WorldWideScience

Sample records for lowered hydrogen desorption

  1. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  2. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  3. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  4. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  5. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  6. Hydrogen desorption from mechanically milled carbon micro coils hydrogenated at high temperature

    International Nuclear Information System (INIS)

    Yoshio Furuya; Shuichi Izumi; Seiji Motojima; Yukio Hishikawa

    2005-01-01

    Carbon micro coils (CMC) have been prepared by the catalytic pyrolysis of acetylene at 750-800 C. The as grown coils have an almost amorphous structure and contain about 1 mass% hydrogen. They have 0.1 - 10 mm coil length, 1-5 μm coil diameter, 0.1-0.5 μm coil pitch and about 100 m 2 /g specific surface area. They were graphitized, as maintaining the morphology of the coils, by heat-treating at a higher temperature than 2500 C in Ar atmosphere. The layer space (d) of graphitized CMC was determined to be 0.341 nm, forming a 'herringbone' structure with an inclination of 10-40 degree versus the coiled fiber axis, having a specific surface area of about 8 m 2 /g. The hydrogen absorption behaviors of CMC were investigated from RT to 1200 C by a thermal desorption spectrometry (TDS) using a quadrupole mass analyzer. In TDS measurements, pre-existing hydrogen, which was due to the residual acetylene incorporated into CMC on its growing, desorbed from 700 C and peaked at about 900 C. The increment in the main peak of desorbed hydrogen in the as-grown CMC heat-treated at 500 C for 1 h under high pressure of hydrogen gas (1.9 or 8.9 MPa) was not remarkable as is shown in Fig.1. While, in the CMC samples milled mechanically for 1 h at RT using a planetary ball mill, the increase of desorbed hydrogen became to be great with the hydrogen pressure (up to 8.9 MPa) on heat-treating at 500 C, as is shown in Fig.2. In these CMC samples, the building up temperature of the hydrogen desorption was shifted to a lower one and the temperature range of desorption became to be wider than those in the as-grown CMC because of the appearance of another desorption peak at about 600 C in addition to the peak ranging from 850 C to 900 C. The same kind of peak was also slightly observed in as-grown CMC (Fig.1). It is clear that this desorption at about 600 C has contributed to the remarkable increase of desorbed hydrogen in the milled CMC. In this work, values of more than 2 mass% were obtained

  7. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  8. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  9. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  10. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  11. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  12. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  13. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  14. Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3

    International Nuclear Information System (INIS)

    Li, S.L.; Chen, W.; Chen, D.M.; Yang, K.

    2009-01-01

    The effect of a long-term hydrogen absorption/desorption cycling up to 2000 cycles on the hydrogen storage properties of MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy was investigated. The pressure-composition (PC) isotherms for absorption/desorption and absorption kinetics were measured at 338 K, 353 K and 368 K both after initial activation and 2000 cycles. X-ray diffraction analysis revealed that the alloy had a homogeneous hexagonal CaCu 5 type structure and kept this structure even after 2000 hydrogen absorption/desorption cycles. It is found that the absorption/desorption plateau pressures were lowered, the storage capacity and the absorption kinetics were slightly degraded and the hysteresis loss was increased at all the investigated temperatures after 2000 cycles. It is also found that the particle size after 2000 cycles was much smaller compared to that after initial activation. The change of the hydrogen absorption/desorption properties of the alloy after 2000 cycles has been explained by considering the crystal structure, disproportionation property, pulverization of the sample and the impurities in the charging hydrogen employed in cycling

  15. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soon Hwan; Song, Kyu Min [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined.

  16. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    International Nuclear Information System (INIS)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee; Sohn, Soon Hwan; Song, Kyu Min

    2008-01-01

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined

  17. Hydrogen absorption-desorption properties of UZr0.29 alloy

    International Nuclear Information System (INIS)

    Shuai Maobing; Su Yongjun; Wang Zhenhong; Zhang Yitao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr 0.29 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ·mol -1 H 2 and 205.3 J·(K·mol H 2 ) -1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr 0.29 alloy may be a suitable material for tritium treatment and storage

  18. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  19. Hydrogen absorption-desorption properties of U2Ti

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Tanaka, Satoru; Yamawaki, Michio

    1990-01-01

    Hydrogen absorption-desorption properties of U 2 Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, c H , reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and c H reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2 H x (x=4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage. (orig.)

  20. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  1. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 {sup MW}/{sub m{sup 2}} on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher

  2. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 MW / m 2 on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher binding energy

  3. Hydrogen desorption properties of MgH2–Ni–Ni2Si composites prepared by mechanochemical method

    International Nuclear Information System (INIS)

    Shimada, Motoki; Higuchi, Eiji; Inoue, Hiroshi

    2013-01-01

    Highlights: ► The MgH 2 –Ni composite showed fast hydrogen desorption rate at 250 °C. ► The MgH 2 –Ni–Ni 2 Si composite showed fast hydrogen desorption rate at 220 °C. ► Nanocrystalline Mg 2 Ni and Mg 2 Si were formed between Mg and adjacent Ni or Si. ► Ni 2 Si did not form any alloys and work as a catalyst. -- Abstract: To improve hydrogen desorbability of Mg, some composites were prepared from MgH 2 , Ni and Ni 2 Si mixed powders by the mechanochemical method. The MgH 2 –Ni(2 mol%)–Ni 2 Si(1 mol%) composite was slower in hydrogen desorption rate at 250 °C than the MgH 2 –Ni(2 mol%) composite, while the hydrogen desorption rate at 220 °C for the former was faster than that for the latter. The XRD pattern of the MgH 2 –Ni(2 mol%) composite showed that after hydrogen desorption at 400 °C small diffraction peaks assigned to Mg 2 Ni were observed with peaks assigned to Mg. They shifted to smaller angles after hydrogen absorption at 250 °C and come back to the original positions after hydrogen desorption at 250 °C, suggesting reversible hydrogen absorption/desorption of Mg 2 Ni. In contrast, Ni 2 Si was not changed over the whole processes. These results indicated that Ni 2 Si worked as a catalyst for hydrogen desorption, leading to the improvement of desorbability at 220 °C

  4. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  5. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-01-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials

  6. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  7. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  8. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  9. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  10. Study of the chemisorption and hydrogenation of propylene on platinum by temperature-programed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, S.; Nakamura, M.; Yoshioka, N.

    1978-01-01

    Temperature-programed desorption (TPD) chromotograms of propylene adsorbed on platinum black in the absence or presence of hydrogen preadsorbed, admitted simultaneously, or admitted later, all showed four peaks at about 260/sup 0/ (A), 380/sup 0/ (B), 570/sup 0/ (C), and higher than 720/sup 0/K (D). Peaks A and B were identified as mixtures of propylene and propane, and peaks C and D were methane formed by thermal decomposition of the chemisorbed propylene during desorption. When nitrogen rather than helium was used as the carrier gas for the TPD, only delta-hydrogen was observed; this suggested that propylene was more strongly adsorbed on the platinum than hydrogen. Studies of the reactivities with propylene of the various types of chemisorbed hydrogen previously detected by TPD showed that propylene reacted with ..gamma..-hydrogen present on the surface in the form of hydrogen atoms chemisorbed on top of platinum atoms and with ..beta..-hydrogen, molecular hydrogen chemisorbed in a bridged form, but did not react with delta-hydrogen. Tables and graph.

  11. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  12. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  13. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    Science.gov (United States)

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  14. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  15. Desorption process of hydrogen starting from the Mg2NiH4 and Mg2NiH0.3

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Basurto S, R.; Lopez M, B.E.

    2002-01-01

    In this work the desorption velocity of H 2 was determined starting from the magnesium nickel hydride once the reaction between the intermetallic and the hydrogen was realized, the compound were analysed by means of a thermogravimetric equipment, the conditions for carrying out the analysis were: 10 C by minute in nitrogen atmosphere at a volume of 50 ml by minute, subsequently the isotherms at different times were programmed and the desorption velocity of hydrogen was determined. The results show that the desorption velocity of hydrogen depends of the temperature, using only the nitrogen flux which acts as a carrier gas. Observing that the hydrogen liberation is carried out by means of two mechanisms according to the isotherms obtained. (Author)

  16. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  17. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  18. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  19. Changes of structural and hydrogen desorption properties of MgH2 indused by ion irradiation

    Directory of Open Access Journals (Sweden)

    Kurko Sandra V.

    2010-01-01

    Full Text Available Changes in structural and hydrogen desorption properties of MgH2 induced by ion irradiation have been investigated. MgH2 powder samples have been irradiated with 45 keV B3+ and 120 keV Ar8+ions, with ion fluence of 1015 ions/cm2. The effects of ion irradiation are estimated by numerical calculations using SRIM package. The induced material modifications and their consequences on hydrogen dynamics in the system are investigated by XRD, particle size distribution and TPD techniques. Changes of TPD spectra with irradiation conditions suggest that there are several mechanisms involved in desorption process which depend on defect concentration and their interaction and ordering. The results confirmed that the near-surface area of MgH2 and formation of a substoichiometric MgHx (x<2 play a crucial role in hydrogen kinetics and that various concentrations of induced defects substantially influence H diffusion and desorption kinetics in MgH2. The results also confirm that there is possibility to control the thermodynamic parameters by controlling vacancies concentration in the system.

  20. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  1. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  2. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  3. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  4. Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Chien, Hsiu-Chuan; Wu, Tzu-Ho; Rajkumar, Muniyandi; Hu, Chi-Chang

    2016-01-01

    Highlights: • H adsorption causes local pH increase and negatively shifts the double-layer potential window. • The local pH variation at AC/electrolyte interface can be controlled via adding buffer agents. • H adsorption potential on AC in buffer electrolytes follows the Nernstian dependence. • The pseudocapacitive reversibility of H adsorption/desorption at/within AC is too poor. - Abstract: In this work, the effects of adding buffer agents into aqueous electrolytes on the hydrogen adsorption/desorption behaviour at/within activated carbon are systematically investigated for the negative electrode of asymmetric supercapacitors. Due to the poor electrochemical reversibility of hydrogen adsorption/desorption at/within activated carbon, the hydrogen responses at/within activated carbon are not suitable for pseudo-capacitive energy storage of high-performance asymmetric supercapacitor. The electrochemical adsorption of H atoms consumes protons and causes the local pH change at the activated carbon/electrolyte interface, leading to the negative shift in the H adsorption potential when weakly acidic, neutral, and weakly basic electrolytes without buffer agents are employed. The addition of buffer agents into electrolytes significantly improves the rate of proton supply and promotes the rate of hydrogen adsorption at/within AC. Interestingly, the onset potential of significant H adsorption obtained from the buffered electrolytes generally follows the Nernstian dependence, suggesting the Nerstian dependence of H"+/H_a_d_s on AC at all pH values. In order to obtain the energy storage devices with high coulombic and energy efficiencies, the onset potential of significant H adsorption obtained from the electrolyte containing buffer agents is a reliable lower potential limit of the AC-coated negative electrode for aqueous asymmetric supercapacitors.

  5. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni79.1Co18.6Cu2.3 alloy using resistometry

    International Nuclear Information System (INIS)

    Spasojević, M.; Maričić, A.; Ribić Zelenović, L.; Krstajić, N.; Spasojević, P.

    2013-01-01

    Highlights: ► Nanostructured Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition. ► Correlation observed between electrical conductivity and absorbed hydrogen amount. ► Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni 79.1 Co 18.6 Cu 2.3 alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 °C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 °C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160–200 °C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the

  6. Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel

    Science.gov (United States)

    Song, Eun Ju; Baek, Seung-Wook; Nahm, Seung Hoon; Suh, Dong-Woo

    2018-03-01

    The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.

  7. Statistical physics modeling of hydrogen desorption from LaNi{sub 4.75}Fe{sub 0.25}: Stereographic and energetic interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Wjihi, Sarra [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Dhaou, Houcine [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Yahia, Manel Ben; Knani, Salah [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Jemni, Abdelmajid [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Lamine, Abdelmottaleb Ben, E-mail: abdelmottaleb.benlamine@gmail.com [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia)

    2015-12-15

    Statistical physics treatment is used to study the desorption of hydrogen on LaNi{sub 4.75}Fe{sub 0.25}, in order to obtain new physicochemical interpretations at the molecular level. Experimental desorption isotherms of hydrogen on LaNi{sub 4.75}Fe{sub 0.25} are fitted at three temperatures (293 K, 303 K and 313 K), using a monolayer desorption model. Six parameters of the model are fitted, namely the number of molecules per site n{sub α} and n{sub β}, the receptor site densities N{sub αM} and N{sub βM}, and the energetic parameters P{sub α} and P{sub β}. The behaviors of these parameters are discussed in relationship with desorption process. A dynamic study of the α and β phases in the desorption process was then carried out. Finally, the different thermodynamical potential functions are derived by statistical physics calculations from our adopted model.

  8. Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta{sub 2}O{sub 5}-coated Pt electrode in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Shunsuke [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Awad, Mohamed I.; El-Deab, Mohamed S. [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Department of Chemistry, Faculty of Science, Cairo University, Cairo (Egypt); Okajima, Takeyoshi [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-04-01

    The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaO{sub x}/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaO{sub x}/Pt surfaces. TaO{sub x}/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K{sub 2}TaF{sub 7} (20 wt%) at 800 deg. C and then by annealing in air at various temperatures (200, 400 and 600 deg. C). The thus-fabricated TaO{sub x}/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (H{sub ads}/H{sub des}) reaction. The oxidation of Ta to the stoichiometric oxide (Ta{sub 2}O{sub 5}) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the H{sub ads}/H{sub des} reaction at TaO{sub x}/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 deg. C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaO{sub x}/Pt electrode is a diffusion-controlled process.

  9. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    Science.gov (United States)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  10. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  11. STM-Induced Hydrogen Desorption via a Hole Resonance

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Thirstrup, C.; Sakurai, M.

    1998-01-01

    We report STM-induced desorption of H from Si(100)-H(2 X 1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes...... with the Si-H 5 sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum...

  12. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  13. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  14. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy using resistometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, M., E-mail: ljiljana.spasojevic51@yahoo.com [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Ribic Zelenovic, L. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Krstajic, N.; Spasojevic, P. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Republic of Serbia (Serbia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Nanostructured Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} powder was obtained by electrochemical deposition. Black-Right-Pointing-Pointer Correlation observed between electrical conductivity and absorbed hydrogen amount. Black-Right-Pointing-Pointer Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 Degree-Sign C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 Degree-Sign C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160-200 Degree-Sign C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free

  15. Analysis of hydrogen distribution on Mg-Ni alloy surface by scanning electron-stimulated desorption ion microscope (SESDIM)

    International Nuclear Information System (INIS)

    Yamaga, Atsushi; Hibino, Kiyohide; Suzuki, Masanori; Yamada, Masaaki; Tanaka, Kazuhide; Ueda, Kazuyuki

    2008-01-01

    Hydrogen distribution and behavior on a Mg-Ni alloy surface are studied by using a time-of-flight electron-stimulated desorption (TOF-ESD) microscopy and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The desorbed hydrogen ions are energy-discriminated and distinguished into two characters in the adsorbed states, which belong to Mg 2 Ni grains and the other to oxygen-contaminated Mg phase at the grain boundaries. Adsorbed hydrogen is found to be stable up to 150 deg. C, but becomes thermally unstable around at 200 deg. C

  16. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  17. Data compilation for particle impact desorption

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeuchi, Fujio.

    1984-05-01

    The desorption of gases from solid surfaces by incident electrons, ions and photons is one of the important processes of hydrogen recycling in the controlled thermonuclear reactors. We have surveyed the literature concerning the particle impact desorption published through 1983 and compiled the data on the desorption cross sections and desorption yields with the aid of a computer. This report presents the results obtained for electron stimulated desorption, the desorption cross sections and yields being given in graphs and tables as functions of incident electron energy, surface temperature and gas exposure. (author)

  18. Desorption of hydrogen from magnesium hydride: in-situ electron diffraction study

    International Nuclear Information System (INIS)

    Paik, B.; Jones, I.P.; Walton, A.; Mann, V.; Book, D.; Harris, I.R.

    2009-01-01

    The dynamics of a phase change has been studied where electron beam in Transmission Electron Microscope (TEM) has been used to transform MgH 2 into magnesium. A combination of in-situ Electron Diffraction (ED) and an in-situ Electron Energy Loss Spectroscopy (EELS) study under ED mode describes the phase transformation in terms of, respectively, change in the crystal structure and Plasmon energy shift. The orientation relation [001] MgH2 //[-2110] Mg and (-110) MgH2 //(0001) Mg , obtained from the ED study, has been used to propose a model for the movements of magnesium atoms in the structural change to describe the dynamics of the process. The in-situ EELS study has been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH 2 which is a base material for a number of promising hydrogen storage systems. (author)

  19. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  20. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  1. Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; David, Bohumil

    2011-01-01

    Roč. 36, č. 21 (2011), s. 13614-13620 ISSN 0360-3199 R&D Projects: GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : MgH2 * Hydrogen storage * Hydrogen desorption * Catalysis Subject RIV: JG - Metallurgy Impact factor: 4.054, year: 2011

  2. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  3. Physicochemical and thermodynamic investigation of hydrogen absorption and desorption in LaNi3.8Al1.0Mn0.2 using the statistical physics modeling

    Science.gov (United States)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2018-06-01

    In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.

  4. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  5. Data compilation for particle-impact desorption, 2

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeutchi, Fujio.

    1985-07-01

    The particle impact desorption is one of the elementary processes of hydrogen recycling in controlled thermonuclear fusion reactors. We have surveyed the literature concerning the ion impact desorption and photon stimulated desorption published through the end of 1984 and compiled the data on the desorption cross sections and yields with the aid of a computer. This report presents the results of the compilation in graphs and tables as functions of incident energy, surface temperature and surface coverage. (author)

  6. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    Science.gov (United States)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  7. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    Science.gov (United States)

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  8. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  9. Thermal stability of hydrogenated small-diameter carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A. [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-02-15

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  10. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  11. Electrocatalytic activity of a mononuclear yttrium(III)–methyl orange complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles for adsorption/desorption of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shafaie, Fahimeh [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Hadadzadeh, Hassan, E-mail: hadad@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Behnamfar, Mohammad Taghi [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2016-12-01

    A new mononuclear yttrium(III) complex, [Y(MO){sub 3}(DMF){sub 3}(H{sub 2}O){sub 2}] (where MO{sup –} is methyl orange anion (4-[(4-dimethylamino)phenyldiazenyl]benzenesulfonate)), was synthesized in an aqueous solution. The complex was characterized by elemental analysis, UV/Vis, FT-IR, and single-crystal X-ray crystallography. The yttrium oxysulfate nanoparticles (Y{sub 2}O{sub 2}SO{sub 4}) were then prepared by calcination of [Y(MO){sub 3}(DMF){sub 3}(H{sub 2}O){sub 2}]. The obtained nanoparticles were characterized by FT-IR, X-ray diffraction analysis (XRD), and field-emission scanning electron microscopy (FE-SEM). The hydrogen adsorption/desorption (H{sub ads}/H{sub des}) behavior of the Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles was studied at a carbon paste electrode (CPE) in H{sub 2}SO{sub 4} by cyclic voltammetry (CV). The recorded voltammograms exhibited a pair of peaks corresponding to the adsorption/desorption of hydrogen for the Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles. The results show a reversible hydrogen adsorption/desorption reaction for both compounds. The voltammograms of the nanoparticles indicate an excellent cycling stability for the adsorption/desorption of hydrogen. In addition, the linear sweep voltammetry (LSV) technique was used to investigate the electrocatalytic activity of both compounds for the hydrogen adsorption reaction. The linear voltammograms of both compounds demonstrate the excellent electrocatalytic activity for the hydrogen adsorption reaction. - Highlights: • Preparation of a new Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles. • Investigation of the H{sub ads}/H{sub des} reaction for both compounds by voltammetry. • Observation of two peaks corresponding to the H{sub ads}/H{sub des} in both compounds. • An excellent cycling stability for the nanoparticles in H{sub 2}SO{sub 4}.

  12. Hydrogen retention properties of lithium film

    International Nuclear Information System (INIS)

    Kanaya, Koh; Yamauchi, Yuji; Hirohata, Yuko; Hino, Tomoaki; Mori, Kintaro

    1998-01-01

    Hydrogen retention properties of Li films and lithium oxide-lithium hydroxide (Li 2 O-LiOH) mixed films were investigated by two methods, hydrogen ion irradiation and hydrogen glow discharge. In a case of the hydrogen ion irradiation, thermal desorption spectrum of hydrogen retained in Li 2 O-LiOH film had two desorption peaks at around 470 K and 570 K. The ratio between retained hydrogen and Li atom was about 0.7. In a case of the hydrogen glow discharge, the hydrogen was also gettered in Li film during the discharge. The ratio of H/Li was almost 0.9. Most of gettered hydrogen desorbed by a baking with a temperature of 370 K. On the contrary, when the Li film exposed to the atmosphere was irradiated by the hydrogen plasma, the desorption of H 2 O was observed in addition to the adsorption of H 2 . (author)

  13. Actuation of Pneumatic Artificial Muscle via Hydrogen Absorption/Desorption of Metal Hydride-LaNi5

    Directory of Open Access Journals (Sweden)

    Thanana Nuchkrua

    2015-01-01

    Full Text Available This paper presents experimental studies on mechanical actuations of a pneumatic artificial muscle (PAM, which is driven by hydrogen gas based metal hydride (MH. The dynamic performances of hydrogen absorption/desorption, taking place within a MH reactor, are controlled via implementing cooling/heating effects of a thermoelectric module (TEM. Hydrogen pressure is applied as a driving force to commanding work outputs of the PAM as desired mechanical actuations. Due to strong inherent nonlinearity, a conventional proportional integral derivative (PID control law is not capable of regulating thermodynamic variables of the HM reaction according to desired performances of the PAM. In this study, the fuzzy adaptive PID control is proposed in manipulating the MH reaction via the TEM. This viability of the proposed methodology is confirmed by the fact that the gains of PID control law are adapted by fuzzy rule-based tuning scheme at various operating conditions of the MH reactor. The experimental results show that the proposed control technique is much more effective than a PID control in both transient and steady state performances of the MH reactor for servo mechanical actuation of the PAM.

  14. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  15. Hydrogen isotope inventory in the graphite divertor tiles of ASDEX Upgrade as measured by thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Franzen, P.; Behrisch, R.; Garcia-Rosales, C.; Schleussner, D.; Roesler, D.; Becker, J.; Knapp, W.; Edelmann, C.

    1997-01-01

    The hydrogen and deuterium inventories of the ASDEX Upgrade divertor tiles were measured after the experimental period from December 1994 to July 1995 by thermal desorption spectroscopy (TDS) of samples cut out of the divertor tiles. The samples were heated by electron bombardment up to 2100 K; the released gases were measured by means of a calibrated quadrupole mass spectrometer. The measured hydrogen or deuterium inventories are of the order of 10 23 m -2 . They are larger for samples of the inner divertor than of the outer divertor by a factor of about 2. The largest inventory was found at the separatrix position of the inner divertor. Most of the released hydrogen (H) can be attributed to water adsorbed in the near surface region during the air exposure prior to the TDS measurements. The total inventories measured by TDS exceed the inventories in the near surface region (< 25 μm) measured by ion beam analysis methods by a factor of up to 10. Hence, the total hydrogen retention is governed by the diffusion out of the near surface region deep into the material. The hydrogen and deuterium inventories decreased with increasing surface temperature. (author). 64 refs, 12 figs, 2 tabs

  16. Effects of an electron beam on adsorption and desorption of ammonia on ruthenium (0001)

    International Nuclear Information System (INIS)

    Danielson, L.R.; Dresser, M.J.; Donaldson, E.E.; Sandstrom, D.R.

    1978-01-01

    The effects of an electron beam on ammonia adsorption and desorption on Ru(0001) have been investigated by Auger electron spectroscopy, low-energy electron diffraction, and thermal flash desorption. Appreciable adsorption at room temperature occurred only on the area of the Ru crystal which had been bombarded by an electron beam during dosing. The adsorption rate was a function of beam current density and ammonia pressure, and an apparent (2x2) diffraction pattern appeared in the area bombarded by the electron beam. Electron bombardment of the molecular γ states of ammonia followed by flash desorption showed that less ammonia and more hydrogen and nitrogen were desorbed as the bombardment time increased. An analysis of this process based on electron-induced dissociation of the ammonia molecule yielded an effective initial dissociation cross section of 3x10 -6 cm 2 . Hydrogen flash desorption spectra after bombardment of the γ states obeying first order kinetics with desorption energies of 0.78 and 1.0 eV. Electron bombardment of the γ states for short times produced the same effects on the ammonia flash desorption spectra as preadsorption of hydrogen. (Auth.)

  17. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  18. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  19. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  20. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems; Analisis de la Tecnica Espectroscopia de Desorcion Termica (TDS) y su Applicacion para la Caracterizacion de Sistemas Metal-Hydrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Castro, F J [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models considersimultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  1. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  2. In situ measurements of fuel retention by laser induced desorption spectroscopy in TEXTOR

    Science.gov (United States)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Stoschus, H.; Brezinsek, S.; Samm, U.; TEXTOR Team

    2011-12-01

    In future fusion devices such as ITER tritium retention due to tritium co-deposition in mixed material layers can be a serious safety problem. Laser induced desorption spectroscopy (LIDS) can measure the hydrogen content of hydrogenic carbon layers locally on plasma-facing components, while hydrogen is used as a tritium substitute. For several years, this method has been applied in the TEXTOR tokamak in situ during plasma operation to monitor the hydrogen content in space and time. This work shows the LIDS signal reproducibility and studies the effects of different plasma conditions, desorption distances from the plasma and different laser energies using a dedicated sample with constant hydrogen amount. Also the LIDS signal evaluation procedure is described in detail and the detection limits for different conditions in the TEXTOR tokamak are estimated.

  3. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  4. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  5. Desorption process of hydrogen starting from the Mg{sub 2}NiH{sub 4} and Mg{sub 2}NiH{sub 0.3}; Proceso de desorcion de hidrogeno a partir del hidruro intermetalico Mg{sub 2}NiH{sub 4} y Mg{sub 2}NiH{sub 0.3}

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Basurto S, R.; Lopez M, B.E. [Departamento de Quimica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the desorption velocity of H{sub 2} was determined starting from the magnesium nickel hydride once the reaction between the intermetallic and the hydrogen was realized, the compound were analysed by means of a thermogravimetric equipment, the conditions for carrying out the analysis were: 10 C by minute in nitrogen atmosphere at a volume of 50 ml by minute, subsequently the isotherms at different times were programmed and the desorption velocity of hydrogen was determined. The results show that the desorption velocity of hydrogen depends of the temperature, using only the nitrogen flux which acts as a carrier gas. Observing that the hydrogen liberation is carried out by means of two mechanisms according to the isotherms obtained. (Author)

  6. Properties of Mg-Al alloys in relation to hydrogen storage

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage. Alloying with Al reduces the hydrogen capacity since Al doesnot form a hydride under conventional hydriding conditions, however both the thermodynamical......Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still beconsidered as a potential candidate for hydrogen...... properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride isretained along with improved heat transfer properties and improved resistance towards oxygen contamination....

  7. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  8. Studies of the effects of TiCl3 in LiBH4/CaH2/TiCl3 reversible hydrogen storage system

    International Nuclear Information System (INIS)

    Liu Dongan; Yang Jun; Ni Jun; Drews, Andy

    2012-01-01

    Highlights: ► We systematically studied the effects of TiCl 3 in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system. ► It is found that adding 0.25 TiCl 3 produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. ► LiCl experiences four different states, i.e. “formed-solid solution-molten solution-precipitation”, in the whole desorption process of the system. ► The incorporation of LiCl into LiBH 4 forms more viscous molten LiBH 4 ·LiCl, leading to fast kinetics. ► The precipitation and re-incorporation of LiCl into LiBH 4 lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl 3 on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH 4 /CaH 2 /xTiCl 3 and that as temperature increases, o-LiBH 4 transforms into h-LiBH 4 , into which LiCl incorporates, forming solid solution of LiBH 4 ·LiCl, which melts above 280 °C. Molten LiBH 4 ·LiCl is more viscous than molten LiBH 4 , preventing the clustering of LiBH 4 and the accompanied agglomeration of CaH 2 , and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 °C, the molten solution LiBH 4 ·LiCl further reacts with CaH 2 , precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH 4 ·LiCl and CaH 2 and not between molten LiBH 4 and CaH 2 . This alters the hydrogen reaction thermodynamics and lowers the hydrogen desorption temperature. In addition, the solid–liquid nano-sized phase arrangement in the nano-composites improves the hydrogen reaction kinetics. The reversible incorporation/precipitation of LiCl at the hydrogen reaction temperature and during temperature cycling makes the 6LiBH 4 /CaH 2 /0.25TiCl 3

  9. Preparation of Sm2Fe17-xGaxNy/Cy magnets by a hydrogenation-disproportionation-desorption-recombination process

    International Nuclear Information System (INIS)

    Kubis, M.; Cao, L.; Handstein, A.; Gebel, B.; Mueller, K.; Schultz, L.

    1997-01-01

    A hydrogenation-disproportionation-desorption-recombination process (HDDR) was applied to Sm 2 Fe 17-x Ga x (x=0.5, 1, and 2). The process was studied by means of temperature-pressure analysis, x-ray diffraction and scanning electron microscopy. It was shown that Ga not only stabilizes the interstitially modified compounds Sm 2 Fe 17-x Ga x C y (0 2 Fe 17-x Ga x against the disproportionation by hydrogen. Therefore, only for x=0.5 can a nearly complete HDDR be performed. The HDDR-treated and subsequently nitrogenated or carburized samples show coercivities μ 0J H C up to 3.1 T and 2.5 T, respectively. Hot compaction increases the density of the Sm 2 Fe 16.5 Ga 0.5 C y powder; however, it leads to a loss of coercivity due to decomposition into α-iron and samarium carbides. copyright 1997 American Institute of Physics

  10. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  11. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  12. Hydrogen absorption-desorption at metal surfaces

    International Nuclear Information System (INIS)

    Ward, C.A.; Pataki, L.

    1991-04-01

    On the basis of experimental studies, it has been proposed that when zirconium oxide (ZrO 2 ) is exposed to hydrogen at 300 degrees C or higher, a reaction occurs to produce metallic zirconium and water, thereby increasing the electrical conductivity of the oxide film and its permeability to hydrogen. A series of experiments has been performed in which specimens of zirconium and zirconium-2.5% niobium were either hydrided or deuterided in a furnace at a temperature between 300 degrees C and 800 degrees C and in an atmosphere that consisted primarily of either hydrogen (H 2 ) or deuterium (D 2 ). After cooling a specimen to room temperature, it was placed in a thermogravimetric analyzer that was equipped with a mass spectrometer, TGA-MS. Each specimen was then heated to 1200 degrees C at a controlled rate in a primarily helium atmosphere monitored with the mass spectrometer. Light water (H 2 O) evolved from the hydrided specimens and heavy water (D 2 0) from the deuterided ones and there was a weight loss of the specimens that accompanied the water evolution. The specimens having approximately the same amount of hydride but more oxide also evolved more H 2 O, and that the H 2 O did not come from reactions between impurity H 2 and oxygen (O 2 ) in the TGA-MS. Heating a zirconium or zirconium alloy specimen that contains a hydride or deuteride phase within and an oxide layer on its surface causes the hydrogen to diffuse toward the surface and when it encounters the oxide a reaction follows that produces water. The conventional mechanism for the dissipation of the imperviousness of ZrO 2 to H 2 that results from the oxide being exposed to a reducing atmosphere will not explain the water production observed in these experiments. However, the existence of the proposed reaction can account for the elevated hydrogen concentration in an oxide film that has been observed to accompany the aqueous corrosion of zirconium and the effects on both the electrical conductivity and

  13. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    International Nuclear Information System (INIS)

    Recham, N.; Bhat, V.V.; Kandavel, M.; Aymard, L.; Tarascon, J.-M.; Rougier, A.

    2008-01-01

    Enhanced sorption properties of ball-milled MgH 2 are reported by adding NbF 5 . Among various catalyst amounts, 2 mol% of NbF 5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH 2 . At 200 deg. C, temperature at which MgH 2 does not show any activity, MgH 2NbF 5 /2mol% composite desorbs 3.2 wt.% of H 2 in 50 mins. Interestingly, the addition of NbF 5 is also associated with an increase in the desorption pressure. At 300 deg. C, MgH 2NbF 5 /2mol% composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH 2 . Further improvements were successfully achieved by pre-grinding NbF 5 prior to ball-milling the catalyst with MgH 2 . Such pre-ground NbF 5 catalyzed MgH 2 composite desorbs 3 wt.% of H 2 at 150 deg. C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH 2 . Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF 2 formation and electronic density localization

  14. Positron annihilation study of hydrogen storage alloys

    International Nuclear Information System (INIS)

    Shirai, Yasuharu; Araki, Hideki; Sakaki, Kouji

    2003-01-01

    Some AB 5 and AB 2 hydrogen storage alloys have been characterized by using positron-annihilation lifetime spectroscopy. It has been shown that they contain no constitutional vacancies and that deviations from the stoichiometric compositions are all compensated by antistructure atoms. Positron lifetimes in fully-annealed LaNi 5-x Al x and MmNi 5-x Al x alloys show good correlation with their hydrogen desorption pressures. On the other hand, surprising amounts of vacancies together with dislocations have been found to be generated during the first hydrogen absorption process of LaNi 5 and ZrMn 2 . These lattice defects play important role in hydrogen absorption-desorption processes of hydrogen storage alloys. (author)

  15. Properties of MgAl alloys in relation to hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-08-01

    Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still be considered as a potential candidate for hydrogen storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage Alloying with Al reduces the hydrogen capacity since Al does not form a hydride under conventional hydriding conditions, however both the thermodynamical properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride is retained along with improved heat transfer properties and improved resistance towards oxygen contamination. (au)

  16. Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2.

    Science.gov (United States)

    Zang, Lei; Sun, Weiyi; Liu, Song; Huang, Yike; Yuan, Huatang; Tao, Zhanliang; Wang, Yijing

    2018-05-30

    LiBH 4 is of particular interest as one of the most promising materials for solid-state hydrogen storage. Herein, LiBH 4 is confined into a novel two-dimensional layered Ti 3 C 2 MXene through a facile impregnation method for the first time to improve its hydrogen storage performance. The initial desorption temperature of LiBH 4 is significantly reduced, and the de-/rehydrogenation kinetics are remarkably enhanced. It is found that the initial desorption temperature of LiBH 4 @2Ti 3 C 2 hybrid decreases to 172.6 °C and releases 9.6 wt % hydrogen at 380 °C within 1 h, whereas pristine LiBH 4 only releases 3.2 wt % hydrogen under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C and under 95 bar H 2 . The nanoconfined effect caused by unique layered structure of Ti 3 C 2 can hinder the particles growth and agglomeration of LiBH 4 . Meanwhile, Ti 3 C 2 could possess superior effect to destabilize LiBH 4 . The synergetic effect of destabilization and nanoconfinement contributes to the remarkably lowered desorption temperature and improved de-/rehydrogenation kinetics.

  17. Electron Stimulated Molecular Desorption of a NEG St 707 at Room Temperature

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2001-01-01

    Electron stimulated molecular desorption (ESD) from a NEG St 707 (SAES GettersTM) sample after conditioning and after saturation with isotopic carbon monoxide2,13C18O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 1015 electrons s-1. The electrons were impinging on the 15 cm2 target surface at perpendicular incidence. It is found that the desorption yields h (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with 13C18O are lower than for OFHC copper baked at 120oC. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be accessible to ESD.

  18. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  19. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  20. Interaction of hydrogen with palladium clusters deposited on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio A.; Granja, Alejandra; Cabria, Iván; López, María J. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-12-31

    Hydrogen adsorption on nanoporous carbon materials is a promising technology for hydrogen storage. However, pure carbon materials do not meet the technological requirements due to the week binding of hydrogen to the pore walls. Experimental work has shown that doping with Pd atoms and clusters enhances the storage capacity of porous carbons. Therefore, we have investigated the role played by the Pd dopant on the enhancement mechanisms. By performing density functional calculations, we have found that hydrogen adsorbs on Pd clusters deposited on graphene following two channels, molecular adsorption and dissociative chemisorption. However, desorption of Pd-H complexes competes with desorption of hydrogen, and consequently desorption of Pd-H complexes would spoil the beneficial effect of the dopant. As a way to overcome this difficulty, Pd atoms and clusters can be anchored to defects of the graphene layer, like graphene vacancies. The competition between molecular adsorption and dissociative chemisorption of H{sub 2} on Pd{sub 6} anchored on a graphene vacancy has been studied in detail.

  1. Interaction of hydrogen with palladium clusters deposited on graphene

    Science.gov (United States)

    Alonso, Julio A.; Granja, Alejandra; Cabria, Iván; López, María J.

    2015-12-01

    Hydrogen adsorption on nanoporous carbon materials is a promising technology for hydrogen storage. However, pure carbon materials do not meet the technological requirements due to the week binding of hydrogen to the pore walls. Experimental work has shown that doping with Pd atoms and clusters enhances the storage capacity of porous carbons. Therefore, we have investigated the role played by the Pd dopant on the enhancement mechanisms. By performing density functional calculations, we have found that hydrogen adsorbs on Pd clusters deposited on graphene following two channels, molecular adsorption and dissociative chemisorption. However, desorption of Pd-H complexes competes with desorption of hydrogen, and consequently desorption of Pd-H complexes would spoil the beneficial effect of the dopant. As a way to overcome this difficulty, Pd atoms and clusters can be anchored to defects of the graphene layer, like graphene vacancies. The competition between molecular adsorption and dissociative chemisorption of H2 on Pd6 anchored on a graphene vacancy has been studied in detail.

  2. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)

  3. Hydrogen sulfide synthesis enzymes reduced in lower esophageal sphincter of patients with achalasia.

    Science.gov (United States)

    Zhang, L; Zhao, W; Zheng, Z; Wang, T; Zhao, C; Zhou, G; Jin, H; Wang, B

    2016-10-01

    The etiology of achalasia remains largely unknown. Considerable evidence reveals that the lower esophageal sphincter dysfunction is due to the lack of inhibitory neurotransmitter, secondary to esophageal neuronal inflammation or loss. Recent studies suggest hydrogen sulfide may act as an inhibitory transmitter in gastrointestinal tract, but study about hydrogen sulfide in human esophagus still lack. The aim of the study was to investigate if hydrogen sulfide synthesis enzymes could be detected in human esophagus and if the synthesis of the endogenous hydrogen sulfide could be affected in achalasia patients. Tissue samples in cardia, lower esophageal sphincter, 2 cm and 4 cm above lower esophageal sphincter were obtained from achalasia patients undergoing peroral endoscopic myotomy. Control tissues in lower esophageal sphincter were obtained from esophageal carcinoma patients. Expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients and control were detected by immunohistochemical staining. In addition, expression of cystathionine-β-synthase and cystathionine-γ-lyase were compared among different parts of esophagus in achalasia patients. Compared with control, the expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients was significantly reduced (χ 2 = 11.429, P = 0.010). The expression of cystathionine-β-synthase and cystathionine-γ-lyase were lower in lower esophageal sphincter than that in 2 cm and 4 cm above lower esophageal sphincter, respectively (all P achalasia, which implicates the involvement of the two hydrogen sulfide synthesis enzymes in the pathophysiology of achalasia. © 2015 International Society for Diseases of the Esophagus.

  4. Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling

    International Nuclear Information System (INIS)

    Zhang, Yanghuan; Jia, Zhichao; Central Iron and Steel Research Institute, Beijing; Yuan, Zeming; Qi, Yan; Zhao, Dongliang; Hou, Zhonghui

    2016-01-01

    LaMg 11 Ni + x wt.% Ni (x = 100, 200) composite hydrogen storage alloys with a nanocrystalline/amorphous structure were synthesized using ball milling technology. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were investigated systematically. The hydrogen desorption properties were assessed using a Sieverts apparatus and differential scanning calorimetry. The thermodynamic parameters for the hydrogen absorption and desorption were calculated using the Van't Hoff equation. The hydrogen desorption activation energies of the hydrogenated alloys were also estimated by Arrhenius and Kissinger methods. Results indicate that the amount of Ni added has no effect on the thermodynamics of the alloys, but it significantly improves their absorption and desorption kinetics. Furthermore, the milling time has a great influence on the hydrogen storage properties. To be specific, the hydrogen absorption capacities reach the maximum values with the variation of milling time, and the hydrogen desorption activation energy obviously decreases with increasing milling time.

  5. Functional nanometers for hydrogen storage produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Czujko, T. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering]|[Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies; Varin, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Wronski, Z.S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Hydrogen Fuel Cells and Transportation; Zaranski, Z. [Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies

    2008-07-01

    It is becoming increasingly important to switch to cleaner alternative energy carriers such as hydrogen, as environmental concerns over greenhouse gas emissions from the burning of fossil fuel increase. Specifically, there is a need for efficient on-board hydrogen storage technologies for vehicular applications. This paper discussed three different methods of hydrogen desorption temperature reduction and desorption kinetics of nanostructured hydrides. The first method was based on substantial hydride particle size refinement. The second method utilized catalytic effects of nanometric n-alumina (Al{sub 2}O{sub 3}), n-yttrium oxide powder (Y{sub 2}O{sub 3}) and n-nickel (Ni) additives. The third method was based on a composite of nanohydride mixtures. The composite approach was applied to the magnesium hydride (MgH{sub 2}) plus sodium tetrahydridoborate (NaBH{sub 4}) and lithium aluminum hydride (LiAlH{sub 4}) systems. The paper presented the effects of nanostructuring and nanocatalytic additives on Mg hydride desorption properties as well as a composite behaviour of nanostructured complex hydrides. It was concluded that milling of commercial MgH{sub 2} with the nano-oxide additives had a limited effect on improving the hydrogen storage properties. The addition of specialty Inco nanometric Ni reduced the hydrogen desorption temperature considerably. 28 refs., 1 tab., 9 figs.

  6. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  7. Hydrogen storage study on Ti2CrV and ZrFe1.8V0.2 composite system

    International Nuclear Information System (INIS)

    Banerjee, S.; Kumar, A.; Pillai, C.G.S.; Sudarsan, V.

    2012-01-01

    Ti 2 CrV is reported to have one of the highest hydrogen storage capacities (more than 4 wt. %) among the bcc phase transition metal alloys. It has been found from the earlier study that Ti 2 CrV alloy shows quite good hydrogen absorption property but the desorption temperature is on the higher side. The in-situ temperature programmed desorption profile shows that the hydrogen desorption starts from 120℃ and the desorption peak comes at 180℃, which is slightly high for the vehicular application. On the other hand ZrFe 1.8 V 0.2 Laves phase alloy has low hydrogen absorption capacity, but at the room temperature it can desorp all its hydrogen. The pressure composition isotherm of ZrFe 1.8 V 0.2 alloy generated during the experiment shows the typical characteristics of the room temperature reversible hydride. The in-situ temperature programmed desorption shows that the hydride can desorb all the hydrogen below room temperature

  8. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  9. Hydrogen isotope behavior in the first wall of JT-60U after deuterium plasma operation

    International Nuclear Information System (INIS)

    Oya, Y.; Tanabe, T.; Oyaidzu, M.; Shibahara, T.; Sugiyama, K.; Yoshikawa, A.; Onishi, Y.; Hirohata, Y.; Ishimoto, Y.; Yagyu, J.; Arai, T.; Masaki, K.; Okuno, K.; Miya, N.; Tanaka, S.

    2007-01-01

    Retention of hydrogen isotopes in the carbon (isotropic graphite) first wall tiles of JT-60U was studied by secondary ion mass spectrometry and thermal desorption spectroscopy. The surface morphology and erosion/deposition profiles of the tiles were characterized using scanning electron microscope and X-ray photoelectron spectroscopy. The upper area is mainly eroded, while the bottom area of the inboard wall is dominated by deposition. In contrast to the divertor area, hydrogen isotope retention in the eroded wall area was generally larger than that in the deposition dominated area. Measured near surface concentrations of hydrogen isotopes in the wall tiles, as well as the D/H ratios, were a little higher than those in the divertor area. This indicates direct implantation of high-energy D from NBI into the first wall. The lower temperature of the first wall relative to the divertor tiles would reduce desorption and/or replacement of implanted D by subsequent D or H impingement

  10. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  11. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    Science.gov (United States)

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  12. Hydrogen storage in carbon nanostruc

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J.

    2002-01-01

    The paper gives a critical review of the literature on hydrogen storage in carbon nanostructures. Furthermore, the hydrogen storage of graphite, graphite nanofibers (GNFs), and single-walled carbon nanotubes (SWNTs) was measured by thermal desorption spectroscopy (TDS). The samples were ball milled

  13. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  14. Thermodesorption examination of interaction of hydrogen with traps in silver

    International Nuclear Information System (INIS)

    Gabis, I.E.; Kurdyumov, A.A.; Ovsvannikova, T.A.

    1992-01-01

    The authors have previously examined the interaction of hydrogen with silver by the methods of thermal desorption spectrometry (TDS) and hydrogen permeability. The results showed that the TDS spectra contained a high-temperature phase linked with hydrogen which left the volume of the specimen during heating. It was assumed that hydrogen was captured and released by structural defects acting as traps. These traps can be represented by vacancies and their clusters. In this work, the high-temperature desorption of hydrogen from silver was studied. The experimental setup consisted of an all-metal vacuum system, a time-of-flight mass spectrometer, a DVK-2M computing system, and a Camac system. The described model of a local equilibrium should be regarded only as a first approximation. The results provide unambiguous information on the processes of permeability and desorption, and make it possible to assume that the formation of the high-temperature phase in TD spectra was caused by the generation of hydrogen from the traps. The parameters of the interaction of hydrogen with the traps were determined by the concentration wave method. 7 refs., 2 figs

  15. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.

    Science.gov (United States)

    Stavila, Vitalie; Bhakta, Raghunandan K; Alam, Todd M; Majzoub, Eric H; Allendorf, Mark D

    2012-11-27

    We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.

  16. Local stabilization of single-walled carbon nanotubes on Si(100)-2 x 1:H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Albrecht, Peter M; Lyding, Joseph W

    2007-01-01

    An ultrahigh vacuum scanning tunnelling microscope (UHV-STM) was used to modify the interface between isolated ∼10 A-diameter single-walled carbon nanotubes (SWNTs) and the hydrogen-passivated Si(100) surface. Room-temperature UHV-STM desorption of hydrogen at the SWNT/H-Si(100) interface resulted in the local mechanical stabilization of tubes originally perturbed by the rastered STM tip under nominal imaging conditions. For the section of the SWNT contacted by depassivated Si, a topographic depression of 1.5 A (1 A) was measured in the case of parallel (nearly perpendicular) alignment between the tube axis and the Si dimer rows, in agreement with existing first-principles calculations. The compatibility of hydrogen-resist UHV-STM nanolithography with SWNTs adsorbed on H-Si(100) would enable the atomically precise placement of single molecules in proximity to the tube for the bottom-up fabrication of molecular electronic devices

  17. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  18. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhao; Yifeng Zhang; Shuhong Fang; Lingyan Zhu; Zhengtao Liu

    2014-01-01

    The sorption and desorption behaviors of two perfluoroalkane sulfonates (PFSAs),including perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) on two humic acids (HAs) and humin (HM),which were extracted from a peat soil,were investigated.The sorption kinetics and isotherms showed that the sorption of PFOS on the humic substances (HSs) was much higher than PFHxS.For the same PFSA compound,the sorption on HSs followed the order of HM > HA2 > HA1.These suggest that hydrophobic interaction plays a key role in the sorption of PFSAs on HSs.The sorption capacities of PFSAs on HSs were significantly related to their aliphaticity,but negatively correlated to aromatic carbons,indicating the importance of aliphatic groups in the sorption of PFSAs.Compared to PFOS,PFHxS displayed distinct desorption hysteresis,probably due to irreversible pore deformation after sorption of PFHxS.The sorption of the two PFSAs on HSs decreased with an increase in pH in the solution.This is ascribed to the electrostatic interaction and hydrogen bonding at lower pH.Hydrophobic interaction might also be stronger at lower pH due to the aggregation of HSs.

  19. The kinetic isotope effect of hydrogen, deuterium and tritium absorbed and desorbed by titanium

    International Nuclear Information System (INIS)

    Huang Gang; Cao Xiaohua; Long Xinggui

    2008-06-01

    p-t curves of hydrogen, deuterium and tritium absorption at 550-750 degree C and desorption at 350-550 degree C by titanium were investigated. The rate constants of absorption and desorption for hydrogen, deuterium and tritium on each temperature are determined and the activation energy values obtained by this analysis are (55.6 ± 2.4) kJ·mol -1 , (110.2 ± 3.0) kJ·mol -1 and (155.5 ± 3.2) kJ·mol -1 for absorption and (27.1±0.4) KJ·mol -1 , (42.3 ± 1.9) kJ·mol -1 and (62.1±1.6) kJ·mol -1 for desorption respectively. The activation energy value of tritium absorption is highest which shows titanium tritiation is hardest. The activation energy value of tritium desorption is highest and it also can prove that titanium tritide is stablest. There are remarkable kinetic hydrogen isotope effects when titanium absorb and desorb hydrogen, deuterium and tritium. (authors)

  20. Mutual Effects of Hydrogenation and Deformation in Ti-Nb Alloys

    National Research Council Canada - National Science Library

    Zander, D

    2002-01-01

    ...), transmission electron microscopy (TEM), thermal desorption spectroscopy (TDS), and microhardness tests, the influence of hydrogen at high fugacities on the phase stability, desorption behavior, and microhardness in Ti-Nb (20 to 45 wt pct Nb...

  1. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  2. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  3. Release enhancement of tritium from graphite by addition of hydrogen

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Masaki, N.M.

    1989-01-01

    The release behavior of tritium from graphite was studied in pure He and He + H 2 atmosphere. The release from powdered graphite was significantly enhanced in hydrogen environment. Apparent diffusion coefficients of tritium in graphite also became much higher in an atmosphere containing hydrogen than values obtained in pure helium atmosphere. A careful investigation of the release processes resulted in the conclusion that the most important process of tritium behaviour in graphite was diffusion, but the desorption process of tritium from the surface played a significant role. The enhancement of the desorption process was controlled by atomic hydrogen. (orig.)

  4. Conceptual design of hydrogen isotopes chromatographic separation system with super large capacity

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Liu Yunnu; Hou Jianping

    2012-01-01

    A super large capacity hydrogen isotopes separation system, including total plan, unit (including making and purification of gas, three-grade chromatographic columns, gas loop and auto-control, and carrier recovery) and experimental scheme, had been designed on the basis of a series of hydrogen-deuterium experiments by temperature programmed de- sorption. The characteristic of the system was that desorption kinetic parameters could be directly calculated from the hydrogen isotope separation desorption spectra information. In other words, the complicated dynamic process of separation could be described by the desorption rate equation, shape parameter and desorption activation energy calculation on the condition of the experimental data and appropriate assumptions (equilibrium and adsorption, uniform surface). In previous work, an experimental series of operation to verify the successive enrichment of D 2 from a H 2 -D 2 mixture, the production of the deuterium from natural hydrogen and the recovery of tritium such as from the nuclear heavy-water were carried out using MS5A at 77 K. This work was only conceptual design, so it was necessary to identify the availability of super large capacity system by experiment. (authors)

  5. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Eylon, D.

    2004-01-01

    Due to its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloys are ranked among the most important advanced materials for a variety of aerospace, chemical engineering, biomaterials, marine and commercial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen-trapping interactions is necessary to better understand the trapping mechanisms, the types of the trap sites, the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the aerospace industry. The objective of this paper is to investigate the role of microstructure on hydrogen absorption/desorption behavior in Ti-6Al-4V alloy, with specific emphasis on the nature of the interaction between microstructural traps and hydrogen atoms. The effect of low fugacity hydrogen on the microstructure is studied using X-ray diffraction (XRD), and electron microscopy (SEM and TEM), while the absorption and desorption characteristics are determined by means of a hydrogen determinator and thermal desorption spectroscopy (TDS), respectively. The role of microstructure on hydrogen absorption and desorption behavior is discussed in detail

  6. Density Functional Theory Study of the Interaction of Hydrogen with Li6C60.

    Science.gov (United States)

    Wang, Qian; Jena, Puru

    2012-05-03

    Hydrogen storage properties of Li-coated C60 fullerene have been studied using density functional theory within the local density as well as generalized gradient approximation. Hydrogen atoms are found to bind to Li6C60 in two distinct forms, with the first set attaching to C atoms, not linked to Li, in atomic form. Once all such C atoms are saturated with hydrogen, the second set of hydrogen atoms bind quasi-molecularly to the Li atoms, five of which remain in the exohedral and the sixth in the endohedral position. The corresponding hydrogen gravimetric density in Li6C60H40 is 5 wt %. Desorption of hydrogen takes place in succession, the ones bound quasi-molecularly desorbing at a temperature lower than the ones bound atomically. The results are compared with the recent experiment on hydrogen adsorption in Li6C60.

  7. Preparation of Mg2FeH6 Nanoparticles for Hydrogen Storage Properties

    Directory of Open Access Journals (Sweden)

    N. A. Niaz

    2013-01-01

    Full Text Available Magnesium (Mg and iron (Fe nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1 nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS. More than 5 wt% hydrogen released was obtained by the Mg2FeH6 within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.

  8. Hydrogen Sorption Performance of Pure Magnesium during Continued Cycling

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, B.

    1983-01-01

    Preliminary investigations of the hydrogen absorption - desorption by commercially pure magnesium powder under continuous operation show little or no reduction in hydrogen capacity up to 70 cycles and high temperature exposure exceeding 1200 h. Absorption was studied at 260°–425°C and hydrogen...

  9. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    International Nuclear Information System (INIS)

    Hanyu, Yuichiro; Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-01-01

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H 2 O indicate that this threshold annealing temperature corresponds to depletion of H 2 O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested

  10. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    Science.gov (United States)

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  12. Design and construction of thermal desorption measurement system for tritium contained materials

    International Nuclear Information System (INIS)

    Hara, M.; Hatano, Y.; Calderoni, P.; Shimada, M.

    2014-01-01

    The dual-mode thermal desorption analysis system was designed and built in Idaho National Laboratory (INL) to examine the evolution of the hydrogen isotope gas from materials. The system is equipped with a mass spectrometer for stable hydrogen isotopes and an ionization chamber for tritium components. The performance of the system built was tested with using tritium contained materials. The evolution of tritiated gas species from contaminated materials was measured successfully by using the system. (author)

  13. Hydrogen absorption study of Ti-based alloys performed by melt-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.M.; Lemus, L.F.; Santos, D.S. dos, E-mail: rafaella@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    The hydrogen absorption and desorption of Ti{sub 53}Zr{sub 27}Ni{sub 20} icosahedral quasicrystal (ICQ) and Ti{sub 50}Ni{sub 50} shape memory alloy (SMA) melt-spun ribbons was studied. Samples were exposed to hydrogen gas at 623 K and 4 MPa for 1000 minutes. The total capacity of hydrogen obtained for Ti{sub 53}Zr{sub 27}Ni{sub 20} and Ti{sub 50}Ni{sub 50} was 3.2 and 2.4 wt. % respectively. The Thermal Desorption Spectrometry (TDS) of the hydrogenated alloys shows that both alloys start to desorb hydrogen around 750 K. X-ray diffraction (XRD) patterns, performed after hydrogenation, indicate a complete amorphization of the Ti{sub 53}Zr{sub 27}Ni{sub 20} i-phase alloy, while the Ti{sub 50}Ni{sub 50} alloy remained crystalline after hydride formation. (author)

  14. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  15. New vistas in the determination of hydrogen in aerospace engine metal alloys

    Science.gov (United States)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  16. Li-Al-borohydride as a potential candidate for on-board hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Dunsch, Lothar; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, PO Box 270016, D-01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [University of Geneva, Crystallography and Physical Chemistry Department, 1211 Geneva (Switzerland)

    2010-07-01

    Recently, double-cation borohydride systems have attracted great interest. It was found that the desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by combination of appropriate cations. Li-Al-borohydride shows a desorption temperature suitable for applications ({approx} 70 C) combined with an high hydrogen density (17.2 wt.%). It was synthesised via high energy ball milling of AlCl{sub 3} and LiBH{sub 4}. The structure of the compound was obtained from high-resolution synchrotron powder diffraction and shows a unique complex structure within the borohydrides. The material was characterized by means of in-situ-Raman, DSC, TG and thermal desorption measurements to study its decomposition pathway. The desorption at {approx} 70 C results in the formation of LiBH{sub 4} while the high mass loss of about 20% points to the release of not only hydrogen but also diborane. This is right now the main drawback for applications because it hinders reversibility.

  17. Hydrogen absorption/desorption characteristics of room temperature ...

    Indian Academy of Sciences (India)

    ZrMn2-Ni system; metal hydrides; hydrogen storage materials. ... where ∼ 2.5 to 2.9 H/F.U. can be reversibly stored under the ideal operating conditions. ... these are promising candidates for stationary and short range mobile applications.

  18. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Hiramatsu, Hidenori; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  19. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles

    NARCIS (Netherlands)

    Griessen, R.P.; Strohfeldt, N.; Giessen, H.

    2015-01-01

    Palladium-hydrogen is a prototypical metal-hydrogen system. It is therefore not at all surprising that a lot of attention has been devoted to the absorption and desorption of hydrogen in nanosized palladium particles. Several seminal articles on the interaction of H with Pd nanocubes and

  20. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  1. Recyclable hydrogen storage system composed of ammonia and alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hikaru [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Miyaoka, Hiroki; Hino, Satoshi [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Nakanishi, Haruyuki [Higashi-Fuji Technical Center, Toyota Motor Corporation, 1200 Misyuku, Susono, Shizuoka 410-1193 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15

    Ammonia (NH{sub 3}) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H{sub 2}) at room temperature, resulting that alkali metal amides (MNH{sub 2}) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH{sub 2} back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH{sub 3} were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H{sub 2} flow condition below 300 C. (author)

  2. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  3. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  4. A new ternary magnesium-titanium hydride Mg{sub 7}TiH{sub x} with hydrogen desorption properties better than both binary magnesium and titanium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-06-09

    A magnesium based titanium doped hydride was prepared in a high-pressure anvil cell by reacting a mixture of MgH{sub 2} and TiH{sub 1.9} at 8 GPa and 873 K. The metal structure has a Ca{sub 7}Ge type structure (a=9.532(2) A, space group Fm3-barm (no. 225), Z=4, V=866.06 A{sup 3}). The refined metal atom composition Mg{sub 7}Ti was almost in line with EDS analysis. This means that the new magnesium-titanium hydride has a structure that is more related to TiH{sub 1.9} than to MgH{sub 2}. The thermal properties of the new compound were also studied by TPD analysis. The new hydride, Mg{sub 7}TiH{sub x} exhibits 5.5 mass% (x{approx}12.7) and decomposes into Mg and TiH{sub 1.9} upon releasing 4.7 mass% of hydrogen around 605 K, that is at a 130 and 220 K lower desorption temperature compared to MgH{sub 2} and TiH{sub 1.9}, respectively.

  5. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  6. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  7. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  8. Electron stimulated molecular desorption of a non-evaporable Zr-V-Fe alloy getter at room temperature

    CERN Document Server

    Le Pimpec, Frederic; Laurent, Jean Michel

    2002-01-01

    Electron stimulated molecular desorption (ESD) from a non-evaporable getters (NEG) St 707 registered trademark (SAES Getters trademark ) sample after conditioning and after saturation with isotopic carbon monoxide (cf. nomenclature in Handbook of Chemistry and Physics, CRC Press, 1994), **1**3C**1**8O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 multiplied by 10**1**5 electrons s**-**1. The electrons were impinging on the 15 cm **2 target surface at perpendicular incidence. It is found that the desorption yields eta (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with **1**3C**1**8O are lower than for OFHC copper baked at 120 degree C. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be ...

  9. Gas-phase hydrogenation of benzene on supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Franco, H.A.; Phillips, M.J.

    1980-06-01

    The reaction of 22.66-280 Pa benzene with 72.39-122.79 Pa hydrogen on kieselguhr-supported nickel at 392.2/sup 0/-468.2/sup 0/K yielded only cyclohexane and was independent of 5.33-40 Pa cyclohexane added to the feed of the differential flow reactor. Best fit for the kinetic data was obtained with a rate equation developed by van Meerten and Coenen which assumed that all hydrogen addition steps have the same rate constant and are slow. An observed rate maximum at 458/sup 0/K may be the result of an increasing rate constant and decreasing cyclohexyl surface coverage as the temperature increases. Temperature-programed hydrogen desorption showed a series of desorption peaks at 358/sup 0/-600/sup 0/K, including one at 453/sup 0/K, which may be due to the hydrogen involved in the surface reaction.

  10. Determination of diffusible and total hydrogen concentration in coated and uncoated steel

    Energy Technology Data Exchange (ETDEWEB)

    Mabho, Nonhlangabezo

    2010-09-23

    The new trend in the steel industry demands thin, flexible, high strength steels with low internal embrittlement. It is a well known fact that the atomic hydrogen which is picked up during production, fabrication and service embrittles the steel. This has led to an extensive research towards the improvement of the quality of metallic materials by focusing on total and diffusible hydrogen concentrations which are responsible for hydrogen embrittlement. Since the internal embrittlement cannot be foreseen, the concentrations of diffusible hydrogen work as indicators while the total hydrogen characterizes the absorbed quantities and quality of that particular product. To meet these requirements, the analytical chemistry methods which include the already existing carrier gas melt (fusion) extraction methods that use infrared and thermal conductivity for total hydrogen detection were applied. The newly constructed carrier gas thermal desorption mass spectroscopy was applied to monitor the diffusible concentration at specific temperatures and desorption rates of hydrogen which will contribute towards the quality of materials during service. The TDMS method also involved the characterization of the energy quantity (activation energy) required by hydrogen to be removed from traps of which irreversible traps are preferred because they enhance the stability of the product by inhibiting the mobility of hydrogen which is detrimental to the metallic structures. The instrumentation for TDMS is quite simple, compact, costs less and applicable to routine analysis. To determine total and diffusible hydrogen, the influence of the following processes: chemical and mechanical zinc coating removal, sample cleaning with organic solvents, conditions for hydrogen absorption by electrolytic hydrogen charging, conditions of hydrogen desorption by storing the sample at room temperature, solid CO{sub 2} and at temperatures of the drier was analysed. The contribution of steel alloys towards

  11. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  12. Sc-Decorated WS_2 Nanoribbons as Hydrogen Storage Media

    International Nuclear Information System (INIS)

    Xu Bin; Wang Yu-Sheng; Zhang Jing; Song Na-Hong; Li Meng; Yi Lin

    2016-01-01

    The hydrogen storage behavior of Sc-decorated WS_2 monolayer and WS_2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate that an Sc-decorated WS_2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS_2 sheet and the Sc atoms. It is found that both the hybridization mechanism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS_2 nanoribbons without clustering. The 2Sc/WS_2 NRs system can adsorb at most eight H_2 molecules with average adsorption energy of 0.20 eV/H_2. The results show that the desorption of H_2 is possible by lowering the pressure or by increasing the temperature. (paper)

  13. Data compilation for radiation effects on hydrogen recycle in fusion reactor materials

    International Nuclear Information System (INIS)

    Ozawa, Kunio; Fukushima, Kimichika; Ebisawa, Katsuyuki.

    1984-05-01

    Irradiation tests of materials by hydrogen isotopes are under way, to investigate the hydrogen recycling process where exchange of fuel particles takes place between plasma and the wall of the nuclear fusion reactor. In the report, data on hydrogen irradiation are collected and reviewed from the view point of irradiation effects. Data are classified into, (1) Re-emmission, (2) Retention, (Retained hydrogen isotopes, Depth profile in the materials and Thermal desorption spectroscopy), (3) Permeation and (4) Ion impact desorption. Research activities in each area are arranged according to the date of publication, research institutes, materials investigated, so that overview of present status can be made. Then, institute, author and reference are shown for each classification with tables. The list of literature is also attached. (author)

  14. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  15. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  16. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  17. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y. [Radioisotope Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)]. E-mail: yoya@ric.u-tokyo.ac.jp; Hirohata, Y. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanabe, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibahara, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, H. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Oyaidzu, M. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Arai, T. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Masaki, K. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Gotoh, Y. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Okuno, K. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Miya, N. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Hino, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanaka, S. [Graduate School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2005-11-15

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature.

  18. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    International Nuclear Information System (INIS)

    Oya, Y.; Hirohata, Y.; Tanabe, T.; Shibahara, T.; Kimura, H.; Oyaidzu, M.; Arai, T.; Masaki, K.; Gotoh, Y.; Okuno, K.; Miya, N.; Hino, T.; Tanaka, S.

    2005-01-01

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature

  19. Ageing of Mg-Ni-H hydrogen storage alloys

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2012-01-01

    Roč. 37, OCT (2012), s. 14257-14264 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Magnesium alloys * Hydrogen desorption * Hydrogen storage * Hydrogen-storage materials * Ageing Subject RIV: JG - Metallurgy Impact factor: 3.548, year: 2012

  20. A micro-fabricated hydrogen storage module with sub-atmospheric activation and durability in air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xi; Payer, Joe H. [Corrosion and Reliability Engineering, Department of Chemical and Biomolecular Engineering, University of Akron, 302 Buchtel Common, Akron, OH 44325 (United States); Wainright, Jesse S.; Dudik, Laurie [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-01-15

    The objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro-power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.e. capable of hundreds of absorption/desorption cycles and resistance to deactivation on exposure to air. Inks with palladium-treated intermetallic hydrogen storage alloys were developed and are shown here to be compatible with a thin-film micro-fabrication process. These hydrogen storage modules absorb hydrogen readily at atmospheric pressure, and the absorption/desorption rates remained fast even after the ink was exposed to air for 47 weeks. (author)

  1. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  2. Improving of understanding of beta-hexachlorocyclohexane (HCH) adsorption on activated carbons by temperature-programmed desorption studies.

    Science.gov (United States)

    Passé-Coutrin, Nady; Maisonneuve, Laetitia; Durimel, Axelle; Dentzer, Joseph; Gadiou, Roger; Gaspard, Sarra

    2016-01-01

    In order to understand the interactions between beta-hexachlorocyclohexane (HCH) and chemical groups at activated carbon (AC) surface, the solid samples were hydrogenated aiming to decrease the amounts of oxygenated groups. Two AC samples designated by BagH2O and BagP1.5 were prepared by water vapor activation and phosphoric acid activation, respectively, of sugarcane bagasse used as an AC precursor. A more simple molecule 1,2,3-trichloropropane (TCP) is used as a model of chlorinated compound. The AC were characterized by infrared, X-ray photoelectron spectroscopy (XPS), Raman resonance spectroscopies, as well as temperature-programmed desorption coupled with mass spectrometry (TPD-MS). BagP1.5 and BagH2O AC surface contained oxygenated groups. Upon hydrogenation, a decrease of most of these group amxounts was observed for both samples, while hydroxyl groups increased. On the basis of temperature-programmed desorption data obtained for AC samples contaminated with TCP or HCH, it was possible to determine the type of hydrogen bond formed between each AC and HCH.

  3. Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M.; Takenobu, T.; Ata, M. [Materials Laboratories, SONY Corporation, Shin-Sakuragaoka 2-1-1, Hodogaya-ku, 240-0036, Yokohama (Japan); Kataura, H. [Department of Physics, Faculty of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, 192-0397, Tokyo (Japan)

    2004-04-01

    The hydrogen physisorption properties in single-walled carbon nanotube (SWNT) based materials were characterized. The SWNTs were highly purified and three useful pores for hydrogen physisorption were activated. Hydrogen was physisorbed in intra-tube pores at room temperature and the capacity was estimated to be about 0.3-0.4 wt. % at room temperature. The adsorption capacity can be explained by the Langmuir model. The intra-tube pores have large adsorption potential and this induces hydrogen physisorption at comparatively higher temperatures. This fact indicates the importance of fabricating sub-nanometer ordered pores for this phenomena. (orig.)

  4. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  5. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system as well as by ball milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower desorption temperatures, however, the state of the art materials are still far from meeting the aimed target for their transport applications. Therefore further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides. In the present article the possibility of commercialization of Mg based alloys has been discussed. (author)

  6. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  7. Zirconium-nickel crystals—hydrogen accumulators: Dissolution and penetration of hydrogen atoms in alloys

    Science.gov (United States)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.; Kamenetskaya, E. A.

    2016-07-01

    The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiH x has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption-desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.

  8. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P., E-mail: pkalisvaart@gmail.com [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Mitlin, David, E-mail: dmitlin@ualberta.ca [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada)

    2011-03-15

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  9. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi; Mitlin, David

    2011-01-01

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  10. Hydrogenation of ethylene over PrCo5Hsub(2.4)

    International Nuclear Information System (INIS)

    Soga, Kazuo; Imamura, Hayao; Ikeda, Sakuji

    1977-01-01

    To elucidate the chemical reactivity of the hydrogen atom absorbed in the hydrogenated alloy PrCo 5 H sub(n), the hydrogenation of ethylene was carried out over PrCo 5 Hsub(2.4) in the absence (A) or presence (B) of hydrogen in gas phase. PrCo 5 Hsub(2.4) was prepared from PrCo 5 according to an ordinary procedure with repeated heating and cooling in hydrogen atmosphere. The hydrogenation of ethylene was conducted at about -70 0 C in a conventional gas circulation system in a pressure range of ethylene 5 -- 16 cmHg and hydrogen 0 -- 38.0 cmHg. The hydrogenation rate was followed by gas chromatography. In the case of (A), the total gas pressure in the gas phase remained constant during the reaction. The hydrogenation rate was independent of the partial pressure of ethylene and it increased in proportion to the concentration of the absorbed hydrogen atom. The rate of desorption of the absorbed hydrogen atom from PrCo 5 Hsub(2.4) also measured under a reduced pressure. The desorption rate was approximately the same as the hydrogenation rate under the similar conditions. From these results, it was concluded that the migration process of the absorbed hydrogen atom from the bulk of the alloy to its surface was rate-determining. In the case of (B), on the other hand, the hydrogenation rate was accelerated by the gaseous hydrogen; the rate increased almost linearly with increasing pressure of hydrogen. The hydrogenation of ethylene was also conducted over PrCo 5 under the similar conditions. (auth.)

  11. Trapping hydropyrolysates on silica and their subsequent desorption to facilitate rapid fingerprinting by GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Meredith, W.; Russell, C.A.; Cooper, M.; Snape, C.E. [Nottingham Univ. (United Kingdom). Fuel and Energy Centre; Love, G.D. [Newcastle upon Tyne Univ. (United Kingdom). School of Civil Engineering and Geosciences; Fabbri, D. [Universita di Bologna, Ravenna (Italy). Lab. di Chimica Ambientale; Vane, C.H. [British Geological Society, Keyworth (United Kingdom)

    2004-01-01

    Analytical hydropyrolysis performed under high hydrogen gas pressure (>10 MPa) has been demonstrated to possess the unique ability to release high yields of biomarker hydrocarbons covalently bound within the non-hydrocarbon macromolecular fraction of crude oils and source rocks. This study describes the development of the experimental procedure for trapping the product oils (hydropyrolysates) on silica to facilitate more convenient recovery than conventional collection and to allow analysis by thermal desorption-GC-MS without any prior work-up. Conventionally, the trap has consisted of a stainless steel coil, cooled with dry ice from which the products are recovered in organic solvents. Replacing this with a system in which the hydropyrolysates are adsorbed on a small mass of silica greatly reduces the turn-around time between tests, and aids the recovery and separation of the products. This method has been developed using an oil shale and an oil asphaltene fraction, with the silica trap producing very similar biomarker profiles to that from the conventional trap. The quantitative recovery of hydrocarbons from a light crude oil desorbed from silica under hydropyrolysis conditions demonstrates no significant loss of the high molecular weight n-alkanes (>n-C{sub 10}) for both trapping methods. The use of liquid nitrogen as the trap coolant results in significantly improved recovery of the lower molecular mass constituents. The silica trapping method allows for the hydropyrolysates to be characterised by thermal desorption-GC-MS, which has been investigated both on- and off-line. The oils undergo relatively little cracking during desorption, with similar n-alkane and biomarker profiles being obtained as with normal work-up and GC-MS analysis. Thus, in terms of fingerprinting geomacromolecules, ''hypy-thermal desorption-GC-MS'' appears to have the potential to be developed as an attractive alternative to traditional py-GC-MS. (author)

  12. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  13. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  14. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  15. Hydrogen isotope effect on storage behavior of U{sub 2}Ti and UZr{sub 2.3}

    Energy Technology Data Exchange (ETDEWEB)

    Jat, Ram Avtar; Sawant, S.G.; Rajan, M.B.; Dhanuskar, J.R. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Parida, S.C., E-mail: sureshp@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    U{sub 2}Ti and UZr{sub 2.3} alloys were prepared by arc melting method, vacuum annealed and characterized by XRD, SEM and EDX methods. Hydrogen isotope effect on the storage behavior of these alloys were studied by measuring the hydrogen/deuterium desorption pressure–composition–temperature (PCT) profiles in the temperature range of 573–678 K using a Sievert’s type volumetric apparatus. It was observed that, in the temperature and pressure range of investigation, all the isotherms show a single desorption plateau. The PCT data reveals that both U{sub 2}Ti and UZr{sub 2.3} alloys had normal isotope effects on hydrogen/deuterium desorption at all experimental temperatures. Thermodynamic parameters for dehydrogenation and dedeuteration reactions of the corresponding hydrides and deuterides of the above alloys were deduced from the PCT data.

  16. Phase Transformation and Hydrogen Storage Properties of an La7.0Mg75.5Ni17.5 Hydrogen Storage Alloy

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2017-10-01

    Full Text Available X-ray diffraction showed that an La7.0Mg75.5Ni17.5 alloy prepared via inductive melting was composed of an La2Mg17 phase, an LaMg2Ni phase, and an Mg2Ni phase. After the first hydrogen absorption/desorption process, the phases of the alloy turned into an La–H phase, an Mg phase, and an Mg2Ni phase. The enthalpy and entropy derived from the van’t Hoff equation for hydriding were −42.30 kJ·mol−1 and −69.76 J·K−1·mol−1, respectively. The hydride formed in the absorption step was less stable than MgH2 (−74.50 kJ·mol−1 and −132.3 J·K−1·mol−1 and Mg2NiH4 (−64.50 kJ·mol−1 and −123.1 J·K−1·mol−1. Differential thermal analysis showed that the initial hydrogen desorption temperature of its hydride was 531 K. Compared to Mg and Mg2Ni, La7.0Mg75.5Ni17.5 is a promising hydrogen storage material that demonstrates fast adsorption/desorption kinetics as a result of the formation of an La–H compound and the synergetic effect of multiphase.

  17. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  18. Hysteresis-free nanoplasmonic pd-au alloy hydrogen sensors

    DEFF Research Database (Denmark)

    Wadell, Carl; Nugroho, Ferry Anggoro Ardy; Lidström, Emil

    2015-01-01

    hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore......, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size....

  19. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  20. Hydrogenation-disproportionation-desorption-recombination in Sm2Fe16M (M=Al, Ga and Si) and magnetic properties of their carburized powders

    International Nuclear Information System (INIS)

    Kubis, M.; Rave, W.; Cao, L.; Gebel, B.; Mueller, K.-H.; Schultz, L.

    1998-01-01

    The application of the hydrogenation-disproportionation-desorption-recombination (HDDR) process in Sm 2 Fe 16 M (M=Al,Ga and Si) was investigated. The hydrogen absorption behaviour was studied by temperature-pressure analysis (TPA). In the temperature range between 500 and 800 C, Sm 2 Fe 16 M samples with M=Ga and Si show a weaker hydrogen absorption than Sm 2 Fe 16 Al. This was confirmed by X-ray diffraction which showed a complete disproportionation of Sm 2 Fe 16 Al into SmH z (1.9 2 Fe 16 Ga and Sm 2 Fe 16 Si exhibit a fraction of undecomposed material with the Th 2 Zn 17 -type structure after the disproportionation procedure. These results point to a stabilization of Sm 2 Fe 16 M against disproportionation by hydrogen for M=Ga and Si. The magnetization processes of carburized HDDR powders were studied by VSM measurements and Kerr microscopy. The demagnetization curve of our HDDR processed Sm 2 Fe 16 AlC y is well shaped, whereas those of Sm 2 Fe 16 GaC y and Sm 2 Fe 16 SiC y show a large decrease of the polarization at low fields. The favourable behaviour of Sm 2 Fe 16 AlC y is due to a homogeneous submicron grain structure. In Sm 2 Fe 16 GaC y and Sm 2 Fe 16 SiC y samples, an additional, magnetically soft phase with larger domains was observed which causes the low coercivity. As a consequence, HDDR was only favourable for the preparation of Sm 2 Fe 16 MC y hard magnets with M=Al but not for M=Ga and Si. Optimization of the HDDR process in Sm 2 Fe 16 Al and subsequent nitrogenation or carburization led to coercivities of μ 0j H c =2.9 and 2.5 T, respectively. (orig.)

  1. Hydrogen storage in MgH2 - LaNi5 nanocomposites produced by cold rolling under inert atmosphere

    International Nuclear Information System (INIS)

    Marquez, J.J.; Silva, W.B.; Leiva, D.R.; Ishikawa, T.T.; Kiminami, C.S.; Botta, W.J.; Floriano, R.

    2016-01-01

    In this study, the effects of the addition of LaNi5 in magnesium hydride H-sorption/desorption behavior was addressed. MgH 2 - X mol.% LaNi 5 (X=0.67; 1.50 and 2.54) mixtures were processed by cold rolling (CR) inside a glove box under controlled atmosphere, with oxygen and moisture contents below 0.1 ppm. Structural characterization showed that during the H-absorption/desorption cycles, a mixture of phases consisting of MgH 2 , LaH 3 and Mg 2 NiH 4 is formed, which has an important role in the hydrogen storage kinetic properties. The mixture MgH 2 -1.50 mol.% LaNi 5 was able to absorb/desorb 4.0 wt.% H 2 in less than 15 min at 100 and 280 °C respectively. The DSC analysis showed that the LaNi 5 additive lowers the temperature at which the H-desorption starts in cold rolled MgH 2 by around 50 °C. (author)

  2. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    Directory of Open Access Journals (Sweden)

    Mariana Coutinho Brum

    2013-06-01

    Full Text Available Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH2 with the addition of TTNT (TiTanate NanoTubes. The MgH2-TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (% on the hydrogen capacity was evaluated. The milling of pure MgH2 was performed for 24 hours and afterwards the MgH2-TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM and Scanning Electron Microscopy (SEM were used to evaluate the nanotube synthesis and show the particle morphology of the MgH2-TTNT composite, respectively. The Differential Scanning Calorimetry (DSC examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%.

  3. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    International Nuclear Information System (INIS)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos

    2013-01-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH 2 with the addition of TTNT (TiTanate nanotubes). The MgH 2 -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH 2 was performed for 24 hours and afterwards the MgH 2 -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH 2 -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  4. Hydriding properties of an Mg-Al-Ni-Nd hydrogen storage alloy

    International Nuclear Information System (INIS)

    Duarte, G.I.; Bustamante, L.A.C.; Miranda, P.E.V. de

    2007-01-01

    This work presents the development of an Mg-Al-Ni-Nd alloy for hydrogen storage purposes. The hydrogen storage properties of the alloy were analyzed using pressure-composition isotherms and hydrogen desorption kinetic curves at different temperatures. The characterization of the microstructures, before and after hydrogenation, was performed using X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Hydrogenation caused significant changes in the alloy microstructure. Two pressure plateaus were observed. The maximum hydrogen storage reversible capacity measured was 4 wt.% at 573 K

  5. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  6. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption form hydrocarbon plasma-discharge films from T-10 tokamak

    International Nuclear Information System (INIS)

    Stankevich, V.G.; Svechnikov, N.Y.; Lebedev, A.M.; Menshikov, K.A.; Kolbasov, B.N.; Sukhanov, L.P.

    2017-01-01

    A comprehensive study of hydrocarbon films obtained in the plasma discharge of large fusion facilities will allow the minimization of parasitic capture. The investigation of the effect of Fe impurities on D 2 thermal desorption (TD) from homogeneous CD x films (x ∼ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed 2 groups of peaks at 650-850 K and 900-1000 K for 2 adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe + ion with the 1,3-C 6 H 8 molecule was proposed. The potential energy surfaces of chemical reactions with the H 2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe + ion with the π-subsystem of the 1,3-C 6 H 8 molecule leading to a redistribution of the double bonds along the carbon system

  7. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama

    Science.gov (United States)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.

    2017-10-01

    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  8. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  9. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  10. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery– Part 2: Cells with Metal Hydride Storage

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A sub-atmospheric pressure nickel hydrogen (Ni-H2) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used. PMID:22711974

  11. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  12. Influence of hydrogen on the thermoelectric power of palladium alloyed with neighbouring elements: I. Pd/Ru/H and Pd/Rh/H alloys

    CERN Document Server

    Szafranski, A W

    2003-01-01

    Pd/Ru and Pd/Rh alloys have been loaded with hydrogen in high-pressure conditions. The resulting hydrogen contents were close to the stoichiometric composition, H/(Pd + Me) = 1. Lower hydrogen contents have been obtained by successive partial desorptions. The thermoelectric power and electrical resistance of one- and two-phase alloys have been measured simultaneously in the temperature range between 80 and 300 K. A Nordheim-Gorter type correlation of the two quantities has been observed in many cases and the partial thermopowers corresponding to electron-phonon scattering and lattice disorder could be determined. The observed anomalous behaviour of the total and partial thermopowers is attributed to virtual bound states of ruthenium or rhodium.

  13. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  14. Interaction of hydrogen and its isotopes with irradiated beryllium

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.; Shestakov, V.P.; Klepikov, A.Kh.; Pomanenko, O.G.; Chikhraj, E.V.; Kenzhin, E.A.; Zverev, V.V.; Kolbanenkov, A.N.

    2000-01-01

    In the article the results of experiments on hydrogen and its isotopes accumulation and gas-release from irradiated beryllium are presented. The irradiation was conducted at different media and temperatures in the RA and IVG.1M reactors. The measurements were carried out by thermal desorption method. Hydrogen release from beryllium samples saturated at different conditions were calculated. Dependence of hydrogen confinement character in beryllium from grain orientation in the sample, temperature and irradiation rate was revealed

  15. The effect of TTNT nanotubes on hydrogen sorption using MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos, E-mail: monique@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of TTNT (TiTanate nanotubes). The MgH{sub 2} -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH{sub 2} was performed for 24 hours and afterwards the MgH{sub 2} -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH{sub 2} -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  16. Structure modification of Mg-Nb films under hydrogen sorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Barucca, G.; Majni, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Bazzanella, N.; Checchetto, R.; Miotello, A. [Dipartimento di Fisica, Universita di Trento, Via Sommarive, I-38123 Povo (Italy)

    2011-09-15

    Research highlights: > Influence of Nb additions on the hydrogen kinetics of Mg layers. > Structure modification of the Mg matrix during hydrogen cycling. > Lattice strains induced by Nb tends to decrease during hydrogen cycling. > Nb nanoparticles form during hydrogen cycling. > Nb enhances the porous structure of the Mg layer formed during hydrogen cycling. - Abstract: In the present work we focus our attention on the structural modifications induced by repeated absorption/desorption cycles on Mg-Nb layers. Samples consisting of a 30 {mu}m thick pure Mg or Mg-5 at.% Nb doped films, coated with a 20 nm thick Pd layer were submitted to repeated H{sub 2} sorption cycles in a volumetric apparatus. Isothermal desorption analysis at 350 deg. C was performed to evaluate the amount of absorbed hydrogen. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and electron microscopy techniques (SEM and TEM) were used for the structural characterisation of the samples. Analyses show a deep modification of the material upon cycling. The presence of Nb enhances the structural modifications and induces an initial lattice contraction of the Mg matrix that tends to decrease on cycling via the formation of Nb nanoparticles (with average size of {approx}10 nm). SEM and TEM observations performed in cross section evidenced the formation of a porous structure.

  17. Hydrogen kinetics studies of MgH2-FeTi composites

    Science.gov (United States)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  18. Hydrogen behaviour study in plasma facing a-C:H and a-SiC:H hydrogenated amorphous materials for fusion reactors

    International Nuclear Information System (INIS)

    Barbier, Gauzelin

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. Firstly, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce this interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a-SiC:H substrate can be benefit in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a -SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a-C:H and a-SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modeling of hydrogen diffusion under irradiation has been also proposed. (author)

  19. High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2

    International Nuclear Information System (INIS)

    Bhat, V.V.; Rougier, A.; Aymard, L.; Nazri, G.A.; Tarascon, J.-M.

    2008-01-01

    We report, high surface area (up to 200 m 2 /g) nanocrystalline niobium oxide (so called p-Nb 2 O 5 ) synthesized by 'chimie douce' route and its importance in enhancing the hydrogen sorption properties of MgH 2 . p-Nb 2 O 5 induces faster kinetics than commonly used commercial Nb 2 O 5 (c-Nb 2 O 5 ) when ball milled with MgH 2 (named (MgH 2 ) catalyst ) by reducing the time of desorption from 35 min in (MgH 2 ) c-Nb 2 O 5 to 12 min in (MgH 2 ) p-Nb 2 O 5 at 300 deg. C. The BET surface area of as-prepared Nb 2 O 5 was tuned by heat treatment and its effect on sorption properties was studied. Among them, both p-Nb 2 O 5 and Nb 2 O 5 :350 (p-Nb 2 O 5 heated to 350 deg. C with a BET specific surface area of 46 m 2 /g) desorb 5 wt.% within 12 min, exhibiting the best catalytic activity. Furthermore, thanks to the addition of high surface area Nb 2 O 5 , the desorption temperature was successfully lowered down to 200 deg. C, with a significant amount of desorbed hydrogen (4.5 wt.%). In contrast, the composite (MgH 2 ) c-Nb 2 O 5 shows no desorption at this 'low' temperature

  20. Study on the complex Li-N-H hydrogen storage system

    International Nuclear Information System (INIS)

    Du, Linnan

    2014-01-01

    Nowadays the developments of clean energy technologies become more and more necessary and important. Hydrogen-powered vehicles are a promising alternative to the current fossil fuel based vehicle infrastructure. However, so far there is still no hydrogen storage material which can fit the standards for an on-board hydrogen storage system. On this background, this work deals with the development of a hydrogen storage material. The focus is put on the Lithium amide + Lithium hydride (LiNH 2 +LiH) hydrogen storage system because of its high theoretical capacity and relatively low desorption temperature. Moreover, Lithium amide + Magnesium hydride (LiNH 2 +MgH 2 ) as an alternative system was also briefly studied. The aims of this work are to achieve a deeper understanding of the reaction mechanism with the help of microstructural and thermodynamic studies, building a model to describe the sorption process and then to improve the system properties. As the desorption from LiNH 2 particles is the first step of the desorption process of the LiNH 2 +LiH system, the properties and sorption behavior of LiNH 2 sample materials were studied separately first. So the work in this thesis can be mainly divided into two parts: LiNH 2 samples and LiNH 2 +LiH samples. In order to activate the sample materials, both dry ball milling and wet ball milling (with tetrahydrofuran) methods were used. Boron nitride was mainly applied as catalyst. Furthermore, titanium tetrachloride was also used as an alternative additive. The sorption behaviors were studied with the help of a volumetric and a gravimetric system. Further investigation methods include X-ray Diffraction (XRD) method, Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) method, Differential Thermal Analysis (DTA)/ Thermo Gravimetric Analysis (TGA)/ Mass Spectrometry (MS), and others. The results obtained in this work show that no obvious microstructure differences have been found between the wet ball milled and dry

  1. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Sørensen, Rasmus Zink; Kostova, M.Y.

    2006-01-01

    It is shown that nanopores are formed during desorption of NH3 from Mg(NH3)6Cl2, which has been proposed as a hydrogen storage material. The system of nanopores facilitates the transport of desorbed ammonia away from the interior of large volumes of compacted storage material. DFT calculations sh...

  2. Decarbonylation and hydrogenation reactions of allyl alcohol and acrolein on Pd(110)

    Science.gov (United States)

    Shekhar, Ratna; Barteau, Mark A.

    1994-11-01

    Allyl alcohol and acrolein reactions on the Pd(110) surface were investigated using temperature programmed desorption. For both unsaturated oxygenates, three coverage-dependent reaction pathways were observed. At low coverages, allyl alcohol decomposed completely to CO, hydrogen and carbonaceous species on the surface. For θ > 0.15 monolayer, ethylene (and small amounts of ethane) desorbed at ca. 295 K. Near saturation coverages, desorption of propanal was detected at ca. 235 K. The parent molecule, allyl alcohol, desorbed only after exposures sufficient to saturate these channels. Acrolein decomposition spectra were similar to those observed for allyl alcohol decomposition on the clean surface. Additional experiments with allyl alcohol on hydrogen- and deuterium-precoveredPd(110) surfaces demonstrated increased hydrogenation of the C 2-hydrocarbon products along with hydrogenation of allyl alcohol to 1-propanol. However, in contrast to previous results for allyl alcohol on the Pd(111) surface, there was no evidence for C-O scission reactions of any C 3 oxygenate on Pd(110).

  3. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  4. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  5. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  6. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  7. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  8. Effect of multi-wall carbon nanotubes supported nano-nickel and TiF{sub 3} addition on hydrogen storage properties of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei; Zhu, Yunfeng, E-mail: yfzhu@njtech.edu.cn; Zhang, Jiguang; Liu, Yana; Yang, Yang; Mao, Qifeng; Li, Liquan

    2016-06-05

    Multi-wall carbon nanotubes supported nano-nickel (Ni/MWCNTs) with superior catalytic effects was introduced to magnesium hydride by the process of hydriding combustion synthesis (HCS) and mechanical milling (MM). The effect of different Ni/MWCNTs contents (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%) on the hydrogenation and dehydrogenation properties of the composite was investigated systematically. It is revealed that Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best comprehensive hydrogen storage properties, which absorbs 5.68 wt.% hydrogen within 100 s at 373 K and releases 4.31 wt.% hydrogen within 1800 s at 523 K under initial hydrogen pressures of 3.0 and 0.005 MPa, respectively. The in situ formed nano-Mg{sub 2}Ni and MWCNTs have excellent catalytic effect on the hydrogenation and dehydrogenation performances of MgH{sub 2}. To further improve the hydrogen absorption/desorption properties, TiF{sub 3} was added to the Mg–Ni/MWCNTs system. The result shows that TiF{sub 3} addition has little influence on the thermodynamic performance, but affects greatly the kinetic properties. The Mg{sub 85}-(Ni/MWCNTs){sub 15}-TiF{sub 3} composite exhibits an appreciably enhanced hydrogen desorption performance at low temperature, and the hydrogen desorption capacity within 1800 s at 473 K for the TiF{sub 3}-added composite is approximately four times the capacity of Mg{sub 85}-(Ni/MWCNTs){sub 15} under the same condition. The catalytic effects during hydrogenation and dehydrogenation have been discussed in the study. - Highlights: • The nanosized Ni/MWCNTs catalyst was successfully prepared. • Ni/MWCNTs shows superior catalytic effect on H absorption/desorption of Mg. • Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best hydrogen storage properties. • Ni/MWCNTs coupling with TiF{sub 3} improves the hydriding/dehydriding properties largely.

  9. Probe measurements of hydrogen fluxes during discharge cleaning in JFT-2M

    International Nuclear Information System (INIS)

    Matsuzaki, Y.

    1989-01-01

    Thermal desorption spectroscopy (TDS) has been applied during discharge cleaning in the JFT-2M tokamak to measure hydrogen fluxes. The TDS carbon sample, thickness 0.13 mm, was heated to 1000 0 C by direct current and the temperature distribution of the sample surface measured by infrared thermography. The probe was exposed to three types of plasma: Taylor-type discharge cleaning (TDC), ECR discharge cleaning (ECR-DC), and glow discharge cleaning (GDC). The TDS spectra show peak desorption at around 800 0 C. The hydrogen flux, obtained by integration of the TDS spectrum, decreases exponentially in the radial direction with decay length 7.4 cm and 5.8 cm in TDC and ECR-DC, respectively. The relation between hydrogen fluxes and water vapour production was investigated. In TDC, the amount of water vapour depends more strongly on the electron temperature of the plasma than on the hydrogen flux. In ECR-DC, the production of water vapour increases approximately linearly with the hydrogen-flux. In GDC, hydrogen fluxes were measured by TDS but no water vapour could be detected in the residual gases during the discharge. (orig.)

  10. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  11. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  12. ICRF hydrogen minority heating in the boronized ASDEX tokamak

    International Nuclear Information System (INIS)

    Ryter, F.; Braun, F.; Hofmeister, F.; Noterdaeme, J.M.; Steuer, K.H.; Wesner, F.

    1990-01-01

    Since the divertor of ASDEX has been modified (1986-87) the hydrogen concentration in deuterium plasmas could not be reduced below 10%, although the machine was operated for long periods of time with deuterium injection. This is probably due to desorption in the divertor as indicated by the increasing H-concentration during a deuterium injection pulse. As a consequence for H-minority heating in deuterium, the maximum power into ohmic plasmas without causing a disruption was limited to few hundred kW. A partial solution was ICRH in combination with deuterium injection which allowed us to apply up to 1.5 MW ICRH to the plasma. The beneficial role of the injection is attributed to an improved ICRH absorption and to the higher energy flux and temperature in the divertor. During the last ICRH campaign we operated mainly in helium plasmas for a lower hydrogen concentration and the vessel was boronised. The H-concentration is measured routinely by a mass spectrometer in the divertor chamber. (orig./AH)

  13. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    International Nuclear Information System (INIS)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-01-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H_2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H_2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of C−H/C−C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H_2 dissociation and

  14. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    Science.gov (United States)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-07-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of Csbnd H/Csbnd C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H2 dissociation and

  15. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    Science.gov (United States)

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  16. Interaction of hydrogen and oxygen with continuous or granular films of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Mikhalenko, I.I.; Prokopov, A.M.; Yagodovskii, V.D.

    1986-03-01

    The authors use desorption and conductometric methods in establishing the existence of three species of adsorbed hydrogen on continuous Pd films and two species on Pd films with a granular structure. Preoxidation of the surface of the continuous films does not affect the rate or kinetic order of hydrogen sorption; oxidation/reduction treatment changes these parameters, but the magnitude of Edes of hydrogen remains unchanged.

  17. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  18. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  19. Dependence of hydrogen storage characteristics of mechanically milled carbon materials on their host structures

    International Nuclear Information System (INIS)

    Shindo, K.; Kondo, T.; Sakurai, Y.

    2004-01-01

    We investigated whether the hydrogen storage characteristics of carbon materials prepared by mechanical milling in an H 2 atmosphere were dependent on their host structures. We used natural graphite (NG) and activated carbon fibers (ACF) and compared them with activated carbon (AC) powders. The XRD patterns of NG and ACF milled for over 20 h and SEM images of these samples milled for 80 h were almost the same as those of AC. The hydrogen storage capacities of NG and ACF estimated by the inert gas fusion-thermal conductivity method increased with the mechanical milling time up to 10 h and showed little milling time dependence thereafter. The capacities of NG and ACF reached about 3.0 wt.% and were similar to that of AC. However, it should be noted that the hydrogen storage mechanism of NG and ACF mechanically milled in an H 2 atmosphere might be different because the changes in their specific surface areas with milling time were opposite. Thermal desorption mass spectroscopy (TDS) revealed that the desorption spectra of the hydrogen molecules (mass number=2) of NG and ACF milled for 10 h in the same way as AC contained two peaks at about 500 and 800 deg. C. The desorption activation energies of hydrogenated NG and ACF at these peaks calculated from a Kissinger plot were almost with the same as those of hydrogenated AC. This suggests that the state of the hydrogen trapped in the structural defects in NG introduced by the mechanical milling may be almost the same as that of AC. In addition, we assumed the possibility that the state of the hydrogen in ACF hydrogenated by mechanical milling could be almost the same as that in hydrogenated AC. We considered that the nanocarbon materials hydrogenated under our milling conditions had very similar physical shapes and hydrogen storage capacities, independent of their host structures

  20. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  1. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  2. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  3. Formation of H- ions via vibrational excited molecules produced from recombinative wall desorption of H atoms in a low-pressure H/sub 2/ positive column

    NARCIS (Netherlands)

    Amorim, J.; Loureiro, J.; Schram, D.C.

    2001-01-01

    Recombinative wall desorption of hydrogen atoms in a low-pressure hydrogen positive column leading to formation of H/sub 2/ (X/sup 1/ Sigma /sub g//sup +/, v) molecules in optimum levels for H/sup -/ production by dissociative attachment is investigated. We employed a kinetic model that solves the

  4. A study on hydrogen adsorption behaviors of open-tip carbon nanocones

    International Nuclear Information System (INIS)

    Liao Mingliang

    2012-01-01

    Hydrogen adsorption behaviors of single-walled open-tip (tip-truncated) carbon nanocones (CNCs) with apex angles of 19.2° at temperatures of 77 and 300 K were investigated by the molecular dynamics simulations. Four nanomaterials (including three CNCs with different dimensions and a reference CNT) were analyzed to examine the hydrogen adsorption behaviors and influences of cone sharpness on the behaviors of the CNCs. Physisorption of hydrogen molecules could be observed from the distribution pattern of the hydrogen molecules adsorbed on the nanomaterials. Because of the cone geometry effect, the open-tip CNCs could have larger storage weight percentage and less desorption of hydrogen molecules (caused by the temperature growth) on their outer surfaces, as compared with those of the reference CNT. The hydrogen molecules inside the CNCs and the reference CNT, however, were noted to have similar desorption behaviors owing to the confinement effects from the structures of the nanomaterials. In addition, the sharper CNC could have higher storage weight percentage but the cone sharpness does not have evident enhancement in the average adsorption energy of the CNC. Combination of confinement and repulsion effects existing near the tip region of the CNC would be responsible for the non-enhancement feature.

  5. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  6. Ultrapure hydrogen thermal compressor based on metal hydrides for fuel cells and hybrid vehicles

    International Nuclear Information System (INIS)

    Almasan, V.; Biris, A.; Coldea, I.; Lupu, D.; Misan, I.; Popeneciu, G.; Ardelean, O.

    2007-01-01

    Full text: In hydrogen economy, efficient compressors are indispensable elements in the storage, transport and distribution of the produced hydrogen. Energetic efficient technologies can contribute to H 2 pipelines transport to the point of use and to distribute H 2 by refuelling stations. Characteristic for metal hydrides systems is the wide area of possibilities to absorb hydrogen at low pressure from any source of hydrogen, to store and deliver it hydrogen at high pressure (compression ratio more than 30). On the basis of innovative concepts and advanced materials for H 2 storage/compression (and fast thermal transfer), a fast mass (H 2 ) and heat transfer unit will be developed suitable to be integrated in a 3 stage thermal compressor. Metal hydrides used for a three stage hydrogen compression system must have different equilibrium pressures, namely: for stage 1, low pressure H 2 absorption and resistant to poisoning with impurities of hydrogen, for stage 2, medium pressure H 2 absorption and for stage 3, high pressure hydrogen delivery (120 bar). In the case of compression device based on metallic hydrides the most important properties are the hydrogen absorption/desorption rate, a smaller process enthalpy and a great structural stability on long term hydrogen absorption/desorption cycling. These properties require metal hydrides with large differences between the hydrogen absorption and desorption pressures at equilibrium, within a rather small temperature range. The main goal of this work is to search and develop metal hydride integrated systems for hydrogen purification, storage and compression. After a careful screening three hydrogen absorbing alloys will be selected. After selection, the work up of the alloys composition on the bases of detailed solid state studies, new multi-component alloys will be developed, with suitable thermodynamic and kinetic properties for a hydrogen compressor. The results of the study are the following: new types of hydrogen

  7. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  8. Carbon compound used in hydrogen storage

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.

    2004-01-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  9. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  10. Molecular desorption of a nonevaporable getter St 707 irradiated at room temperature with synchrotron radiation of 194 eV critical photon energy

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2003-01-01

    Photon stimulated molecular desorption from a nonevaporable getter (NEG) St 707(R) (SAES Getters TM ) surface after conditioning and after saturation with isotopic carbon monoxide Ýcf. nomenclature in Handbook of Chemistry and Physics, 74th edition, edited by D. R. Lide (CRC Press, Boca Raton, 1994)¿ /sup 13/C/sup 18/O, has been studied on a dedicated beamline at the EPA ring at CERN. The synchrotron radiation of 194 eV critical energy and with an average photon intensity of ~1 * 10/sup 17/ photons s/sup -1/ was impinging on the sample at perpendicular incidence. It is found that the desorption yields eta (molecules/photon) of the characteristic gases in an UHV system (hydrogen, methane, carbon monoxide, and carbon dioxide) for a freshly activated NEG and for a NEG fully saturated with /sup 13/C /sup 18/O are lower than that of 300 degrees C baked stainless steel. (22 refs). Fully activated NEG was studied and found to desorb less as compared to a 300 degree c baked stainless-steel surface. Furthermore, it ...

  11. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  12. Morphology-controllable synthesis and characterization of carbon nanotube/polypyrrole composites and their hydrogen storage capacities

    Energy Technology Data Exchange (ETDEWEB)

    Okan, Burcu Saner, E-mail: bsanerokan@sabanciuniv.edu [Sabancı University Nanotechnology Research and Application Center, SUNUM, Tuzla, Istanbul 34956 (Turkey); Zanjani, Jamal Seyyed Monfared [Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956 (Turkey); Letofsky-Papst, Ilse [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, A-8010, Graz (Austria); Cebeci, Fevzi Çakmak; Menceloglu, Yusuf Z. [Sabancı University Nanotechnology Research and Application Center, SUNUM, Tuzla, Istanbul 34956 (Turkey); Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956 (Turkey)

    2015-11-01

    Sphere-like and layer-by-layer growth mechanisms of polypyrrole are controlled by changing pyrrole monomer concentration and using carbon nanotubes (CNT) as template. Pristine polypyrrole has sphere-like structures but remarkable change in types of polypyrrole growth is observed from spherical-like to layer-by-layer structures in the presence of CNT. Acid treatment enhances polypyrrole coverage on CNT surface by preventing agglomeration of polypyrrole due to an increase in surface oxygen groups and sp{sup 2} bonds in CNT structure. The crystallinity of powders comparably decreases after polypyrrole coating due to the amorphous structure of polypyrrole and a sharp decrease in the intensity of 002 peak. The influence of surface functionalization and polymer coating on the structural parameters of multi-walled CNT and their composites is investigated by tailoring the feeding ratio of polypyrrole. The hydrogen sorption measurements at ambient conditions by Intelligent Gravimetric Analyzer demonstrate that hydrogen uptake of CNT/polypyrrole composite is 1.66 wt.% which is almost 3 times higher than that of pristine CNT. Higher hydrogen uptake values are obtained by keeping the mass ratio of pyrrole monomer and CNT equal by using non-functionalized CNT in composite production. Hydrogen adsorption/desorption kinetics of polypyrrole/CNT composites is improved by increasing adsorption sites after polymer coating and acid treatment. The desorption curves of these modified surfaces are higher than their adsorption curves at lower pressures and hysteresis loop is observed in their isotherms since hydrogen is chemically bonded to the modified surfaces by the conversion of carbon atoms from sp{sup 2} to sp{sup 3} hybridization. - Highlights: • Growth mechanisms of polypyrrole are controlled by changing monomer concentration. • Lamellar structure is formed by using pristine CNT at high monomer concentration. • Homogeneous polymer coating is achieved on the surface of

  13. Study on the complex Li-N-H hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Du, Linnan

    2014-07-01

    Nowadays the developments of clean energy technologies become more and more necessary and important. Hydrogen-powered vehicles are a promising alternative to the current fossil fuel based vehicle infrastructure. However, so far there is still no hydrogen storage material which can fit the standards for an on-board hydrogen storage system. On this background, this work deals with the development of a hydrogen storage material. The focus is put on the Lithium amide + Lithium hydride (LiNH{sub 2}+LiH) hydrogen storage system because of its high theoretical capacity and relatively low desorption temperature. Moreover, Lithium amide + Magnesium hydride (LiNH{sub 2}+MgH{sub 2}) as an alternative system was also briefly studied. The aims of this work are to achieve a deeper understanding of the reaction mechanism with the help of microstructural and thermodynamic studies, building a model to describe the sorption process and then to improve the system properties. As the desorption from LiNH{sub 2} particles is the first step of the desorption process of the LiNH{sub 2}+LiH system, the properties and sorption behavior of LiNH{sub 2} sample materials were studied separately first. So the work in this thesis can be mainly divided into two parts: LiNH{sub 2} samples and LiNH{sub 2}+LiH samples. In order to activate the sample materials, both dry ball milling and wet ball milling (with tetrahydrofuran) methods were used. Boron nitride was mainly applied as catalyst. Furthermore, titanium tetrachloride was also used as an alternative additive. The sorption behaviors were studied with the help of a volumetric and a gravimetric system. Further investigation methods include X-ray Diffraction (XRD) method, Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) method, Differential Thermal Analysis (DTA)/ Thermo Gravimetric Analysis (TGA)/ Mass Spectrometry (MS), and others. The results obtained in this work show that no obvious microstructure differences have been found

  14. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources

    International Nuclear Information System (INIS)

    Reeves, W.R.; McDonald, T.J.; Cizmas, L.; Donnelly, K.C.

    2004-01-01

    Contaminated sediments pose a unique challenge for risk assessment or remediation because the overlying water column may transport contaminants offsite or to ecological receptors. This research compares the behavior of polycyclic aromatic hydrocarbons (PAHs) on marine sediments from two sites. The first site was affected by shipping activities and the second was impacted by a creosote seep. Organic carbon:water partitioning coefficients (K oc values) were measured with three solutions. Desorption was measured using Tenax beads. PAHs from the ship channel had lower K oc values than those from the creosote facility. For example, the average log K oc value of ship channel pyrene was significantly lower than that of creosote facility pyrene (4.39±0.35 and 5.29±0.09, respectively, when tested in 5 mM calcium chloride). These results were consistent with the greater desorption of pyrene, phenanthrene and benzo(a)pyrene from the ship channel than from the creosote facility sediments. Organic compound desorption from sediments can be considered to be a two-stage process, with a labile fraction that desorbs quickly and a refractory fraction that desorbs much more slowly. In both sediments, more than 75% of the benzo(a)pyrene was found to have partitioned into the refractory phase. The amounts of phenanthrene and pyrene that partitioned into the refractory phase were lower. Linear correlations of log K oc with log (C R /C L ) (where C R and C L are the fractions of the compound in the refractory and labile phases, respectively, at time zero) showed that partitioning measurements made with the US EPA's Toxicity Characteristic Leaching Procedure fluid (US EPA, 1996) most closely matched predictions of desorption behavior. The data imply that with a larger data set, it may be possible to relate simple partitioning measurements to desorption behavior. Partitioning measurements were used to predict water concentrations. Despite having higher concentrations of carcinogenic PAHs

  15. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  16. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E. [National Research Council of Canada, Chalk River, ON (Canada). Canadian Neutron Beam Centre; Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.T.; Mitlin, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; National Research Council of Canada, Edmonton, AB (Canada). National Inst. for Nanotechnology

    2010-10-15

    Various methods for storing hydrogen have been examined in an effort to find ways to store hydrogen in increasingly smaller volumes with decreasing weight of the whole hydrogen storage system. Metal hydrides, in which hydrogen is chemically bound to a metal atom, are considered to be very promising candidates for hydrogen storage because they have high gravimetric and volumetric storage capacities. This study investigated the effect of different magnesium (Mg) and aluminium (Al) ratios on the absorption and desorption properties of thin films. Neutron reflectometry (NR) was used in this study to better understand the absorption and desorption properties of commercially promising hydrogen storage materials. The large negative scattering length of hydrogen atoms changes the reflectivity curve substantially, so that NR can determine the total amount of stored hydrogen as well as the hydrogen distribution along the film normal, with nanometer resolution. In order to use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. Thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a palladium (Pd) catalyst layer were used in this study. The NR experiments revealed that Mg{sub 0.7}Al{sub 0.3} is the optimum composition for this binary alloy system, with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expanded by approximately 20 percent due to hydrogen absorption. The hydrogen was stored only in the MgAl layer without any hydrogen in the Pd layer. It was concluded that NR can be used to effectively determine the hydrogen profile in thin MgAl films. 29 refs., 5 figs.

  17. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    Science.gov (United States)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  18. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma

    International Nuclear Information System (INIS)

    Barbier, G.

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author)

  19. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2003-01-01

    Hydrogen in trapping states innocuous to environmental degradation of the mechanical properties of high-strength steels has been separated and extracted using thermal desorption analysis (TDA) and slow strain rate test (SSRT). The high-strength steel occluding only hydrogen desorbed at low temperature (peak 1), as determined by TDA, decreases in maximum stress and plastic elongation with increasing occlusion time of peak 1 hydrogen. Thus the trapping state of peak 1 hydrogen is directly associated with environmental degradation. The trap activation energy for peak 1 hydrogen is 23.4 kJ/mol, so the peak 1 hydrogen corresponds to weaker binding states and diffusible states at room temperature. In contrast, the high-strength steel occluding only hydrogen desorbed at high temperature (peak 2), by TDA, maintains the maximum stress and plastic elongation in spite of an increasing content of peak 2 hydrogen. This result indicates that the peak 2 hydrogen trapping state is innocuous to environmental degradation, even though the steel occludes a large amount of peak 2 hydrogen. The trap activation energy for peak 2 hydrogen is 65.0 kJ/mol, which indicates a stronger binding state and nondiffusibility at room temperature. The trap activation energy for peak 2 hydrogen suggests that the driving force energy required for stress-induced, diffusion during elastic and plastic deformation, and the energy required for hydrogen dragging by dislocation mobility during plastic deformation are lower than the binding energy between hydrogen and trapping sites. The peak 2 hydrogen, therefore, is believed to not accumulate in front of the crack tip and to not cause environmental degradation in spite of being present in amounts as high as 2.9 mass ppm. (author)

  20. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  1. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  2. Thermally-driven hydrogen interaction with single-layer graphene on SiO2/Si substrates

    International Nuclear Information System (INIS)

    Feijo, Tais Orestes; Rolim, Guilherme Koszeniewski; Radtke, Claudio; Soares, Gabriel Vieira

    2016-01-01

    Full text: Graphene is a monolayer of carbon with sp 2 hybridization and hexagonal structure. Since all its area is exposed to the atmosphere, it is important to understand how graphene interacts with elements present in the atmosphere, such as hydrogen, oxygen and water, to control the processes of manufacturing [1]. In addition, some studies show that graphene can allow storage of hydrogen for use in fuel cells, which would contribute to the use of clean energies. This study aims to understand the thermally-driven hydrogen interaction with graphene samples. We used samples of graphene deposited on SiO 2 (285 nm) films on Si and then annealed in controlled atmosphere of deuterium (D 2 , natural abundance of 0.15%) at temperatures between 200 and 1000°C. We also investigated hydrogen desorption from graphene using samples previously treated in deuterium at 600°C and afterwards annealed in nitrogen atmosphere between 200 and 1000°C. After annealings, Nuclear Reaction Analysis (NRA) was employed to quantify deuterium, where we observed a large increase in deuterium incorporation above 400°C, with an constant D incorporation until 1000°C. We also observed that the desorption of deuterium from graphene only occurred above 800°C, although D desorption from silicon oxide samples takes place already at 600°C. Raman spectroscopy analysis was performed after each thermal treatment. Results show that defects in the graphene structure increases for higher treatment temperatures in incorporation and in desorption steps. Characterization using X-Ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) will also be presented. [1] A. C. Ferrari, et al., Nanoscale 7 (2015). (author)

  3. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  4. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    International Nuclear Information System (INIS)

    Emelyanova, O.V.; Ganchenkova, M.G.; Malitskii, E.; Yagodzinskyy, Y.N.; Klimenkov, M.; Borodin, V.A.; Vladimirov, P.V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  5. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  6. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  7. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  8. Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution

    Science.gov (United States)

    Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.; Brown, Steven D.

    2010-10-01

    The substantial amount of information carried in temperature-programmed desorption (TPD) experiments is often difficult to mine due to the occurrence of competing reaction pathways that produce compounds with similar mass spectrometric features. Multivariate curve resolution (MCR) is introduced as a tool capable of overcoming this problem by mathematically detecting spectral variations and correlations between several m/z traces, which is later translated into the extraction of the cracking pattern and the desorption profile for each desorbate. Different from the elegant (though complex) methods currently available to analyze TPD data, MCR analysis is applicable even when no information regarding the specific surface reaction/desorption process or the nature of the desorbing species is available. However, when available, any information can be used as constraints that guide the outcome, increasing the accuracy of the resolution. This approach is especially valuable when the compounds desorbing are different from what would be expected based on a chemical intuition, when the cracking pattern of the model test compound is difficult or impossible to obtain (because it could be unstable or very rare), and when knowing major components desorbing from the surface could in more traditional methods actually bias the quantification of minor components. The enhanced level of understanding of thermal processes achieved through MCR analysis is demonstrated by analyzing three phenomena: i) the cryogenic desorption of vinyltrimethylsilane from silicon, an introductory system where the known multilayer and monolayer components are resolved; ii) acrolein hydrogenation on a bimetallic Pt-Ni-Pt catalyst, where a rapid identification of hydrogenated products as well as other desorbing species is achieved, and iii) the thermal reaction of Ti[N(CH 3) 2] 4 on Si(100), where the products of surface decomposition are identified and an estimation of the surface composition after the

  9. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E., E-mail: helmut.fritzsche@nrc.gc.ca [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River, ON (Canada); Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D. [Univ. of Alberta, and National Research Council Canada, Chemical and Materials Engineering, Edmonton, AB (Canada)

    2010-10-15

    In this article, we show how neutron reflectometry (NR) can provide deep insight into the absorption and desorption properties of commercially promising hydrogen storage materials. NR benefits from the large negative scattering length of hydrogen atoms, which changes the reflectivity curve substantially, so that NR can determine not only the total amount of stored hydrogen but also the hydrogen distribution along the film normal, with nanometer resolution. To use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. We performed a systematic study on thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a Pd catalyst layer. Our NR experiments showed that Mg{sub 0.7}Al{sub 0.3} is the optimum alloy composition with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expand by about 20% because of hydrogen absorption, and the hydrogen is stored only in the MgAl layer with no hydrogen content in the Pd layer. (author)

  10. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  11. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  12. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...

  13. The Inverse Problem of Identification of Hydrogen Permeability Model

    Directory of Open Access Journals (Sweden)

    Yury V. Zaika

    2018-01-01

    Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.

  14. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Terashita, Naoyoshi [Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351 (Japan); Tashiro, Suguru; Suzuki, Tetsuya [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan)

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from the Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.

  15. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  16. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  17. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction...... between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  18. Mechanism of NH{sub 3} desorption during the reaction of H{sub 2} with nitrogen containing carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Juan F. Espinal; Thanh N. Truong; Fanor Mondragon [University of Antioquia, Medellin (Colombia). Institute of Chemistry

    2005-07-01

    The continued increase in demand for natural gas has stimulated the interest in coal conversion to methane as synthetic natural gas by hydropyrolysis of coal (pyrolysis in a H{sub 2} atmosphere). Because the produced raw gas contains considerable amounts of gaseous N-containing products that have to be removed before delivering to final users, the information on distribution of coal-N is important for designing purification processes. It has been reported in the literature that NH{sub 3} is the main nitrogen containing gas that is released during the hydropyrolysis process. Other gases such as HCN and N{sub 2} are also released but in a much smaller amount. To the best of our knowledge, the mechanism for NH{sub 3} desorption during hydrogen reaction with carbonaceous materials has not been studied. We carried out a molecular modeling study using Density Functional Theory in order to get an insight of the mechanism and thermodynamics for NH{sub 3} evolution using pyridinic nitrogen as a model of N-containing carbonaceous material. We propose a mechanism that involves consecutive hydrogenation steps that lead to C-N bond breakage and NH{sub 3} desorption to the gas phase. It was found that the first hydrogenation reaction is highly exothermic. However, further hydrogenations are endothermic. Several pathways for NH{sub 3} evolution were proposed and most of them show high exothermicity. 17 refs., 2 figs.

  19. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    with a Be window. Determination of Sm in the solutions derived from sorption-desorption experiments. Samarium concentrations were determined with ICP-OES and ICP-MS. The wavelength used in the ICP-OES was 359.3 nm, whereas the isotope 147 Sm was used in the ICP-MS. The quantification limits for the ICP-OES and ICP-MS were 30 μg L -1 and 10 ng L -1 , respectively. The initial sample shows an asymmetric 001 reflexion whose maximum corresponds to a basal spacing of 14.6 A and a shoulder to a higher 2θ. This is compatible with a heterogeneity composition of the interlayer space where divalent cations predominate. After sorption in water and at increasing Sm concentrations, the peaks became symmetric and the 001 reflexion shifted progressively to lower 2θ up to a basal spacing of 15.3 A compatible with a more homogeneous composition of the interlayer space and the exchange of the original interlayer divalent cations with Sm. These results indicated that whereas at lower concentration sorption was controlled by inner-sphere mechanisms, at higher initial Sm concentrations the predominant sorption mechanism was cationic exchange. The scenario differed when the sorption took place in the interstitial water medium, as the 001 reflexion did not shift to lower 2θ, but it widened and slightly shifted to higher 2θ. Both facts indicate competitiveness between Sm and the cations in the solution. Although the affinity for the interlayer space, in general, increases with the cation charge and then favors Sm, this was only observed for the highest initial Sm concentrations. Samarium sorption-desorption Samarium sorption was higher in water than in the interstitial, basically due to the cationic competition effect both for specific and for ionic-exchange, regular sites. This was consistent with results from the XRD analyses, and it was corroborated by the increase in the divalent cation concentrations in the final solutions after sorption when increasing samarium initial

  20. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  1. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ling-Ling [Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Lv, Cun-Qin, E-mail: lcq173@126.com [College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, Shanxi Province (China); Wang, Gui-Chang, E-mail: wangguichang@nankai.edu.cn [Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China)

    2017-07-15

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H{sub 2} molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H{sub 2}. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of C−H/C−C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H{sub 2

  2. The kinetics of hydrogen removal from liquid sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Whittingham, A.C.

    1981-01-01

    The rates of hydrogen removal from liquid sodium-sodium hydride mixtures have been measured as a function of sodium stirring rate at temperatures up to 420 0 C. Two techniques have been employed - removal under continuous evacuation in which hydrogen flow rates were measured using a capillary flow technique and by argon purging in which hydrogen concentrations in the argon carrier gas were measured by gas chromatography. The results have been used to assess the feasibility of thermal decomposition of sodium hydride for the regeneration of hydride-laden LMFBR cold traps. Studies on the kinetics of desorption of hydrogen from solution in liquid sodium at temperatures up to 400 0 C are also presented and possible kinetic mechanisms discussed. (orig.)

  3. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    Science.gov (United States)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  4. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  5. Effects of hydrogen adsorption on the properties of double wall BN and (BN){sub x}C{sub y} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A. [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, PB (Brazil); Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia – Campus Vitoria da Conquista, Avenida Amazonas 3150, 45030-220 Vitória da Conquista, BA (Brazil)

    2016-01-15

    In the present contribution, we apply first-principles calculations, based on the density functional theory, to study the effects of hydrogen adsorption on the structural and electronic properties of boron nitride and hybrid carbon–boron nitride double wall nanotubes. The results demonstrate that the hydrogen decoration induces significant structural deformation and an appreciable reduction in the gap energy. When the number of hydrogen atoms introduced on the outer wall is increased, desorption of hydrogen pairs are observed. The calculations indicate that each adsorbed hydrogen atom induces a structural deformation with an energetic cost of about 68 meV/atom. It is also found that the introduction of hydrogen atoms can be applied as an efficient tool for tuning the electronic properties of such structures. - Graphical abstract: Localized density of states of a hydrogenated double wall boron nitride nanotube. Some hydrogen pairs are desorbed, forming H{sub 2} molecules. - Highlights: • Hydrogenation induces structural deformation and reduction in the gap energy. • Each H atom induces a deformation with an energetic cost of about 68 meV/atom. • In some cases, desorption of H pairs from the outer wall is observed.

  6. Ge(001):B gas-source molecular beam epitaxy: B surface segregation, hydrogen desorption, and film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Greene, J.E. [Materials Science Department, the Coordinated Science Laboratory and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    1999-03-01

    Ultrahigh B-doped Ge(001) layers, with concentrations C{sub B} up to 8{times}10{sup 21} cm{sup {minus}3}, were grown by gas-source molecular beam epitaxy from Ge{sub 2}H{sub 6} and B{sub 2}H{sub 6} at temperatures T{sub s}=325{degree}C (in the surface-reaction-limited regime) and 600{degree}C (in the flux-limited regime). The samples were quenched, D site exchanged for H, and D{sub 2} temperature-programed desorption (TPD) used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s} by comparison with B-adsorbed Ge(001) reference samples with known {theta}{sub B} values. During Ge(001):B film growth, strong surface B segregation to the second layer was observed with surface-to-bulk B concentration ratios ranging up to 6000. The TPD spectra exhibited {alpha}{sub 2} and {alpha}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} peaks associated with deuterium desorption from Ge{sup {asterisk}} surface atoms with B backbonds. Increasing {theta}{sub B} expanded the area under {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} at the expense of {alpha}{sub 2} and {alpha}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.64 eV, and to explain and model the effects of high B coverages on Ge(001) growth kinetics. At T{sub s}=325{degree}C, where B segregation is kinetically hindered, film deposition rates R{sub Ge} are not a strong function of C{sub B}, exhibiting only a small decrease at C{sub B}{approx_gt}5{times}10{sup 18} cm{sup {minus}3}. However, at T{sub s}=600{degree}C, R{sub Ge} decreases by up to 40{percent} with increasing C{sub B}{approx_gt}1{times}10{sup 18} cm{sup {minus}3}. This is due primarily to the combination of B-induced Ge dimer vacancies and the deactivation of surface dangling bonds caused by charge transfer

  7. Mechanism of calcium oxide excitation by atom hydrogen

    International Nuclear Information System (INIS)

    Kharlamov, V.F.

    1991-01-01

    Heterogeneous recombination of hydrogen atoms on the surface of calcium oxide proceeds according to the Langmuir-Hinshelwood mechanism with participation of atoms in two different states, belonging to adsorption centres of the same type. CaO excitation is broughty about by vibration-electron transitions during associative desorption of H 2 molecules

  8. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  10. Revisiting the Hydrogen Storage Behavior of the Na-O-H System

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-04-01

    Full Text Available Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH and hydridic hydrogen (in NaH important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process.

  11. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  12. The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine); Ruzhytskyi, V.V.; Voyevodin, V.N.; Kopanets, I.E.; Karpov, S.A.; Nikitin, A.V. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine)

    2013-11-15

    An experimental study of hydrogen/deuterium behavior in ferritic–martensitic stainless steels EP-450 (Cr13Mo2NbVB), EP-852 (Cr13Mo2VS), and RUSFER-EK-181 (Fe12Cr2WVTaB) is presented. The effect of displacement damage (dpa) resulting from irradiation with helium, hydrogen, and argon ions on features of deuterium detrapping and retention in steels was studied using ion implantation, nuclear reaction depth profiling, and thermal desorption spectrometry techniques. Numerical simulation on the basis of the continuum rate theory was applied for obtaining thermodynamic parameters of deuterium trapping and desorption in steels.

  13. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  14. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  15. Storage and characterization of the hydrogen in mixed oxides on base of cerium-nickel and zirconium or the aluminium

    International Nuclear Information System (INIS)

    Debeusscher, S.

    2008-12-01

    The mixed oxides based on cerium-nickel and zirconium or aluminium are able to store large quantities of hydrogen, To determine nature, reactivity and properties of hydrogen species (spill-over, direct desorption), the solid were studied by different physicochemical techniques in the dried, calcined and partially reduced states: XRD, porosity, TGA, TPR, TPA, TPD, chemical titration and inelastic neutron scattering (INS). Solids are mainly meso-porous with a common pore size at 4 nm, They are constituted of CeO 2 phase, Ce-Ni or Ce-Ni-Zr solid solution and of Ni(OH) 2 in the dried state and NiO in the calcined state. The Ni species are in various environments and the strong interactions between the cations in solid solution and at different particles interface influence their reducibility and the creation of anionic vacancies. Activation in H 2 in temperature is determining for hydrogen storage in the solid while calcination step is not necessary. INS Analyses evidence that the hydrogen species inserted during treatment in H 2 are H + (OH - ), hydride H - and H * (metallic nickel) species, present in various chemical environments, in particular for hydride species. All kinds of hydrogen species participate to the reaction during the chemical titration in agreement with the proposed hydrogenation mechanism. The study of the adsorption of hydrogen shows that this step is fast and in quantity of the same order as that measured by chemical titration. The direct desorption of H 2 is very low, linked to the presence of hydrogen in interaction with metallic nickel (H *- .). Desorption of water is also observed, in parallel, corresponding to the elimination of groups. The hydride species are not desorbed. These various observations allow connecting hydrogen species properties with their localization in the structure and to model active sites. (author)

  16. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  17. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  18. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Atikah Kadri

    2015-06-01

    Full Text Available Mg (MgH2-based composites, using carbon nanotubes (CNTs and pre-synthesized vanadium-based complex (VCat as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time are better to enhance the hydrogen sorption performance.

  19. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  20. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  1. Extraction and determination of hydrogen in uranium and zirconium; Extraction et dosage de l'hydrogene dans l'uranium et le zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Champeix, L; Coblence, G; Darras, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The method of desorption under vacuum at high temperatures in the solid phase, which gives good results in the case of steels, has been applied to uranium and zirconium. In these two metals hydrogen is found mainly in the form of hydride. It is chiefly a question of determining the most suitable temperature and the heating time necessary to obtain an almost total extraction of hydrogen. Two considerations must be taken into account in the choice of temperature. It should be such that on the one hand the hydride decomposes rapidly and completely at the reduced pressure applied, and on the other hand the diffusion of hydrogen through the metal takes place fairly quickly. The apparatus and the method used are described; systematic tests have led to the adoption of temperatures of 650 deg. C for uranium and 1050 deg. C for zirconium. (author) [French] La methode de desorption sous vide a chaud en phase solide, methode qui donne de bons resultats dans le cas des aciers, a ete appliquee a l'uranium et au zirconium. Dans ces deux metaux, l'hydrogene se trouve surtout a l'etat d'hydrure. Il s'agit essentiellement de determiner la temperature optimum et la duree du chauffage necessaire pour obtenir une extraction d'hydrogene pratiquement complete. Deux considerations interviennent dans le choix de la temperature. Elle doit etre telle que, d'une part la decomposition de l'hydrure se fasse rapidement et completement sous la pression reduite realisee et d'autre part que la diffusion de l'hydrogene a travers le metal soit assez rapide. L'appareil et le mode operatoire utilises sont decrits des essais systematiques ont conduit a adopter une temperature de 650 deg. C pour l'uranium et de 1050 deg. C pour le zirconium. (auteur)

  2. Research on hydrogen storage alloys and their uses

    International Nuclear Information System (INIS)

    Alcock, C.B.; Hewitt, J.S.; Khatamian, D.; Manchester, F.D.; McLean, A.; Ward, C.A.; Weatherly, G.C.

    1984-01-01

    A brief account is given of the work being done by members of the Centre on the development of hydrogen storage alloys having useful, reliable, and predictable, performance characteristics. Metals and alloys which have been studied, in one or more aspects, so far, include FeTi, and also FeTi with small added amounts of C, Mn, Al and Mischmetal. Experimental work on the FeTi family of alloys has been concentrated on surface structure and surface behaviour and the importance of these for determining successful activation for hydrogen absorption. As a part of development work on control devices responding to temperature changes through hydrogen desorption, experiments have been performed on hydrides of Nb, La-Ni-Al and Ca-Ni. Some theoretical modelling on kinetics of hydrogen absorption into metals has also been done

  3. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  4. Study on Energetic Ions Behavior in Plasma Facing Materials at Lower Temperature

    International Nuclear Information System (INIS)

    Morimoto, Y.; Sugiyama, T.; Akahori, S.; Kodama, H.; Tega, E.; Sasaki, M.; Oyaidu, M.; Kimura, H.; Okuno, K.

    2003-01-01

    An apparatus equipped with X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) was constructed to study interactions of energetic hydrogen isotopes with plasma facing materials. It is a remarkable feature of the apparatus that energetic ion implantation is carried out at around 150K to study reactions of energetic ions with matrix by suppressing the reactions of thermalized ions. Using this apparatus, TDS experiments for pyrolytic graphite implanted with energetic D 2 ions at 173 and 373K were carried out. The experimental results suggest that the deuterium implanted was released through a four-step release processes, involving three D 2 and one CD x (x = 2, 3 and 4) desorption processes. Two deuterium and CD x desorption processes were observed in the temperature range from 700 to 1200 K. In addition, a new deuterium desorption process was observed for the deuterium-implanted sample at 173 K. This has never been observed for deuterium-implanted graphite implanted at temperatures higher than room temperature

  5. Hydrogenation of Phenylacetylene to Styrene on Pre-C_xH_y- and C-Covered Cu(111) Single Crystal Catalysts

    International Nuclear Information System (INIS)

    Sohn, Young Ku; Wei, Wei; White, John M.

    2011-01-01

    Thermal hydrogenation of phenylacetylene (PA, C_8H_6) to styrene (C_8H_8) on pre-C_xH_y- and C-covered Cu(111) single crystal substrates has been studied using temperature-programmed desorption (TPD) mass spectrometry. Chemisorbed PA with an acetylene group has been proved to be associated with hydrogen of pre-adsorbed C_xH_y to form styrene (104 amu) on Cu surface. For the parent (PA) mass (102 amu) TPD profile, the TPD peaks at 360 K and 410 K are assigned to chemisorbed vertically aligned PA and flat-lying cross-bridged PA, respectively (J. Phys. Chem. C 2007, 111, 5101). The relative I_3_6_0_K/I_4_1_0_K TPD ratio dramatically increases with increasing pre-adsorbed C_xH_y before dosing PA, while the ratio does not increase for pre-C-covered surface. For PA on pre-C_xH_y-covered Cu(111) surface, styrene desorption is enhanced relative to the parent PA desorption, while styrene formation is dramatically quenched on pre-C-covered (lack of adsorbed hydrogen nearby) surface. It appears that only cross-bridged PA associates with adsorbed hydrogen to form styrene that promptly desorbs at 410 K, while vertically aligned PA is less likely to participate in forming styrene

  6. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  7. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  8. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  9. Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy

    International Nuclear Information System (INIS)

    Cho, Sung-Wook; Shim, Gunchoo; Choi, Good-Sun; Park, Choong-Nyeon; Yoo, Jeong-Hyun; Choi, Jeon

    2007-01-01

    Ti 0.32 Cr 0.43 V 0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately -36 kJ/mol H 2 . The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased

  10. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  11. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  12. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  13. Thermoanalytical investigation of the hydrogen absorption behaviour of Sm2Fe17-xGax at high hydrogen pressures

    International Nuclear Information System (INIS)

    Handstein, A.; Kubis, M.; Gebel, B.; Mueller, K.-H.; Schultz, L.; Gutfleisch, O.; Harris, I.R.; Birmingham Univ.

    1998-01-01

    The complete disproportionation of Sm 2 Fe 17-x Ga x during annealing in hydrogen is hindered due to an increased stability of the compounds with a higher Ga content (x ≥ 1). Therefore the HD process as the first step of HDDR (hydrogenation-disproportionation-desorption-recombination) has to be carried out at a high hydrogen pressure for x ≥ 1. The hydrogen absorption behaviour of Sm 2 Fe 17-x Ga x (x = 0, 0.5, 1 and 2) was investigated by means of hydrogen differential thermal analysis (HDTA) and high pressure differential scanning calorimetry (HPDSC) at hydrogen pressures up to 70 bar. A dependency of hydrogenation and disproportionation temperatures on hydrogen pressure and Ga content was found. The comparison with other substituents (M = Al and Si) instead of M = Ga showed an increased stability of Sm 2 Fe 17-x M x compounds against disproportionation by hydrogen in the sequence Al, Ga and Si. The Curie temperatures of the interstitially hydrogenated Th 2 Zn 17 -type materials increase with the hydrogen pressure. In order to produce coercive and thermally stable Sm 2 Fe 15 Ga 2 C y powder by means of the HDDR process, we recombined material disproportionated at different hydrogen pressures. Preliminary results of magnetic properties of this HDDR treated and gas-carburized Sm 2 Fe 15 Ga 2 C y are discussed. (orig.)

  14. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    the determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing

  15. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing desorption activation

  16. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  17. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  18. Effect Of The Desorption-Recombination Temperature On The Microstructure And Magnetic Properties Of HDDR Processed Nd-Fe-B Powders

    Directory of Open Access Journals (Sweden)

    Lee J.-G.

    2015-06-01

    Full Text Available The effect of the desorption-recombination temperature on the microstructure and magnetic properties of hydrogenation-disproportionation-desorption-recombination (HDDR processed Nd-Fe-B powders was studied. The NdxB6.4Ga0.3Nb0.2Febal (x=12.5-13.5, at.% casting alloys were pulverized after homogenizing annealing, and then subjected to HDDR treatment. During the HDDR process, desorption-recombination (DR reaction was induced at two different temperature, 810°C and 820°C. The higher Nd content resulted in enhanced coercivity of the HDDR powder, and which was attributed to the thicker and more uniform Nd-rich phase along grain boundaries. But this uniform Nd-rich phase induced faster grain growth. The remanence of the powder DR-treated at 820°C is higher than that DR-treated at 810°C. In addition, it was also confirmed that higher DR temperature is much more effective to improve squareness.

  19. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    Science.gov (United States)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  20. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  1. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  2. Studies of ethylene hydrogenation and of adsorbed C/sub 2/H/sub 4/ and H/sub 2/ on chromia and lanthana catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Y.S.; Makarov, P.A.; Delzer, G.; Minachev, K.M.

    1980-01-01

    Temperature-programed desorption of ethylene or hydrogen adsorbed at -78/sup 0/, -68/sup 0/, and +20/sup 0/C on chromic oxide, a 1:7 chromic oxide/alumina catalyst prepared by impregnation, alumina, and lanthanum oxide pretreated at 400/sup 0/-900/sup 0/C in vacuo showed that ethylene adsorbed on these oxides on three different sites from which it desorbed at -40/sup 0/ to +10/sup 0/C, at 50/sup 0/-100/sup 0/C, and at 350/sup 0/-400/sup 0/C; and that hydrogen adsorbed only on the latter two sites. One preadsorbed ethylene molecule was displaced at room temperature by 16 molecules of carbon monoxide, 79 molecules of carbon dioxide, or 135 molecules of water. Hydrogen was displaced at lower temperature. The nature of the surface sites and of the adsorbed species, and their reactivities are discussed.

  3. The electrochemistry and modelling of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Vermeulen, P.; Ledovskikh, A.V.; Danilov, D.; Notten, P.H.L.

    2007-01-01

    Mg-based alloys are promising hydrogen storage materials because of the high gravimetric energy density of MgH 2 (7.6 wt.%). A major disadvantage, however, is its very slow desorption kinetics. It has been argued that, in contrast to the well-known rutile-structured Mg hydride, hydrided Mg-transition metal alloys have a much more open crystal structure facilitating faster hydrogen transport. In this paper, the electrochemical aspects of new Mg-Sc and Mg-Ti materials will be reviewed. Storage capacities as high as 6.5 wt.% hydrogen have been reached with very favourable discharge kinetics. A theoretical description of hydrogen storage materials has also been developed by our group. A new lattice gas model is presented and successfully applied to simulate the thermodynamic properties of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, for example mutual atomic hydrogen interaction energies. A good fit of the lattice gas model to the experimental data is found in all cases

  4. Hydrogenation-disproportionation-desorption-recombination in Sm{sub 2}Fe{sub 16}M (M=Al, Ga and Si) and magnetic properties of their carburized powders

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, M.; Rave, W.; Cao, L.; Gebel, B.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-20

    The application of the hydrogenation-disproportionation-desorption-recombination (HDDR) process in Sm{sub 2}Fe{sub 16}M (M=Al,Ga and Si) was investigated. The hydrogen absorption behaviour was studied by temperature-pressure analysis (TPA). In the temperature range between 500 and 800 C, Sm{sub 2}Fe{sub 16}M samples with M=Ga and Si show a weaker hydrogen absorption than Sm{sub 2}Fe{sub 16}Al. This was confirmed by X-ray diffraction which showed a complete disproportionation of Sm{sub 2}Fe{sub 16}Al into SmH{sub z} (1.9hydrogen for M=Ga and Si. The magnetization processes of carburized HDDR powders were studied by VSM measurements and Kerr microscopy. The demagnetization curve of our HDDR processed Sm{sub 2}Fe{sub 16}AlC{sub y} is well shaped, whereas those of Sm{sub 2}Fe{sub 16}GaC{sub y} and Sm{sub 2}Fe{sub 16}SiC{sub y} show a large decrease of the polarization at low fields. The favourable behaviour of Sm{sub 2}Fe{sub 16}AlC{sub y} is due to a homogeneous submicron grain structure. In Sm{sub 2}Fe{sub 16}GaC{sub y} and Sm{sub 2}Fe{sub 16}SiC{sub y} samples, an additional, magnetically soft phase with larger domains was observed which causes the low coercivity. As a consequence, HDDR was only favourable for the preparation of Sm{sub 2}Fe{sub 16}MC{sub y} hard magnets with M=Al but not for M=Ga and Si. Optimization of the HDDR process in Sm{sub 2}Fe{sub 16}Al and subsequent nitrogenation or carburization led to coercivities of {mu}{sub 0j}H{sub c}=2.9 and 2.5 T, respectively. (orig.) 11 refs.

  5. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  6. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  7. Modeling and experimental verification of the thermodynamic properties of hydrogen storage materials

    NARCIS (Netherlands)

    Ledovskikh, A.V.; Danilov, D.L.; Vliex, M.F.H.; Notten, P.H.L.

    2016-01-01

    A new mathematical model has been developed describing the thermodynamics of the hydrogen absorption and desorption process in Metal Hydrides via the gas phase. This model is based on first principles chemical and statistical thermodynamics and takes into account structural changes occurring inside

  8. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M=V, Ni, La and Ce) nano-composites prepared by arc plasma method

    Science.gov (United States)

    Mao, Jianfeng; Zou, Jianxin; Lu, Chong; Zeng, Xiaoqin; Ding, Wenjiang

    2017-10-01

    In this work, core-shell structured Mg-MFx (M = V, Ni, La and Ce) nano-composites are prepared by using arc plasma method. The particle size distribution, phase components, microstructures, hydrogen sorption properties of these composites and hydrolysis properties of their corresponding hydrogenated powders are carefully investigated. It is shown that the addition of MFx through arc plasma method can improve both the hydrogen absorption kinetics of Mg and the hydrolysis properties of corresponding hydrogenated powders. Among them, the Mg-NiF2 composite shows the best hydrogen absorption properties at relatively low temperatures, which can absorb 3.26 wt% of H2 at 373 K in 2 h. Such rapid hydrogen absorption rate is mainly due to the formation of Mg2Ni and MgF2 on Mg particles during arc evaporation and condensation. In contrast, measurements also show that the hydrogenated Mg-VF3 composite has the lowest peak desorption temperature and the fastest hydrolysis rate among all the hydrogenated Mg-MFx composites. The less agglomeration tendency of Mg particles and VO2 covered on MgH2 particles account for the reduced hydrogen desorption temperature and enhanced hydrolysis rate.

  9. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  10. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2018-05-03

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature programmed desorption (TPD). All three species have well resolved monolayer and second layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and hexafluorobenzene are consistent with first order desorption kinetics. In contrast, the submonolayer TPD spectra for 1,3,5-trifluorobenzene align on a common leading-edge which is indicative of zero order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of two greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two dimensional islands that are needed for submonolayer zero order desorption kinetics.

  11. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  12. Study of heterogeneous catalytic processes over cobalt, molybdenum and cobalt-molybdenum catalysts supported on alumina by temperature-programmed desorption and temperature-programmed reaction. 1. Adsorption of hydrozen

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Tsao Yamin; Krylov, O.V.

    1996-01-01

    Hydrogen adsorption on reduced, sulphidized and reoxidized specimens of molybdenum-and cobalt-molybdenum-containing catalysts applied on aluminium oxide has been studied by the method of thermal desorption (TD). Comparison of TD spectra of hydrogen and data of X-ray phase analysis of the specimens and mass-spectrometric analysis of the products desorbed from the surface of catalysts after their successive reduction sulphidizing, carbonizing and reoxidation permitted a correlation between various forms of hydrogen adsorption and certain centres on the surface of the catalysts. 12 refs., 2 figs

  13. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    Science.gov (United States)

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution.

  14. Modification of the properties of Pt-Al/sub 2/O/sub 3/ catalysts by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Menon, P.G.; Froment, G.F.

    1979-08-01

    Pulse reactor studies were performed on the hydrogenolysis of n-pentane and n-hexane at 400/sup 0/C on two commercial reforming catalysts that contained 0.6 and 0.75% platinum on alumina, respectively, and which were calcined in air at 500/sup 0/C, followed by hydrogen-reduction at 400/sup 0/-600/sup 0/C. On catalysts reduced at 400/sup 0/C, hydrogenolysis was the main reaction; with increasing reducing temperature, hydrogenolysis was suppressed and isomerization selectivity increased; at 550/sup 0/C pretreatment temperature, hydrogenolysis was near zero. This selective catalyst deactivation was reversed by oxidizing the catalyst in air at 500/sup 0/C in a similar manner as previously found for sulfided and chlorided catalysts. Temperature-programed desorption of hydrogen adsorbed at 20/sup 0/-600/sup 0/C revealed that the higher the adsorption temperature, the higher the temperature of the hydrogen desorption peaks: the hydrogen adsorbed below 400/sup 0/C desorbed mainly at 50/sup 0/-300/sup 0/C, but the hydrogen adsorbed at higher temperatures desorbed at 300/sup 0/-500/sup 0/C. Apparently, two types of hydrogen adsorb in the two temperature regions, of which the more strongly adsorbed type inhibits hydrogenolysis but not isomerization.

  15. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  17. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  18. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  19. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  20. Hydrogen retention behavior of beryllides as advanced neutron multipliers

    Directory of Open Access Journals (Sweden)

    Y. Fujii

    2016-12-01

    Full Text Available Beryllium intermetallic compounds (beryllides are the most promising candidate materials for use as advanced neutron multipliers in future fusion reactors because of their low swelling and high stability at high temperatures. Recently, beryllium–titanium beryllide pebbles such as Be12Ti have been successfully fabricated using a novel granulation process. In this study, the fundamental aspects of the behavior of hydrogen isotopes in Be12Ti pebbles were investigated via thermal desorption spectroscopy and transmission electron microscopy. In addition, atomistic calculations using first principles electronic-structure methods were applied to determine the solution energy of hydrogen in Be12Ti. The results showed simpler and weaker hydrogen-trapping efficiency for Be12Ti than for pure Be.

  1. Moessbauer study of Mg-Ni(Fe) alloys processed as materials for solid state hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P.; Principi, G., E-mail: giovanni.principi@unipd.it; Sartori, S.; Maddalena, A. [Universita di Padova, Settore Materiali, DIM (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica (Italy); Schinteie, G.; Kuncser, V.; Filoti, G. [National Institute for Materials Physics, Solid State Magnetism Department (Romania)

    2006-02-15

    Mg-Ni-Fe magnesium-rich intermetallic compounds were prepared following two distinct routes. A Mg{sub 88}Ni{sub 11}Fe{sub 1} sample (A) was prepared by melt spinning Mg-Ni-Fe pellets and then by high-energy ball milling for 6 h the obtained ribbons. A (MgH{sub 2}){sub 88}Ni{sub 11}Fe{sub 1} sample (B) was obtained by high-energy ball milling for 20 h a mixture of Ni, Fe and MgH{sub 2} powders in the due proportions. A SPEX8000 shaker mill with a 10:1 ball to powder ratio was used for milling in argon atmosphere. The samples were submitted to repeated hydrogen absorption/desorption cycles in a Sievert type gas-solid reaction controller at temperatures in the range 520 - 590 K and a maximum pressure of 2.5 MPa during absorption. The samples were analysed before and after the hydrogen absorption/desorption cycles by X-ray diffraction and Moessbauer spectroscopy. The results concerning the hydrogen storage properties of the studied compounds are discussed in connection with the micro-structural characteristics found by means of the used analytical techniques. The improved kinetics of hydrogen desorption for sample A, in comparison to sample B, has been ascribed to the different behaviour of iron atoms in the two cases, as proved by Moessbauer spectroscopy. In fact, iron results homogeneously distributed in sample A, partly at the Mg{sub 2}Ni grain boundaries, with catalytic effect on the gas-solid reaction; in sample B, instead, iron is dispersed inside the hydride powder as metallic iron or superparamagnetic iron.

  2. Hydrogenation of Phenylacetylene to Styrene on Pre-C{sub x}H{sub y}- and C-Covered Cu(111) Single Crystal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Ku [Yeungnam University, Gyeongsan (Korea, Republic of); Wei, Wei; White, John M. [The University of Texas at Austin, Texas (United States)

    2011-05-15

    Thermal hydrogenation of phenylacetylene (PA, C{sub 8}H{sub 6}) to styrene (C{sub 8}H{sub 8}) on pre-C{sub x}H{sub y}- and C-covered Cu(111) single crystal substrates has been studied using temperature-programmed desorption (TPD) mass spectrometry. Chemisorbed PA with an acetylene group has been proved to be associated with hydrogen of pre-adsorbed C{sub x}H{sub y} to form styrene (104 amu) on Cu surface. For the parent (PA) mass (102 amu) TPD profile, the TPD peaks at 360 K and 410 K are assigned to chemisorbed vertically aligned PA and flat-lying cross-bridged PA, respectively (J. Phys. Chem. C 2007, 111, 5101). The relative I{sub 360K}/I{sub 410K} TPD ratio dramatically increases with increasing pre-adsorbed C{sub x}H{sub y} before dosing PA, while the ratio does not increase for pre-C-covered surface. For PA on pre-C{sub x}H{sub y}-covered Cu(111) surface, styrene desorption is enhanced relative to the parent PA desorption, while styrene formation is dramatically quenched on pre-C-covered (lack of adsorbed hydrogen nearby) surface. It appears that only cross-bridged PA associates with adsorbed hydrogen to form styrene that promptly desorbs at 410 K, while vertically aligned PA is less likely to participate in forming styrene.

  3. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  4. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    Science.gov (United States)

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  6. Hydrogen storage development

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E. [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  7. Desorption of protium and deuterium from different types of titanium beds

    International Nuclear Information System (INIS)

    Ionete, Eusebiu Ilarian; Dylst, Kris; Gheorghe, Costeanu Claudiu; Stefan, Spiridon Ionut; Florian, Monea Bogdan; Broeckx, Wouter

    2017-01-01

    When the long term tritium storage is intended, metal hydride materials, particularly the titanium (Ti) beds, seems to be the recommended option, due to its compliance with the criteria of selection (e.g. material cost, stability, storage capacity, loading and unloading conditions, or radioactivity). However few experimental and numerical analyses have been published so far to better support the understanding of the recovery capabilities for different forms of titanium beds. In this work, an investigation on the recovery of different hydrogen isotopes from two types of titanium (Ti) beds, namely Ti powder and Ti sponge, has been performed. Hydrogen isotope release was experimentally verified up to a temperature of 600 °C for both Ti powder and Ti sponge beds. The desorption percentages were determined to be from 24.98 to 20.54 in the case of D_2 on Ti sponge, and from 34.36 to 29.77 in the case of H_2 on Ti sponge. The paper describes in detail the experimental set up, the measurements and the drawn conclusions.

  8. Desorption of protium and deuterium from different types of titanium beds

    Energy Technology Data Exchange (ETDEWEB)

    Ionete, Eusebiu Ilarian, E-mail: eusebiu.ionete@icsi.ro [National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Ramnicu Valcea (Romania); Dylst, Kris [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Gheorghe, Costeanu Claudiu; Stefan, Spiridon Ionut; Florian, Monea Bogdan [National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Ramnicu Valcea (Romania); Broeckx, Wouter [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-03-15

    When the long term tritium storage is intended, metal hydride materials, particularly the titanium (Ti) beds, seems to be the recommended option, due to its compliance with the criteria of selection (e.g. material cost, stability, storage capacity, loading and unloading conditions, or radioactivity). However few experimental and numerical analyses have been published so far to better support the understanding of the recovery capabilities for different forms of titanium beds. In this work, an investigation on the recovery of different hydrogen isotopes from two types of titanium (Ti) beds, namely Ti powder and Ti sponge, has been performed. Hydrogen isotope release was experimentally verified up to a temperature of 600 °C for both Ti powder and Ti sponge beds. The desorption percentages were determined to be from 24.98 to 20.54 in the case of D{sub 2} on Ti sponge, and from 34.36 to 29.77 in the case of H{sub 2} on Ti sponge. The paper describes in detail the experimental set up, the measurements and the drawn conclusions.

  9. Production method of hydrogen storage alloy electrode and hydrogen storage alloy for rechageable battery; Suiso kyuzo gokin denkyoku oyobi chikudenchiyo suiso kyuzo gokin no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Mizutaki, F.; Ishimaru, M.

    1995-04-07

    This invention relates to the hydrogen storage alloy electrode in which the misch metal-nickel system hydrogen storage alloy is employed. The grain of the hydrogen storage alloy is controlled so as to reduce the dendrite cell size. Since the hydrogen storage alloy having such small dendrite cell size has no part where the metal structure is too brittle, the alloy has a sufficient mechanical strength. It can stand for the swell and shrink stress associated with the sorption and desorption of hydrogen. The disintegration, therefore, due to the cracking of the alloy is hardly to take place. In addition, the quenching of molten alloy at a cooling rate of 1000{degree}C/sec or faster suppresses the occurrence of segregation of any alloy element at the grain boundary, making it possible to produce the homogeneous and mechanically strong alloy. In other words, it can be achieved to produce a hydrogen storage alloy electrode having an excellent cycle property. 4 figs., 1 tab.

  10. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  11. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  14. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  15. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.

    Science.gov (United States)

    Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong

    2017-02-22

    In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.

  16. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    Science.gov (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  17. Hydrogen absorption properties of U6Mn and U6Ni

    International Nuclear Information System (INIS)

    Ito, H.; Yamawaki, M.; Yamamoto, T.

    1998-01-01

    The hydrogen absorption properties of U, U 6 Mn and U 6 Ni were investigated at hydrogen pressures below 10 5 Pa. The pressure-composition (P-C) isotherms of U, U 6 Mn and U 6 Ni were obtained and the amounts of absorbed hydrogen for U, U 6 Mn and U 6 Ni were determined to be 3, 16.6 and 16.0 for x in MH x , where M is U, U 6 Mn and U 6 Ni, respectively. The desorption plateau pressures at 573 K decreased in the order: U 6 Mn-H>U 6 Ni-H>U-H. In addition, the results for the amounts of absorbed hydrogen suggests the formation of ternary hydrides U 6 MnH 18 and U 6 NiH 14 . (orig.)

  18. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  19. Adsorption, aggregation, and desorption of proteins on smectite particles.

    Science.gov (United States)

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  20. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  1. The impact of soil organic matter and soil sterilisation on the bioaccessibility of {sup 14}C-azoxystrobin determined by desorption kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Helen; Riding, Matthew J. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Oliver, Robin [Syngenta, Jealotts Hill Research Station, Bracknell RG42 6ET (United Kingdom); Jones, Kevin C. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-08-15

    Highlights: • Desorption of azoxystrobin from soils occurs in a bi-phasic manner. • Soil organic matter, indigenous microorganisms and contact time reduce desorption. • Choice of extractant is important in determining predicting the bioaccessible fraction. - Abstract: As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of {sup 14}C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (F{sub rap}) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F{sub slow}). The rapid desorption rate constant (k{sub fast}) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F{sub rap}. In non-sterile soil, F{sub rap} was lower resulting in higher F{sub slow}, while desorption rates remained unaffected. Organic matter (OM) reduces F{sub rap}; but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil.

  2. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie; Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Uno, Nobuyoshi, E-mail: AKIYAMA.Eiji@nims.go.j [Nippon Steel and Sumikin Metal Products Co, Ltd, SA Bldg., 17-12 Kiba 2-chome, Koto-ku, Tokyo (Japan)

    2010-04-15

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  3. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Directory of Open Access Journals (Sweden)

    Songjie Li, Eiji Akiyama, Kimura Yuuji, Kaneaki Tsuzaki, Nobuyoshi Uno and Boping Zhang

    2010-01-01

    Full Text Available The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17 containing hydrogen traps was evaluated using a slow strain rate test (SSRT after cathodic hydrogen precharging, cyclic corrosion test (CCT and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS. The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  4. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Boping; Akiyama, Eiji; Yuuji, Kimura; Tsuzaki, Kaneaki; Uno, Nobuyoshi

    2010-01-01

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  5. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  6. In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C.

    Science.gov (United States)

    Yokosawa, Tadahiro; Alan, Tuncay; Pandraud, Gregory; Dam, Bernard; Zandbergen, Henny

    2012-01-01

    We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50-500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10-16°C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5-4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  8. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  9. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  10. A Transformational Journey: Compositional Changes in Organic Matter during Desorption from Sediments

    Science.gov (United States)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R.; Bergamaschi, B. A.; Hernes, P.

    2016-12-01

    The release of organic matter (OM) from suspended particles via desorption is a critical component of OM cycling since dissolved OM (DOM) fuels aquatic ecosystems and is a precursor for disinfection by-products formation. This study assessed the elemental and molecular composition of DOM desorbed abiotically from sediments and soils of an irrigated agricultural watershed of northern California. Relative to mineral-bound OM, the released DOM was nitrogen-poor (lower carbon:nitrogen ratios) and depleted in amino acids and lignin phenols (lower carbon-normalized yields). Water-extracted DOM appeared substantially more degraded than its parent particulate OM with increased molar contributions of acidic amino acids, non-protein amino acids, and acidic lignin phenols, all molecular indicators of a more extensively processed OM pool. Desorption processes also significantly altered lignin compositional ratios which help distinguish vascular-plant sources of DOM. Specific optical parameters, including spectral slope, specific UV absorbance at 254 nm (SUVA254), and fluorescence index (FI), did not constitute useful proxies for the desorbed DOM pool, while absorption coefficients and fluorescence peak intensities were strongly correlated with extracted DOM concentrations and composition. This study highlights the profound impact of desorption on DOM composition which, if unaccounted for, could lead to misinterpretations of common biomarkers and optical proxies used to predict DOM sources and reactivity. Our findings suggest that sediments contribute a biogeochemically distinct source of DOM to surface waters, with potential impacts on aquatic health and drinking water quality.

  11. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    International Nuclear Information System (INIS)

    Njikam, Eloh; Schiewer, Silke

    2012-01-01

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that

  12. Thermoanalytical investigation of the hydrogen absorption behaviour of Sm{sub 2}Fe{sub 17-x}Ga{sub x} at high hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Handstein, A.; Kubis, M.; Gebel, B.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe; Gutfleisch, O.; Harris, I.R. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe]|[Birmingham Univ. (United Kingdom). School of Metallurgy and Materials

    1998-07-01

    The complete disproportionation of Sm{sub 2}Fe{sub 17-x}Ga{sub x} during annealing in hydrogen is hindered due to an increased stability of the compounds with a higher Ga content (x {>=} 1). Therefore the HD process as the first step of HDDR (hydrogenation-disproportionation-desorption-recombination) has to be carried out at a high hydrogen pressure for x {>=} 1. The hydrogen absorption behaviour of Sm{sub 2}Fe{sub 17-x}Ga{sub x} (x = 0, 0.5, 1 and 2) was investigated by means of hydrogen differential thermal analysis (HDTA) and high pressure differential scanning calorimetry (HPDSC) at hydrogen pressures up to 70 bar. A dependency of hydrogenation and disproportionation temperatures on hydrogen pressure and Ga content was found. The comparison with other substituents (M = Al and Si) instead of M = Ga showed an increased stability of Sm{sub 2}Fe{sub 17-x}M{sub x} compounds against disproportionation by hydrogen in the sequence Al, Ga and Si. The Curie temperatures of the interstitially hydrogenated Th{sub 2}Zn{sub 17}-type materials increase with the hydrogen pressure. In order to produce coercive and thermally stable Sm{sub 2}Fe{sub 15}Ga{sub 2}C{sub y} powder by means of the HDDR process, we recombined material disproportionated at different hydrogen pressures. Preliminary results of magnetic properties of this HDDR treated and gas-carburized Sm{sub 2}Fe{sub 15}Ga{sub 2}C{sub y} are discussed. (orig.)

  13. Laser-induced desorption determinations of surface diffusion on Rh(111)

    International Nuclear Information System (INIS)

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab

  14. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  15. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Franzen, P.; Plank, H.; Roth, J.; Gauthier, E.

    1996-01-01

    The trapping and release of deuterium implanted with an energy of 100 eV in wrought and in plasma sprayed tungsten of different manufacture and structure has been investigated by means of re-emission as well as thermal and isothermal desorption spectroscopy. The experimental data for wrought tungsten are compared with model calculations with the PIDAT code in order to estimate the parameters governing diffusion, surface recombination and trapping in tungsten. The amount of retained deuterium in tungsten is of the same order of magnitude as in graphite for the implantation parameters used in this work. The mobile hydrogen concentration in tungsten during the implantation is of the same order of magnitude than the trapped one, being released after the termination of the implantation. The fraction of deuterium trapped to defects increases strongly with the porosity of the samples. The temperature needed for the release of the trapped deuterium (∝600 K) are considerably lower than for graphite, due to the smaller trapping energy (≤1.5 eV). (orig.)

  16. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.

    2007-01-01

    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  17. Structure and hydrogen storage properties of the hexagonal Laves phase Sc(Al{sub 1-x}Ni{sub x}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahlberg, Martin, E-mail: Martin.sahlberg@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Angstroem, Jonas, E-mail: jonas.angstrom@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Zlotea, Claudia, E-mail: claudia.zlotea@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Beran, Premysl, E-mail: pberan@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Latroche, Michel, E-mail: michel.latroche@glvt-cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Pay Gomez, Cesar, E-mail: Cesar.paygomez@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden)

    2012-12-15

    The crystal structures of hydrogenated and unhydrogenated Sc(Al{sub 1-x}Ni{sub x}){sub 2} Laves phases have been studied by combining several diffraction techniques and it is shown that hydrogen is situated interstitially in the A{sub 2}B{sub 2}-sites, which have the maximum number of scandium neighbours. The hydrogen absorption/desorption behaviour has also been investigated. It is shown that a solid solution of hydrogen forms in the mother compound. The hydrogen storage capacity exceeds 1.7 H/f.u. at 374 K, and the activation energy of hydrogen desorption was determined to 4.6 kJ/mol H{sub 2}. It is shown that these compounds share the same local coordination as Frank-Kasper-type approximants and quasicrystals, which opens up the possibility of finding many new hydride phases with these types of crystal structures. - Graphical abstract: The structure of ScNiAlDx, Sc atoms are shown in purple and Ni/Al atoms in blue and the iso-surfaces of deuterium in yellow. Revealed from refinements of neutron powder diffraction data. Highlights: Black-Right-Pointing-Pointer The crystal structure of ScNiAl and ScNiAlDx is reported. Black-Right-Pointing-Pointer We show the hydrogen storage properties of Sc(Al{sub 1-x}Ni{sub x}){sub 2}. Black-Right-Pointing-Pointer We discuss the possibility to store hydrogen in quasicrystals.

  18. Study of chlordecone desorption from activated carbons and subsequent dechlorination by reduced cobalamin.

    Science.gov (United States)

    Ranguin, Ronald; Durimel, Axelle; Karioua, Reeka; Gaspard, Sarra

    2017-11-01

    Since 1972, the French departments of Guadeloupe and Martinique have intensively used organochlorinated pesticides such as chlordecone (CLD) and hexachlorocyclohexane (HCH) isomers to prevent the proliferation of banana weevil (Cosmopolite sordidus). These molecules are stable in the environment, leading to a continuous contamination of soils, water, and food chain in the banana-producing areas. In these polluted areas, water treatment plants are equipped with activated carbon (AC) filters. In order to improve treatment of CLD-contaminated waters by AC, CLD adsorption and desorption kinetic studies are carried out using different ACs produced from sugar cane bagasse as adsorbents and subsequent CLD degradation is performed using reduced vitamin B12 (VB12). A GC-MS method for CLD quantification is as well optimized. This study shows that bagasse ACs are able to capture the pollutant, leading to a CLD concentration decrease from 1 to 73 μg L -1 , with an adsorption capacity of 162 μg mg -1 . Adsorption capacity increase with the temperature indicates an endothermic process. Polar solvents favor CLD desorption from ACs, suggesting hydrogen bonding between CLD and surface groups of ACs, the best solvent for chemical desorption being ethanol. Subsequent degradation of CLD in ethanol is performed using vitamin B12 reduced by either 1,4-dithiotreitol (DTT) or zerovalent zinc, leading to 90% of CLD removal and to the molecule cage structure opening for formation of a pentachloroindene intermediate product, characterized by GC MS/MS. A pathway for pentachloroindene formation from CLD is proposed.

  19. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  20. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    International Nuclear Information System (INIS)

    Gu Yingying; Yeung, Albert T.

    2011-01-01

    Highlights: → CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. → The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. → Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. → CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  1. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yingying, E-mail: guyong99hg@yahoo.com.cn [Department of Environmental Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266555 (China); Yeung, Albert T., E-mail: yeungat@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-07-15

    Highlights: {yields} CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. {yields} The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. {yields} Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. {yields} CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  2. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    Science.gov (United States)

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  3. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  4. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  5. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    Science.gov (United States)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  6. Thermodynamic and structural properties of ball-milled mixtures composed of nano-structural graphite and alkali(-earth) metal hydride

    International Nuclear Information System (INIS)

    Miyaoka, Hiroki; Ichikawa, Takayuki; Fujii, Hironobu

    2007-01-01

    Hydrogen desorption properties of mechanically milled materials composed of nano-structural hydrogenated-graphite (C nano H x ) and alkali(-earth) metal hydride (MH; M = Na, Mg and Ca) were investigated from the thermodynamic and structural points of view. The hydrogen desorption temperature for all the C nano H x and MH composites was obviously lower than that of the corresponding each hydride. In addition, the desorption of hydrocarbons from C nano H x was significantly suppressed by making composite of C nano H x with MH, even though C nano H x itself thermally desorbs a considerably large amount of hydrocarbons. These results indicate that an interaction exists between C nano H x and MH, and hydrogen in both the phases is destabilized by a close contact between polar C-H groups in C nano H x and the MH solid phase. Moreover, a new type of chemical bonding between the nano-structural carbon (C nano ) and the Li, Ca, or Mg metal atoms may be formed after hydrogen desorption. Thus, the above metal-C-H system would be recognized as a new family of H-storage materials

  7. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  8. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    Science.gov (United States)

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  9. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  10. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  11. Thermogravimetric research of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kleperis, J; Grinberga, L; Ergle, M; Chikvaidze, G; Klavins, J

    2007-01-01

    During thermogravimetric research of metal hydrides we noticed mass growth of samples above 200 deg. C even in an argon atmosphere. Further heating is leading to the growth of weight up to 2-7 weight% till 500 0 C. Second run of the same sample without taking out of DTA instrument gave only small mass changes, indicating that noticed mass increase during first run is permanent. Microscope and elemental analyses were made to determine the reason of mass growth. XRD inspection revealed the formation of new phase with bunsenite NiO structure with deformed cubic structure. The new phase is no more active to hydrogen sorption/desorption. Our results demonstrated that the usage of hydrogen storage alloys AB 5 must be taken with care - it is important not to exceed some critical temperature were irreversible structural, compositional and morphological changes will occur

  12. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  13. Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach.

    Science.gov (United States)

    Kumar, E Mathan; Rajkamal, A; Thapa, Ranjit

    2017-11-14

    First-principles based calculations are performed to investigate the dehydrogenation kinetics considering doping at various layers of MgH 2 (110) surface. Doping at first and second layer of MgH 2 (110) has a significant role in lowering the H 2 desorption (from surface) barrier energy, whereas the doping at third layer has no impact on the barrier energy. Molecular dynamics calculations are also performed to check the bonding strength, clusterization, and system stability. We study in details about the influence of doping on dehydrogenation, considering the screening factors such as formation enthalpy, bulk modulus, and gravimetric density. Screening based approach assist in finding Al and Sc as the best possible dopant in lowering of desorption temperature, while preserving similar gravimetric density and Bulk modulus as of pure MgH 2 system. The electron localization function plot and population analysis illustrate that the bond between Dopant-Hydrogen is mainly covalent, which weaken the Mg-Hydrogen bonds. Overall we observed that Al as dopant is suitable and surface doping can help in lowering the desorption temperature. So layer dependent doping studies can help to find the best possible reversible hydride based hydrogen storage materials.

  14. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    Directory of Open Access Journals (Sweden)

    Hui-Ping Ren

    2011-01-01

    Full Text Available Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4 alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1 alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s to 30 m/s, the hydrogen absorption saturation ratio ( of the (x = 0.4 alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio ( from 54.5 to 70.2%, the hydrogen diffusion coefficient (D from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g.

  15. Processing routes evaluation of severely deformed Mg-Fe alloys for hydrogen storage applications

    International Nuclear Information System (INIS)

    Antiqueira, F.J.; Leiva, D.R.; Ishikawa, T.T.; Jorge Junior, A.M.; Botta, W.J.

    2016-01-01

    MgH 2 is considered an interesting material for safe hydrogen storage in the solid state, due to its high gravimetric nominal capacity of 7,6%, and the relative low cost of magnesium. In this study, we attempted to improve the performance of the MgH 2 in the hydrogen storage. Different processing routes for Mg and Mg-Fe by severe plastic deformation were evaluated. The prepared materials were characterized by X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM). The hydrogen storage properties were evaluated by differential scanning calorimetry and the Sievert's method. The results indicate superior properties to materials catalyzed with iron, as well as a high dependence of hydrogen absorption / desorption kinetic in accordance with the microstructures obtained through the various processing routes. (author)

  16. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  17. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A.R.; Misan, I.

    2005-01-01

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H 2 gas (1 kg of gas has a volume of 11 m 3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi 5 , FeTi, Ti

  18. Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities

    DEFF Research Database (Denmark)

    Ming, Yang; Purewal, Justin; Yang, Jun

    2016-01-01

    , HCl, H2O, CO, CO2, CH4, O2, N2, and He) to pure hydrogen gas. Subsequently, MOF-5 was exposed to these mixtures over hundreds of adsorption/desorption pressure-swing cycles and for extended periods of static exposure. The impact of exposure was assessed by periodically measuring the hydrogen storage...... of these contaminants on MOFs is mostly unknown. In the present study MOF-5 is adopted as a prototypical moisture-sensitive hydrogen storage material. Five “impure” gas mixtures were prepared by introducing low-to-moderate levels (i.e., up to ∼200 times greater than the J2719 limit) of selected contaminants (NH3, H2S...

  19. Bench- and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils

    International Nuclear Information System (INIS)

    Morris, M.I.; Sams, R.J.; Gillis, G.; Helsel, R.W.; Alperin, E.S.; Geisler, T.J.; Groen, A.; Root, D.

    1995-01-01

    Thermal desorption is an innovative technology that has seen significant growth in applications to organically contaminated soils and sludges for the remediation of hazardous, radioactive and mixed waste sites. This paper will present the results of a bench and pilot-scale demonstration of this technology for the removal of mercury from the Lower East Fork Poplar Creek floodplain soil. Results demonstrate that the mercury in this soil can be successfully removed to the target treatment levels of 10 milligrams per kilogram (mg/kg) and that all process residuals could be rendered RCRA-nonhazardous as defined by the Resource Conservation and Recovery Act. Sampling and analyses of the desorber off-gas before and after the air pollution control system demonstrated effective collection of mercury and organic constituents. Pilot-scale testing was also conducted to verify requirements for material handling of soil into and out of the process. This paper will also present a conceptual design and preliminary costs of a full-scale system, including feed preparation, thermal treatment, and residuals handling for the soil

  20. Secondary ion shadow-cone enhanced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chechen Chang (Hawaii Univ., Honolulu (USA). Dept. of Chemistry)

    1990-02-01

    The incident angle dependence of the secondary particle emission process under keV ion bombardment has been investigated. The results from the full molecular dynamics calculations indicate that the flux anisotropy of the incident beam, resulting from the non-uniform impact parameters for the surface atom of a single crystal, affects the particle desorption in a systematic fashion. The enhanced desorption at certain angles of incidence corresponds to the intensive focusing of the incident beam to the near-surface atom and the extended dissipation of momentum by large-angle scattering. This observation has let us to develop a new theoretical model in which the enhanced desorption is described by the distance of closest encounter along the trajectory of the incident particle to the surface atom. The computer time for the simulation of the incident-angle-dependent emission process is significantly reduced. The results from the calculation based on this model are in good agreement both with the results from the full dynamics calculation and with the experimental results. The new model also allows a complementary evaluation of the microscopic dynamics involved in the shadow-cone enhanced desorption. (author).

  1. Carbon compound used in hydrogen storage; Compuesto de carbon utilizado en almacenamiento de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J L; Lopez M, B E [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  2. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  3. Retention of Hydrogen Isotopes in Divertor Tiles Used in JT-60U

    International Nuclear Information System (INIS)

    Hirohata, Y.; Shibahara, T.; Tanabe, T.; Oya, Y.; Arai, T.; Gotoh, Y.; Masaki, K.; Yagyu, J.; Oyaidzu, M.; Okuno, K.; Nishikawa, M.; Miya, N.

    2005-01-01

    Retention characteristics of deuterium and hydrogen retained in graphite tiles placed in the divertor region of JT-60U were investigated by thermal desorption spectroscopy (TDS). The deuterium retained in the near surface of all graphite tiles was mostly replaced by hydrogen due to exposure to hydrogen plasma at the final stage operations, resulting in main deuterium retention in the deeper region. The dominant species desorbed from the divertor tiles were H 2 , HD, D 2 and CH 4 . The smallest retention of hydrogen isotopes (H+D) was observed in the outer divertor tile which was eroded with maximum of 20 μm depth. The amount of H+D retained in the inner divertor tiles covered by the re-deposited layers increased with the thickness of the re-deposited layers. Hydrogen isotopes concentration ((H+D)/C) in the re-deposited layers was ∼0.02, which was much smaller than those observed in JET and other devices

  4. Catalyzed Na2LiAlH6 for hydrogen storage

    International Nuclear Information System (INIS)

    Ma, X.Z.; Martinez-Franco, E.; Dornheim, M.; Klassen, T.; Bormann, R.

    2005-01-01

    In the present study, the complex alanate Na 2 LiAlH 6 is synthesized by high-energy milling of powder blends containing NaH and LiAlH 4 . The related thermodynamics are determined. In addition, a comprehensive study was performed to investigate the influence of different oxide and halide catalysts on the kinetics of hydrogen absorption and desorption, as well as their general drawback to decrease storage capacity

  5. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na + and F + desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H + , Li + , and F + are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N 2 -O 2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF 2 and a series of alkali halides are discussed in terms of desorption mechanisms

  6. Extraction and determination of hydrogen in uranium and zirconium

    International Nuclear Information System (INIS)

    Champeix, L.; Coblence, G.; Darras, R.

    1959-01-01

    The method of desorption under vacuum at high temperatures in the solid phase, which gives good results in the case of steels, has been applied to uranium and zirconium. In these two metals hydrogen is found mainly in the form of hydride. It is chiefly a question of determining the most suitable temperature and the heating time necessary to obtain an almost total extraction of hydrogen. Two considerations must be taken into account in the choice of temperature. It should be such that on the one hand the hydride decomposes rapidly and completely at the reduced pressure applied, and on the other hand the diffusion of hydrogen through the metal takes place fairly quickly. The apparatus and the method used are described; systematic tests have led to the adoption of temperatures of 650 deg. C for uranium and 1050 deg. C for zirconium. (author) [fr

  7. Realizing nanographene activated by a vacancy to solve hydrogen storage problem

    Science.gov (United States)

    Sunnardianto, Gagus Ketut; Maruyama, Isao; Kusakabe, Koichi

    We found a triply hydrogenated vacancy (V111) in nanographene reduces an activation barrier of adsorption-desorption process in both ways in an equal manner from the known values for pristine graphene as well as those of other hydrogenated vacancies of graphene. This finding may give a key to overcome existing problems in the hydrogen uptake and release processes in known hydrogen storage materials, e.g. graphene and organic hydrides (OHs) in near ambient operation temperature. In this study, we used DFT-NEB simulation to estimate the barrier height, which is supported by realized real experiments. We consider a nanographene molecule (VANG) which contains V111 with armchair structure at the periphery. We found interesting feature in comparable values of energy barriers for both hydrogen uptake and release, where hydrogenation process is even a little bit endothermic and dehydrogenation is a little but exothermic nature. Thus, this material structure acts as ``self-catalytic properties'', which has an important role in reducing an energy barrier and as a trapping site for hydrogen serving a new material prevailing other hopeful candidates. The work is supported by JSPS KAKENHI in Science of Atomic Layers\\x9D.

  8. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    Science.gov (United States)

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  9. Hydrogen evolution on Au(111) covered with submonolayers of Pd

    DEFF Research Database (Denmark)

    Björketun, Mårten; Karlberg, Gustav; Rossmeisl, Jan

    2011-01-01

    A theoretical investigation of electrochemical hydrogen evolution on Au(111) covered with submonolayers of Pd is presented. The size and shape of monoatomically high Pd islands formed on the Au(111) surface are determined using Monte Carlo simulations, for Pd coverages varying from 0.02 to 0.95 ML....... The energetics of adsorption and desorption of hydrogen on/from different types of sites on the Pd-Au(111) surface are assessed by means of density functional theory calculations combined with thermodynamic modeling. Based on the density functional and Monte Carlo data, the hydrogen evolution activity...... is evaluated with a micro-kinetic model. The analysis reproduces measured Pd-coverage-dependent activities for Pd submonolayers exceeding similar to 0.15 ML and enables the relative contributions from different types of electrocatalytically active sites to be determined. Finally, the implications of surface...

  10. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  11. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  12. In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400°C

    International Nuclear Information System (INIS)

    Yokosawa, Tadahiro; Alan, Tuncay; Pandraud, Gregory; Dam, Bernard; Zandbergen, Henny

    2012-01-01

    We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50–500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10–16 °C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5–4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale. -- Highlights: ► In-situ TEM experiments up to 4.5 bar. ► In-situ TEM on a hydrogen storage material at pressures used in practice. ► No electron beam effect on (de)hydrogenation. ► In-situ TEM allows for fast screening of hydrogen storage materials.

  13. Hydrogen isotope dynamic effects on partially reduced paramagnetic six-atom Ag clusters in low-symmetry cage of zeolite A

    Directory of Open Access Journals (Sweden)

    Amgalanbaatar Baldansuren

    2016-12-01

    Full Text Available A well-defined, monodisperse Ag6+ cluster was prepared by mild chemical treatments including aqueous ion-exchange, dehydration, oxygen calcination at 673 K and hydrogen reduction 293 K, rather than autoreduction and irradiations with γ-ray and X-ray. H2 reduction was proved as a crucial step to form the nanosize cluster with six equivalent silver atoms. Hydrogen isotope exchange and dynamics were probed by EPR and HYSCORE to provide information relevant to the cluster geometry, size, charge state and spin state. Desorption experiments result in the deuterium desorption energy of 0.78 eV from the cluster, exceeding the experimental value of 0.38 eV for the single crystal Ag(111 surface. These experiments indicate that the EPR-active clusters are in delicate equilibrium with EPR-silent clusters.

  14. Hydrogenation study of suction-cast Ti{sub 40}Zr{sub 40}Ni{sub 20} quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huogen; Li, Rong; Yin, Chen; Zheng, Shaotao; Zhang, Pengcheng [National Key Laboratory for Surface Physics and Chemistry, P.O. Box 718-35, Mian Yang 621907, Sichuan (China)

    2008-09-15

    Suction casting was predicted to be an usable method for improving the hydriding kinetics of Ti/Zr-based icosahedral quasicrystals (IQCs) in our previous work. To further determine it, a suction-cast Ti{sub 40}Zr{sub 40}Ni{sub 20} IQC alloy was used for hydrogenation studies by Pressure Composition Isotherm (PCI) and Temperature Programmed Desorption (TPD) techniques. The results showed that, this alloy absorbed hydrogen rapidly with obvious hydrogen pressure plateau and some reversibility, however, displayed very limited hydrogen capacity (about 0.7 wt.%) and low equilibrium pressure. After several hydrogenation/dehydrogenation cycles, the IQC structure transformed into two hydride phases, ZrH{sub 2-x} and one unknown, both of which decomposed at above 600 C, suggesting high thermo-stability for them. On the whole, indeed the suction-casting method can increase the hydrogen absorption rate of Ti/Zr-based IQCs, however, the hydrogenation properties of the Ti{sub 40}Zr{sub 40}Ni{sub 20} IQC alloy still need a mighty advancement. (author)

  15. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  16. Metalized T graphene: A reversible hydrogen storage material at room temperature

    International Nuclear Information System (INIS)

    Ye, Xiao-Juan; Zhong, Wei; Du, You-Wei; Liu, Chun-Sheng; Zeng, Zhi

    2014-01-01

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H 2 . The adsorption/desorption of H 2 at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  17. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  18. Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications

    Science.gov (United States)

    Dathar, Gopi Krishna Phani

    The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory

  19. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  20. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  1. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  2. The use of one-dimensional Niobate to improve MgH{sub 2} hydrogen sorption

    Energy Technology Data Exchange (ETDEWEB)

    Brum, M.C., E-mail: mbrum@metalmat.ufrj.br; Conceição, M.O.T. da; Jardim, P.M.; Santos, D.S. dos

    2014-12-05

    Highlights: • The 1-D Niobate W and Niobate C catalysts were synthesized. • The composites MgH{sub 2} + 5 wt.% catalysts were obtained by 20 min of mechanical milling. • The synthesized wired-like material 1-D Niobate W showed to be a promising catalyst. • A desorption capacity of 6.0 wt.%. of H{sub 2} was attained in 10 min with MgH{sub 2} + 5 wt.% 1-D Niobate W. - Abstract: A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of Niobates synthesized by hydrothermal treatment of Nb{sub 2}O{sub 5} in 10 M NaOH. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to evaluate their synthesis and show the morphological and crystallographic differences between Nb{sub 2}O{sub 5} used as a precursor and the Niobates produced, the one-dimensional wired type, 1-D Niobate W and the cuboid one, Niobate C. The ball milling of MgH{sub 2} with the Niobates was performed within only 20 min and afterwards the Differential Scanning Calorimetry (DSC) examination of MgH{sub 2} + 1-D Niobate W and MgH{sub 2} + Niobate C showed the shifting of the peaks for both composites in comparison to pure MgH{sub 2}. The influence of the two different types of Niobates and also the Nb{sub 2}O{sub 5} on the hydrogen absorption/desorption capacity was evaluated at 350 °C. The higher absorption and desorption values were attained by the MgH{sub 2} + 5 wt.% 1-D Niobate W composite, reaching, in 10 min, approximately 5.0 wt.% and 6.0 wt.%, respectively. The possible mechanism involved in such property improvement upon adding niobium based catalysts with different morphology and structure was discussed.

  3. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    Science.gov (United States)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double

  4. Hydrogen storage properties in the Mg_0_._7_5Ta_0_._2_5 system prepared by mechanical milling

    International Nuclear Information System (INIS)

    Ramirez G, J. A.

    2016-01-01

    Magnesium and most of its mixtures have slow sorption-desorption kinetics of hydrogen, which limits their technological application and their viability from the economic view point. Recently, has been observed that by the synthesis of advanced materials, using the mechanical milling technique, positive changes in the kinetics are introduced. In order to improve the sorption-desorption hydrogen properties, in the present work a mixture consisting of Mg_0_._7_5Ta_0_._2_5 was prepared using methanol as process control agent. To this end, the first methodological step was to carry out, by means of the mechanical milling technique, the synthesis of the mixture Mg_0_._7_5Ta_0_._2_5 in a Spex type vibratory mill at times of 6, 12, 18 and 24 h. Subsequently, the material was characterized by different analytical techniques such as scanning electron microscopy with elemental analysis, X-ray diffraction and N_2 physisorption analysis. Subsequently, hydrogen sorption experiments were carried out in a Parr reactor to evaluate the hydrogen storage capacity of the mixture, varying temperature parameters, pressure and time, in order to determine the optimal parameters of hydrogen sorption. The characterization of the hydrogen storage capacity was analyzed by the thermogravimetric analysis/differential scanning calorimetry technique coupled to a mass spectrometer. X ray diffraction analysis reveals that there is a mixture between the starting compounds, with an important refinement of the microstructure as a consequence of the mechanical milling process. The results of the hydrogen sorption tests at 1, 5 and 10 cycles showed that the storage of hydrogen in the Mg_0_._7_5Ta_0_._2_5 mixture can be carried out at a temperature of 25 degrees Celsius with a pressure of 2 atm and a contact time of 1 h. (Author)

  5. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  6. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  7. The TiCl{sub 3} catalyst in NaAlH{sub 4} for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Eijt, S.W.H. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Huot, J. [Universite du Quebec a Trois Rivieres, Quebec (Canada); Kockelmann, W.A. [ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Wagemaker, M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Mulder, F.M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)], E-mail: f.m.mulder@tudelft.nl

    2007-09-15

    TiCl{sub 3} acts as an efficient catalyst for NaAlH{sub 4} (sodium alanate), altering its hydrogen sorption kinetics and reversibility considerably. In order to clarify its role, we performed in situ neutron diffraction experiments on protonated catalysed and uncatalysed NaAlH{sub 4}. The phase transformations were monitored in the first two reaction steps during hydrogen release and in the second step during reloading. Our study for the first time provides clear indications that both Ti{sub x}Al{sub 1-x} and NaCl formed act as grain refiner for Al and NaH, respectively, preventing particle growth. Particle sizes generally stay small upon desorption and reloading of TiCl{sub 3} catalysed NaAlH{sub 4}, while significant particle growth is observed for uncatalysed NaAlH{sub 4}. The small crystallite sizes and observed hydrogen vacancy formation greatly facilitate the mass transfer during loading and unloading. This study underlines the importance of grain refining for achieving reversibility and faster kinetics of the hydrogen sorption processes, with a crucial double role played by the catalyst.

  8. An AC impedance study of self-discharge mechanism of nickel-metal hydride (Ni-MH) battery using Mg{sub 2}Ni-type hydrogen storage alloy anode

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luo, J.L. [University of Alberta, Edmonton, Alberta (Canada). Department of Chemical and Materials Engineering

    2000-07-01

    The self-discharge mechanism during storage in open-circuit states of a Ni-MH battery using a Mg{sub 2}Ni-type hydrogen storage alloy anode was investigated by electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The loss of discharge capacity for this battery can be ascribed to two causes: (i) desorption of hydrogen from the Mg{sub 1.95}Y{sub 0.05}Ni{sub 0.92}Al{sub 0.08} hydride anode; and (ii) anode surface degradation resulting from oxidation of the magnesium alloy in the electrolyte. At the higher open-circuit voltages (OCV), the former was mainly responsible for a high self-discharge rate, while the latter might dominate the loss of capacity at the lower OCV. XRD results confirmed that Mg(OH){sub 2} formed on the magnesium alloy anode after storage in an open-circuit condition for 20 days. (author)

  9. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  10. Long-term desorption of trichloroethylene from flint clay using multiplexed optical detection

    International Nuclear Information System (INIS)

    Stager, M.P.; Perram, G.P.

    1999-01-01

    The long-term desorption of trichloroethylene (TCE) from powdered flint clay was examined using a multiplexed, phase sensitive infrared technique which provided a gas phase detection limit of 0.0045 torr for continuous monitoring of the desorption process for at least 3 days. The vapor phase TCE concentrations as a function of desorption time exhibit a significant deviation from Langmuir kinetics. The desorption process is adequately described by bonding sites with a gamma distribution for the desorption rate coefficients. The mean desorption rate for powdered flint clay at 25°C is k d = 0.50 ± 0.02 h −1 . (author)

  11. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  12. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  13. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  14. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  15. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  16. Thermal desorption spectroscopy of pyrolytic graphite cleavage faces after keV deuterium irradiation at 330-1000 K

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Tokiguchi, K.

    1992-01-01

    Thermal desorption spectroscopy (TDS) measurements were made on D 2 and CD 4 from surface layers of pyrolytic graphite cleavage faces after 3 keV D + 3 irradiation to 1.5 x 10 18 D/cm 2 at irradiation temperatures from 330 to 1000 K. Thermal desorption of both D 2 and CD 4 was observed to rise simultaneously at around 700 K. The D 2 peak was found at T m = 900-1000 K, while the CD 4 peak appeared at a lower temperature, 800-840 K. The T m for the D 2 TDS increased, while that for the CD 4 decreased with increasing irradiation temperature. These results obviously indicate that the D 2 desorption is detrapping/recombination limited, while the CD 4 desorption is most likely to be diffusion limited. The amount of thermally desorbed D 2 after the D + irradiation was observed to monotonously decrease as the irradiation temperature was increased from 330 to 1000 K. These tendencies agreed with previous results for the irradiation temperature dependencies of both C1s chemical shift (XPS) and the interlayer spacing, d 002 (HRTEM), on the graphite basal face. (orig.)

  17. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  18. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  19. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon.

    Science.gov (United States)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R

    2015-04-28

    Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. On dewetting dynamics of solid films of hydrogen isotopes and its influence on tritium β spectroscopy

    International Nuclear Information System (INIS)

    Fleischmann, L.; Bonn, J.; Bornschein, B.; Otten, E.W.; Przyrembel, M.; Weinheimer, Ch.

    2000-01-01

    The dewetting dynamics of solid films of hydrogen isotopes, quench-condensed on a graphite substrate, was measured at various temperatures below desorption by observing the stray light from the film. A schematic model describing the dewetting process by surface diffusion is presented, which agrees qualitatively with our data. The activation energies of different hydrogen isotopes for surface diffusion were determined. The time constant for dewetting of a quench-condensed T 2 film at the working temperature of 1.86 K of the mainz neutrino mass experiment was extrapolated. (orig.)

  1. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  2. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications

    International Nuclear Information System (INIS)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10 6 W/cm 2 . In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10 -4 . We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10 4 m/s and 10 5 m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10 4 m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C 60 molecules and derivated C 60 are presented. Desorption methods are compared. (author). 32 refs., 34 figs

  3. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  4. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Directory of Open Access Journals (Sweden)

    Ch. Stihl

    2016-12-01

    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  5. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  6. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  7. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  8. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  9. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  10. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  11. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3

    International Nuclear Information System (INIS)

    Xie, L.; Liu, Y.; Wang, Y.T.; Zheng, J.; Li, X.G.

    2007-01-01

    MgH 2 nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH 2 phase, without residual magnesium and with an average particle size of ∼300 nm. Milled with 5 wt.% TiF 3 as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of ∼0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under ∼20 bar hydrogen at room temperature. Compared with MgH 2 micrometer particles doped with 5 wt.% TiF 3 under the same conditions as the MgH 2 nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed

  12. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  13. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  14. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  15. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    Science.gov (United States)

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  16. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  17. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  18. Direct isotope determination of isotopically labelled lipids by field desorption mass spectrometry

    International Nuclear Information System (INIS)

    Lehmann, W.D.; Kessler, M.

    1982-01-01

    Lipids labelled with deuterium or carbon-14 have been investigated by field desorption mass spectrometry for determination of their degree of labelling. This application is demonstrated for free fatty acids, cholesterol, cholesteryl esters, triglycerides, and L-α-phosphatidylcholines. Comparison of the molecular ion groups of the non-labelled and of the labelled compounds enables a fast and reliable determination of the degree of labelling. For multiply labelled compounds the label distribution is also obtained from the molecular ion group. In addition, for cholesteryl esters and for phosphatidylcholines structurally significant fragment ions provide information about the position of the label. Several hundred nanograms of the compound are typically required for a single analysis with a relative standard error of 0.5-2% in the value calculated for atom% hydrogen-2 or for the specific carbon-14 activity. (orig.) [de

  19. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2004-01-01

    The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located usi...... to be rate-limiting for the ab- and desorption of hydrogen, respectively. Zero-point energy contributions are found to be substantial for the diffusion of atomic hydrogen, but classical rates are still found to be within an order of magnitude at room temperature.......The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located using...

  20. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  1. ICRF hydrogen minority heating in the boronized ASDEX tokamak

    International Nuclear Information System (INIS)

    Ryter, F.; Braun, F.; Hofmeister, F.; Noterdaeme, J.M.; Steuer, K.H.; Wesner, F.

    1990-01-01

    Since the divertor of ASDEX has been modified (1986-87) the hydrogen concentration in deuterium plasmas could not be reduced below 10%, although the machine was operated for long periods of time with deuterium injection. This is probably due to desorption in the divertor as indicated by the increasing H-concentration during a deuterium injection pulse. As a consequence for H-minority heating in deuterium, the maximum power into ohmic plasmas without causing a disruption was limited to few hundred kW. A partial solution was ICRH in combination with deuterium injection which allowed us to apply up to 1.5 MW ICRH to the plasma. The beneficial role of the injection is attributed to an improved ICRH absorption and to the higher energy flux and temperature in the divertor. During the last ICRH campaign we operated mainly in helium plasmas for a lower hydrogen concentration and the vessel was boronised. The H-concentration is measured routinely by a mass spectrometer in the divertor chamber. This measurement does not give a fast response to eventual changes and also no absolute concentrations in the main plasma, but it gives a reliable estimate of the time evolution during one discharge or from shot to shot. The data from the mass spectrometer were often cross-checked with charge exchange measurements from the main plasma. In helium discharges the hydrogen concentration is around 2% in the ohmic phase but it increases up to 8% as ICRH is applied. Under these conditions the maximum available power (2.7 MW) could be applied to the plasma without causing a disruption. This is partly due to the low H-concentration in helium at the beginning of the ICRH pulse but also to the boronisation, as discussed in a later. (author) 4 refs., 6 figs

  2. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  3. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2013-01-01

    Roč. 546, JAN (2013), s. 129-137 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Energy storage materials * Hydrogen absorbing materials * Metal hydrides Subject RIV: JG - Metallurgy Impact factor: 2.726, year: 2013

  4. A comparative study of the adsorption and hydrogenation of acrolein on Pt(1 1 1), Ni(1 1 1) film and Pt Ni Pt(1 1 1) bimetallic surfaces

    Science.gov (United States)

    Murillo, Luis E.; Chen, Jingguang G.

    In this study we have investigated the reaction pathways for the decomposition and hydrogenation of acrolein (CH 2dbnd CH-CH dbnd O) on Ni/Pt(1 1 1) surfaces under ultra-high vacuum (UHV) conditions using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). While gas-phase hydrogenation products are not observed from clean Pt(1 1 1), the subsurface Pt-Ni-Pt(1 1 1), with Ni residing below the first layer of Pt, is active for the self-hydrogenation of the C dbnd O bond to produce unsaturated alcohol (2-propenol) and the C dbnd C bond to produce saturated aldehyde (propanal), with the latter being the main hydrogenation product without the consecutive hydrogenation to saturated alcohol. For a thick Ni(1 1 1) film prepared on Pt(1 1 1), the self-hydrogenation yields for both products are lower than that from the Pt-Ni-Pt(1 1 1) surface. The presence of pre-adsorbed hydrogen further enhances the selectivity toward C dbnd O bond hydrogenation on the Pt-Ni-Pt(1 1 1) surface. In addition, HREELS studies of the adsorption of the two hydrogenation products, 2-propenol and propanal, are performed on the Pt-Ni-Pt(1 1 1) surface to identify the possible surface intermediates during the reaction of acrolein. The results presented here indicate that the hydrogenation activity and selectivity of acrolein on Pt(1 1 1) can be significantly modified by the formation of the bimetallic surfaces.

  5. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  6. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  8. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  9. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  10. Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

    International Nuclear Information System (INIS)

    Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua

    2012-01-01

    A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions

  11. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  12. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  14. Influence of acid rain components on radiocesium-137 desorption from Cetraria islandica (L. Ach. lichen

    Directory of Open Access Journals (Sweden)

    Miljanić Šćepan S.

    2012-01-01

    Full Text Available Desorption of 137Cs from Cetraria islandica (L. Ach. lichen was performed by five consecutive desorptions with five identical solution volumes. Solutions of H2SO4, HNO3 and their mixtures, with pH 4.61, 5.15 and 5.75 were used for desorption. The desorbed amount of 137Cs (average value, all solutions used from lichen, for a given pH value was 49.2% for pH 4.61; 47.0% for pH 5.15 and 47.6% for pH 5.75. The obtained values of the desorbed amount of 137Cs from lichen are in accordance with the data obtained in earlier work, when 46.2 % 137Cs was desorbed from lichen for pH 3.75, and 47.2% was desorbed for pH 2.87. A higher percentage of 59.8%, obtained for pH 2.00 indicates increased activity of H+ ions. The amount of desorbed 137Cs from lichen using solutions corresponding to acid rain cannot be lower than the stated values as they contain other substances besides the acid solutions used in this work.

  15. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  16. Desorption of large organic molecules by laser-induced plasmon excitation

    International Nuclear Information System (INIS)

    Lee, I.; Callcott, T.A.

    1991-01-01

    Ejection of large organic molecules from surfaces by laser-induced electronic-excited desorption has attracted considerable interest in recent years. In addition to the importance of this effect for fundamental investigations of the ejection process, this desorption technique has been applied to the study of large, fragile molecules by mass spectrometry. In this paper, we present a new method to induce electronic excitation on the metal surface for the desorption of large organic molecules. 3 refs., 3 figs

  17. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  18. Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Mao; Doshida, Tomoki [Graduate School of Science and Technology, Sophia University, Tokyo 102-8554 (Japan); Takai, Kenichi, E-mail: takai@me.sophia.ac.jp [Department of Engineering and Applied Science, Sophia University, Tokyo 102-8554 (Japan)

    2016-09-30

    Changes in the states of nondiffusible hydrogen and mechanical properties after cyclic prestressing in the presence of only nondiffusible hydrogen were examined for martensitic steel containing vanadium carbide. The relationship between the change in the state of nondiffusible hydrogen and mechanical properties was also investigated. The hydrogen desorption profile in the high-temperature range decreased and that in the low-temperature range increased with increasing stress amplitude during cyclic prestressing in the presence of only nondiffusible hydrogen. Thus, the application of cyclic prestressing changed the state of hydrogen from a stable to an unstable one because of vacancies and their clusters. Hydrogen embrittlement susceptibility after cyclic prestressing increased with increasing stress amplitude and number of prestressing cycles in the presence of only nondiffusible hydrogen. This relationship indicates that hydrogen embrittlement susceptibility increased with the increasing amount of hydrogen detrapped from trap sites of nondiffusible hydrogen during cyclic prestressing. These results revealed that nondiffusible hydrogen easily detrapped from vanadium carbide due to the application of cyclic prestress and probably interacted with vacancies and their clusters, thus increasing hydrogen embrittlement susceptibility. The change of nondiffusible hydrogen to diffusible hydrogen and accumulation of vacancies and their clusters during cyclic prestressing are concluded to be the dominant factors in hydrogen embrittlement after the application of cyclic prestress.

  19. Hydrogen insertion effects on the electronic structure of equiatomic MgNi traced by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, ICMCB, UPR 9048, Pessac (France); Bordeaux Univ., Pessac (France). ICMCB, UPR 9048; Al Alam, Adel F.; Ouaini, Naim [Univ. Saint Esprit de Kaslik (USEK), Jounieh (Lebanon). URA GREVE, CSR-USEK

    2013-01-15

    For equiatomic MgNi which can be hydrogenated up to the composition MgNiH{sub 1.6} at an absorption/desorption temperature of 200 C, the effects of hydrogen absorption are approached with the model structures MgNiH, MgNiH{sub 2} and MgNiH{sub 3}. From full geometry optimization and calculated cohesive energies obtained within DFT, the MgNiH{sub 2} composition close to the experimental limit is identified as most stable. Charge density analysis shows an increasingly covalent character of hydrogen: MgNiH(H{sup -0.67}) {yields} MgNiH{sub 2}(H{sup -0.63}) {yields} MgNiH{sub 3}(H{sup -0.55}). While Mg-Ni bonding prevails in MgNi and hydrogenated model phases, extra itinerant low-energy Ni states appear when hydrogen is introduced signaling Ni-H bonding which prevails over Mg-H as evidenced from total energy calculations and chemical bonding analyses. (orig.)

  20. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  1. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  2. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  3. Hydrogen loss and its improved retention in hydrogen plasma treated a-SiNx:H films: ERDA study with 100 MeV Ag7+ ions

    Science.gov (United States)

    Bommali, R. K.; Ghosh, S.; Khan, S. A.; Srivastava, P.

    2018-05-01

    Hydrogen loss from a-SiNx:H films under irradiation with 100 MeV Ag7+ ions using elastic recoil detection analysis (ERDA) experiment is reported. The results are explained under the basic assumptions of the molecular recombination model. The ERDA hydrogen concentration profiles are composed of two distinct hydrogen desorption processes, limited by rapid molecular diffusion in the initial stages of irradiation, and as the fluence progresses a slow process limited by diffusion of atomic hydrogen takes over. Which of the aforesaid processes dominates, is determined by the continuously evolving Hydrogen concentration within the films. The first process dominates when the H content is high, and as the H concentration falls below a certain threshold (Hcritical) the irradiation generated H radicals have to diffuse through larger distances before recombining to form H2, thereby significantly bringing down the hydrogen evolution rate. The ERDA measurements were also carried out for films treated with low temperature (300 °C) hydrogen plasma annealing (HPA). The HPA treated films show a clear increase in Hcritical value, thus indicating an improved diffusion of atomic hydrogen, resulting from healing of weak bonds and passivation of dangling bonds. Further, upon HPA films show a significantly higher H concentration relative to the as-deposited films, at advanced fluences. These results indicate the potential of HPA towards improved H retention in a-SiNx:H films. The study distinguishes clearly the presence of two diffusion processes in a-SiNx:H whose diffusion rates differ by an order of magnitude, with atomic hydrogen not being able to diffuse further beyond ∼ 1 nm from the point of its creation.

  4. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  5. Design of absorption, regeneration and recovery system of low concentration hydrogen and tritium in He with titanium sponge

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1978-10-01

    Design of a titanium sponge system to remove hydrogen from the helium coolant of high temperature gas-cooled reactors or fusion reactors is discussed in this paper. The data for the present purpose have been accumulated. The equilibrium relation of Ti-H/sub 2/ system was given by McQuillan. The present author of this paper obtained an absorption equilibrium diagram, and measurements were made for lower partial pressure than that of McQuillan's data. A breakthrough curve and an adsorption-desorption breakthrough curve of H/sub 2/-Ti sponge system, and the regeneration characteristics of the Ti sponge were measured. As the results of experiments, it is said that tritium and hydrogen can be removed with a Ti sponge system. Examples of the design of a practical system are presented. A disposable system was designed for OGL-1 under the principle that the used Ti sponge is a solid radioactive waste. A regenerative system was designed as a system, in which solid radioactive wastes are not produced. An example of a recovery system is also presented. Discussion on the reason why the Ti-sponge has not been used is presented.

  6. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  7. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  8. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  9. Sorption properties of nanocrystalline metal hydrides for the storage of hydrogen; Sorptionseigenschaften von nanokristallinen Metallhydriden fuer die Wasserstoffspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, W.

    2000-07-01

    For the utilisation of hydrogen in emission-free automobiles new nanostructured Mg-based metal hydrides were developed. These materials show significantly faster absorption and desorption kinetics, which can be even further enhanced by additions of suitable catalysts. Contrary to conventional magnesium powder, hydrogenation at room temperature is demonstrated for the first time. During dehydrogenation at 250 C a desorption rate of 3 to 8 kW/kg with a capacity of 2.5 kWh/kg is achieved, that fulfills the technical requirements for automobile application. (orig.) [German] Im Hinblick auf den Einsatz von Wasserstoff in emissionsfreien Kraftfahrzeugen wurden neuartige nanostrukturierte Metallhydride auf Basis von Magnesium hergestellt. Diese Materialien zeigen eine deutlich schnellere Absorptions- und Desorptionskinetik, die sich durch den Zusatz von geeigneten Katalysatoren noch weiter steigern laesst. Im Gegensatz zu konventionellem Magnesiumpulver konnte erstmals eine Hydrierung bei Raumtemperatur demonstriert werden. Bei der Dehydrierung bei 250 C wird eine Desorptionsrate von 3 bis 8 kW/kg bei einer Kapazitaet von 2,5 kWh/kg erreicht, die die technischen Leistungsanforderungen von Kraftfahrzeugen erfuellt. (orig.)

  10. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  11. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.; Kouramas, K.I.; Georgiadis, M.C.; Pistikopoulos, E.N.

    2010-01-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  12. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  13. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS—NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    International Nuclear Information System (INIS)

    Gudipati, Murthy S.; Yang Rui

    2012-01-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  14. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  15. Superior hydrogen storage kinetics of MgH{sub 2} nanoparticles doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, L. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liu, Y. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Y.T. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zheng, J. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li, X.G. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) and College of Engineering, Peking University, Beijing 100871 (China)]. E-mail: xgli@pku.edu.cn

    2007-08-15

    MgH{sub 2} nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH{sub 2} phase, without residual magnesium and with an average particle size of {approx}300 nm. Milled with 5 wt.% TiF{sub 3} as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of {approx}0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under {approx}20 bar hydrogen at room temperature. Compared with MgH{sub 2} micrometer particles doped with 5 wt.% TiF{sub 3} under the same conditions as the MgH{sub 2} nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed.

  16. Hydrogen retention studies on lithiated tungsten exposed to glow discharge plasmas under varying lithiation environments using Thermal Desorption Spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. de, E-mail: alfonso.decastro@ciemat.es [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain); Valson, P. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Tabarés, F.L. [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain)

    2017-04-15

    For the design of a Fusion Reactor based on a liquid lithium divertor target and a tungsten first wall at high temperature, the interaction of the wall material with plasmas of significant lithium content must be assessed, as issues like fuel retention, tungsten embrittlement and enhanced sputtering may represent a showstopper for the selection of the first wall material compatible with the presence of liquid metal divertor. In this work we address this topic for the first time at the laboratory level, hot W samples (100 °C) have been exposed to Glow Discharges of H{sub 2} or Li-seeded H{sub 2} followed by in situ thermal desorption studies (TDS) of the uptake of H{sub 2} on the samples. Pure and pre-lithiated tungsten was investigated in order to evaluate the differential effect of Li ion implantation on H retention. Global particle balance was also used for the determination of trapped H into the full W wall of the plasma chamber. A factor of 3-4 lower retention was deduced for samples and main W wall exposed to H/Li plasma than that measured on pre-lithiated W.

  17. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  18. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  19. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  20. Hydrogen storage of Mg1−xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    International Nuclear Information System (INIS)

    Bhihi, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Labrim, H.; Mounkachi, O.; Hlil, E.K.

    2012-01-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg 1−x M x H 2 (M = Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities

  1. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  2. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  3. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  4. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  5. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  6. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  7. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    International Nuclear Information System (INIS)

    Su Xiao-Hang; Lei Qun-Li; Ren Chun-Lai

    2015-01-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. (paper)

  8. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  9. Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor

    DEFF Research Database (Denmark)

    Zhang, G.; Zhang, Y.F.; Fang, Lei

    2008-01-01

    One-dimensional partial differential equations were used to model the simultaneous water and VOC (Volatile Organic Compound) adsorption and desorption in a silica gel rotor which was recommended for indoor air cleaning. The interaction among VOCs and moisture in the adsorption and desorption...... process was neglected in the model as the concentrations of VOC pollutants in typical indoor environment were much lower than that of moisture and the adsorbed VOCs occupied only a minor portion of adsorption capacity of the rotor. Consequently VOC transfer was coupled with heat and moisture transfer only...... by the temperatures of the rotor and the air stream. The VOC transfer equations were solved by discretizing them into explicit up-wind finite differential equations. The model was validated with experimental data. The calculated results suggested that the regeneration time designed for dehumidification may...

  10. Hydrogen absorption mechanisms and hydrogen interactions - defects: implications to stress corrosion of nickel based alloys in pressurized water reactors primary water

    International Nuclear Information System (INIS)

    Jambon, F.

    2012-01-01

    Since the late 1960's, a special form of stress corrosion cracking (SCC) has been identified for Alloy 600 exposed to pressurized water reactors (PWR) primary water: intergranular cracks develop during the alloy exposure, leading, progressively, to the complete ruin of the structure, and to its replacement. The main goal of this study is therefore to evaluate in which proportions the hydrogen absorbed by the alloy during its exposure to the primary medium can be responsible for SCC crack initiation and propagation. This study is aimed at better understanding of the hydrogen absorption mechanism when a metallic surface is exposed to a passivating PWR primary medium. A second objective is to characterize the interactions of the absorbed hydrogen with the structural defects of the alloy (dislocations, vacancies...) and evaluate to what extent these interactions can have an embrittling effect in relation with SCC phenomenon. Alloy 600-like single-crystals were exposed to a simulated PWR medium where the hydrogen atoms of water or of the pressuring hydrogen gas were isotopically substituted with deuterium, used as a tracer. Secondary ion mass spectrometry depth-profiling of deuterium was performed to characterize the deuterium absorption and localization in the passivated alloy. The results show that the hydrogen absorption during the exposure of the alloy to primary water is associated with the water molecules dissociation during the oxide film build-up. In an other series of experiments, structural defects were created in recrystallized samples, and finely characterized by positron annihilation spectroscopy and transmission electron microscopy, before or after the introduction of cathodic hydrogen. These analyses exhibited a strong hydrogen/defects interaction, evidenced by their structural reorganization under hydrogenation (coalescence, migrations). However, thermal desorption spectroscopy analyses indicated that these interactions are transitory, and dependent on

  11. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  12. Method and system for hydrogen evolution and storage

    Science.gov (United States)

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  13. On design of absorption, regeneration and recovery system of low concentration hydrogen and tritium in He with titanium sponge

    International Nuclear Information System (INIS)

    Fukuhara, Masashi

    1978-01-01

    Design of a titanium sponge system to remove hydrogen from the helium coolant of high temperature gas-cooled reactors or fusion reactors is discussed in this paper. The data for the present purpose have been accumulated. The equilibrium relation of Ti-H 2 system was given by McQuillan. The present author of this paper obtained an absorption equilibrium diagram, and measurements were made for lower partial pressure than that of McQuillan's data. A breakthrough curve and an adsorption-desorption breakthrough curve of H 2 -Ti sponge system, and the regeneration characteristics of the Ti sponge were measured. As the results of experiments, it is said that tritium and hydrogen can be removed with a Ti sponge system. Examples of the design of a practical system are presented. A disposable system was designed for OGL-1 under the principle that the used Ti sponge is a solid radioactive waste. A regenerative system was designed as a system, in which solid radioactive wastes are not produced. An example of a recovery system is also presented. Discussion on the reason why the Ti-sponge has not been used is presented. (Kato, T.)

  14. Role of tempering temperature on the hydrogen diffusion in a 34CrMo4 martensitic steel and the related embrittlement

    International Nuclear Information System (INIS)

    Moli-Sanchez, L.

    2012-01-01

    The evaluation of the Hydrogen embrittlement (HE) of high strength steels remains a major issue for the development of hydrogen (H) applications for the energy. A better understanding of the phenomena involved in the HE (role of the environment, the H-microstructure and H-plasticity interactions) is crucial in the 'H economy'. The aim of this study is to characterize the H behaviour in tempered martensitic steels (34CrMo 4 ). A particular interest was put on the determination of the microstructural defects (dislocations, interfaces, precipitates...) that control the H absorption, diffusion, desorption and trapping and the related HE sensibility. The combined use of electrochemical permeation technique and H isotopic tracers (deuterium and tritium) (TDS, SIMS and β-counting) allowed the characterization of the H behaviour in the microstructures. The kinetics of H absorption/desorption, related with trapping phenomena on microstructural defects, give access to the density of trapping sites and the occupancy ratio associated to each defects population. The comparison of mechanical tests (pre-hydrogenated and in situ hydrogenated tests) evidenced the major role of diffusible H in the HE mechanisms thanks to the H-plasticity interactions that promote the H segregation at some microstructural defects. A detailed analysis of the results allows to suggest some recommendations concerning the type of microstructure (dislocations densities, precipitates coherency...) to be favoured during the elaboration processes or heat treatments of martensitic steels in order to increase their HE resistance. (author) [fr

  15. Nanocrystalline Porous Hydrogen Storage Based on Vanadium and Titanium Nitrides

    Directory of Open Access Journals (Sweden)

    A. Goncharov

    2017-01-01

    Full Text Available This review summarizes results of our study of the application of ion-beam assisted deposition (IBAD technology for creation of nanoporous thin-film structures that can absorb more than 6 wt.% of hydrogen. Data of mathematical modeling are presented highlighting the structure formation and component creation of the films during their deposition at the time of simultaneous bombardment by mixed beam of nitrogen and helium ions with energy of 30 keV. Results of high-resolution transmission electron microscopy revealed that VNx films consist of 150–200 nm particles, boundaries of which contain nanopores of 10–15 nm diameters. Particles themselves consist of randomly oriented 10–20 nm nanograins. Grain boundaries also contain nanopores (3–8 nm. Examination of the absorption characteristics of VNx, TiNx, and (V,TiNx films showed that the amount of absorbed hydrogen depends very little on the chemical composition of films, but it is determined by the structure pore. The amount of absorbed hydrogen at 0.3 MPa and 20°C is 6-7 wt.%, whereas the bulk of hydrogen is accumulated in the grain boundaries and pores. Films begin to release hydrogen even at 50°C, and it is desorbed completely at the temperature range of 50–250°C. It was found that the electrical resistance of films during the hydrogen desorption increases 104 times.

  16. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  17. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  18. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  19. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)