold rydberg atoms

    DEFF Research Database (Denmark)

    Parigi, V.; Bimbard, E.; Stanojevic, J.

    2012-01-01

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within...

  20. How Effective Are Community College Remedial Math Courses for Students with the Lowest Math Skills?

    Science.gov (United States)

    Xu, Di; Dadgar, Mina

    2018-01-01

    Objective: This article examines the effectiveness of remediation for community college students who are identified as having the lowest skills in math. Method: We use transcript data from a state community college system and take advantage of a regression discontinuity design that compares statistically identical students who are assigned to the…

  1. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    International Nuclear Information System (INIS)

    Luppi, Eleonora; Head-Gordon, Martin

    2013-01-01

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model

  2. Effect of finite detection efficiency on the observation of the dipole-dipole interaction of a few Rydberg atoms

    International Nuclear Information System (INIS)

    Ryabtsev, I. I.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.

    2007-01-01

    We have developed a simple analytical model describing multiatom signals that are measured in experiments on dipole-dipole interaction at resonant collisions of a few Rydberg atoms. It has been shown that finite efficiency of the selective field-ionization detector leads to the mixing up of the spectra of resonant collisions registered for various numbers of Rydberg atoms. The formulas which help to estimate an appropriate mean Rydberg atom number for a given detection efficiency are presented. We have found that a measurement of the relation between the amplitudes of collisional resonances observed in the one- and two-atom signals provides a straightforward determination of the absolute detection efficiency and mean Rydberg atom number. We also performed a testing experiment on resonant collisions in a small excitation volume of a sodium atomic beam. The resonances observed for 1-4 detected Rydberg atoms have been analyzed and compared with theory

  3. Survival of Rydberg atoms in intense laser fields and the role of nondipole effects

    Science.gov (United States)

    Klaiber, Michael; Dimitrovski, Darko

    2015-02-01

    We consider the interaction of Rydberg atoms with strong infrared laser pulses using an approach based on the Magnus expansion of the time evolution operator. First-order corrections beyond the electric dipole approximation are also included in the theory. We illustrate the dynamics of the interaction at the parameters of the experiment [Eichmann et al., Phys. Rev. Lett. 110, 203002 (2013), 10.1103/PhysRevLett.110.203002]. It emerges that the depletion of Rydberg atoms in this regime comes predominantly from the nondipole effects.

  4. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    Science.gov (United States)

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A N

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  5. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    Full Text Available Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  6. Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions

    Science.gov (United States)

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A. N.

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets. PMID:22279553

  7. New value for the Rydberg constant by precision measurement of the hydrogen Balmer-β transition

    International Nuclear Information System (INIS)

    Zhao, P.

    1986-01-01

    The Rydberg constant R is determined to a very high accuracy of 3 parts in 10 10 by a direct comparison of the four hydrogen and deuterium Balmer-β transitions with a standard laser from the National Bureau of Standards. This experiment is now the most precise measurement for R and approaches the limits of accuracy for wavelength or frequency measurements in the visible region. The result is R = 109 737.315 73 (3) cm -1 with the definition of the meter: c = 299 792 458 m/sec. The experiment also yields the following results: the fine-structure splittings 4P/sub 1/2/ ↔ 4P/sub 3/2 in H: 1370.9 (3) MHz and in D: 1371.8(3) MHZ. The isotope shifts between H and D in the transitions 2S/sub 1/2/ ↔ 4P/sub 1/2/: 167 752.4(3) MHz and 2S/sub 1/2/ ↔ 4P/sub 3/2/ : 167 753.3 (3) MHz. The experiment utilizes atomic beam laser spectroscopy. A beam of atomic hydrogen (or deuterium) is excited by electron bombardment to the metastable 2S/sub 1/2/ state and is detected by a secondary electron emission detector. A chopped cw dye laser beam crosses the atomic beam at an angle of 90 0 to eliminate Doppler broadening. The metastables are quenched by laser excitation to 4P/sub 1/2/ or 4P/sub 3/2/ states. The signal is monitored by a lock-in amplifier with the chopper as reference

  8. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  9. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  10. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  11. Ionization of Rydberg atoms by the kicks of half-cycle pulses

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 4. Ionization of Rydberg atoms by the kicks of half-cycle pulses ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  12. Experiments with Rydberg atoms on a current-carrying atom chip

    NARCIS (Netherlands)

    Cisternas San Martín, N.V.

    2018-01-01

    On one side, atom-chip experiments have demonstrated to be a versatile tool to study quantum physics in cold atoms systems. On the other side, Rydberg atoms have exaggerated properties that makes them good candidates to study quantum information and quantum simulations protocols. In this thesis both

  13. Interaction of K(nd) Rydberg atoms with an amorphous gold surface

    International Nuclear Information System (INIS)

    Gray, D.F.

    1988-01-01

    This thesis reports the first controlled study of the interactions of Rydberg atoms with a metal surface. In these experiments, a collimated beam of potassium Rydberg atoms is directed at a plane surface at near grazing incidence. Positive ions formed by surface ionization are attracted to the surface by their image charge, which is counterbalanced by an external electric field applied perpendicular to the surface. The ions are detected by a position-sensitive detector (PSD). At some critical value of the external field, the ion trajectories just miss the surface, suggesting that analysis of the dependence of the ion signals of external electric field can be used to determine the distance from the surface at which ionization occurs. This distance, and thus the corresponding critical electric field, is expected to be n-dependent. Experimentally, however, it was observed that the ion signal had a sudden n-independent onset when only a small positive perpendicular electric field was applied at the surface. This observation requires, surprisingly, that the ions produced by surface ionization can readily escape from the surface. The data do, however, show that Rydberg atoms are efficiently ionized in collisions with the surface. This process may provide a useful new detection technique for Rydberg atoms

  14. Rydberg atoms in circular polarization: Classical stabilization in optical frequency fields

    International Nuclear Information System (INIS)

    Chism, Will; Reichl, L.E.

    2002-01-01

    We investigate the classical dynamics of the Rydberg atom in circularly polarized laser fields, restricted to the two-dimensional plane of polarization. We use a Poincare surface of section to study nonlinear resonance structures for optical frequency driving fields. We demonstrate the existence and morphology of these structures as the laser intensity transitions from moderate to intense

  15. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...... and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled...... are the excitations consistent with an f-series....

  16. Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.

    Science.gov (United States)

    Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P

    2017-10-27

    Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.

  17. Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms

    Science.gov (United States)

    Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2018-02-01

    We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.

  18. The search For Closed Orbits Of General Rydberg Atoms in External Fields And Their Classification

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    A program of high precision that find closed orbits for the classical motion of the electron of general Rydberg atoms in crossed magnetic and electric fields is explained. Investigations of the influence of the ionic core on the electronic trajectories using a phenomenological model potential were done. Additional closed orbits that are not present in hydrogen atoms and that seem to be composed of hydrogenic orbits were found. The stability and formation of orbits are explained. Using the generalized closed-orbit theory, the scaled recurrence spectra for rubidium Rydberg atoms were calculated. The results are in good agreement with reported experiments. Two important features of the expectra can be explained by classical core scattering: The additional non-hydrogenic resonances associated to composite orbits and the vanishing of hydrogenic resonances related to closed or whose trajectories approach the core. (Author) [es

  19. The Closed-Orbit Theory for General Rydberg Atoms in External Fields

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    The photoabsorption spectra of hydrogen Rydberg atoms, as well of model Rydberg atoms in pure magnetic or electric fields have been successfully calculated using the semiclassical closed-orbit theory. The theory relates the resonances of the spectra to closed classical orbits of the excited electron. The dynamics of multielectron atoms is more complicated than the hydrogenic one; additionally, when the atoms are in the presence of perpendicular magnetic and electric fields becomes more complex than when they are in pure fields, due to the fact that the Hamiltonian is non-separable in three degrees of freedom, instead of two non-separable degrees of freedom. In this work, I present an extension of the closed-orbit theory to three degrees of freedom, considering arbitrary quantum defects, i.e., general atoms. (Author) [es

  20. Analytical investigation of one-dimensional Rydberg atoms interacting with half-cycle pulses

    International Nuclear Information System (INIS)

    Bersons, I.; Veilande, R.

    2004-01-01

    Classical, quantum-mechanical, and semiclassical expressions for the transition probability in one-dimensional Rydberg atom irradiated by short half-cycle pulse are derived and compared. The simple formulas obtained for excitation of Rydberg atom by two time delayed weak half-cycle pulses reproduce well the experimental data and the solutions of time-dependent Schroedinger equation. When the transferred momenta are stronger and positive, the transition probabilities exhibit fast oscillations with time delay between the pulses. The classical transition probability is constant in time. For negative transferred momenta a focusing phenomenon is observed, and there is a region in time delay, where the transition probabilities oscillate with the Kepler period

  1. Hydrogen Balmer series measurements and determination of Rydberg's constant using two different spectrometers

    International Nuclear Information System (INIS)

    Amrani, D

    2014-01-01

    This paper investigates the use of two different methods, the optical and the computer-aided diffraction-grating spectrometer, to measure the wavelength of visible lines of Balmer series from the hydrogen atomic spectrum and estimate the value of Rydberg's constant. Analysis and interpretation of data showed that both methods, despite their difference in terms of the type of equipment used, displayed good performance in terms of precision of measurements of wavelengths of spectral lines. A comparison was carried out between the experimental value of Rydberg's constant obtained with both methods and the accepted value. The results of Rydberg's constant obtained with both the optical and computer-aided spectrometers were 1.099 28 × 10 −7  m −1  and 1.095 13 × 10 −7  m −1  with an error difference of 0.17% and 0.20% compared to the accepted value 1.097 373 × 10 −7  m −1 , respectively. (paper)

  2. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    Science.gov (United States)

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  3. High Rydberg resonances in dielectronic recombination of pb(79+).

    Science.gov (United States)

    Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z

    2002-07-29

    Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions.

  4. Validity of the lowest-Landau-level approximation for rotating Bose gases

    International Nuclear Information System (INIS)

    Morris, Alexis G.; Feder, David L.

    2006-01-01

    The energy spectrum for an ultracold rotating Bose gas in a harmonic trap is calculated exactly for small systems, allowing the atoms to occupy several Landau levels. Two vortexlike states and two strongly correlated states (the Pfaffian and Laughlin) are considered in detail. In particular, their critical rotation frequencies and energy gaps are determined as a function of particle number, interaction strength, and the number of Landau levels occupied (up to three). For the vortexlike states, the lowest-Landau-level (LLL) approximation is justified only if the interaction strength decreases with the number of particles; nevertheless, the constant of proportionality increases rapidly with the angular momentum per particle. For the strongly correlated states, however, the interaction strength can increase with particle number without violating the LLL condition. The results suggest that, in large systems, the Pfaffian and Laughlin states might be stabilized at rotation frequencies below the centrifugal limit for sufficiently large interaction strengths, with energy gaps a significant fraction of the trap energy

  5. Projection-operator calculations of the lowest e--He resonance

    International Nuclear Information System (INIS)

    Berk, A.; Bhatia, A.K.; Junker, B.R.; Temkin, A.

    1986-01-01

    Results for the lowest (Schulz) autodetaching state of He - [1s(2s) 2 ] are reported. The calculation utilizes the full projection-operator formalism as explicitly developed by Temkin and Bhatia [Phys. Rev. A 31, 1259 (1985)]. Eigenvalues, scrE = , are calculated using projection operators Q depending on increasingly elaborate target wave functions going up to a 10-term Hylleraas-form, and a configuration-interaction total wave function Phi of 40 configurations. Results are well converged, but our best value is --0.13 eV above the experimental position at 19.37 eV. We conclude that the shift (Δ) in the Feshbach formalism gives a large contribution (relative to the width) to the position E/sub r/ ( = scrE+Δ). An appendix is devoted to the evaluation of the most complicated type of three-center integral involved in the calculation

  6. Determination of the lowest critical power levels of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Do Quang; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    This paper presents the experimental methods for determining critical states of the Dalat Nuclear Research Reactor containing an extraneous neutron source induced by gamma ray reactions on beryllium in the reactor. The lowest critical power levels are measured at various moments after the reactor is shut down following 100 hours of its continuous operation. Th power levels vary from (0.5-1.2) x 10{sup -4} of P{sub n}, i.e. (25-60)W to (1.1-1.6) x 10{sup -5} of P{sub n}, i.e. (5.5-8)W at corresponding times of 4 days to 13 days after the reactor is shut down. However the critical power must be chosen greater than 500 W to sustain the steady criticality of the reactor for a long time. (author). 3 refs. 4 figs. 1 tab.

  7. Observation of Rydberg transitions from the inner valence shell of ethane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Tanaka, H.; Spence, D.

    1987-01-01

    The electron impact spectrum of ethane has been examined in a region that includes ionization out of the inner valence shell. One diffuse structure and a progression of ten vibrational bands have been found in a 4 eV range below and to some degree overlapping the 2 A 2 /sub u/ ion threshold. Evidence indicates that the observed transitions belong to the symmetry forbidden Rydberg series (2a 2 /sub u/) 2 →(2a 2 /sub u/, npσ or npπ)

  8. Microwave multiphoton excitation of helium Rydberg atoms: The analogy with atomic collisions

    International Nuclear Information System (INIS)

    van de Water, W.; van Leeuwen, K.A.H.; Yoakum, S.; Galvez, E.J.; Moorman, L.; Bergeman, T.; Sauer, B.E.; Koch, P.M.

    1989-01-01

    We study multiphoton transitions in helium Rydberg atoms subjected to a microwave electric field of fixed frequency but varying intensity. For each principal quantum number in the range n=25--32, the n 3 S to n 3 (L>2), n=25--32, transition probability exhibits very sharp structures as a function of the field amplitude. Their positions could be reproduced precisely using a Floquet Hamiltonian for the interaction between atom and field. Their shapes are determined by the transients of field turn-on and turn-off in a way that makes a close analogy with the theory of slow atomic collisions

  9. The lowest excited singlet state of isolated 1-phenyl-butadiene and 1-phenyl-hexatriene

    NARCIS (Netherlands)

    Kohler, B.E.; Shaler, T.A.; Buma, W.J.; Song, K.; Nuss, J.M.

    1992-01-01

    We report vibrationally resolved S0S1 excitation spectra and vibronic level decay times for the phenyl-substituted polyenes 1-phenylbutadiene and 1-phenylhexatriene seeded in supersonic He expansions. This information was obtained using one- and two-color resonance-enhanced multiphoton ionization

  10. Fifth Stereoactive Orbital on Silicon: Relaxation of the Lowest Singlet Excited State of Octamethyltrisilane

    Czech Academy of Sciences Publication Activity Database

    MacLeod, M. K.; Kobr, L.; Michl, Josef

    2012-01-01

    Roč. 116, č. 43 (2012), s. 10507-10517 ISSN 1089-5639 Grant - others:NSF(US) CHE0848477 Institutional support: RVO:61388963 Keywords : density-functional theory * polysilane high polymers * zeta valence quality * Gaussian-basis sets * electronic-structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  11. Microwave ionization and excitation of Ba Rydberg atoms

    International Nuclear Information System (INIS)

    Eichmann, U.; Dexter, J.L.; Xu, E.Y.; Gallagher, T.F.

    1989-01-01

    We have investigated ionization and excitation of the Ba 6sn s 1 S 0 and 6snd 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28 n -5 , and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpret the data. In particular multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values. (orig.)

  12. Synchrotron far-infrared spectroscopy of the two lowest fundamental modes of 1,1-difluoroethane

    Science.gov (United States)

    Wong, Andy; Thompson, Christopher D.; Appadoo, Dominique R. T.; Plathe, Ruth; Roy, Pascale; Manceron, Laurent; Barros, Joanna; McNaughton, Don

    2013-08-01

    The far-infrared (FIR) spectrum (50-600 cm-1) of 1,1-difluoroethane was recorded using the high-resolution infrared AILES beamline at the Soleil synchrotron. A ro-vibrational assignment was performed on the lowest wavenumber, low intensity 181 0 and 171 0 modes, yielding band centres of 224.241903 (10) cm-1 and 384.252538 (13) cm-1, respectively. A total of 965 and 2031 FIR transitions were assigned to the 181 0 and 171 0 fundamentals, respectively. Previously measured pure rotational transitions from the upper states were included into the respective fits to yield improved rotational and centrifugal distortion constants. The 182 1 hot band was observed within the fundamental band, with 369 FIR transitions assigned and co-fitted with the fundamental to give a band centre of 431.956502 (39) cm-1 for ν 18 = 2. The 182 0 overtone was observed with 586 transitions assigned and fitted to give a band centre of 431.952763 (23) cm-1 for ν 18 = 2. The difference in energy is attributed to a torsional splitting of 0.003740 (45) cm-1 in the ν 18 = 2 state. Two hot bands originating from the ν 18 = 1 and ν 17 = 1 states were observed within the 171 0 fundamental.

  13. Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field

    International Nuclear Information System (INIS)

    Cheng Shao-Hao; Wang De-Hua; Chen Zhao-Hang; Chen Qiang

    2016-01-01

    In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. (paper)

  14. Long-term evolution and revival structure of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.

    1995-01-01

    It is known that, after formation, a Rydberg wave packet undergoes a series of collapses and revivals within a time period called the revival time, t rev , at the end of which it is close to its original shape. We study the behavior of Rydberg wave packets on time scales much greater than t rev . We show that after a few revival cycles the wave packet ceases to reform at multiples of the revival time. Instead, a new series of collapses and revivals commences, culminating after a time period t sr >>t rev with the formation of a wave packet that more closely resembles the initial packet than does the full revival at time t rev . Furthermore, at times that are rational fractions of t sr , the square of the autocorrelation function exhibits large peaks with periodicities that can be expressed as fractions of the revival time t rev . These periodicities indicate a new type of fractional revival occurring for times much greater than t rev . A theoretical explanation of these effects is outlined. ((orig.))

  15. Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach

    Czech Academy of Sciences Publication Activity Database

    Tarana, Michal; Čurík, Roman

    2016-01-01

    Roč. 93, č. 1 (2016), 012515 ISSN 0556-2791 R&D Projects: GA ČR(CZ) GP14-15989P Institutional support: RVO:61388955 Keywords : adiabatic-potential-energy curves * Rydberg molecules * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach

    Czech Academy of Sciences Publication Activity Database

    Tarana, Michal; Čurík, Roman

    2016-01-01

    Roč. 93, č. 1 (2016), 012515 ISSN 0556-2791 R&D Projects: GA ČR(CZ) GP14-15989P Institutional support: RVO:61388955 Keywords : adiabatic-potential- energy curves * Rydberg molecules * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Influence of increasing nuclear charge on the Rydberg spectra of Xe, Cs+, and Ba++: Correlation, term dependence, and autoionization

    International Nuclear Information System (INIS)

    Hill, W.T. III; Cheng, K.T.; Johnson, W.R.; Lucatorto, T.B.; McIlrath, T.J.; Sugar, J.

    1982-01-01

    The first experimental-theoretical study of Rydberg autoionizing resonances along an isoelectronic sequence is presented. This analysis demonstrates the intimate connection between electron-electron correlation, term-dependence, and autoionization and underscores the power of multichannel quantum defect theory in analyzing complex spectra

  18. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a 'Rydberg gas?'

    International Nuclear Information System (INIS)

    Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.

    2003-01-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma

  19. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  20. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). This low transition energy, compared to energies typically involved in nuclear processes, would allow for the application of laser-spectroscopic methods. Also considering the isomeric lifetime of the excited state (estimated to be 10{sup 3} to 10{sup 4} s), which leads to an extremely sharp linewidth of Δω/ω ∝ 10{sup -20}, the isomer becomes a strong candidate for a nuclear-based frequency standard. In order to directly detect the isomeric ground-state decay and improve the accuracy of its energy as a prerequisite for an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer-gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used. Following the QMS, the Thorium isomeric decay is expected to be detectable. Internal conversion as well as photonic decay is probed via different detection techniques. Latest results are presented.

  1. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroanilin

    DEFF Research Database (Denmark)

    Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... the electric dipole moments in the gas phase and for 100 solvent congurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  2. Contract Source Selection: An Analysis of Lowest Price Technically Acceptable and Tradeoff Strategies

    Science.gov (United States)

    2016-06-15

    using- spss - statistics.php Lamoureux, J., Murrow, M., & Walls, C. (2015). Relationship of source selection methods to contract outcomes: an analysis ...Contract Source Selection: an Analysis of Lowest Price Technically Acceptable and Tradeoff Strategies 15 June 2016 LCDR Jamal M. Osman, USN...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Contract Source Selection: an Analysis of Lowest Price Technically Acceptable and Tradeoff

  3. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    International Nuclear Information System (INIS)

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-01-01

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density ρ=3.9 ((ℎ/2π) 2 /mC 6 ) 3/4 , where C 6 is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  4. A study on the performance of an electrostatic focusing mirror for Rydberg positronium

    Science.gov (United States)

    Jones, Adric C. L.; Cecchini, Gabriel G.; Moxom, Jeremy; Osorno, Kevin; Rutbeck-Goldman, Harris J.; Fuentes-Garcia, Melina; Greaves, Rod G.; Adams, Daniel J.; Tom, Harry W. K.; Mills, Allen P., Jr.

    2018-01-01

    Recently, we demonstrated an electrostatic mirror that focuses a beam of Rydberg positronium atoms over a 6 m path to a 32 ± 1 mm FWHM diameter spot on a position sensitive detector. The mirror is comprised of 360 wires arranged in the shape of a nearly-cylindrical revolved truncated ellipse 96 mm in radius, with potentials of equal and opposite magnitude applied to alternating wires to create a short-ranged electric field that decreases in magnitude exponentially with e-folding length = 0.53 mm. Here, we explore in detail the observed resolution and discuss the factors contributing to its broadening from the ideal point focus of a perfect embodiment of the mirror. Improvements to the design are considered, with the aim to achieve a mirror with a resolution of <0.5 mm, which is necessary for a proposed measurement of the gravitational deflection of positronium.

  5. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Joshua A., E-mail: josh.gordon@nist.gov; Holloway, Christopher L. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, Dave A.; Miller, Stephanie; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-07-14

    In this paper, we demonstrate the detection of millimeter waves via Autler-Townes splitting in {sup 85}Rb Rydberg atoms. This method may provide an independent, atom-based, SI-traceable method for measuring mm-wave electric fields, which addresses a gap in current calibration techniques in the mm-wave regime. The electric-field amplitude within a rubidium vapor cell in the WR-10 wave guide band is measured for frequencies of 93.71 GHz and 104.77 GHz. Relevant aspects of Autler-Townes splitting originating from a four-level electromagnetically induced transparency scheme are discussed. We measured the E-field generated by an open-ended waveguide using this technique. Experimental results are compared to a full-wave finite element simulation.

  6. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  7. Verification of the validity of the short-pulse approximation for one-dimensional Rydberg atoms

    International Nuclear Information System (INIS)

    Kopyciuk, T; Grajek, M

    2011-01-01

    In this paper, we investigate the short-pulse approximation (SPA) for one-dimensional Rydberg atoms. We analyse the limits that SPA has to fulfil in order to be applicable. These concern the shape, the duration and the displacement caused by the pulse. The correctness of SPA is tested by comparing the results obtained using SPA with a numerical solution of the set of time-dependent Schroedinger equations. We show that the limit for the displacement caused by the pulse is of greatest importance. Violation of the limit for the duration of the pulse is shown to lead to concurrent violation of the limit for the displacement. We also show that the shape of the pulse has no influence on the created wave packet.

  8. Semiclassical analysis of quantum localization of the periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Persson, E.; Burgdoerfer, J.; Grossmann, F.

    2004-01-01

    The periodically kicked Rydberg atom displays quantum localization, features of which depend on the orientation and strength of the unidirectional kicks. They include scarring of the wave function, localization by cantori, and exponential localization in the regime of strong perturbation resembling dynamical localization. Using the semiclassical Herman-Kluk propagator we investigate the degree to which semiclassical dynamics can mimic quantum localization. While the semiclassical approximation has difficulties to reproduce the scarred wave functions, the exponential tail which is a typical signature of the dynamical localization is well represented in the case of strong classical diffusion. Also the localization by broken tori is observed in the semiclassical recurrence probability for short times but the deviation from the corresponding quantum dynamics becomes more pronounced for the long-time evolution

  9. Exponential and nonexponential localization of the one-dimensional periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Kristoefel, P.; Burgdoerfer, J.

    2000-01-01

    We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We identify for this system the coexistence of different localization mechanisms associated with resonant and nonresonant diffusion. We find for the suppression of nonresonant diffusion an exponential localization whose localization length can be related to the classical dynamics in terms of the ''scars'' of the unstable periodic orbits. We show that the localization length is determined by the energy excursion along the periodic orbits. The suppression of resonant diffusion along the sequence of photonic peaks is found to be nonexponential due to the presence of high harmonics in the driving force. (c) 2000 The American Physical Society

  10. High-Resolution Spectroscopy of He{_2}^+ Using Rydberg-Series Extrapolation and Zeeman-Decelerated Supersonic Beams of Metastable He_2

    Science.gov (United States)

    Jansen, Paul; Semeria, Luca; Merkt, Frederic

    2016-06-01

    Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M

  11. Pricing strategies for combination pediatric vaccines based on the lowest overall cost formulary.

    Science.gov (United States)

    Behzad, Banafsheh; Jacobson, Sheldon H; Sewell, Edward C

    2012-10-01

    This paper analyzes pricing strategies for US pediatric combination vaccines by comparing the lowest overall cost formularies (i.e., formularies that have the lowest overall cost). Three pharmaceutical companies compete pairwise over the sale of monovalent and combination vaccines. Particular emphasis is placed on examining the price of Sanofi Pasteur's DTaP-IPV/HIb under different conditions. The main contribution of the paper is to provide the lowest overall cost formularies for different prices of DTaP-IPV/HIb and other Sanofi Pasteur vaccines. The resulting analysis shows that DTaP-IPV/HIb could have been more competitively priced compared with the combination vaccine DTaP-HepB-IPV, for federal contract prices in 2009, 2010 and 2011. This study also proposes the lowest overall cost formularies when shortages of monovalent vaccines occur.

  12. Assessment of eight HPV vaccination programs implemented in lowest income countries

    OpenAIRE

    Ladner, Joël; Besson, Marie-Hélène; Hampshire, Rachel; Tapert, Lisa; Chirenje, Mike; Saba, Joseph

    2012-01-01

    Abstract Background Cervix cancer, preventable, continues to be the third most common cancer in women worldwide, especially in lowest income countries. Prophylactic HPV vaccination should help to reduce the morbidity and mortality associated with cervical cancer. The purpose of the study was to describe the results of and key concerns in eight HPV vaccination programs conducted in seven lowest income countries through the Gardasil Access Program (GAP). Methods The GAP provides free HPV vaccin...

  13. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    Science.gov (United States)

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical

  14. H-, He-like recombination spectra - II. l-changing collisions for He Rydberg states

    Science.gov (United States)

    Guzmán, F.; Badnell, N. R.; Williams, R. J. R.; van Hoof, P. A. M.; Chatzikos, M.; Ferland, G. J.

    2017-01-01

    Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of big bang nucleosynthesis models. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in l-changing collisional rate coefficients predicted by three different theories can translate into 10 per cent changes in predictions for H I spectra. Here, we consider the more complicated case of He atoms, where low-l subshells are not energy degenerate. A criterion for deciding when the energy separation between l subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. We show that the l-changing rate coefficients from the different theoretical approaches lead to differences of ˜10 per cent in He I emissivities in simulations of H II regions using spectral code CLOUDY.

  15. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  16. TRACING THE LOWEST PROPELLER LINE IN MAGELLANIC HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel, E-mail: dimitris_christodoulou@uml.edu, E-mail: silas_laycock@uml.edu, E-mail: jun_yang@uml.edu, E-mail: fingerman.samuel@gmail.com [Lowell Center for Space Science and Technology, 600 Suffolk Street, Lowell, MA 01854 (United States)

    2016-09-20

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P {sub S} < 12 s, detected at relatively low X-ray luminosities L {sub X} , appear to define such a line in the P {sub S} – L {sub X} diagram, characterized by a magnetic moment of μ = 3 × 10{sup 29} G cm{sup 3}. This value implies the presence of surface magnetic fields of B ≥ 3 × 10{sup 11} G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  17. Competition between font face="Symbol">Lfont>- and V-type transitions in interference stabilization of Rydberg atoms.

    Science.gov (United States)

    Fedorov, M; Poluektov, N

    1998-01-19

    The problem of Interference Stabilization of Rydberg atoms is considered. Two kinds of Raman-type transitions can be responsible for the effect: L-type transitions via the continuum and V-type transitions via lower resonant atomic levels. The main distinctions between L- and V- stabilization are described. The conditions under which each of these two effects can exist are found and discussed.

  18. Numerology, hydrogenic levels, and the ordering of excited states in one-electron atoms

    Science.gov (United States)

    Armstrong, Lloyd, Jr.

    1982-03-01

    We show that the observed ordering of Rydberg states of one-electron atoms can be understood by assuming that these states are basically hydrogenic in nature. Much of the confusion concerning this point is shown to arise from the failure to differentiate between hydrogenic ordering as the nuclear charge approaches infinity, and hydrogenic ordering for an effective charge of one. The origin of κ ordering of Rydberg levels suggested by Sternheimer is considered within this picture, and the predictions of κ ordering are compared with those obtained by assuming hydrogenic ordering.

  19. The multielectron character of the S 2p → 4e{sub g} shape resonance in the SF{sub 6} molecule studied via detection of soft X-ray emission and neutral high-Rydberg fragments

    Energy Technology Data Exchange (ETDEWEB)

    Kivimäki, A., E-mail: kivimaki@iom.cnr.it [CNR—Istituto Officina dei Materiali (IOM), Laboratorio TASC, 34149 Trieste (Italy); Coreno, M. [CNR—Istituto di Struttura della Materia (ISM), Basovizza Area Science Park, 34149 Trieste (Italy); Miotti, P.; Frassetto, F.; Poletto, L. [CNR—Istituto di Fotonica e Nanotecnologie (IFN), via Trasea 7, 35131 Padova (Italy); Stråhlman, C. [MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund (Sweden); Simone, M. de [CNR—Istituto Officina dei Materiali (IOM), Laboratorio TASC, 34149 Trieste (Italy); Richter, R. [Elettra-Sincrotrone Trieste, Area Science Park Basovizza, 34149 Trieste (Italy)

    2016-05-15

    Highlights: • The soft X-ray emission spectrum of SF{sub 6} changes at the S 2p → 4e{sub g} shape resonance. • The emission band around 172 eV indicates the population of the 6a{sub 1g} orbital. • Shake-up processes accompanying S 2p ionization can explain the new emissions. • Field ionization of neutral high Rydberg (HR) fragments reveals F and S atoms. • The yield of neutral HR fragments increases at the S 2p → 4e{sub g} shape resonance. - Abstract: We have studied the nature of the S 2p → 4e{sub g} shape resonance in the SF{sub 6} molecule by performing two different experiments. Soft X-ray emission spectra measured at the 4e{sub g} shape resonance reveal features that do not originate from the S 2p{sup −1} states. One of the features can be assigned to the 6a{sub 1g} → S 2p transition. The 6a{sub 1g} orbital, which is empty in the molecular ground state, can be populated either in core–valence double excitations or in S 2p shake-up transitions. Both these channels are considered. We have also studied the fragmentation of SF{sub 6} molecule after the decay of the S 2p core-hole states by observing neutral fragments in high-Rydberg states, where an electron occupies an orbital with n ≥ 20 (n is the principal quantum number). Such neutral fragments become, in relative terms, more abundant at the S 2p → 4e{sub g} shape resonance with respect to the S 2p → 2t{sub 2g} shape resonance, which is a pure one-electron phenomenon.

  20. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  1. Circular states of atomic hydrogen

    International Nuclear Information System (INIS)

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-01-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29→n=30 transition. copyright 1997 The American Physical Society

  2. Lowest instrumented vertebra selection in Lenke 3C and 6C scoliosis

    DEFF Research Database (Denmark)

    Wang, Yu; Bünger, Cody; Zhang, Yanqun

    2012-01-01

    PURPOSE: The aim of this study was to investigate whether or not post-op curve behaviour differs due to different choices of lowest instrumented vertebra (LIV) with reference to lumbar apical vertebra (LAV) in Lenke 3C and 6C scoliosis. METHODS: We reviewed all the AIS cases surgically treated...... it can yield similar correction while preserving more lumbar mobility and growth potential....

  3. Excitation energy of the lowest 2+ and 3- levels in 32Mg and 146Gd

    International Nuclear Information System (INIS)

    Barranco, M.; Lombard, R.J.

    1978-06-01

    The excitation energy of the lowest 2 + and 3 - levels are calculated for neutron rich Mg-isotopes as well as for N=82 isotones. The calculations are made by assuming quadrupole-quadrupole and octupole-octupole forces. The quasi-particles energies and occupation numbers are taken from the energy density method

  4. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  5. Degeneracy of the lowest Landau level and suq(2) on the Poincare half plane

    International Nuclear Information System (INIS)

    Jellal, A.

    2000-01-01

    It is shown that the presence of the quantum group symmetry su q (2) in the quantum Hall effect on the Poincare upper half plane the degeneracy of the lowest Landau level. It is also shown that the relation between the degeneracy and the cyclic representation of su q (2) appears in accordance with q being a kth root of unity. (Authors)

  6. Fine structure of the lowest Landau level in suspended trilayer graphene

    NARCIS (Netherlands)

    van Elferen, H. J.; Veligura, A.; Tombros, N.; Kurganova, E. V.; van Wees, B. J.; Maan, J. C.; Zeitler, U.

    2013-01-01

    Magnetotransport experiments on ABC-stacked suspended trilayer graphene reveal a complete splitting of the 12-fold degenerated lowest Landau level, and, in particular, the opening of an exchange-driven gap at the charge neutrality point. A quantitative analysis of distinctness of the quantum Hall

  7. Award of Construction Contracts: Public Institutions' Authority to Select the Lowest Responsible Bidder.

    Science.gov (United States)

    Cole, Elsa Kircher; Goldblatt, Steven M.

    1989-01-01

    The article describes the responsibilities of public colleges and universities to award construction contracts to the lowest responsible bidder; discusses the purpose of bid statutes; and lists the factors institutions should consider in determining a bidder's responsibility. Also covered are the standard of review and due process rights of the…

  8. Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O

    Energy Technology Data Exchange (ETDEWEB)

    Ikebata, Yasuhiko; Suekane, Shota

    1983-10-01

    The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.

  9. Dynamics of a Rydberg hydrogen atom near a metal surface in the electron-extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Iñarrea, Manuel [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Lanchares, Víctor [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Palacián, Jesús [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain); Pascual, Ana I. [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Yanguas, Patricia [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain)

    2015-01-23

    We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The evolution of the phase space structure as a function of the atom–surface distance is explored in the bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. We find that the classical results of this work are in good agreement with the results obtained in the wave-packet propagation study carried out by So et al. [1]. - Highlights: • We study a classical hydrogen atom near a metal surface plus a electric field. • We explore the phase space structure as a function of the field strength. • We find most of the electronic orbits are oriented along the field direction. • We study the ionization of the atom for several atom–surface distances. • This classical study is in good agreement with the quantum results.

  10. Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms

    Science.gov (United States)

    Shi, Xiao-Feng

    2018-05-01

    Universal quantum gates and quantum error correction (QEC) lie at the heart of quantum-information science. Large-scale quantum computing depends on a universal set of quantum gates, in which some gates may be easily carried out, while others are restricted to certain physical systems. There is a unique three-qubit quantum gate called the Deutsch gate [D (θ )], from which a circuit can be constructed so that any feasible quantum computing is attainable. We design an easily realizable D (θ ) by using the Rydberg blockade of neutral atoms, where θ can be tuned to any value in [0 ,π ] by adjusting the strengths of external control fields. Using similar protocols, we further show that both the Toffoli and controlled-not gates can be achieved with only three laser pulses. The Toffoli gate, being universal for classical reversible computing, is also useful for QEC, which plays an important role in quantum communication and fault-tolerant quantum computation. The possibility and speed of realizing these gates shed light on the study of quantum information with neutral atoms.

  11. Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts

    International Nuclear Information System (INIS)

    Beauvoir, B. de; Schwob, C.; Jozefowski, L.; Hilico, L.; Nez, F.; Julien, L.; Biraben, F.

    2000-01-01

    We present a detailed description of several experiments which have been previously reported in several letters: the determination of the 1S Lamb shift in hydrogen by a comparison of the frequencies of the 1S-3S and 2S-6S or 2S-6D two-photon transitions, and the measurement of the 2S-8S/D and 2S-12D optical frequencies. Following a complete study of the lineshape of the two-photon transitions, we provide the updated values of these frequencies which have been used in the 1998 adjustment of the fundamental constants. From an analysis taking into account these results and several other precise measurements by other authors, we show that the optical frequency measurements have superseded the microwave determination of the 2S Lamb shift and we deduce optimized values for the Rydberg constant, R ∞ =109737.31568550(84) cm -1 (relative uncertainty of 7.7 x 10 -12 ) and for the 1S and 2S Lamb shifts L(1S)=8172.840(22) MHz and L(2S-2P)=1 057.8450(29) MHz (respectively, 8183.970(22) MHz and 1059.2341(29) MHz for deuterium). These are now the most accurate values available. (orig.)

  12. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    Science.gov (United States)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  13. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

    Science.gov (United States)

    Zhang, Linjie; Liu, Jiasheng; Jia, Yue; Zhang, Hao; Song, Zhenfei; Jia, Suotang

    2018-03-01

    The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry–Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell. Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi “331 Project” Key Subjects Construction, China.

  14. Pathways of low carbon transition at the lowest cost. Pathways of low carbon transition in France at the lowest cost - Dynamics and average abatement costs (MACC)

    International Nuclear Information System (INIS)

    Perrissin Fabert, Baptiste; Foussard, Alexis

    2016-11-01

    The objective to divide greenhouse gas emissions in France by a factor four by 2050 implies the mobilisation at the lowest cost of the whole set of known sources of reduction of emissions in all economic sectors. In this context, this report is based on a methodology (D-CAM in French for dynamics - average abatement costs, MACC in English for Medium Abatement Cost Curves) which relies on a theoretical business-as-usual scenario, on a database on the potential, rate of development, and cost of mobilizable sources, and on a dynamic model of cost minimisation. The MACC tool is used to explore, for each sector, scenarios of de-carbonation which allow objectives of reduction of greenhouse gas emissions to be reached at different time horizons. An aggregated approach of this tool modifies the distribution of efforts of emission reduction between sectors with respect to a sector-based approach. Thus, a macro-assessment of low carbon transition does not reveal any obvious over-cost with respect to the business-as-usual scenario. A second document is a Power Point presentation which contains the same information, curves and graphs

  15. A q-Schroedinger algebra, its lowest weight representations and generalized q-deformed heat equations

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Doebner, H.D.; Mrugalla, C.

    1995-12-01

    We give a q-deformation S-perpendicular q of the centrally extended Schroedinger algebra. We construct the lowest weight representations of S-perpendicular q , starting from the Verma modules over S-perpendicular q , finding their singular vectors and factoring the Verma submodules built on the singular vectors. We also give a vector-field realization of S-perpendicular q which provides polynomial realization of the lowest weight representations and an infinite hierarchy of q-difference equations which may be called generalized q-deformed heat equations. We also apply our methods to the on-shell q-Schroedinger algebra proposed by Floreanini and Vinet. (author). 12 refs

  16. Lowest-order constrained variational method for simple many-fermion systems

    International Nuclear Information System (INIS)

    Alexandrov, I.; Moszkowski, S.A.; Wong, C.W.

    1975-01-01

    The authors study the potential energy of many-fermion systems calculated by the lowest-order constrained variational (LOCV) method of Pandharipande. Two simple two-body interactions are used. For a simple hard-core potential in a dilute Fermi gas, they find that the Huang-Yang exclusion correction can be used to determine a healing distance. The result is close to the older Pandharipande prescription for the healing distance. For a hard core plus attractive exponential potential, the LOCV result agrees closely with the lowest-order separation method of Moszkowski and Scott. They find that the LOCV result has a shallow minimum as a function of the healing distance at the Moszkowski-Scott separation distance. The significance of the absence of a Brueckner dispersion correction in the LOCV result is discussed. (Auth.)

  17. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  18. N-representability of the Jastrow wave function pair density of the lowest-order.

    Science.gov (United States)

    Higuchi, Katsuhiko; Higuchi, Masahiko

    2017-08-08

    Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented.

  19. People In Sub-Saharan Africa Rate Their Health And Health Care Among Lowest In World

    Science.gov (United States)

    Deaton, Angus S.; Tortora, Robert

    2017-01-01

    The health of people in sub-Saharan Africa is a major global concern. However, data are weak, and little is known about how people in the region perceive their health or their health care. We used data from the Gallup World Poll in 2012 to document sub-Saharan Africans’ perceived health status, their satisfaction with health care, their contact with medical professionals, and the priority they attach to health care. In comparison to other regions of the world, sub-Saharan Africa has the lowest ratings for well-being and the lowest satisfaction with health care. It also has the second lowest perception of personal health, after only the former Soviet Union and its satellites. HIV prevalence is positively correlated with perceived improvements in health care in countries with high prevalence. This is consistent with an improvement in at least some health care services as a result of the largely aid-funded rollout of antiretroviral treatment. Even so, sub-Saharan Africans do not prioritize health care as a matter of policy, although donors are increasingly shifting their aid efforts in sub-Saharan Africa toward health. PMID:25715657

  20. Search for the lowest irradiation dose from literatures on radiation-induced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1975-12-01

    A survey of past case reports concerning radiation-induced breast cancer was carried out in order to find the lowest irradiation dose. The search of literature published since 1951 revealed 10 cases of radiation-induced breast cancer. Only 5 cases had precise descriptions of the irradiation dose. The lowest irradiation dose was estimated at 1470 rads in the case of external X-ray irradiation for tuberous angioma. All of cases of radiation-induced breast cancer had received radiation for the treatment of nonmalignant tumors, such as pulmonary tuberculosis, mastitis, and tuberous angioma. There also were three statistical studies. The first concerned atomic bomb survivors, the second, pulmoanry tuberculous patients subjected to frequent fluoroscopies, and the third, patients of acute post partum mastitis. These statistical studies had revealed a significant increase in the incidence of breast cancer in the irradiated group, but there was little information about the lowest irradiation dose. It was noticed that radiation-induced breast cancer was more numerous in the upper inner quadrant of the breast. Most histopathological findings of radiation-induced breast cancer involved duct cell carcinoma. The latent period was about 15 years.

  1. Effects of finite temperature on two-photon transitions in a Rydberg atom in a high-Q cavity

    International Nuclear Information System (INIS)

    Puri, R.R.; Joshi, A.

    1989-01-01

    The effects of cavity temperature on an effective two-level atom undergoing two-photon transitions in a high-Q cavity are investigated. The quantum statistical properties of the field and the dynamical properties of the atom in this case are studied and compared with those for an atom making one-photon transitions between the two levels. The analysis is based on the solution of the equation for the density matrix in the secular approximation which is known to be a valid approximation in the case of a Rydberg atom in a high-Q cavity. (orig.)

  2. Studies of autoionizing states relevant to dielectronic recombination. Final report

    International Nuclear Information System (INIS)

    Gallagher, T.F.

    1985-01-01

    Dielectronic recombinaation, the inverse of autoionization, is a process leading to significant power loss in CTR plasmas. Although it is known that dielectronic recombination proceeds via autoionization Rydberg states, few data exist on autoionizing states and how they are affected by conditions found in a CTR plasma. Under this research program we have been using a novel laser excitation technique developed at SRI to study autoionizing states and the perturbing effects of electric fields found in CTR plasmas. We describe experimental investigations of the spectroscopy of autoionizing Rydberg states, the energy analysis of electrons ejected from autoionizing states, autoionizing in electric fields, and the autoionization induced by an electric field. 33 refs., 16 figs

  3. Pinning of fullerene lowest unoccupied molecular orbital edge at the interface with standing up copper phthalocyanine

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Turinske, Alexander J.; Gao, Yongli

    2012-01-01

    The electronic structure evolution of interfaces of fullerene (C 60 ) with copper phthalocyanine (CuPc) on highly oriented pyrolitic graphite (HOPG) and on native silicon oxide has been investigated with ultra-violet photoemission spectroscopy and inverse photoemission spectroscopy. The lowest unoccupied molecular orbital edge of C 60 was found to be pinned at the interface with CuPc on SiO 2 . A substantial difference in the electron affinity of CuPc on the two substrates was observed as the orientation of CuPc is lying flat on HOPG and standing up on SiO 2 . The ionization potential and electron affinity of C 60 were not affected by the orientation of CuPc due to the spherical symmetry of C 60 molecules. We observed band bending in C 60 on the standing-up orientation of CuPc molecules, while the energy levels of C 60 on the flat lying orientation of CuPc molecules were observed to be flat. - Highlights: ► Orientation of copper phthalocyanine (CuPc) on ordered graphite and silicon oxide. ► Pinning of lowest unoccupied molecular orbital edge of C60 to the Fermi level on CuPc. ► No C60 pinning or band bending was observed on flat laying CuPc. ► Results are useful for organic photovoltaic and organic light emitting diode research.

  4. Search for the lowest irradiation dose from literatures on radiation-induced cancer in uterus

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1975-01-01

    A survey of past case reports on radiation-induced cancer of the uterus was carried out with the main object of finding the lowest irradiation dose. Search of literature published since 1912 revealed 548 cases of radiation-induced cancer of the uterus. All of these cases of radiation-induced cancer had received radiation for the treatment of non-malignant disease. The primary gynecological conditions which were the object of radiation therapy were functional bleeding, endometrial hyperplasia, myoma, endometritis, and polyps. The lowest irradiation dose was estimated at 1000-1450 rad in the case of external X-ray irradiation, and 100 mg.hr for intrauterine radium therapy, which corresponds to 100-1000 rad. It was noted that were more cases of corpus cancer than cervical cancer. Histopathological findings of radiation-induced uterine cancer were carcinoma, sarcoma, and mixed mesodermal tumors. The latent period was distributed in the range of 1 to 40 years, with the average of 10.1 years. (auth.)

  5. Search for the lowest irradiation dose from literatures on radiation-induced cancer in gastrointestinal tract

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1976-01-01

    A survey of past case reports about radiation-induced cancer in the gastrointestinal tract was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1923 revealed 80 cases of radiation-induced large intestine cancer and one case of stomach cancer. The cases of radiation-induced cancer in the large intestine had received radiation for the treatment of non-malignant conditions, fibroma, ovarial cyste, myoma, endometritis and duodenal ulcer. The lowest irradiation dose was estimated at 460 rads. Adenocarcinoma was the histopathological finding in all cases of radiation-induced cancer in the caecum, colon and rectum, and squamous cell carcinoma in the cases of anal cancer. The latent period ranged from 1 to 31 years, with the average of 13.6 years. There were some reports of statistical studies of radiation-induced stomach cancer. Three groups were the subjects of these studies. The first group was composed of atomic bomb survivors, the second of patients who had undergone radiation treatment for ankylosing spondilitis, and the third of duodenal ulcer patients subjected to radiation treatment for the purpose of suppressing gastric acid secretion. These statistical studies showed no significant increase of the incidence of stomach cancer in the irradiated groups. (auth.)

  6. Search for the lowest irradiation dose from literatures on radiation-induced cancer in gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1976-05-01

    A survey of past case reports about radiation-induced cancer in the gastrointestinal tract was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1923 revealed 80 cases of radiation-induced large intestine cancer and one case of stomach cancer. The cases of radiation-induced cancer in the large intestine had received radiation for the treatment of non-malignant conditions, fibroma, ovarial cyste, myoma, endometritis and duodenal ulcer. The lowest irradiation dose was estimated at 460 rads. Adenocarcinoma was the histopathological finding in all cases of radiation-induced cancer in the caecum, colon and rectum, and squamous cell carcinoma in the cases of anal cancer. The latent period ranged from 1 to 31 years, with the average of 13.6 years. There were some reports of statistical studies of radiation-induced stomach cancer. Three groups were the subjects of these studies. The first group was composed of atomic bomb survivors, the second of patients who had undergone radiation treatment for ankylosing spondilitis, and the third of duodenal ulcer patients subjected to radiation treatment for the purpose of suppressing gastric acid secretion. These statistical studies showed no significant increase of the incidence of stomach cancer in the irradiated groups.

  7. Search for the lowest irradiation dose from literatures on radiation-induced bone tumor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T; Morimoto, K [Tokyo Univ. (Japan). Faculty of Medicine

    1977-04-01

    A survey of past case reports of bone tumor induced by external radiation was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1922 revealed 262 cases of radiation-induced bone tumor. These patients, except a patient with occupational exposure, had received radiation for treatment. The primary conditions as object of radiation therapy were nonmalignan bone diseases such as tuberclosis, giant cell tumor, fibrous dysplasia and bone cyst, and extra-skeletal diseases such as retinoblastoma, breast cancer and uterus cancer. The ratio of male to female patients with radiation-induced bone tumor was 1:1.3. The age of the patient ranged between 5 and 98 years, with an average of 37.6 years. Skeletal distribution of radiation-induced bone tumor was as follows: 20% the frontal and face bones, 17% the femur, 10% the humerus, 9% the vertebral column, and 44% other. The lowest absorbed dose reported was 800 rads in patients irradiated for the treatment of bone disease, but 1800 rads in patients with extra-skeletal disease. The latent period ranged between 2 and 42 years, with an average of 11.7 years. The histopathological findings were as follows: 60% osteosarcoma, 25% fibrosarcoma, 7% chondrosarcoma, and 8% other.

  8. Measurement of the lowest dosage of phenobarbital that can produce drug discrimination in rats

    Science.gov (United States)

    Overton, Donald A.; Stanwood, Gregg D.; Patel, Bhavesh N.; Pragada, Sreenivasa R.; Gordon, M. Kathleen

    2009-01-01

    Rationale Accurate measurement of the threshold dosage of phenobarbital that can produce drug discrimination (DD) may improve our understanding of the mechanisms and properties of such discrimination. Objectives Compare three methods for determining the threshold dosage for phenobarbital (D) versus no drug (N) DD. Methods Rats learned a D versus N DD in 2-lever operant training chambers. A titration scheme was employed to increase or decrease dosage at the end of each 18-day block of sessions depending on whether the rat had achieved criterion accuracy during the sessions just completed. Three criterion rules were employed, all based on average percent drug lever responses during initial links of the last 6 D and 6 N sessions of a block. The criteria were: D%>66 and N%50 and N%33. Two squads of rats were trained, one immediately after the other. Results All rats discriminated drug versus no drug. In most rats, dosage decreased to low levels and then oscillated near the minimum level required to maintain criterion performance. The lowest discriminated dosage significantly differed under the three criterion rules. The squad that was trained 2nd may have benefited by partially duplicating the lever choices of the previous squad. Conclusions The lowest discriminated dosage is influenced by the criterion of discriminative control that is employed, and is higher than the absolute threshold at which discrimination entirely disappears. Threshold estimations closer to absolute threshold can be obtained when criteria are employed that are permissive, and that allow rats to maintain lever preferences. PMID:19082992

  9. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  10. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  11. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  12. Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800-4000-cm(-1) region: Rydberg transitions

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Matulková, Irena; Cihelka, Jaroslav

    2010-01-01

    Roč. 81, č. 1 (2010), 012510 ISSN 1050-2947 R&D Projects: GA AV ČR IAA400400705; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * Rydberg transitions * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.861, year: 2010

  13. Assessment of eight HPV vaccination programs implemented in lowest income countries.

    Science.gov (United States)

    Ladner, Joël; Besson, Marie-Hélène; Hampshire, Rachel; Tapert, Lisa; Chirenje, Mike; Saba, Joseph

    2012-05-23

    Cervix cancer, preventable, continues to be the third most common cancer in women worldwide, especially in lowest income countries. Prophylactic HPV vaccination should help to reduce the morbidity and mortality associated with cervical cancer. The purpose of the study was to describe the results of and key concerns in eight HPV vaccination programs conducted in seven lowest income countries through the Gardasil Access Program (GAP). The GAP provides free HPV vaccine to organizations and institutions in lowest income countries. The HPV vaccination programs were entirely developed, implemented and managed by local institutions. Institutions submitted application forms with institution characteristics, target population, communication delivery strategies. After completion of the vaccination campaign (3 doses), institutions provided a final project report with data on doses administered and vaccination models. Two indicators were calculated, the program vaccination coverage and adherence. Qualitative data were also collected in the following areas: government and community involvement; communication, and sensitization; training and logistics resources, and challenges. A total of eight programs were implemented in seven countries. The eight programs initially targeted a total of 87,580 girls, of which 76,983 received the full 3-dose vaccine course, with mean program vaccination coverage of 87.8%; the mean adherence between the first and third doses of vaccine was 90.9%. Three programs used school-based delivery models, 2 used health facility-based models, and 3 used mixed models that included schools and health facilities. Models that included school-based vaccination were most effective at reaching girls aged 9-13 years. Mixed models comprising school and health facility-based vaccination had better overall performance compared with models using just one of the methods. Increased rates of program coverage and adherence were positively correlated with the number of

  14. Assessment of eight HPV vaccination programs implemented in lowest income countries

    Directory of Open Access Journals (Sweden)

    Ladner Joël

    2012-05-01

    Full Text Available Abstract Background Cervix cancer, preventable, continues to be the third most common cancer in women worldwide, especially in lowest income countries. Prophylactic HPV vaccination should help to reduce the morbidity and mortality associated with cervical cancer. The purpose of the study was to describe the results of and key concerns in eight HPV vaccination programs conducted in seven lowest income countries through the Gardasil Access Program (GAP. Methods The GAP provides free HPV vaccine to organizations and institutions in lowest income countries. The HPV vaccination programs were entirely developed, implemented and managed by local institutions. Institutions submitted application forms with institution characteristics, target population, communication delivery strategies. After completion of the vaccination campaign (3 doses, institutions provided a final project report with data on doses administered and vaccination models. Two indicators were calculated, the program vaccination coverage and adherence. Qualitative data were also collected in the following areas: government and community involvement; communication, and sensitization; training and logistics resources, and challenges. Results A total of eight programs were implemented in seven countries. The eight programs initially targeted a total of 87,580 girls, of which 76,983 received the full 3-dose vaccine course, with mean program vaccination coverage of 87.8%; the mean adherence between the first and third doses of vaccine was 90.9%. Three programs used school-based delivery models, 2 used health facility-based models, and 3 used mixed models that included schools and health facilities. Models that included school-based vaccination were most effective at reaching girls aged 9-13 years. Mixed models comprising school and health facility-based vaccination had better overall performance compared with models using just one of the methods. Increased rates of program coverage and

  15. The advantageous way of getting the lowest uncertainty values of elemental concentration by INAA

    International Nuclear Information System (INIS)

    Cincu, Em.; Manea, I.; Manu, V.; Barbos, D.

    2007-01-01

    Analysts in a NAA accredited laboratory bear full responsibility for the report on the material they investigated. The document has to contain the most accurate values that can be, as confidence to further use of the material on the market. To this end, analysts are expected to use the standardization method providing the lowest element concentration uncertainty and carefully quantify every factor that may contribute to the validity of the results. The question is which method is the most advantageous one from this perspective and in what conditions. This paper presents a comparison between results of the elemental analysis of a CRM sample by INAA, as obtained through two standardization methods and three calculations variants applied to the same experimental data. The results were discussed in terms of uncertainty and of the E n statistical criterion recommended for inter-comparison exercises. The influence of the nuclear reaction and decay data was studied in several cases. (author)

  16. Change in Body Mass Index Associated With Lowest Mortality in Denmark, 1976-2013.

    Science.gov (United States)

    Afzal, Shoaib; Tybjærg-Hansen, Anne; Jensen, Gorm B; Nordestgaard, Børge G

    2016-05-10

    Research has shown a U-shaped pattern in the association of body mass index (BMI) with mortality. Although average BMI has increased over time in most countries, the prevalence of cardiovascular risk factors may also be decreasing among obese individuals over time. Thus, the BMI associated with lowest all-cause mortality may have changed. To determine whether the BMI value that is associated with the lowest all-cause mortality has increased in the general population over a period of 3 decades. Three cohorts from the same general population enrolled at different times: the Copenhagen City Heart Study in 1976-1978 (n = 13,704) and 1991-1994 (n = 9482) and the Copenhagen General Population Study in 2003-2013 (n = 97,362). All participants were followed up from inclusion in the studies to November 2014, emigration, or death, whichever came first. For observational studies, BMI was modeled using splines and in categories defined by the World Health Organization. Body mass index was calculated as weight in kilograms divided by height in meters squared. Main outcome was all-cause mortality and secondary outcomes were cause-specific mortality. The number of deaths during follow-up was 10,624 in the 1976-1978 cohort (78% cumulative mortality; mortality rate [MR], 30/1000 person-years [95%CI, 20-46]), 5025 in the 1991-1994 cohort (53%; MR, 16/1000 person-years [95%CI, 9-30]), and 5580 in the 2003-2013 cohort (6%;MR, 4/1000 person-years [95%CI, 1-10]). Except for cancer mortality, the association of BMI with all-cause, cardiovascular, and other mortality was curvilinear (U-shaped). The BMI associated with the lowest all-cause mortality increased by 3.3 from the 1976-1978 cohort compared with the 2003-2013 cohort. [table: see text] The multivariable-adjusted hazard ratios for all-cause mortality for BMI of 30 or more vs BMI of 18.5 to 24.9 were 1.31 (95%CI, 1.23-1.39;MR, 46/1000 person-years [95%CI, 32-66] vs 28/1000 person-years [95%CI, 18-45]) in the 1976

  17. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  18. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2014-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). In order to improve the accuracy as prerequisite of an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used, performance and extraction efficiency measurements were performed. Following the QMS, the Thorium isomers will be collected on a 50 μm micro electrode. The decay of these isomers can then be detected using deep UV optics, presently in the phase of preparation and adjustment. Newest results are presented.

  19. THE LOWEST-MASS MEMBER OF THE β PICTORIS MOVING GROUP

    International Nuclear Information System (INIS)

    Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.

    2010-01-01

    We present spectral and kinematic evidence that 2MASS J06085283-2753583 (M8.5γ) is a member of the β Pictoris Moving Group (BPMG, age ∼12 Myr), making it the latest-type known member of this young, nearby association. We confirm low-gravity spectral morphology at both medium and high resolutions in the near-infrared. We present new radial velocity and proper motion measurements, and use these to calculate galactic location and space motion consistent with other high-probability members of the BPMG. The predicted mass range consistent with the object's effective temperature, surface gravity, spectral type, and age is 15-35 M Jup , placing 2MASS 0608-27 well within the brown dwarf mass regime. 2MASS J06085283-2753583 is thus confidently added to the short list of very low mass, intermediate age benchmark objects that inform ongoing searches for the lowest-mass members of nearby young associations.

  20. Sleep Duration Associated with the Lowest Risk of Depression/Anxiety in Adolescents.

    Science.gov (United States)

    Ojio, Yasutaka; Nishida, Atsushi; Shimodera, Shinji; Togo, Fumiharu; Sasaki, Tsukasa

    2016-08-01

    To investigate sleep duration associated with the least depression/anxiety in adolescence. Grades 7-12 Japanese students (n = 18,250, aged 12-18 y) from public junior high/high schools were studied in a cross-sectional design. Due to missing/implausible data, 15,637 out of the 18,250 students were statistically analyzed. Relationship between sleep duration on school nights and depression/anxiety, measured using self-report questionnaires, including the General Health Questionnaire-12 (GHQ-12), were studied by sex and grade, controlling for bedtime regularity. When sleep duration was classified by 1-h intervals, rate of adolescents with a GHQ-12 score ≥ 4 was the lowest in males and females who slept 8.5-9.5 h and 7.5-8.5 h, respectively, (designated "references") in both grades 7-9 and 10-12. The rate was significantly higher than the references in both males and females who slept Sleep duration for the minimum GHQ-12 score was estimated to be 8.8 and 8.5 h in males, and 8.0 and 7.5 h in females, in grades 7-9 and 10-12, respectively, using the General Additive Model. Sleep duration of ≥ 8.5 h on school nights may be associated with the lowest risk of depression/anxiety on average in male adolescents. Although the duration was estimated to be shorter in females (≥ 7.5 h) than males, this should be interpreted carefully. Most adolescents may currently be sleeping less than the optimal duration. A commentary on this article appears in this issue on page 1491. © 2016 Associated Professional Sleep Societies, LLC.

  1. Ultrahigh-resolution (1+1) photoionization spectroscopy of Kr I: Hyperfine structures, isotope shifts, and lifetimes for the n = 5,6,7 4p5ns Rydberg levels

    International Nuclear Information System (INIS)

    Trickl, T.; Vrakking, M.J.J.; Cromwell, E.; Lee, Y.T.; Kung, A.H.

    1989-01-01

    High-resolution measurements of the hyperfine structures and isotope shifts are reported for Kr I n = 5,6,7 4p 5 ns Rydberg levels, obtained using an extreme-ultraviolet laser with a bandwidth of 210 MHz in a resonant two-photon-ionization scheme. Use of known I 2 frequencies yields an improved absolute calibration of the Kr energy levels by more than one order of magnitude. The nuclear quadrupole hyperfine structure indicates that the 4p 5 6s and 4p 5 7s states are described by a pure jj-coupling scheme, whereas the 4p 5 5s states depart from a pure jj-coupling scheme by 0.37(6)%. The magnetic hyperfine structure shows that the 4p 5 ns states are mixed with 4p 5 n'd states. The isotope shifts can be described as pure mass effects within the precision of our experiment. For the 4p 5 6s and 4p 5 7s states, lifetimes were determined that differ markedly from theoretical literature values

  2. Consumer Airfare Report: Table 5 - Detailed Fare Information For Highest and Lowest Fare Markets Under 750 Miles

    Data.gov (United States)

    Department of Transportation — Provides detailed fare information for highest and lowest fare markets under 750 miles. For a more complete explanation, please read the introductory information at...

  3. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    Science.gov (United States)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  4. Going beyond best technology and lowest price: on renewable energy investors’ preference for service-driven business models

    International Nuclear Information System (INIS)

    Loock, Moritz

    2012-01-01

    Renewable energy is becoming increasingly important for economies in many countries. But still in an emerging industry, renewable energy requires supportive energy policy helping firms to develop and protect competitive advantages in global competition. As a guideline for designing such policy, we consult well-informed stakeholders within the renewable energy industry: investors. Their preferences serve as explorative indicator for assessing which business models might succeed in competition. To contribute to only limited research on renewable energy investors’ preferences, we ask, which business models investment managers for renewable energy prefer to invest in. We report from an explorative study of 380 choices of renewable energy investment managers. Based on the stated preferences, we modelled three generic business models to calculate the share of investors’ preferences. We find exiting evidence: a “customer intimacy” business model that proposes best services is much more preferred by investors than business models that propose lowest price or best technology. Policy-makers can use those insights for designing policy that supports service-driven business models for renewable energy with a scope on customer needs rather than technology or price. Additionally, we state important implications for renewable energy entrepreneurs, managers and research.

  5. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  6. Theoretical treatment of the processes involving the dipole transitions to the lowest exciton states in hexagonal semiconductors

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The treatment of the two-photon transitions to the An=1 exciton level and the resonant Raman scattering of light by LO-phonons is given for the hexagonal semiconductors A2B6, taking into account the influence of the complex top valence band and anisotropy of the exciton effective mass.

  7. Operator product expansion of the lowest weight CPOs in N=4 SYM4 at strong coupling

    International Nuclear Information System (INIS)

    Arutyunov, Gleb; Frolov, Sergey; Petkou, Anastasios C.

    2000-01-01

    We present a detailed analysis of the 4-point functions of the lowest weight chiral primary operators O I ∼tr(phi (i phi j) ) in N=4 SYM 4 at strong coupling and show that their structure is compatible with the predictions of AdS/CFT correspondence. In particular, all power-singular terms in the 4-point functions exactly coincide with the contributions coming from the conformal blocks of the CPOs, the R -symmetry current and the stress tensor. Operators dual to string modes decouple at strong coupling. We compute the anomalous dimensions and the leading 1/N 2 corrections to the normalization constants of the 2- and 3-point functions of scalar and vector double-trace operators with approximate dimensions 4 and 5, respectively. We also find that the conformal dimensions of certain towers of double-trace operators in the 105 , 84 and 175 irreps are non-renormalized. We show that, despite the absence of a non-renormalization theorem for the double-trace operator in the 20 irrep, its anomalous dimension vanishes. As by-products of our investigation, we derive explicit expressions for the conformal block of the stress tensor, and for the conformal partial wave amplitudes of a conserved current and of a stress tensor in d dimensions

  8. Behavioral heterogeneity affects individual performances in experimental and computational lowest unique integer games

    Science.gov (United States)

    Yamada, Takashi

    2017-12-01

    This study computationally examines (1) how the behaviors of subjects are represented, (2) whether the classification of subjects is related to the scale of the game, and (3) what kind of behavioral models are successful in small-sized lowest unique integer games (LUIGs). In a LUIG, N (>= 3) players submit a positive integer up to M(> 1) and the player choosing the smallest number not chosen by anyone else wins. For this purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses the behavioral data obtained in the laboratory experiment by Yamada and Hanaki (Physica A 463, pp. 88–102, 2016). For computational experiments, the author calibrates the parameters of typical learning models for each subject and then pursues round robin competitions. The main findings are in the following: First, the subjects who played not differently from the mixed-strategy Nash equilibrium (MSE) prediction tended to made use of not only their choices but also the game outcomes. Meanwhile those who deviated from the MSE prediction took care of only their choices as the complexity of the game increased. Second, the heterogeneity of player strategies depends on both the number of players (N) and the upper limit (M). Third, when groups consist of different agents like in the earlier laboratory experiment, sticking behavior is quite effective to win.

  9. Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory

    Science.gov (United States)

    Liao, Yi; Ma, Xiao-Dong

    2018-03-01

    We study two aspects of higher dimensional operators in standard model effective field theory. We first introduce a perturbative power counting rule for the entries in the anomalous dimension matrix of operators with equal mass dimension. The power counting is determined by the number of loops and the difference of the indices of the two operators involved, which in turn is defined by assuming that all terms in the standard model Lagrangian have an equal perturbative power. Then we show that the operators with the lowest index are unique at each mass dimension d, i.e., (H † H) d/2 for even d ≥ 4, and (LT∈ H)C(LT∈ H) T (H † H)(d-5)/2 for odd d ≥ 5. Here H, L are the Higgs and lepton doublet, and ∈, C the antisymmetric matrix of rank two and the charge conjugation matrix, respectively. The renormalization group running of these operators can be studied separately from other operators of equal mass dimension at the leading order in power counting. We compute their anomalous dimensions at one loop for general d and find that they are enhanced quadratically in d due to combinatorics. We also make connections with classification of operators in terms of their holomorphic and anti-holomorphic weights. Supported by the National Natural Science Foundation of China under Grant Nos. 11025525, 11575089, and by the CAS Center for Excellence in Particle Physics (CCEPP)

  10. Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades

    Science.gov (United States)

    Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.

    2015-01-01

    Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring.

  11. Behavioral Heterogeneity Affects Individual Performances in Experimental and Computational Lowest Unique Integer Games

    Directory of Open Access Journals (Sweden)

    Takashi Yamada

    2017-12-01

    Full Text Available This study computationally examines (1 how the behaviors of subjects are represented, (2 whether the classification of subjects is related to the scale of the game, and (3 what kind of behavioral models are successful in small-sized lowest unique integer games (LUIGs. In a LUIG, N (≥ 3 players submit a positive integer up to M(> 1 and the player choosing the smallest number not chosen by anyone else wins. For this purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses the behavioral data obtained in the laboratory experiment by Yamada and Hanaki [1]. For computational experiments, the author calibrates the parameters of typical learning models for each subject and then pursues round robin competitions. The main findings are in the following: First, the subjects who played not differently from the mixed-strategy Nash equilibrium (MSE prediction tended to made use of not only their choices but also the game outcomes. Meanwhile those who deviated from the MSE prediction took care of only their choices as the complexity of the game increased. Second, the heterogeneity of player strategies depends on both the number of players (N and the upper limit (M. Third, when groups consist of different agents like in the earlier laboratory experiment, sticking behavior is quite effective to win.

  12. NO NEUTRON STAR COMPANION TO THE LOWEST MASS SDSS WHITE DWARF

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Heinke, Craig; Kilic, Mukremin; Anderson, Scott F.; Silvestri, Nicole M.; Freire, Paulo; Kleinman, Scot J.; Liebert, James W.

    2009-01-01

    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 ± 0.05 (M ∼ 0.17 M sun ). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass ≥0.28 M sun . Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

  13. Franck-Condon factors and potential curves for the combining states of the cesium dimer A 1Σ+u - X1Σ+g transition

    International Nuclear Information System (INIS)

    Smirnov, A.D.

    1995-01-01

    It is shown that the actual Cs 2 ground and first excited state potentials are better approximated by the Rydberg-Klein-Rees potential curve than by the Morse, Hulburt-Hirschfelder, Dunham, and perturbed Morse potentials. The Franck-Condon factors for the Cs 2 A-X transition (O ≤υ'≤35; 0 ≤υ double-prime ≤22) are calculated for the Rydberg,-Klein-Rees potential curves. The results of the calculations were used to determine the oscillator strength for the A-X transition of the Cs 2 molecule

  14. Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q resonator

    International Nuclear Information System (INIS)

    Huelga, S.F.; Marshall, T.W.; Santos, E.

    1996-01-01

    Following the strategy of showing specific quantum effects by means of the violation of a classical inequality, a pair of Bell-type inequalities is derived on the basis of certain additional assumptions, whose plausibility is discussed in detail. Such inequalities are violated by the quantum mechanical predictions for the interaction of a two-level Rydberg atom with a single mode sustained by a high-Q resonator. The experimental conditions required in order to show the existence of forbidden values, according to a hidden variables formalism, in a real experiment are analyzed for various initial field statistics. In particular, the revival dynamics expected for the interaction with a coherent field leads to classically forbidden values, which would indicate a purely quantum effect. copyright 1996 The American Physical Society

  15. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius

    Science.gov (United States)

    Kolachevsky, N.; Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Haensch, T. W.; Udem, Th.

    2018-02-01

    The core of the "proton radius puzzle" is the discrepancy of four standard deviations between the proton root mean square charge radii (rp) determined from regular hydrogen (H), and the muonic hydrogen atom (μp). We have measured the 2S-4P transition frequency in H, utilizing a cryogenic beam of H and directly demonstrate that quantum interference of neighboring atomic resonances can lead to line shifts much larger than the proton radius discrepancy. Using an asymmetric fit function we obtain rp = 0.8335(95) fm and the Rydberg constant R∞ = 10 973 731.568 076 (96) m-1. The new value for rp is 3.3 combined standard deviations smaller than the latest CODATA value, but in good agreement with the value from μp.

  16. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  17. High orbital angular momentum states in H2 and D2. III. Singlet--triplet splittings, energy levels, and ionization potentials

    International Nuclear Information System (INIS)

    Jungen, C.; Dabrowski, I.; Herzberg, G.; Vervloet, M.

    1990-01-01

    The 5g--4 f Rydberg groups of H 2 and D 2 first studied in paper I have been obtained with a tenfold increase in resolution which made it possible to resolve the singlet from the triplet components. As a result we can now establish separately precise values for the energy levels in the triplet and singlet systems. For this purpose we have remeasured a number of transitions between the lower energy levels for which at present only old measurements are available. In particular we obtain accurate values for the energies of the lowest (stable) triplet state a 3 Σ + g relative to the singlet ground state, as well as of the ionization potential. The values obtained for the former are more accurate than obtained from singlet--triplet anticrossings while the latter are of similar accuracy as those reported recently by McCormack et al. [Phys. Rev. A 39, 2260 (1989)] and fit well within this accuracy with the most recent ab initio values

  18. The Leoncino Dwarf: The Lowest Metallicity Star-Forming Galaxy in the Nearby Universe

    Science.gov (United States)

    McQuinn, Kristen

    2017-08-01

    Extremely metal-poor (XMP) galaxies are dwarf irregular galaxies with very low metallicities, traced by their gas-phase oxygen abundance. Galaxy evolution scenarios suggest three pathways to form an XMP: (1) secular evolution at low galaxy masses, (2) slow evolution in voids, or (3) dilution of measured abundances from infall of pristine gas. These scenarios have proven challenging to test because, despite concerted efforts, XMP galaxies in the nearby universe have proven hard to find. A notable exception is the recently discovered dwarf galaxy Leoncino. Leoncino has the lowest gas-phase oxygen abundance ever measured in a galaxy in the local Universe. From optical spectroscopy, the oxygen abundance is 12+log(O/H)=7.02+/-0.03, more than 40% lower than the iconic low-metallicity galaxy I Zw 18 and less than 2% Z_sun. Despite a precision oxygen abundance measurement, the evolutionary context of Leoncino remains uncertain without a secure distance. We propose HST WFC3 high-resolution optical imaging of Leoncino to accurately measure the distance to the galaxy using the tip of the red giant branch (TRGB) method. The distance will determine whether Leoncino is located in a typical field environment or in a void, and whether the galaxy is consistent with the luminosity-metallicity relation at low galaxy masses. The detailed study of Leoncino will provide benchmark results for future XMP discoveries in the nearby Universe, and an exceptionally timely comparison for studies of chemically primitive, high-redshift galaxies that will be observable in the JWST era.

  19. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities

    Energy Technology Data Exchange (ETDEWEB)

    Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Scolnic, Daniel M. [University of Chicago, Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dshafer2@jhu.edu, E-mail: dscolnic@kicp.uchicago.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2017-05-01

    Peculiar velocities of objects in the nearby universe are correlated due to the gravitational pull of large-scale structure. By measuring these velocities, we have a unique opportunity to test the cosmological model at the lowest redshifts. We perform this test, using current data to constrain the amplitude of the ''signal'' covariance matrix describing the velocities and their correlations. We consider a new, well-calibrated ''Supercal'' set of low-redshift SNe Ia as well as a set of distances derived from the fundamental plane relation of 6dFGS galaxies. Analyzing the SN and galaxy data separately, both results are consistent with the peculiar velocity signal of our fiducial ΛCDM model, ruling out the noise-only model with zero peculiar velocities at greater than 7σ (SNe) and 8σ (galaxies). When the two data sets are combined appropriately, the precision of the test increases slightly, resulting in a constraint on the signal amplitude of A = 1.05{sub −0.21}{sup +0.25}, where A = 1 corresponds to our fiducial model. Equivalently, we report an 11% measurement of the product of the growth rate and amplitude of mass fluctuations evaluated at z {sub eff} = 0.02, f σ{sub 8} = 0.428{sub −0.045}{sup +0.048}, valid for our fiducial ΛCDM model. We explore the robustness of the results to a number of conceivable variations in the analysis and find that individual variations shift the preferred signal amplitude by less than ∼0.5σ. We briefly discuss our Supercal SN Ia results in comparison with our previous results using the JLA compilation.

  20. HH 1158: THE LOWEST LUMINOSITY EXTERNALLY IRRADIATED HERBIG–HARO JET

    International Nuclear Information System (INIS)

    Riaz, B.; Whelan, E. T.

    2015-01-01

    We have identified a new externally irradiated Herbig–Haro (HH) jet, HH 1158, within ∼2 pc of the massive OB type stars in the σ Orionis cluster. At an L bol  ∼ 0.1 L ⊙ , HH 1158 is the lowest luminosity irradiated HH jet identified to date in any cluster. Results from the analysis of high-resolution optical spectra indicate asymmetries in the brightness, morphology, electron density, velocity, and the mass outflow rates for the blue and redshifted lobes. We constrain the position angle of the HH 1158 jet at 102° ± 5°. The mass outflow rate and the mean accretion rate for HH 1158 using multiple diagnostics are estimated to be (5.2 ± 2.6) × 10 −10 M ⊙ yr −1 and (3.0 ± 1.0) × 10 −10 M ⊙ yr −1 , respectively. The properties for HH 1158 are notably similar to the externally irradiated HH 444–HH 447 jets previously identified in σ Orionis. In particular, the morphology is such that the weaker jet beam is tilted toward the massive stars, indicating a higher extent of photo-evaporation. The high value for the Hα/[S ii] ratio is also consistent with the ratios measured in other irradiated jets, including HH 444–HH 447. The presence of an extended collimated jet that is bipolar and the evidence of shocked emission knots make HH 1158 the first unique case of irradiated HH jets at the very low-luminosity end, and provides an opportunity to learn the physical properties of very faint HH jet sources

  1. Can We Observe the Gravitational Quantum States of Positronium?

    Directory of Open Access Journals (Sweden)

    P. Crivelli

    2015-01-01

    Full Text Available We consider the feasibility of observing the gravitational quantum states of positronium. The proposed scheme employs the flow-throw technique used for the first observation of this effect with neutrons. Collimation and Stark deceleration of Rydberg positronium atoms allow selecting the required velocity class. If this experiment could be realized with positronium, it would lead to a determination of g for this matter-antimatter system at the few % level. As discussed in this contribution, most of the required techniques are currently available but important milestones have to be demonstrated experimentally before such an experiment could become reality. Those are the efficient focusing of a bunched positron beam, Stark deceleration of Rydberg positronium, and its subsequent excitation into states with large angular momentum. We provide an estimate of the efficiencies we expect for these steps and assuming those could be confirmed we calculate the signal rate.

  2. Solid hydrogen and deuterium. II. Pressure and compressibility calculated by a lowest-order constrained-variation method

    International Nuclear Information System (INIS)

    Pettersen, G.; Ostgaard, E.

    1988-01-01

    The pressure and the compressibility of solid H 2 and D 2 are obtained from ground-state energies calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp structures are considered, but results are given for the fcc structure only. The pressure and the compressibility are calculated or estimated from the dependence of the ground-state energy on density or molar volume, generally in a density region of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 12-24 cm 3 mole, where σ = 2.958 angstrom, and the calculations are done for five different two-body potentials. Theoretical results for the pressure are 340-460 atm for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 370-490 atm for solid 4 He at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 /mole. The corresponding experimental results are 650 and 700 atm, respectively. Theoretical results for the compressibility are 210 times 10 -6 to 260 times 10 -6 atm -1 for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 150 times 10 -6 to 180 times 10 -6 atm -1 for solid D 2 at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 mole. The corresponding experimental results are 180 times 10 -6 and 140 times 10 -6 atm -1 , respectively. The agreement with experimental results is better for higher densities

  3. Gaussian basis sets for highly excited and resonance states of helium

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan

    2013-01-01

    Roč. 138, č. 2 (2013), 024105 ISSN 0021-9606 R&D Projects: GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : approximation theory * Gaussian processes * ground states * helium neutral atoms * optimisation * resonant states * Rydberg states Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.122, year: 2013

  4. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  5. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  6. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    International Nuclear Information System (INIS)

    Mihajlov, A A; Ignjatovic, Lj M; Djuric, Z; Ljepojevic, N N

    2004-01-01

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T a , and electronic, T e , temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree ∼ -4 ), and therefore have to be included in appropriate models of such plasmas

  7. The Lowest Spin and Parity Levels on Two Particle System for Odd-oddNuclei 60Co and 46K

    International Nuclear Information System (INIS)

    Wardhani, VIS; Siagian, Toga

    2000-01-01

    For obtaining the lowest spin and parity levels of odd-odd nuclei, theanalyzing of the nuclei 60 Co and 46 K has been done using delta forcemodel. The calculation is done by theoretically and compared with experiment.To get a result optimally, the data analyzed using least square method. It isshown that the lowest spin and parity level from calculation result and theexperiment result are similar. (author)

  8. Screening-Constant-by-Unit-Nuclear-Charge method investigations of high lying (1D2,1S0) ns, nd Rydberg series in the photoionization spectra of the halogen-like ion Kr+

    Science.gov (United States)

    Sakho, I.

    2014-01-01

    Energy positions and quantum defects of the 4s24p4 (1D2,1S0) ns, nd Rydberg series originating from the 4s24p52P3/2∘ ground state and from the 4s24p52P1/2∘ metastable state of Kr+ are reported. Calculations are performed using the Screening Constant by Unit Nuclear Charge (SCUNC) method. The results obtained are in suitable agreement with recent experimental data from the combined ASTRID merged-beam set up and Fourier Transform Ion Cyclotron Resonance device (Bizau et al., 2011), ALS measurements (Hinojosa et al., 2012), and multi-channel R-matrix eigenphase derivative calculations (McLaughlin and Balance, 2012). In addition, analysis of the 4s24p4(1D2)nd and the 4s24p4(1S0)nd resonances is given via the SCUNC procedure. The excellent results obtained from our work point out that the SCUNC formalism may be used to confirm the results of the analysis from the standard quantum-defect expansion formulas. Eventual errors occurring in the analysis can then be automatically detected and corrected via the SCUNC procedure.

  9. Screening-Constant-by-Unit-Nuclear-Charge method investigations of high lying (1D2,1S0) ns, nd Rydberg series in the photoionization spectra of the halogen-like ion Kr+

    International Nuclear Information System (INIS)

    Sakho, I.

    2014-01-01

    Energy positions and quantum defects of the 4s 2 4p 4 ( 1 D 2 , 1 S 0 ) ns, nd Rydberg series originating from the 4s 2 4p 52 P 3/2 ∘ ground state and from the 4s 2 4p 52 P 1/2 ∘ metastable state of Kr + are reported. Calculations are performed using the Screening Constant by Unit Nuclear Charge (SCUNC) method. The results obtained are in suitable agreement with recent experimental data from the combined ASTRID merged-beam set up and Fourier Transform Ion Cyclotron Resonance device (Bizau et al., 2011), ALS measurements (Hinojosa et al., 2012), and multi-channel R-matrix eigenphase derivative calculations (McLaughlin and Balance, 2012). In addition, analysis of the 4s 2 4p 4 ( 1 D 2 )nd and the 4s 2 4p 4 ( 1 S 0 )nd resonances is given via the SCUNC procedure. The excellent results obtained from our work point out that the SCUNC formalism may be used to confirm the results of the analysis from the standard quantum-defect expansion formulas. Eventual errors occurring in the analysis can then be automatically detected and corrected via the SCUNC procedure

  10. Projection-operator calculations of the lowest e(-)-He resonance

    Science.gov (United States)

    Berk, A.; Bhatia, A. K.; Junker, B. R.; Temkin, A.

    1986-01-01

    The 1s (2s)2:2S Schulz resonance of He(-) is investigated theoretically, applying the full projection-operator formalism developed by Temkin and Bhatia (1985) in a Rayleigh-Ritz variational calculation. The technique is described in detail, and results for five different approximations of the He target state are presented in a table. Good convergence is obtained, but it is found that even the best calculated value of the resonance is about 130 meV higher than the experimentally measured value of 19.367 + or - 0.007 eV (Brunt et al., 1977), a discrepancy attributed to the contribution of the shift in the Feshbach formalism.

  11. Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses

    International Nuclear Information System (INIS)

    Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan

    2011-01-01

    Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)

  12. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  13. Bose-Einstein Condensation: Quantum weirdness at the lowest temperature in the universe

    Science.gov (United States)

    Wieman, Carl

    2004-10-01

    In 1924 Einstein predicted that a gas would undergo a dramatic transformation at a sufficiently low temperature (now known as Bose-Einstein condensation or BEC). In 1995, my group was able to observe this transformation by cooling a gas sample to the unprecedented temperature of less than 100 billionths of a degree above absolute zero. The BEC state is a novel form of matter in which a large number of atoms lose their individual identities and behave as a single quantum entity, the ``superatom.'' This entity is the atom analogue to laser light, and, although large enough to be easily seen and manipulated, exhibits the nonintuitive quantum behavior normally important only at much tinier size scales. The study and use of the curious properties of BEC has now become an important subfield of physics. I will discuss how we create BEC and some of the subsequent research we have done on it. Interactive applets as a tool for teaching science will be demonstrated in the presentation.

  14. Spin squeezing and Schrödinger cat generation in atomic samples with Rydberg blockade

    DEFF Research Database (Denmark)

    Opatrný, Tomáš; Mølmer, Klaus

    2012-01-01

    A scheme is proposed to prepare squeezed states and Schrödinger-cat-like states of the collective spin degrees of freedom associated with a pair of ground states in an atomic ensemble. The scheme uses an effective Jaynes-Cummings interaction which can be provided by excitation of the atoms...

  15. ICE AND DUST IN THE PRESTELLAR DARK CLOUD LYNDS 183: PREPLANETARY MATTER AT THE LOWEST TEMPERATURES

    International Nuclear Information System (INIS)

    Whittet, D. C. B.; Poteet, C. A.; Bajaj, V. M.; Horne, D.; Chiar, J. E.; Pagani, L.; Shenoy, S. S.; Adamson, A. J.

    2013-01-01

    Dust grains are nucleation centers and catalysts for the growth of icy mantles in quiescent interstellar clouds, the products of which may accumulate into preplanetary matter when new stars and solar systems form within the clouds. In this paper, we present the first spectroscopic detections of silicate dust and the molecular ices H 2 O, CO, and CO 2 in the vicinity of the prestellar core L183 (L134N). An infrared photometric survey of the cloud was used to identify reddened background stars, and we present spectra covering solid-state absorption features in the wavelength range 2-20 μm for nine of them. The mean composition of the ices in the best-studied line of sight (toward J15542044–0254073) is H 2 O:CO:CO 2 ≈ 100:40:24. The ices are amorphous in structure, indicating that they have been maintained at low temperature (∼ 2 O) correlates with reddening by dust, exhibiting a threshold effect that corresponds to the transition from unmantled grains in the outer layers of the cloud to ice-mantled grains within, analogous to that observed in other dark clouds. A comparison of results for L183 and the Taurus and IC 5146 dark clouds suggests common behavior, with mantles first appearing in each case at a dust column corresponding to a peak optical depth τ 9.7 = 0.15 ± 0.03 in the silicate feature. Our results support a previous conclusion that the color excess E J–K does not obey a simple linear correlation with the total dust column in lines of sight that intercept dense clouds. The most likely explanation is a systematic change in the optical properties of the dust as the density increases

  16. ICE AND DUST IN THE PRESTELLAR DARK CLOUD LYNDS 183: PREPLANETARY MATTER AT THE LOWEST TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Whittet, D. C. B.; Poteet, C. A.; Bajaj, V. M.; Horne, D. [Department of Physics, Applied Physics and Astronomy and New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Pagani, L. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Shenoy, S. S. [SOFIA Science Center, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Adamson, A. J. [Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile)

    2013-09-10

    Dust grains are nucleation centers and catalysts for the growth of icy mantles in quiescent interstellar clouds, the products of which may accumulate into preplanetary matter when new stars and solar systems form within the clouds. In this paper, we present the first spectroscopic detections of silicate dust and the molecular ices H{sub 2}O, CO, and CO{sub 2} in the vicinity of the prestellar core L183 (L134N). An infrared photometric survey of the cloud was used to identify reddened background stars, and we present spectra covering solid-state absorption features in the wavelength range 2-20 {mu}m for nine of them. The mean composition of the ices in the best-studied line of sight (toward J15542044-0254073) is H{sub 2}O:CO:CO{sub 2} Almost-Equal-To 100:40:24. The ices are amorphous in structure, indicating that they have been maintained at low temperature ({approx}< 15 K) since formation. The ice column density N(H{sub 2}O) correlates with reddening by dust, exhibiting a threshold effect that corresponds to the transition from unmantled grains in the outer layers of the cloud to ice-mantled grains within, analogous to that observed in other dark clouds. A comparison of results for L183 and the Taurus and IC 5146 dark clouds suggests common behavior, with mantles first appearing in each case at a dust column corresponding to a peak optical depth {tau}{sub 9.7} = 0.15 {+-} 0.03 in the silicate feature. Our results support a previous conclusion that the color excess E{sub J-K} does not obey a simple linear correlation with the total dust column in lines of sight that intercept dense clouds. The most likely explanation is a systematic change in the optical properties of the dust as the density increases.

  17. Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lingli; Sai, Linwei [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China and Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Qiu, Ruifeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China)

    2015-01-22

    Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  18. Ionization and ions pair formation in He(n1P) thermal collisions in the Rydberg + molecules low states

    International Nuclear Information System (INIS)

    Pesnelle, A.; Ronge, C.; Perdrix, M.; Watel, G.

    1988-06-01

    The application limits of the free electron model are tested. Experiments on polar molecules and on molecules of high electronical affinity are effectuated. The experiments are carried out in a three crossed beam geometry: a He(2 1S , 2 3S ) metastable atom beam, a continuous and monomode laser UV beam (316 nm), and a gas target beam. The main results are: high cross sections are observed on NH3, SO2 and C3H6O; the σ''exp'' behavior, as a function of v r , is v r -2 ; a monotone σ''exp'' (v r ) behavior is observed for SF6 and NO2. The experimental data can not be justified by means of the free electron model [fr

  19. FTIR laboratory measurement of Ne i Rydberg states in 1.43–14.3 m spectral range

    Czech Academy of Sciences Publication Activity Database

    Kubelík, Petr; Civiš, Svatopluk; Pastorek, Adam; Zanozina, Ekaterina; Chernov, V. E.; Juha, Libor; Voronina, A. A.

    2015-01-01

    Roč. 582, OCT 2015 (2015), A12 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : atomic data - line * identification - methods * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.378, year: 2014

  20. Realization of a frequency standard at 778 nm: absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium and determination of the Rydberg constant; Realisation d'un etalon de frequence a 778 nm: mesure absolue des frequences 2S-8S/D des atomes d'hydrogene et de deuterium et determination de la constante de rydberg

    Energy Technology Data Exchange (ETDEWEB)

    Beauvoir, B. de

    1996-12-15

    The purpose of this work is to design a 778 nm standard laser for performing an absolute measurement of 2S-8S/D frequencies of hydrogen and deuterium atoms. This frequency calibration is based on a 5S-5D two-photon transition of the rubidium atom. Metrological performance of this laser is 10 times as good as that of He-Ne laser calibrated on iodine. It has been shown that the passage of a laser radiation through an optic fiber does not deteriorate its metrological properties. 2S-8S/8D transitions have been excited in an atomic jet by a titanium-sapphire laser. Spurious effects can shift and broaden lines. In order to prevent these effects, a theoretical line has been shaped and adjusted on experimental signals. The frequency comparison between the excitation laser and the standard laser has led to the measurement of the absolute frequency of the line concerned. The value of the Rydberg constant has been deduced: R{sub {infinity}} = 109737.3156859 (10) cm{sup -1}. The comparison of experimental data between deuterium and hydrogen has allowed us to determine the value of the Lamb shift of the 2S state of deuterium: L(2S-2P) = 1059,230 (9) MHz.

  1. Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2 n d auto-ionizing states

    International Nuclear Information System (INIS)

    Wu Xiao-Rui; Shen Li; Zhang Kai; Dai Chang-Jian; Yang Yu-Na

    2016-01-01

    The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f 7 6p 1/2 n d auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm −1 and 44580 cm −1 , from which auto-ionization spectra of the Eu 4f 7 6p 1/2 n d states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. (paper)

  2. Lowest Q2 Measurement of the γ*p→ Δ Reaction: Probing the Pionic Contribution

    Energy Technology Data Exchange (ETDEWEB)

    Stave, Sean C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-06-01

    The first excited state of the proton, the Delat, can be reached through a magnetic dipole spin flip of one of the quarks (M1) or through electric and Coulomb quadrupole terms (E2 and C2) which indicate a deviation from spherical symmetry. The quark models using the color hyperfine interaction underestimate the size of the quadrupole terms by more than an order of magnitude. Models using the pion cloud do a much better job of describing the data. This is expected due to the spontaneous breaking of chiral symmetry which leads to a cloud of virtual p wave pions which introduce the non-spherical amplitudes. The data presented in this work fill gaps in the low Q², long distance region where the pion cloud is expected to dominate and to produce significant Q2 variation. The p(e¯, ép)π° reaction was measured in the Δ region at Q² = 0.060 (GeV/c)², the lowest Q² to date for pion electroproduction, utilizing out-of-plane magnetic spectrometers at the Mainz Microtron in Germany. This work reports results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios obtained from fitting the new data with models using a three parameter, resonant multipole fit: M³/²1+ = (40.33 +- 0.63stat+syst +-model)(10-³/mπ+), E2/M1=Re(E³/²1+M³/²1+) = (-2.28+- 0.29stat+syst +- 0.20model)%, and C2/M1 =Re(S³/²1+/M³/²1+) poles disagree with predictions of the quark models but are in reasonable agreement with a chiral extrapolation of lattice QCD, chiral effective field theory and dynamical model results confirming the dominance and general Q² variation of the long range pionic contribution. While there is qualitative agreement with the models, there is no quantitative agreement thus indicating the need for further improvement of the models.

  3. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  4. Lowest-order corrections to the RPA polarizability and GW self-energy of a semiconducting wire

    NARCIS (Netherlands)

    Groot, de H.J.; Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    We present the results of the addition of lowest-order vertex and self-consistency corrections to the RPA polarizability and the GW self-energy for a semiconducting wire. It is found that, when starting from a local density approximation zeroth-order Green function and systematically including these

  5. Motivated for Leisure in the Future: A Person-Centred Longitudinal Study in the Lowest Level of Secondary Education

    Science.gov (United States)

    Van der Veen, Ineke; Peetsma, Thea

    2011-01-01

    Long-term future time perspective on leisure has been found to relate negatively to school effort. This was studied further by recognizing types of students based on developments in long-term leisure perspectives and comparing their development in motivation and academic achievement. Around 1200 12-13 year old students attending the lowest level…

  6. Satellite bands of the RbCs molecule in the range of highly excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rakić, Mario; Beuc, Robert; Skenderović, Hrvoje, E-mail: hrvoje@ifs.hr [Institute of Physics, Bijenička cesta 46, Zagreb 10000 (Croatia); Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, Bât. 505, Campus d’Orsay, Orsay Cedex 91405 (France); Pichler, Goran [Physics Department, Kuwait University, PO Box 5969, Safat—13060 (Kuwait)

    2016-05-28

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

  7. Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity

    Directory of Open Access Journals (Sweden)

    Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack

    2016-10-01

    Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.

  8. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  9. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  10. Sub-nanometer distances and cluster shapes in dense hydrogen and in higher levels of hydrogen Rydberg matter by phase-delay spectroscopy

    International Nuclear Information System (INIS)

    Holmlid, Leif

    2011-01-01

    The inter-atomic distances in potassium clusters of Rydberg matter (RM) at excitation levels n B = 4–8 were recently measured by phase-delay spectroscopy (Holmlid, J Nanopart Res 12: 273, 2010). Excitation levels n B B = 1, 2, and 3 is found. Close-packing is the main structure both in planar and 3D clusters. Planar clusters are only observed for n B = 1 and 3, while 3D clusters are found in excitation levels n B = 1, 2 and 3. The cluster–cluster distance in stacks of planar clusters for n B = 2 and 3 is now observed for the first time.

  11. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    International Nuclear Information System (INIS)

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-01-01

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve

  12. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    Science.gov (United States)

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  13. People in sub-Saharan Africa rate their health and health care among the lowest in the world.

    Science.gov (United States)

    Deaton, Angus S; Tortora, Robert

    2015-03-01

    The health of people in sub-Saharan Africa is a major global concern. However, data are weak, and little is known about how people in the region perceive their health or their health care. We used data from the Gallup World Poll in 2012 to document sub-Saharan Africans' perceived health status, their satisfaction with health care, their contact with medical professionals, and the priority they attach to health care. In comparison to other regions of the world, sub-Saharan Africa has the lowest ratings for well-being and the lowest satisfaction with health care. It also has the second-lowest perception of personal health, after only the former Soviet Union and its Eastern European satellites. HIV prevalence is positively correlated with perceived improvements in health care in countries with high prevalence. This is consistent with an improvement in at least some health care services as a result of the largely aid-funded rollout of antiretroviral treatment. Even so, sub-Saharan Africans do not prioritize health care as a matter of policy, although donors are increasingly shifting their aid efforts in the region toward health. Project HOPE—The People-to-People Health Foundation, Inc.

  14. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-01-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability

  15. The C1Σ+ state of KLi studied by polarization labelling spectroscopy technique

    International Nuclear Information System (INIS)

    Grochola, A.; Kowalczyk, P.; Jastrzebski, W.; Crozet, P.; Ross, A.J.

    2002-01-01

    The polarization labelling spectroscopy method is applied to study the C 1 Σ + - X 1 Σ + band system of the KLi molecule. Rotationally resolved polarization spectra are observed in the spectral range 17150 - 20350 cm -1 . A set of Dunham coefficients describes the C 1 Σ + state to 95% of its potential well depth, and the potential curve is constructed by the Rydberg-Klein-Rees procedure. The molecular parameters deduced from this work are compared with theoretical calculations. (author)

  16. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. E-mail: fbd@rice.edu; Dunham, H.R.; Oubre, C.; Nordlander, P

    2003-04-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  17. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    CERN Document Server

    Dunning, F B; Oubre, C D; Nordlander, P

    2003-01-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  18. The optimal value of BMI for the lowest risk of osteoporosis in postmenopausal women aged 40-88 years.

    Science.gov (United States)

    Skrzek, A; Kozieł, S; Ignasiak, Z

    2014-06-01

    The aim of this paper is to establish the optimal values of the body mass index (BMI) which would indicate the most favourable preservation of the bone mineral density in postmenopausal women. The material consists of the data of 369 healthy women aged between 40 and 88 years (mean age 67.84, SD=6.70) inhabitants of Wrocław, which were followed up between 2001 and 2006. The absolute measure of bone mineral density (BMD) of the femoral neck was assessed using dual energy X-ray absorptiometry (DEXA), expressed in g/(100mm(2)) and was transformed to T-score values. According to the value of BMI, the women were divided into eight groups, the reference group with value between 18.0 and 21.9kg/m(2) and seven other groups beginning with the value 22.0 with a 2-point interval. Postmenopausal status was defined according to the occurrence of menstruation within the last 360 days. The women with osteopenia and osteoporosis were pooled together and comprised the risk group, whereas the other women comprised the normal group (T-score values above -1.0). The adjusted odds ratio showed the highest value for intervals between 24.0 and 25.9 units of BMI, and the lowest value for interval 26.0-27.9 units of BMI. The Youden index showed the lowest value in the 26.0-27.9BMI kg/m(2) interval. For our sample the optimal value of BMI, with the lowest risk of osteopenia and/or osteoporosis was the value of 26.9kg/m(2). A further increase of BMI does not result in a favourable effect on the bones, it rather intensifies negative phenomena in the body resulting in the onset of many diseases. Copyright © 2014. Published by Elsevier GmbH.

  19. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    International Nuclear Information System (INIS)

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  20. The constraint for the lowest Landau level and the effective field theory approach for the fractional quantum hall system

    International Nuclear Information System (INIS)

    Ma Zhongshui; Su Zhaobin.

    1992-09-01

    By applying the Dirac quantization method, we build the constraint that all electrons are in the lowest Landau level into the Chern-Simons field theory approach for the fractional quantum Hall system and show that the constraint can be transmuted from hierarchy to hierarchy. For a finite system, we derive that the action for each hierarchy can be split into two parts: a surface part provides the action for the edge excitations while the remaining part is precisely the bulk action for the next hierarchy. An the action for the edge could be decoupled from the bulk only at the hierarchy filling. (author). 16 refs