WorldWideScience

Sample records for low-ti high-mg siliceous

  1. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    Science.gov (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  3. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  4. Microwave dielectric properties of low-fired Li_2TiO_3–MgO ceramics for LTCC applications

    International Nuclear Information System (INIS)

    Ma, Jian-Li; Fu, Zhi-Fen; Liu, Peng; Wang, Bing; Li, Yang

    2016-01-01

    Graphical abstract: This figure gives the Q × f and τ_f of Li_2TiO_3–MgO ceramics sintered at various temperatures with different LiF contents. Addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of Li_2TiO_3–MgO ceramics. The excellent microwave dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) of Li_2TiO_3–MgO ceramics sintered at 850 °C illustrated that LiF is a simple effective sintering aids for Li_2TiO_3–MgO ceramics. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications. - Highlights: • Temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. • The low-fired Li_2TiO_3–MgO ceramics are fabricated. • LiF liquid phase reduced sintering temperature of Li_2TiO_3–MgO ceramics to 850 °C. • The low-fired Li_2TiO_3–MgO ceramics possess well microwave dielectric properties. • The sample was compatible with Ag electrodes and suitable for LTCC applications. - Abstract: We fabricated the low-fired Li_2TiO_3–MgO ceramics doped with LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. Well microwave dielectric properties for Li_2TiO_3–13 wt%MgO (LTM) ceramics with ε_r = 16.4, Q × f = 87,500 GHz, and τ_f = −1.2 ppm/°C were obtained at 1325 °C. Furthermore, addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of LTM ceramics. A typically sample of LTM-4 wt%LiF ceramics with optimum dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) were achieved at 850 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

  5. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    Science.gov (United States)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  6. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  7. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-01-01

    A series of Mg/TiO 2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO 2 did not lead to any surface lattice distortion to TiO 2 . HRTEM data indicated the presence of MgO and Mg(OH) 2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH) 2

  8. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  9. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    Science.gov (United States)

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  10. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  11. Electron microscopy of Mg/TiO{sub 2} photocatalyst morphology for deep desulfurization of diesel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my; Fatimah, Hayyiratul, E-mail: hayyiratulfatimah@yahoo.com; Wilfred, Cecilia, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    A series of Mg/TiO{sub 2} photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO{sub 2} did not lead to any surface lattice distortion to TiO{sub 2}. HRTEM data indicated the presence of MgO and Mg(OH){sub 2} mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH){sub 2}.

  12. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  13. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.

    Science.gov (United States)

    Fiocco, L; Li, S; Stevens, M M; Bernardo, E; Jones, J R

    2017-03-01

    Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to

  14. A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals

    International Nuclear Information System (INIS)

    Pratapa, Suminar; Baqiya, Malik A.; Istianah,; Lestari, Rina; Angela, Riyan

    2014-01-01

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO 3 (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO 3 , with no Mg 2 TiO 4 or MgTi 2 O 5 phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites

  15. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  16. Simultaneous achievement of high dielectric constant and low temperature dependence of capacitance in (111-oriented BaTiO3-Bi(Mg0.5Ti0.5O3-BiFeO3 solid solution thin films

    Directory of Open Access Journals (Sweden)

    Junichi Kimura

    2016-01-01

    Full Text Available The temperature dependence of the capacitance of (111c-oriented (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films is investigated. These films are prepared on (111cSrRuO3/(111Pt/TiO2/SiO2/(100Si substrates by the chemical solution deposition technique. All the films have perovskite structures and the crystal symmetry at room temperature varies with increasing x ratio, from pseudocubic when x = 0–0.30 to rhombohedral when x = 0.50–0.90. The pseudocubic phase shows a high relative dielectric constant (εr (ranging between 400 and 560 at room temperature and an operating frequency of 100 kHz and a low temperature dependence of capacitance up to 400°C, while maintaining a dielectric loss (tan δ value of less than 0.2 at 100 kHz. In contrast, εr for the rhombohedral phase increases monotonically with increasing temperature up to 250°C, and increasingly high tan δ values are recorded at higher temperatures. These results indicate that pseudocubic (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films with (111 orientation are suitable candidates for high-temperature capacitor applications.

  17. Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Torkzadeh, Falamarz [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School; AEOI, Tehran (Iran, Islamic Republic of); Faripour, Heidar [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Laser and Optics Research School; AEOI, Tehran (Iran, Islamic Republic of); Mardashti, Forough; Manouchehri, Farhad [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School

    2017-07-15

    A single crystal and 5 polycrystalline samples of LiF:Mg, Ti and their pellets were prepared and investigated so as to apply thermoluminescence high gamma dose dosimetry. Three zones of single crystal with dopant concentrations of 200 ppm of Mg and 20 ppm of Ti were also used to prepare the single crystal samples. For polycrystalline samples, dopant concentrations of 0.062 mol% Mg and Ti concentrations in the range of 0.016 and 0.046 mol% were used. All the samples were exposed to gamma doses of 1 kGy to 700 kGy and their response changes were determined by a gamma dose test of about 60 mGy. According to the results obtained, the use of response reduction by curve-fitting up to about 300 kGy can be performed reliably for high dose gamma dosimetry.

  18. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  19. X-ray absorption study of Ti-bearing silicate glasses

    OpenAIRE

    Dingwell, Donald B.; Paris, Eleonora; Seifert, Friedrich; Mottana, Annibale; Romano, Claudia

    1994-01-01

    Ti K-edge XANES spectra have been collected on a series of Ti-bearing silicate glasses with metasilicate and tetrasilicate compositions. The intensity of the preedge feature in these spectra has been found to change with glass composition and varies from 29 to 58% (normalized intensity) suggesting a variation in structural environent around the absorbing atom. The pre-edge peak intensity increases for the alkali titanium tetrasilicate glasses from 35% to 58% in the order Li < Na < K < Rb, Cs ...

  20. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  1. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  2. Low-Ti basalts from the Faroe Islands constrain the early Iceland depleted plume component

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    New Sr, Nd, Hf and high precision Pb isotope analyses of 46 Faroese low-Ti lavas erupted at the rifting of the proto-North Atlantic ~56-55 Ma ago are presented. The low-Ti lavas are depleted, MORB-like basalts erupted close to the riftzone at the same time as enriched high-Ti basalts were erupted...... away from the rift . The low-Ti samples include a large proportion of high-MgO basalts and can be related by a common model of low-pressure fractionation. Fractionation correction to 13 % MgO shows only little variation in their primitive major element contents, suggesting very similar origins...

  3. Fabrication and properties of aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers

    Science.gov (United States)

    Liu, Hao; Wei, Nan; Wang, Zhou-fu; Wang, Xi-tang; Ma, Yan

    2017-11-01

    To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol-gel process. During the preparation process, the fiber surface was coated with K2Ti6O13 whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K2Ti6O13 whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.

  4. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  5. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB2

    International Nuclear Information System (INIS)

    Zhao, Y.; Ke, C.; Cheng, C.H.; Feng, Y.; Yang, Y.; Munroe, P.

    2010-01-01

    Nano-diamond and titanium concurrently doped MgB 2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J c -H behavior and pinning force scaling features of MgB 2 have been investigated. Although T c was slightly depressed, J c of MgB 2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J c value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB 2 , a unique nanocomposite in which TiB 2 forms a thin layer surrounding MgB 2 grains whereas nano-diamond particles were wrapped inside the MgB 2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB 2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB 2 system.

  6. Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO2 photoanodes. An avenue of enhancing light harvesting

    International Nuclear Information System (INIS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-01-01

    Graphical abstract: - Highlights: • Curved silicate microsheets are incorporated with TiO 2 for light harvesting in DSSC • The optical matching between silicate and TiO 2 is superior to light reflection. • The curved silicate can hinder the recombination reaction of electrons with I 3 − . • The DSSC with TiO 2 /curved silicate photoanode shows an efficiency of 9.22% - Abstract: Enhancement of light harvesting has been a persistent objective for elevating dye excitation and therefore power conversion efficiency of dye-sensitized solar cells (DSSCs). Here we launch a strategy of markedly enhancing light harvesting by caging TiO 2 nanoparticles with curved silica microsheets. The results show that the strategy is versatile in suppressing the recombination reaction of electrons with I 3 − species in liquid electrolyte. Due to the superior reflective behaviors of curved silica microsheets, an optimal efficiency of 9.22% is recorded under simulated air mass 1.5 global sunlight on the DSSC in comparison with 6.51% and 7.51% from pristine TiO 2 and planar silicate microsheet incorporated TiO 2 photoanode based solar cells, respectively. This strategy is also believed to be applicable to other solar cells such as perovskite solar cells and quantum dot-sensitized solar cells.

  7. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  8. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Science.gov (United States)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  9. Low-temperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues. II. Mg and Fe-rich amorphous silicates

    Science.gov (United States)

    Demyk, K.; Meny, C.; Leroux, H.; Depecker, C.; Brubach, J.-B.; Roy, P.; Nayral, C.; Ojo, W.-S.; Delpech, F.

    2017-10-01

    Context. To model the cold dust emission observed in the diffuse interstellar medium, in dense molecular clouds or in cold clumps that could eventually form new stars, it is mandatory to know the physical and spectroscopic properties of this dust and to understand its emission. Aims: This work is a continuation of previous studies aiming at providing astronomers with spectroscopic data of realistic cosmic dust analogues for the interpretation of observations. The aim of the present work is to extend the range of studied analogues to iron-rich silicate dust analogues. Methods: Ferromagnesium amorphous silicate dust analogues were produced by a sol-gel method with a mean composition close to Mg1-xFexSiO3 with x = 0.1, 0.2, 0.3, 0.4. Part of each sample was annealed at 500 °C for two hours in a reducing atmosphere to modify the oxidation state of iron. We have measured the mass absorption coefficient (MAC) of these eight ferromagnesium amorphous silicate dust analogues in the spectral domain 30-1000 μm for grain temperature in the range 10-300 K and at room temperature in the 5-40 μm range. Results: The MAC of ferromagnesium samples behaves in the same way as the MAC of pure Mg-rich amorphous silicate samples. In the 30-300 K range, the MAC increases with increasing grain temperature whereas in the range 10-30 K, we do not see any change of the MAC. The MAC cannot be described by a single power law in λ- β. The MAC of the samples does not show any clear trend with the iron content. However the annealing process has, on average, an effect on the MAC that we explain by the evolution of the structure of the samples induced by the processing. The MAC of all the samples is much higher than the MAC calculated by dust models. Conclusions: The complex behavior of the MAC of amorphous silicates with wavelength and temperature is observed whatever the exact silicate composition (Mg vs. Fe amount). It is a universal characteristic of amorphous materials, and therefore of

  10. Perovskite oxynitride LaTiO{sub x}N{sub y} thin films: Dielectric characterization in low and high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Ziani, A. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Le Paven-Thivet, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Fasquelle, D. [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique (LEMCEL) UPRES-EA 2601, University of Littoral-Cote d' Opale, 50 rue Ferdinand Buisson, F-62228 Calais cedex (France); Kassem, H. [Laboratoire de l' Integration du Materiau au Systeme(IMS) UMR-CNRS 5218, groupe Materiaux, University of Bordeaux 1, 16 avenue Pey-Berland, 33607 Pessac (France); and others

    2011-11-01

    Lanthanum titanium oxynitride (LaTiO{sub x}N{sub y}) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO{sub x}N{sub y} thin films deposited on conductive single crystal Nb-STO show a dielectric constant {epsilon} Prime Almost-Equal-To 140 with low losses tan{delta} = 0.012 at 100 kHz. For the LaTiO{sub x}N{sub y} polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO{sub 2}/Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO{sub x}N{sub y} films deposited on MgO substrate present a high dielectric constant with low losses ({epsilon} Prime Almost-Equal-To 170, tan{delta} = 0.011, 12 GHz).

  11. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Ke, C. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Yang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Munroe, P. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    Nano-diamond and titanium concurrently doped MgB{sub 2} nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J{sub c}-H behavior and pinning force scaling features of MgB{sub 2} have been investigated. Although T{sub c} was slightly depressed, J{sub c} of MgB{sub 2} have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J{sub c} value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB{sub 2}, a unique nanocomposite in which TiB{sub 2} forms a thin layer surrounding MgB{sub 2} grains whereas nano-diamond particles were wrapped inside the MgB{sub 2} grains. Besides, nano-diamond doping results in a high density stress field in the MgB{sub 2} samples, which may take responsibility for the {Delta}{kappa} pinning behavior in the carbon-doped MgB{sub 2} system.

  12. Simple preparation of LiF:Mg,Ti phosphor

    International Nuclear Information System (INIS)

    Moharil, S.V.; Shahare, D.I.; Upaded, S.V.; Deshmukh, B.T.

    1993-01-01

    LiF-TLD 100 is a low-impedance (Z eff = 8.2) tissue equivalent material which is widely used in thermoluminescence (TL) dosimetry of ionizing radiations and personnel monitoring. Mg and Ti have been found to be the major impurities which impart the Tl characteristics. Recipes for the preparation of this phosphor, have not been found to be satisfactory for routine manufacture; there have always been problems associated with reproducibility and even with batch homogeneity. One of the reasons for this is that most procedures start either from readily available LiF or by melting the synthesized LiF, or both. The background impurities in the starting LiF powder can mask the intentional impurities, particularly Ti which has to be doped in rather small concentrations (10 p.p.m.). Melting LiF can again be tricky, as the LiF melt is volatile and highly corrosive. In this letter we report the preparation of LiF: Mg, Ti. The impurities were incorporated during the synthesis of LiF. The phosphor was prepared by heat treatments in ambient air without melting the compound. The characteristics of the prepared phosphors were studied and compared with those of LiF-TLD 100. (author)

  13. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  14. Vibrational spectra of mixed oxides of Ln2MgTiO6 composition

    International Nuclear Information System (INIS)

    Porotnikov, N.V.; German, M.; Kovba, L.M.

    1984-01-01

    In the range 33-4000 cm -1 IR and Raman spectra of complex oxides of the composition Ln 2 MgTiO 6 (Ln=La-Yb and Y) have been studied. Using the Magnesium isotope-substituted compositions Lasub(2)sup(24,26)MgTiOsub(6), Smsub(2)sup(24,26)MgTiOsub(6) and Ybsub(2)sup(24,26)MgTiOsub(6), it has been shoWn that in Ln 2 MgTiO 6 titanium and magnesium ions are located in sites With octahedral coordination, of rare earth ions highly-coordinated polyhedrons with coordination number 10-12 are characteristic

  15. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  16. Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, Jung-Kun; Nastasi, Michael; Kim, Jeong-Ryeol; Lee, Sang-Wook; Kim, Jin Young; Park, Jong-Sung; Hong, Kug Sun; Shin, Hyunho

    2006-01-01

    Hygroscopic Mg(OH) 2 gel was topotactically decomposed on TiO 2 particle surfaces, resulting in highly nanoporous MgO-coated TiO 2 particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO 2 counterpart

  17. High-precision Mg isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg isotope composition of the bulk silicate Earth

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Paton, Chad; Larsen, Kirsten Kolbjørn

    2011-01-01

    -isotope composition for Earth’s mantle – and hence that of the bulk silicate Earth – to be 25Mg/24Mg 1/4 0.126896 ¿ 0.000025 and 26Mg/24Mg 1/4 0.139652 ¿ 0.000033. Given the restricted range of m25Mg obtained for bulk planetary material by the sample-standard bracketing technique and the excellent agreement between...

  18. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    Science.gov (United States)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  19. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  20. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ramli, A.T.; Saleh, M.A.; Saripan, M.I.; Alzimami, K.; Min Ung, Ngie

    2013-01-01

    New glasses Li 2 CO 3 –K 2 CO 3 –H 3 BO 3 (LKB) co-doped with CuO and MgO, or with TiO 2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5–4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on 60 Co dose is linear in the range of 1–1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. - Highlights: • Enhancement of about three times has been shown with the increment of MgO. • A comparison was carried out between the TL responses of the prepared dosimeters and TLD-100. • The prepared dosimeters show simple glow curve, low Z material and excellent reproducibility. • The TL measurements show a linear dose response in a long span of exposures. • The electron response shows 1.18 times greater than photon response for the prepared dosimeters

  1. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  2. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  3. An orange emitting phosphor Lu2−xCaMg2Si2.9Ti0.1O12:xCe with pure garnet phase for warm white LEDs

    International Nuclear Information System (INIS)

    Chu, Yaoqing; Zhang, Qinghong; Xu, Jiayue; Li, Yaogang; Wang, Hongzhi

    2015-01-01

    A new silicate garnet phosphor, Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe was synthesized by a high temperature solid-state reaction under reductive atmosphere. X-ray diffraction (XRD) showed that the powder was pure garnet phase. The emission and excitation spectrum indicated that the Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe phosphors could absorb blue light in the spectral range of 400–550 nm efficiently and exhibit bright yellow–orange emission in the range of 520–750 nm. With the increase of Ce 3+ concentration, the emission band of Ce 3+ showed a red shift. Interestingly, the concentration quenching occurred when the Ce 3+ concentration exceeded 4 mol%. The temperature-dependent luminescent properties of the phosphors were discussed and the Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce phosphors showed good performances in color temperature (2430 K) and potential applications for warm white LEDs. - Graphical Abstract: This image shows that the phosphor of Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce can generate a uniform yellow tint under natural light illumination and emit orange–red light when excited by blue light. With a fixed 467 nm emission light, warm white light can be produced by this phosphor, which indicates that the phosphor is potentially applicable in warm white light emitting diodes based on GaN chips. - Highlights: • A new silicate garnet phosphor was synthesized by solid-state method. • Secondary phases can be avoided when a small amount of Si 4+ were replaced by Ti 4+ . • A broad emission band of Ce 3+ in the phosphors was described. • The phosphors are potentially applicable in warm white light emitting diodes

  4. Electrical transport in low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    J. SUCHANICZ; K. KONIECZNY; K. ŚWIERCZEK; M. LIPIŃSKI; M. KARPIERZ; D. SITKO; H. CZTERNASTEK; K. KLUCZEWSKA

    2017-01-01

    Low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics (x = 0, 0.025, 0.05, 0.075, 0.1, and 0.15) were prepared by the conventional oxide mixed sintering process, and their optical band gap, Seebeck coefficient, ac ( σac ) and dc ( σdc ) conductivities as a function of temperature were investigated for the first time. It was found that all samples have p-type conductivity. The low-frequency (20 Hz–2 MHz) ac conductivity obeys a power law σac ~ ωs , which is characteristic for disordered materials. The frequency exponent s is a decreasing function of temperature and tends to zero at high temperature. σac is proportional to ω0.07 – ω0.31 in the low-frequency region and to ω0.51 – ω0.98 in the high-temperature region. The temperature dependence of the dc conductivity showed a change in slope around the temperature at which the phase transition appeared. Both ac and dc conductivities showed a thermally activated character and possessed linear parts with different activation energies and some irregular changes. It was found that the hopping charge carriers dominate at low temperature and small polarons and oxygen vacancies dominate at higher temperature. (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics are expected to be promising new candidate for low-lead electronic materials.

  5. Synthesis and characterization of LiF: Mg, Ti for ionizing radiations dosimetry

    International Nuclear Information System (INIS)

    Lozano R, I. B.

    2011-01-01

    Among the different thermoluminescence materials (Tl), the LiF:Mg, Ti is the most used for dosimetric purposes, because its equivalence to the human tissue, it has an effective atomic number of 8.14, the best known commercial dosemeter of this kind is the TLD-100. However, because this dosimeter is an imported product, is quite expensive for many research groups and hospitals. The purpose of this work is the optimization of its synthesis, as the dosimetric characterization, so it can replace the imported dosimeters. The synthesis of LiF:Mg, Ti is a careful process, since one of the reagents, the ion fluorine is highly corrosive. In this work the synthesis of the LiF:Mg, Ti was done by the molten substance method, was used LiF of analytical grade and the magnesium (Mg) and titanium (Ti) activators were incorporated in aqueous solution. For to optimize the handle of the material Tl, we elaborated pellets and teflon (Ptfe) was used as agglutinate material, in a 2:3 proportion. First was prepared the LiF, incorporating just Mg as dopant with a concentration of 400 parts per million (ppm). After the Ti with concentrations from 15 to 120 ppm was incorporated keeping fixed the concentration of Mg (400 ppm). The morphological and structural characterization of the Tl material were made by scanning electron microscopy and X-ray diffraction. The optimal concentration of Ti, was determined as a function of the radiation dose sensibility of the Tl material. The material prepared with 60 ppm of the Ti showed a higher sensibility. However, also the rest of the preparations had the requirements recommended by the international agencies to be used in ionizing radiations dosimetry. For the dosimetric characterization were used samples with 400 ppm of Mg, 400 ppm Mg and 30 ppm Ti, 400 ppm Mg and 60 ppm Ti. The LiF:Mg showed its dosimetric peak at 240 C, while the LiF:Mg, Ti (30 ppm and 60 ppm Ti) showed their dosimetric peak at 220 C and 222 C respectively. The study of the Tl

  6. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  7. Growth of thin films of TiN on MgO(100) monitored by high-pressure RHEED

    DEFF Research Database (Denmark)

    Pryds, Nini; Cockburn, D.; Rodrigo, Katarzyna Agnieszka

    2008-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the initial growth of titanium nitride (TiN) thin films on single-crystal (100) MgO substrates by pulsed laser deposition (PLD). This is the first RHEED study where the growth of TiN films...... electron microscopy. These observations are in good agreement with the three-dimensional Volmer-Weber growth type, by which three-dimensional crystallites are formed and later cause a continuous surface roughening. This leads to an exponential decrease in the intensity of the specular spot in the RHEED...

  8. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.

  9. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  10. Hydrogen kinetics studies of MgH2-FeTi composites

    Science.gov (United States)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  11. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  12. Effect of Mg{sup 2+} and Ti{sup 4+} dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Rozatian, Amir S.H., E-mail: a.s.h.rozatian@phys.ui.ac.ir [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Yousefi, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Valíček, Jan [Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Šepelák, Vladimir [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia)

    2016-02-01

    The doped barium hexaferrite, BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} with 1≤x≤5, is synthesized by a solid state ceramic method. Its crystalline structure, morphology, as well as static and dynamic magnetic properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry, and vector network analysis, respectively. The cation distribution of Mg{sup 2+} and Ti{sup 4+} in the hexagonal structure of BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} is investigated by {sup 57}Fe Mössbauer spectroscopy. The effect of Mg{sup 2+} and Ti{sup 4+} dopants on static and high-frequency magnetic properties of the ferrite is studied. - Highlights: • The BaFe{sub 12−x}(MgTi){sub 0.5x}O{sub 19} (x =1– 5) are synthesized by a solid state reaction method. • The Mg{sup 2+} and Ti{sup 4+} dopants take positions 12k for x=1 and 4f{sub 1} and 4f{sub 2} for x=5. • The coercivity and magnetization are decreased with an increase in Mg–Ti content. • The ferromagnetic resonance frequency is decreased with increase of x. • The FMR is shifted to lower frequencies due to the reduction of the anisotropy field.

  13. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  14. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  15. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hideki [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma-ku, Kobe 654-0037 (Japan); Nojiri, Yoshihiro [Kyushu University, Department of Mechanical Engineering Science, Faculty of Engineering, Motooka 744, Nishi-ku, Fukuoka 819-0935 (Japan); Tanase, Shigeo [National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2008-11-30

    Enhancement of the ionic conductivity of lanthanum silicate-based apatites is examined with emphasis on optimizing the La composition and the Mg doping level at the same time. La{sub 10}Si{sub 5.8}Mg{sub 0.2}O{sub 26.8} and La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} show the highest level of the ionic conductivities among apatite silicates, 8.8 and 7.4 x 10{sup -} {sup 2} S cm{sup -} {sup 1} at 800 C, respectively, with a very low level of activation energy (0.42-0.43 eV). Their conductivities are higher than yttria stabilized zirconia (YSZ) below 900 C and even comparable to Sr and Mg doped lanthanum gallate (LSGM) below 550 C. A solid oxide fuel cell using La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} as an electrolyte with Ni-ceria cermet anode and Sr doped lanthanum cobaltite cathode exhibits a remarkable improvement in power generation compared to previous data using Pt electrodes. Structural investigation by the Rietveld analysis on the powder X-ray diffraction pattern shows significant enlargement of the bottleneck triangle sizes of the conduction channel with the Mg doping. (author)

  16. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    Science.gov (United States)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments

  17. Formation of Al3Ti/Mg composite by powder metallurgy of Mg–Al–Ti system

    Directory of Open Access Journals (Sweden)

    Zi R Yang et al

    2008-01-01

    Full Text Available An in situ titanium trialuminide (Al3Ti-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg–Al–Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC, x-ray diffractometry (XRD, scanning electron microscopy (SEM and energy-dispersive x-ray spectroscopy (EDS. Al3Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg–Al–Ti system, Al3Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg–Al–Ti system is almost the same as that of the Al–Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  18. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  19. Flux pinning behaviors of Ti and C co-doped MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Zhang, Y.P. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    Flux pinning behavior of carbon and titanium concurrently doped MgB{sub 2} alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB{sub 2} have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB{sub 2} samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} has been determined to be U(B{sub dc}){proportional_to}B{sub dc}{sup -1} compared to that of MgB{sub 2}U(B{sub dc}){proportional_to}B{sub dc}{sup -1.5}. As to the U(J) behavior, a relationship of U(J) {proportional_to} J{sup -0.17} is found fitting well for Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} with respect to U(J) {proportional_to} J{sup -0.21} for MgB{sub 2}. All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB{sub 2}.

  20. Ceramic thick film humidity sensor based on MgTiO3 + LiF

    International Nuclear Information System (INIS)

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-01-01

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO 3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO 3 /LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time

  1. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    International Nuclear Information System (INIS)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.; Perez, R.

    2007-01-01

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface and traces of TiAl 3 in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al 4 C 3 at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms with flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-β phase was detected through XRD

  2. Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg ...

    Indian Academy of Sciences (India)

    gered by using: (i) a furnace or (ii) an electrical element touching the surface ... plicity, low energy consumption and good purity of the products. [12,13]. SHS method .... Similar to the TiO2–Mg system, by increasing the ini- tial temperature, the ...

  3. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  4. Localized transitions in the thermoluminescence of LiF : Mg,Ti: potential for nanoscale dosimetry

    CERN Document Server

    Horowitz, Y S; Biderman, S; Einav, Y

    2003-01-01

    We describe the effect of nanoscale spatially coupled trapping centre (TC)-luminescent centre (LC) pairs on the thermoluminescence (TL) properties of LiF : Mg,Ti. It is shown that glow peak 5a (a low-temperature satellite of the major glow peak 5) arises from localized electron-hole (e-h) recombination in a TC-LC pair believed to be based on Mg sup 2 sup + -Li sub v sub a sub c trimers (the TCs) coupled to Ti(OH) sub n molecules (the LCs). Due to the localized nature of the e-h pair, two important properties are affected: (i) heavy charged particle (HCP) TL efficiency: the intensity of peak 5a relative to peak 5 following HCP high-ionization density irradiation is greater than that following low ionization density irradiation in a manner somewhat similar to the ionization density dependence of the yield of double-strand breaks (DSBs) induced in DNA. Our experimental measurements in a variety of HCP and fast neutron radiation fields have demonstrated that the ratio of glow peaks 5a/5 is nearly independent of p...

  5. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik [SNU; (LLNL); (NSRRC); (Okayama); (UC); (CIW); (Wash State U); (Nagoya); (SBU)

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  6. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  7. Surface excess on MgO-doped TiO{sub 2} nanoparticles; Segregacao superficial de MgO em nanoparticulas de TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gouvea, D.; Viana, B.H.; Miagava, J., E-mail: dgouvea@usp.br, E-mail: bhernardov@gmail.com, E-mail: joice.mgv@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Processos Ceramicos

    2016-10-15

    Anatase has been the subject of several recent investigations partly as consequence of its interesting catalytic properties. Additives such as MgO have been introduced to improve the performance of the photocatalytic TiO{sub 2}. However, the physical-chemistry of these oxides systems and their relationship with properties are poorly understood. In this work, nanoparticles of xMgO-(1-x)TiO{sub 2} (0≤ x≤ 0.05) were synthesized by the polymeric precursor method at 500 °C for 15 h. XRD results showed that only anatase phase was obtained and the crystallite size decreases with increased MgO concentration. Magnesia surface excess was calculated by washing powders with HNO{sub 3} and the soluble Mg ions concentration determined by chemical analysis. FTIR analysis confirms that the acid washing modified the particle surface. Therefore, it is proposed that the reduction of the crystallite size occurs due to segregation of MgO on TiO{sub 2} nanoparticles surfaces. (author)

  8. Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO{sub 2}/MgO bionanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khalajabadi, Shahrouz Zamani [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Izman, Sudin; Mohd Yusop, Mohd Zamri [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-01-01

    Highlights: • Mg/HA/TiO{sub 2}-based nanocomposite was produced using mechanical alloying. • The hydrophobic surface coverage was fabricated on the mechanical alloyed samples by annealing. • The morphological characteristics, phase evolution and wettability of nanocomposites and the hydrophobic surface coverage were investigated. • The activation energies and reaction kinetic of the powder mixture of nanocomposites were calculated. - Abstract: The effect of mechanical alloying and post-annealing on the phase evolution, microstructure, wettability and thermal stability of Mg–HA–TiO{sub 2}–MgO composites was investigated in this study. Phase evolution and microstructure analysis were performed using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, as well as the wettability determined by contact angle measurements with SBF. The 16-h mechanical alloying resulted in the formation of MgTiO{sub 3}, CaTiO{sub 3}, Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} phases and a decrease in wettability of the nanocomposites. A hydrophobic film with hierarchical structures comprising nanoflakes of MgTiO{sub 3}, nano-cuboids of CaTiO{sub 3}, microspheres of Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} was successfully constructed on the surface of the Mg-based nanocomposites substrates as a result of the post-annealing process. After 1-h annealing at 630 °C, the synthesized hydrophobic surface on the nanocomposite substrates decreased the wettability, as the 8-h-mechanically alloyed samples exhibited a contact angle close to 93°. The formation activation energies and reaction kinetics of the powder mixture were investigated using differential thermal analysis and thermal gravimetric analysis. The released heat, weight loss percentage and reaction kinetics increased, while the formation activation energies of the exothermic reactions decreased following an increase in the milling time.

  9. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    Directory of Open Access Journals (Sweden)

    T.S. Yang

    2018-01-01

    Full Text Available Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  10. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    Science.gov (United States)

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  11. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  12. Some dosimetric properties of the LiF:Mg,Ti evaluated by the automatic 6600 thermoluminescent reader

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shachar, B; Weinstein, M; German, U [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Some dosimetric properties of the new LiF:Mg,Ti TLD cards were checked, when evaluated by the new automatic 6600 TLD reader. The cards were calibrated to a dose of 1.0 mGy by five identical irradiations, and the TL-dose response was measured for a range of 75 - 1100 mGy. A very high accuracy was found for the three kind of chips measured (TLD-100, TLD-700 and TLD-600) and a low minimum measurable dose (MMD) was found, too. There is a good fit between the analytical evaluation and the theoretical calculation of the MMD. The results obtained are much better than those of the LiF:Mg,Ti cards evaluated by the older automatic 2271 reader used in the last two decades (authors).

  13. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  14. MgTiO3 filled PTFE composites for microwave substrate applications

    International Nuclear Information System (INIS)

    Yuan, Y.; Zhang, S.R.; Zhou, X.H.; Li, E.Z.

    2013-01-01

    MgTiO 3 filled PTFE composite substrates were fabricated for microwave circuit applications. The filler content in the PTFE matrix was varied from 30 to 70 wt%. Low loss MgTiO 3 ceramic powder was prepared by the solid state ceramic route. The phase formation of MgTiO 3 was studied by powder X-ray diffraction analysis. Morphology of the composites and dispersion of filler in the PTFE matrix was studied using scanning electron microscopy. Microwave dielectric properties of the composites with respect to filler loading were measured by stripline resonator method using Vector Network Analyzer. Different theoretical modeling approaches were used to predict the dielectric constant of PTFE ceramic composites with respect to filler loading. The linear coefficient of thermal expansion of the composites was investigated. Moisture absorption of the composites was found out conforming to IPC-TM-650 2.6.2. - Highlights: • We prepare MT/PTFE composite by cold pressing and hot treating. • Increasing MT will increase ε r , tan δ and moisture absorption. • Increasing MT will decrease thermal expansion coefficient. • MT/PTFE composite has an ε r of 4.3 and a tan δ of 0.00097 at 50 wt% filler loading. • MT/PTFE composite are promising candidates for microwave circuit applications

  15. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  16. Microstructural characteristics of low-temperature (1400°C sintered MgO obtained from seawater

    Directory of Open Access Journals (Sweden)

    Jakić Jelena

    2017-01-01

    Full Text Available The purpose of this study was to investigate the influence of a rinsing of Mg(OH2 precipitated from seawater by substoichiometric precipitation (80% precipitation and the addition of TiO2 on microstructural characteristics of the MgO obtained by sintering at low temperature (1400°C. The results of examination indicate that the method of rinsing of the magnesium hydroxide precipitate in the technological process of obtaining MgO from seawater significantly affects the chemical composition of samples, primarily with regard to the CaO and B2O3 content. The samples were doped with TiO2 to improve the evaporation of B2O3 and sintering of MgO samples that were characterized by XRD and SEM/EDS. These techniques confirmed the high purity of MgO samples obtained and the formation of secondary compounds in very small quantities that have a positive effect on the densification.

  17. Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr doped CaCu3Ti4O12 thin films prepared by the sol–gel method

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2015-10-01

    Full Text Available This paper focuses on the effects of alkline-earth metal titante AETiO3 (AE=Mg, Ca, Sr doping on the microstructure and electric characteristics of CaCu3Ti4O12 thin films prepared by the sol–gel method. The results showed that the grain size of CCTO thin films could be increased by MgTiO3 doping. The movement of the grain boundaries was impeded by the second phases of CaTiO3 and SrTiO3 concentrating at grain boundaries in CaTiO3 and SrTiO3 doped CCTO thin films. Rapid ascent of dielectric constant could be observed in 0.1Mg TiO3 doped CCTO thin films, which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed. In addition, the nonlinear coefficient (α, threshold voltage (VT and leakage current (IL of AETiO3 doped CCTO thin films (AE=Mg, Ca, Sr showed different variation with the increasing content of the MgTiO3, CaTiO3 and SrTiO3.

  18. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  19. Effects of high energy ball milling on synthesis and characteristics of Ti-Mg alloys

    CSIR Research Space (South Africa)

    Chikwanda, HK

    2008-01-01

    Full Text Available The synthesis of Ti-Mg alloys using mechanical alloying method has been investigated. Effects of the mechanical alloying parameters on the resultant microstructural features have been studied. This work presents the effects of milling speed...

  20. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  1. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-01-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca 10−x Mg x (PO 4 ) 6 (OH) 2 ) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti 1−x ,Mg x )N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  2. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  3. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  4. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  5. The Effect of Toluene Solution on the Hydrogen Absorption of the Mg-Ti Alloy Prepared by Synthetic Alloying

    Directory of Open Access Journals (Sweden)

    H. Suwarno

    2009-07-01

    Full Text Available The synthesis and characterization of the Mg–Ti alloy have been carried out through a mechanical alloying technique under toluene solution. The Mg and Ti powders are milled for 10, 20, and 30 h in a high energy ball mill. The milled alloys are then hydrided at a temperature of 300 oC in order to investigate the possibility used for hydrogen storage materials. The refinement analyses of the x-ray diffraction patterns show that mechanical alloying of the Mg–Ti powders under toluene solution results in the formation of the TiH2 and Mg2Ti phases. Quantitative analyses indicate that the mass fractions of the TiH2 and Mg2Ti phases are 62.90 % and 30.60 %, while the value for Mg and Ti amount to 2.6 wt% and 1.25 wt%. On hydriding at a temperature of 300 oC, the milled powders are transformed into Mg2TiH4, TiH2 and γ-MgH2 phases with the mass fractions of 25.48 wt%, 64.0 wt%, and 10.52 wt%, respectively. Microstructure analyses show that before milling the shape of particle is mostly a ball shape, after 30 h of milling the shape of particles changes into polygonal shape, and upon hydriding the shape of particles changes from a polygonal shape into an irregular one. The final composition of the specimen after hydriding exhibits that Mg-Ti alloy can be promoted as a hydrogen storage material.

  6. Properties of stabilized MgB2 composite wire with Ti barrier

    International Nuclear Information System (INIS)

    Kovac, P; Husek, I; Melisek, T; Holubek, T

    2007-01-01

    Stabilized four-filament in situ MgB 2 /Ti/Cu/Monel composite wire was produced by the rectangular wire-in-tube (RWIT) technique. 10 wt% of nanosize SiC was added into the Mg-B powder mixture, which was packed into the Ti/Cu and Monel tubes, respectively. The assembled composite was two-axially rolled into wire and/or tape form and sintered at temperatures of 650-850 deg. C/0.5 h. Stabilized MgB 2 wire with Ti barrier is studied in terms of field-dependent transport critical current density, effects of filament size reduction and thermal stability

  7. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    International Nuclear Information System (INIS)

    Butt, M A; Fomchenkov, S A; Verma, P; Khonina, S N; Ullah, A

    2016-01-01

    We report a design for creating a multilayer dielectric optical filters based on TiO 2 and SiO 2 /MgF 2 alternating layers. We have selected Titanium dioxide (TiO 2 ) for high refractive index (2.5), Silicon dioxide (SiO 2 ) and Magnesium fluoride (MgF 2 ) as a low refractive index layer (1.45 and 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging. (paper)

  8. Textural evidence for high-grade ignimbrites formed by low-explosivity eruptions, Paraná Magmatic Province, southern Brazil

    Science.gov (United States)

    Luchetti, Ana Carolina F.; Gravley, Darren M.; Gualda, Guilherme A. R.; Nardy, Antonio J. R.

    2018-04-01

    The Paraná-Etendeka Province is a Lower Cretaceous huge bimodal tholeiitic volcanic province (1 million·km3) that predated the Gondwana breakup. Its silicic portion makes up a total volume of at least 20,000 km3 and in southern Brazil it comprises the Chapecó porphyritic high-Ti trachydacites-dacites and the Palmas microporphyritic-aphyric low-Ti dacites-rhyolites. The widespread silicic sheets are debated in the literature because they bear similarities between lavas and high grade ignimbrites. Here we provide new observations and interpretations for flow units with large, dark, and vesicle-poor lens-shaped blobs surrounded by a light-colored matrix. The textural features (macro- to micro-scale) of these blobs are different from typical pumice and/or fiamme and support a low explosivity pyroclastic origin, possibly low-column fountain eruptions with discharge rates high enough to produce laterally extensive high-grade ignimbrites. Such an interpretation, combined with a conspicuous absence of lithic fragments in the deposits, is aligned with a lack of identified calderas in the Paraná-Etendeka Province. Maximum timescales of crystallization associated with the juvenile blobs and estimated from CSD slopes are on the order of millennia for phenocryst populations and on the order of decades for microphenocryst populations.

  9. A simple, rapid and eco friendly method for determination of uranium in geological samples of low silicate matrix by ICP-OES

    International Nuclear Information System (INIS)

    Hanuman, V.V.; Chakrapani, G.; Singh, A.K.

    2013-01-01

    A simple, rapid, cost effective and eco friendly decomposition and dissolution method is developed for the determination of uranium (U 3 O 8 ) by Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES) in low silicate geological samples. The salts of Sodium di-hydrogen phosphate monohydrate and Sodium pyrophosphate deca hydrate are used in the ratio of 1:1 (phosphate flux) for the decomposition of low silicate matrix geological samples. Samples are decomposed by fusion with the phosphate flux after ignition and the dissolution is carried out using distilled water. If the samples contain >10% silica, they have been treated with little amount of (HF+HNO 3 ) prior to fusion with phosphate flux. These samples, are analysed by ICP-OES directly without any separation from the matrix. The spectral interferences of major matrix elements (Al, Ti, Fe, Mn, etc present in the sample) on uranium are studied and it is observed that their interferences are negligible, as dilution is required to bring uranium concentration into calibration range of instrument. This is the first time, the phosphate flux is used for decomposition of low silicate geological samples for uranium determination by ICP-OES

  10. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  11. Study of Optically Stimulated Luminescence of LiF:Mg,Ti for beta and gamma dosimetry

    International Nuclear Information System (INIS)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Letícia L.

    2013-01-01

    Modern advances in radiation medicine – radiodiagnosis, radiotherapy and interventional radiography – each present dosimetry challenges for the medical physicist that did not exist previously. In all of these areas a constant balance has to be made between the treatment necessary to destroy the tumor and the unnecessary exposure of healthy tissue. Innovative applications of OSL dosimetry are now appearing in each of these areas to help the medical physicist and oncologist design the most effective, and least deleterious, treatment for their patients. High sensitivity, precise delivery of light, fast readout times, simpler readers and easier automation are the main advantages of OSL in comparison with TLD. This work aimed to study the application of OSL technique using lithium fluoride dosimeters doped with magnesium and titanium (LiF:Mg,Ti) for application in beta and gamma dosimetry. -- Highlights: •Study of Optically Stimulated Luminescence of LiF:Mg,Ti and microLiF:Mg,Ti. •OSL response of TLD-100 dosimeters to beta and gamma radiation. •Analysis of repeatability and lowest levels of detection of detectors LiF:Mg,Ti

  12. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  13. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  14. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities

    NARCIS (Netherlands)

    Krishnan, Gopi; de Graaf, Sytze; ten Brink, Gert H.; Verheijen, Marcel A.; Kooi, Bart J.; Palasantzas, George

    2018-01-01

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiCx/Mg/MgO, TiCx/MgO and TiHx/MgO core/shell NPs via

  15. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  16. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P., E-mail: pkalisvaart@gmail.com [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Mitlin, David, E-mail: dmitlin@ualberta.ca [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada)

    2011-03-15

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  17. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi; Mitlin, David

    2011-01-01

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  18. Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics at microwave frequency

    International Nuclear Information System (INIS)

    Tseng, Ching-Fang; Lu, Shu-Cheng

    2013-01-01

    Highlights: ► The microwave dielectric properties of (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system have been discussed. ► The dielectric constant and τ f increased; nevertheless, the Q × f decreased with an increase in x. ► Second phases were formed and affected the microwave dielectric properties of (1−x)MZT–xST system. ► ε r of 20.8, Q × f of 257,000, and τ f of 0.2 ppm/°C were obtained for the 0.06Mg(Zr 0.05 Ti 0.95 )O 3 –0.04SrTiO 3 ceramics. ► Due to high-quality factor and near-zero τ f , MZT–ST demonstrate a good potential for use in microwave devices. -- Abstract: The microwave dielectric properties and microstructures were investigated in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 (hereafter referred to as (1−x)MZT–xST) system. The compounds were prepared via the conventional solid-state reaction. Compositions in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system were designed to compensate the negative temperature coefficient of the resonant frequency of Mg(Zr 0.05 Ti 0.95 )O 3 . The values displayed nonmonotonic mixture-like behavior, because the TiO 2 phase was formed in the MZT composite ceramics with increasing x. A close zero τ f of 0.2 ppm/°C could be achieved at 0.96MZT–0.04ST with ε r = 20.8 and Q × f = 257,000 GHz

  19. The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions

    Science.gov (United States)

    O'Neill, H. S.

    2006-12-01

    accuracy including possible systematic errors of 0.5 kJ/mol (1 st. dev.). Any asymmetry is unambiguously constrained to be very small. These results were combined with experimental data (all at or above 900ºC), for partitioning of Mg and Fe between olivine and one of ilmenite (Pownceby and O'Neill, in prep.), Ti-, Al- or Cr-spinel (O'Neill, unpublished) and pyroxenes, garnet, and various high-pressure phases (literature). Internal consistency can be checked using other available partitioning data between pairs of these phases (i.e., without olivine). Except for some of the high-pressure phases, the ferromagnesian solutions are symmetrical with W Mg-Fe decreasing with the difference in the volumes of the end-members, which in turn depends on the atomic (Mg+Fe)/O ratio. This suggests that mixing in binary amphiboles, micas and other complex ferromagnesian silicates should be nearly ideal. The discrepancies shown by the high-pressure phases may be due to Fe3+ substitutions. As a working hypothesis, it is proposed that solid solutions between cations of the same charge and roughly similar size have simple thermodynamic mixing properties, with little asymmetry, modest excess entropies and excess enthalpies proportional to the volume difference of the end-members. Order-disorder phenomena have surprisingly little effect in the high temperature regime for which experimental data are available. Refs: [1] Davies and Navrotsky, J Sol State Chem 46, 1-22, 1983. [2] O'Neill et al., CMP 146, 308-325, 2003.

  20. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    Science.gov (United States)

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  1. Use of equimolar cysteine/ascorbic acids to recover MCP synthesized Ti(Mg) alloy

    CSIR Research Space (South Africa)

    Mushove, T

    2010-10-01

    Full Text Available Dissolution of waste by-products of mechanochemical processing (MCP) synthesis of Ti(Mg) alloy, from TiO2 and 15 wt.% excess Mg, was conducted in equimolar cysteine/ascorbic acids. The synthesized alloy is inherently mixed with MgO and other oxides...

  2. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2016-11-30

    Highlights: • Hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes were synthesized for the first time. • MgSNTs showed excellent prformance for the removal of low concentration methylene blue and high concentration rodamine B. • It could be easily discovered from solution. - Abstract: In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N{sub 2} adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m{sup 2}/g), average pore width (7.13 nm) and pore volume (1.05 cm{sup 3}/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe{sub 2}O{sub 3} in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  3. Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction

    Directory of Open Access Journals (Sweden)

    Ze-Qing Guo

    2017-02-01

    Full Text Available TiO2-Na0.9Mg0.45Ti3.55O8 (TiO2-NMTO nanocomposites were synthesized via a simple hydrothermal method. TiO2 nanoparticles were loaded on NMTO nanosheets with well matched lattices. The TiO2-NMTO nanoheterojunctions enjoyed high photodegradative ability for a RhB pollutant. The photoinduced electron-hole pairs were separated effectively by the TiO2-NMTO nanoheterojunctions, which were directly observed by surface potential measurements with a scanning Kelvin probe microscopy. The photogenerated electrons accumulate at interface due to the high density of interface states, and holes remain TiO2 and NMTO particles, other than they migrate from one part to another in heterojunctions by comparing the surface potentials under illumination with different wavelengths.

  4. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  5. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  6. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  7. Effects of TiC doping on the upper critical field of MgB2 superconductors

    International Nuclear Information System (INIS)

    Yan, S.C.; Zhou, L.; Yan, G.; Lu, Y.F.

    2008-01-01

    TiC doped MgB 2 bulks were fabricated by two-step reaction method. The sample with a nominal compositions of Mg(B 0.95 (TiC) 0.05 ) 4 was first sintered at 1000 deg. C for 0.5 h. An appropriate amount of Mg was added to reach the stoichiometry of Mg(B 0.95 (TiC) 0.05 ) 2 , which was sintered at 750 deg. C for 2 h. The H c2 for the micro-TiC doped MgB 2 reached 12 T at 20 K. And J c is 5.3 x 10 4 A/cm 2 at 20 K and 1 T. The results indicate that the two-step reaction method could effectively introduce the carbon in TiC into the MgB 2 crystalline lattice, and therefore improve the upper critical field

  8. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  9. Synthesis of (Zn, Mg)TiO{sub 3}-TiO{sub 2} composite ceramics for multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Wu, S.P., E-mail: chwsp@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Tu, W.P.; Jiao, L.; Zeng, Z.O. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-11-01

    (Zn{sub 0.8}Mg{sub 0.2})TiO{sub 3}-xTiO{sub 2} composite ceramics has been prepared via the solid-phase synthesis method. TiO{sub 2} was employed to tone temperature coefficient of resonant frequency ({tau}{sub f}) and stabilize hexagonal (Zn, Mg)TiO{sub 3} phase. 3ZnO-B{sub 2}O{sub 3} was effective to promote sintering. The movement of grain boundary was obvious because of the liquid phase sintering. The scanning electron microscope (SEM) photographs and energy dispersive spectrometer (EDS) patterns showed that segregation and precipitation of dissociative (Zn, Mg)TiO{sub 3} grains occurred at grain boundary during sintering. SnO{sub 2} was used as inhibitor to prevent the grain boundary from moving. The dielectric behaviors of specimen strongly depended on structural transition and microstructure. We found that 1.0 wt.% 3ZnO-B{sub 2}O{sub 3} doped (Zn, Mg)TiO{sub 3}-0.25TiO{sub 2} ceramics with 0.1 wt.% SnO{sub 2} additive displayed excellent dielectric properties (at 1000 deg. C): {epsilon}{sub r} = 27.7, Q x f = 65,490 GHz (at 6.07 GHz) and {tau}{sub f} = -8.88 ppm deg. C{sup -1}. The above-mentioned material was applied successfully to make multilayer ceramic capacitors (MLCCs), which exhibited an excellent electrical property. The self-resonance frequency (SRF) and equivalent series resistance (ESR) of capacitor decreased with capacitance increasing, and the quality factor (Q) of capacitor reduced as frequency or capacity increased.

  10. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  11. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  12. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3

    International Nuclear Information System (INIS)

    Xie, L.; Liu, Y.; Wang, Y.T.; Zheng, J.; Li, X.G.

    2007-01-01

    MgH 2 nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH 2 phase, without residual magnesium and with an average particle size of ∼300 nm. Milled with 5 wt.% TiF 3 as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of ∼0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under ∼20 bar hydrogen at room temperature. Compared with MgH 2 micrometer particles doped with 5 wt.% TiF 3 under the same conditions as the MgH 2 nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed

  13. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  14. Analysis of dosimetric peaks of MgB4O7:Dy (40% Teflon versus LiF:Mg,Ti TL detectors

    Directory of Open Access Journals (Sweden)

    Paluch-Ferszt Monika

    2016-03-01

    Full Text Available Magnesium tetraborate doped with dysprosium (MgB4O7:Dy is known as a good thermoluminophor for personal dosimetry of gamma ray and X-ray radiation because of its high sensitivity and close tissue equivalence. This material can be produced by different routes. The sintered pastilles of magnesium tetraborate mixed with Teflon (40% used in this work were manufactured at the Federal University of Sergipe, Department of Physics by the solid-state synthesis. Magnesium tetraborate was already used for high-dose dosimetry, exhibiting linearity for a wide range of doses. In this work, the authors examined its main characteristics prior to potential use of detectors in everyday dosimetry, comparing this material to a widely used LiF:Mg,Ti phosphor. The following tests influencing dosimetric peaks of MgB4O7:Dy were presented: (1 the shape of the glow curves, (2 annealing conditions and post-irradiation annealing and its influence for background of the detectors, (3 the choice of the heating rates at the read-out and (4 the threshold dose, that is, the lowest possible dose to be measured. Similar tests were performed with LiF:Mg,Ti detectors, produced and widely used in Poland. The results were compared and discussed.

  15. Coal-Based Reduction and Magnetic Separation Behavior of Low-Grade Vanadium-Titanium Magnetite Pellets

    Directory of Open Access Journals (Sweden)

    Gongjin Cheng

    2017-05-01

    Full Text Available Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets were studied in this paper. It is found that the metallization degree increased obviously with an increase in the temperature from 1100 °C to 1400 °C. The phase composition transformation was specifically analyzed with X-ray diffraction (XRD. The microscopic examination was carried out with scanning electron microscopy (SEM, and the element composition and distribution were detected with energy dispersive spectroscopy (EDS. It is observed that the amounts of metallic iron particles obviously increased and the accumulation and growing tendency were gradually facilitated with the increase in the temperature from 1100 °C to 1400 °C. It is also found that the titanium oxides were gradually reduced and separated from ferrum-titanium oxides during reduction. In addition, with increasing the temperature from 1200 °C to 1350 °C, silicate phases, especially calcium silicate phases that were transformed from calcium ferrite at 1100 °C, were observed and gradually aggregated. However, at 1400 °C some silicate phases infiltrated into metallic iron, as it appears that the carbides, especially TiC, could probably contribute to the sintering phenomenon becoming serious. The transformation behavior of valuable elements was as follows: Fe2VO4 → VO → V → VC; FeTiO3 (→ FeTi2O5 → TiO2 → TiC; FeCr2O4 → Cr → CrC; FeTiO3 (→ FeTi2O5 → Fe0.5Mg0.5Ti2O5; (Fe3O4/FeTiO3→ FeO → Mg0.77Fe0.23O. Through the magnetic separation of coal-based reduced products, it is demonstrated that the separation of Cr, V, Ti, and non-magnetic phases can be preliminarily realized.

  16. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    Science.gov (United States)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as

  17. Separation of DR synthesized Ti-Mg Alloy by dissolution of waste by-products in acid media

    CSIR Research Space (South Africa)

    Mushove, T

    2010-06-01

    Full Text Available Of DR Synthesized Ti-Mg Alloy By Dissolution Of Waste By-Products In Acid Media. The dissolution experiments were done in a Julabo SW23 waterbath shaker, with 300 ml flasks. Acid solution of predetermined molarity was charged into a flask and heated... of the diffraction peaks of Mg and TiO2. The reduction of TiO2 at 32hrs of milling was evaluated from Equation 6.2 to be 90.4% (4). Calculated proportions of products, and the respective masses from a 2g sample, are shown in Table 1. Constituent TiO2 Ti-Mg Mg...

  18. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  19. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  20. Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations

    International Nuclear Information System (INIS)

    Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P.

    2012-01-01

    Highlights: ► The co-incorporation of Ti and F into MgH 2 lattice is energetically favorable. ► The incorporated Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. ► The synergistic effect of Ti and F is superior to that of pure Ti. ► The weakened interactions of Mg–H explain enhanced dehydrogenation properties. - Abstract: The energetic and electronic properties of MgH 2 co-doped with Ti and F are investigated using first-principles calculations based on density functional theory. The calculation results show that incorporation of Ti combined with F atoms into MgH 2 lattice is energetically favorable relative to single incorporation of Ti atom. After dehydrogenation, the co-doped Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. Comparatively, the combined effect of Ti and F in improving the dehydrogenation properties of MgH 2 is superior to that of pure Ti. These results provide a reasonable explanation for experimental observations. Analysis of electronic structures suggests the enhanced dehydrogenation properties of doped MgH 2 can be attributed to the weakened bonding interactions between Mg and H due to foreign species doping.

  1. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  2. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    Science.gov (United States)

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  3. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  4. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Directory of Open Access Journals (Sweden)

    Azim Ataollahi Oshkour

    2014-01-01

    Full Text Available This study investigated the impact of calcium silicate (CS content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%. The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.

  5. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Science.gov (United States)

    Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  6. Ti-catalyzed HfSiO4 formation in HfTiO4 films on SiO2 studied by Z-contrast scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ellen Hoppe

    2013-08-01

    Full Text Available Hafnon (HfSiO4 as it is initially formed in a partially demixed film of hafnium titanate (HfTiO4 on fused SiO2 is studied by atomic number (Z contrast high resolution scanning electron microscopy, x-ray diffraction, and Raman spectroscopy and microscopy. The results show exsoluted Ti is the catalyst for hafnon formation by a two-step reaction. Ti first reacts with SiO2 to produce a glassy Ti-silicate. Ti is then replaced by Hf in the silicate to produce HfSiO4. The results suggest this behavior is prototypical of other Ti-bearing ternary or higher order oxide films on SiO2 when film thermal instability involves Ti exsolution.

  7. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  8. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    Science.gov (United States)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  9. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion

    International Nuclear Information System (INIS)

    Ma, L.-P.; Kang, X.-D.; Dai, H.-B.; Liang, Y.; Fang, Z.-Z.; Wang, P.-J.; Wang, P.; Cheng, H.-M.

    2009-01-01

    TiF 3 shows a superior catalytic effect over TiCl 3 in improving the hydrogen sorption kinetics of MgH 2 . Combined phase analysis and microstructure characterization suggest that both titanium halide additives react with host MgH 2 in a similar way. However, systematic X-ray photoelectron spectroscopy studies reveal that the incorporated fluorine (F) differs significantly from its analog chlorine (Cl) in terms of bonding state. The asymmetry of F 1s spectra and the sputtering-induced peak shift suggest that, in addition to the Mg-F bond, a new Ti-F-Mg bonding is formed in the TiF 3 -doped MgH 2 . In contrast, only one stable binding state of Cl is identified in the form of MgCl 2 for the TiCl 3 -doped MgH 2 . In combination with the designed experiments, these findings suggest that the generation of active F-containing species may be responsible for the advantage of TiF 3 over TiCl 3 in improving both the absorption and desorption kinetics of MgH 2 . Fundamentally, it emphasizes the functionality of F anion in tuning the activity of compound catalyst

  10. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    Science.gov (United States)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  11. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    Science.gov (United States)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  12. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  13. High Resolution and Differential PIXE combined with RBS, EBS and AFM analysis of magnesium titanate (MgTiO3) multilayer structures

    International Nuclear Information System (INIS)

    Reis, M.A.; Alves, L.C.; Barradas, N.P.; Chaves, P.C.; Nunes, B.; Taborda, A.; Surendran, K.P.; Wu, A.; Vilarinho, P.M.; Alves, E.

    2010-01-01

    Thorough structural characterization of deep laying thin film, including the inference of interdiffusion profiles is frequently a complex problem. The use of RBS/PIXE holistic approaches, already shown to represent a powerful method, sometimes faces difficulties if standard experimental procedures are used. In this work, following a series of 4 He Rutherford backscattering and 1 H elastic backscattering experiments, carried out to study the influence of SrTiO 3 as a possible cladding layer between Pt/TiO 2 /SiO 2 /(1 0 0)Si substrates and MgTiO 3 films, a simple holistic RBS-PIXE is shown to be not enough for the solution of such a problem. Establishing of the Sr depth profile, was only possible after AFM, High-Resolution EDS PIXE and differential PIXE analysis were carried out. Results, problems faced and conclusions obtained are presented.

  14. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of humidity sensors. PMID:27916913

  15. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wu, Yuyu; Wang, Hui; Liu, Jiangwen; Fang, Fang; Sun, Dalin; Zhang, Qingan; Zhu, Min

    2015-01-01

    Highlights: • Mg 85 In 5 Al 5 Ti 5 alloy catalyzed with in-situ formed MgF 2 was prepared by P-milling. • Reaction mechanism of Mg 85 In 5 Al 5 Ti 5 alloy was presented. • Further destabilization of Mg was realized (65.2 kJ/mol H 2 ). • Dual tuning of the thermodynamic and kinetic properties of MgH 2 was realized. - Abstract: The dehydrogenation enthalpy change of MgH 2 by reversibly forming an Mg 0.95 In 0.05 solid solution offers a new method for tuning the thermodynamics of Mg-based alloys. In order to further lower the stability of MgH 2 , Al has been introduced into Mg(In) solid solution. At the same time, to solve the problem of sluggish kinetic properties of Mg–In solid–solution systems and to lower the dehydrogenation activation energy, Ti has also been added. It has been demonstrated that the Mg 85 In 5 Al 5 Ti 5 alloy synthesized by plasma milling (P-milling) shows both enhanced dehydriding thermodynamics and kinetics. This technique could be used to synthesize Mg(In, Al) ternary solid solution incorporating the Ti catalyst in only one step, making it much more efficient than the two-step method. Compared with Mg-based solid solutions, the addition of Ti and in-situ synthesized MgF 2 improved the kinetics and the introduction of In as well as Al imparted enhanced thermodynamics to the Mg 85 In 5 Al 5 Ti 5 system. The dehydrogenation enthalpy change and activation energy were lowered to 65.2 kJ/(mol H 2 ) and 125.2 kJ/mol, respectively, for the Mg 85 In 5 Al 5 Ti 5 alloy

  16. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  17. Structure and composition of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} films deposited on (001) MgO substrates and the influence of sputtering pressure

    Energy Technology Data Exchange (ETDEWEB)

    Twigg, M.E.; Alldredge, L.M.B.; Chang, W.; Podpirka, A.; Kirchoefer, S.W.; Pond, J.M.

    2013-12-02

    The structure and composition of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films, sputter deposited on (001) MgO substrates, have been characterized by transmission electron microscopy. Deviations in film stoichiometry are seen to strongly correlate with the structural and dielectric properties of these films, with the films deposited at the lower sputtering pressures either Ti-deficient or capped with a titanium oxide layer similar to the rutile TiO{sub 2} phase. Preferential sputtering of cations is found to be an important factor governing film stoichiometry. The Ti-deficient films deposited at a lower sputtering pressure contain Ruddlesden–Popper faults that increase the average lattice constant of the film and result in compressive strain and low dielectric tunability. - Highlights: • Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) film deposited at very low pressure is capped with TiO{sub 2} layer. • TiO{sub 2} capped film is under only slight compressive strain, but has poor tunability. • BST films deposited at low pressure contain Ruddlesden–Popper Faults (RPFs). • RPF-containing films have high compressive strains and poor dielectric tunability. • High-pressure films have no RPFs, little compression strain, and high tunability.

  18. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  19. Superior hydrogen storage kinetics of MgH{sub 2} nanoparticles doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, L. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liu, Y. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Y.T. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zheng, J. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li, X.G. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) and College of Engineering, Peking University, Beijing 100871 (China)]. E-mail: xgli@pku.edu.cn

    2007-08-15

    MgH{sub 2} nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH{sub 2} phase, without residual magnesium and with an average particle size of {approx}300 nm. Milled with 5 wt.% TiF{sub 3} as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of {approx}0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under {approx}20 bar hydrogen at room temperature. Compared with MgH{sub 2} micrometer particles doped with 5 wt.% TiF{sub 3} under the same conditions as the MgH{sub 2} nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed.

  20. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  1. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    Science.gov (United States)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of

  2. Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems

    Directory of Open Access Journals (Sweden)

    ZHANG Jian

    2016-11-01

    Full Text Available The K2Ti6O13 whisker separate-doped and K2Ti6O13 whisker and Ni powder multi-doped MgH2 hydrogen storage composite systems were prepared by mechanical milling method. The microstructures and dehydrogenation properties of the prepared samples were characterized by some testing methods such as X-ray diffraction (XRD, scanning electron microscope (SEM and differential scanning calorimeter (DSC. The results show that the K2Ti6O13 whisker not only plays the roles in refining the MgH2 crystalline grain, but also inhibit the agglomeration of MgH2 particles in K2Ti6O13 whisker separate-doped system, which results in the decreased dehydrogenation temperature of MgH2 matrix. When the mass ratio of K2Ti6O13 to MgH2 is 3:7, the improvement effect on dehydrogenation properties of MgH2 is the most remarkable. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker separate-doped system is decreased by nearly 75℃. For K2Ti6O13 whisker and Ni powder multi-dopedsystem, the dehydrogenation temperature of MgH2 matrix is further decreased compared to K2Ti6O13 whisker separate-doped one due to the dual effects of refined MgH2 crystalline grain by K2Ti6O13 whisker and destabilized MgH2 lattice by Ni solution. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker and Ni powder multi-doped system is decreased by nearly 87℃.

  3. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique.

    Science.gov (United States)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-10-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca10-xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1-x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. © 2013.

  4. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  5. Absence of low temperature phase transitions and enhancement of ferroelectric transition temperature in highly strained BaTiO{sub 3} epitaxial films grown on MgO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish; Kumar, Dhirendra; Sathe, V. G., E-mail: vasant@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Kumar, Ravi; Sharma, T. K. [Semiconductor Physics and Devices Lab, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-04-07

    Recently, a large enhancement in the ferroelectric transition temperature of several oxides is reported by growing the respective thin films on appropriate substrates. This phenomenon is correlated with high residual strain in thin films often leading to large increase in the tetragonality of their crystal structure. However, such an enhancement of transition temperature is usually limited to very thin films of ∼10 nm thickness. Here, we report growth of fully strained epitaxial thin films of BaTiO{sub 3} of 400 nm thickness, which are coherently grown on MgO substrates by pulsed laser deposition technique. Conventional high resolution x-ray diffraction and also the reciprocal space map measurements confirm that the film is fully strained with in-plane tensile strain of 5.5% that dramatically increases the tetragonality to 1.05. Raman measurements reveal that the tetragonal to cubic structural phase transition is observed at 583 K, which results in an enhancement of ∼200 K. Furthermore, temperature dependent Raman studies on these films corroborate absence of all the low temperature phase transitions. Numerical calculations based on thermodynamical model predict a value of the transition temperature that is greater than 1500 °C. Our experimental results are therefore in clear deviation from the existing strain dependent phase diagrams.

  6. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  7. Properties of the 4.45 eV optical absorption band in LiF:Mg, Ti

    International Nuclear Information System (INIS)

    Nail, I.; Oster, L.; Horowitz, Y. S.; Biderman, S.; Belaish, Y.

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti. (authors)

  8. EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier

    International Nuclear Information System (INIS)

    Rosova, A.; Kovac, P.; Husek, I.; Kopera, L.

    2011-01-01

    Highlights: → SiC-doped MgB 2 wires with Ti barrier showed good Jc in magnetic field. → Explanation why the Ti barrier fits to SiC-doped MgB 2 filaments. → Ti barrier getters Si from SiC-doped filaments and improve their properties. → Si accumulated in an inner layer of Ti barrier protects filaments from Cu diffusion. → Ion beam treatment helps to discover microstructure of complicated systems. - Abstract: In situ SiC-doped filamentary MgB 2 wires (with the diameter of 0.860 and 0.375 mm) with Cu stabilization separated by Ti barrier layers supported by outer SS sheath and annealed at 800 deg. C/0.5 h have been studied by combination of EDX analysis and ion beam selective etching. It was found that several Ti-Cu inter-metallic compounds were created by Cu-Ti interdiffusion and thus the barrier protection against Cu penetration into the superconducting filaments is limited. We showed an advantage of Ti use as the barrier material in our wires. Ti getters silicon out from the superconducting filament, what purges superconducting MgB 2 from Si and creates an additional Si-rich layer in inner part of Ti barrier which prevents Cu diffusion more effectively.

  9. Effect of TiON–MgO intermediate layer on microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J.Y. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Dong, K.F. [School of Automation, China University of Geosciences, Wuhan 430074 (China); Peng, Y.G.; Ju, G.P. [Seagate Technology, Fremont, CA 94538 (United States); Hu, J.F. [Data Storage Institute (DSI), Singapore 117608 (Singapore); Chow, G.M.; Chen, J.S. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2016-11-01

    The microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films grown on TiON–MgO intermediate layer were studied. TiON–MgO layer was deposited by co-sputtering TiN and MgO–TiO{sub 2} targets at 380 °C. With increasing MgO–TiO{sub 2} doping concentration, the contact angle between FePt grains with intermediate layer gradually increased, and it was close to 90° when the volume percentage of MgO–TiO{sub 2} reached 30%. At this condition, a high out-of-plane coercivity of 19.1 kOe was obtained, while the opening-up of in-plane M-H loop was very narrow. Moreover, it was found that the out-of-plane coercivity can be further improved to 21.6 kOe, by slightly increasing the percentage of MgO–TiO{sub 2} to 35 vol%. - Highlights: • The effect of TiON–MgO intermediate layer was studied. • With increasing the MgO composition, the surface energy of intermediate layer increased, and the FePt/TiON–MgO interfacial energy decreased. The contact angle of FePt grains with intermediate layer increased with the MgO composition, and 90° contact angle could be achieved by optimizing the MgO composition. • Good perpendicular magnetic anisotropy was retained with large out-of-plane coercivity and narrow in-plane opening-up.

  10. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  11. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Braic, M.; Zoita, N.C.; Danila, M.; Grigorescu, C.E.A.; Logofatu, C.

    2015-01-01

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH 4 . The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC 0.84 thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH 4 . • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed

  12. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braic, M. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Zoita, N.C., E-mail: cnzoita@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Danila, M. [National Institute for Research and Development in Microtechnology, 126A Erou Iancu Nicolae Blvd., 077190 Bucharest (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Logofatu, C. [National Institute of Materials Physics, 105 bis Atomistilor St., 077125 Magurele (Romania)

    2015-08-31

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH{sub 4}. The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC{sub 0.84} thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH{sub 4}. • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed.

  13. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy

    International Nuclear Information System (INIS)

    Ma Jingling; Wen Jiuba; Zhai Wenxia; Li Quanan

    2012-01-01

    The corrosion behaviour of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt.%) alloy has been investigated by immersion test, scanning electron microscopy, energy dispersive X-ray detector, electrochemical impedance spectroscopy and electrochemical noise. The results show that there exist different corrosion types of the alloy in 3.5% NaCl solution with the immersion time. At the initial stage of immersion, pitting due to the precipitates predominates the corrosion with a typical inductive loop at low frequencies in electrochemical impedance spectroscopy. The major precipitates of the alloy are MgZn 2 and Al 2 CeZn 2 particles. The corrosion potentials of the bulk MgZn 2 and Al 2 CeZn 2 alloys are negative with respect to that of α-Al, so the MgZn 2 and Al 2 CeZn 2 precipitates can act as activation centre and cause the pitting. In the late corrosion, a relative uniform corrosion predominates the corrosion process controlled by the dissolution/precipitation of the In ions and characterized by a capacitive loop at medium-high frequencies in electrochemical impedance spectroscopy. The potential noise of the pitting shows larger amplitude fluctuation and lower frequency, but the potential noise of the uniform corrosion occurs with smaller amplitude fluctuation and higher frequency.

  14. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  15. Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    Directory of Open Access Journals (Sweden)

    Hossein A. Akhlaghi Amiri

    2014-03-01

    Full Text Available This paper addresses alkaline sodium silicate (Na-silicate behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content, which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.

  16. Phototransfered thermoluminescence for dose reassessment in LiF:mg,ti , LiF: mg,Cu,p TL detectors

    International Nuclear Information System (INIS)

    Rodriguez Otazo, M.; Baly, L.

    2001-01-01

    Phototransfered Thermoluminescence (PTTL) from LiF:Mg,Ti (TLD-100) and LiF: Mg,Cu,P (GR-200) was studied at different conditions using different sources of UV light for dose reassessment purposes. The TL dosimeters were irradiated with 137Cs in the range 2 mGy to 100 mGy. The convenience of using PTTL for dose reassessment was analyzed

  17. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  18. Solid solubility of MgO in the calcium silicates of portland clinker. The effect of CaF2

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1992-03-01

    Full Text Available The solid solubility of MgO in the calcium silicates of portland clinker has been determined by XRD and XDS. The influence that the presence of CaF2 has on said solubility has also been verified. The solid solution limit of MgO in C3S at 1275 ºC lies at about 1.0% wt, where the triclinic form II stabilizes. The presence of CaF2 does not alter the maximum value of the MgO solubilized in that silicate, although there does take place the stabilization of the triclinic polymorph II at lower MgO contents (between 0.3 - 0.6% wt. The maximum amount of solubilized MgO in βC2 at 1.050 ºC lies around 0.5% wt. This value does not change by the presence of CaF2.Se ha determinado por DRX y EDX la solubilidad sólida del MgO en los silicatos cálcicos del clínker portland. Se ha comprobado, así mismo la influencia que sobre dicha solubilidad tiene la presencia de CaF2. El límite de disolución sólida del MgO en el C3S a 1.275º C se sitúa alrededor del 1,0% en peso, estabilizándose la forma triclínica II. La presencia de CaF2 no altera el valor máximo de MgO solubilizado en este silicato, aunque si se produce la estabilización del polimorfo triclínico II a contenidos menores de MgO (entre 0,3 – 0,6% en peso. La cantidad máxima de MgO solubilizado en e/ βC2S a 1.050 ºC se sitúa en torno al 0,5% en peso. Este valor no se ve modificado por la presencia de CaF2.

  19. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  20. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Wang, Yanbo; Zhao, Yonghao; Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang; Liao, Xiaozhou; Lavernia, Enrique J.; Valiev, Ruslan Z.; Sarrafpour, Babak; Zoellner, Hans; Ringer, Simon P.

    2013-01-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated

  1. Interaction of different poisons with MgCl{sub 2}/TiCl{sub 4} based Ziegler-Natta catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bahri-Laleh, Naeimeh, E-mail: n.bahri@ippi.ac.ir

    2016-08-30

    Highlights: • The interactions between different classes of poison molecules and TiCl{sub 4}/MgCl{sub 2} type Ziegler-Natta catalyst is considered. • Poisons strongly stabilize MgCl{sub 2} crystal surfaces, mostly Ti active center relative to the unpoisoned solid. • Poison molecules decrease catalyst activity by increasing E{sub TS} in olefin polymerization. • Poison molecules do not have significant effect in stereospecifity of ZN catalysts in propylene polymerization. - Abstract: Adsorption of different poison molecules on activated MgCl{sub 2} is investigated within DFT using a cluster model of the MgCl{sub 2} surface with (MgCl{sub 2}){sub 16} formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1–4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl{sub 2}, as well as their adsorption on [MgCl{sub 2}]/TiCl{sub 2}Et active center and AlEt{sub 3} cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (E{sub TS}) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change E{sub TS}, coordination of it into the first Mg atom increases E{sub TS} by 0.9–1.2 kcal mol{sup −1}. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.

  2. Superior catalytic effect of TiF{sub 3} over TiCl{sub 3} in improving the hydrogen sorption kinetics of MgH{sub 2}: Catalytic role of fluorine anion

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.-P.; Kang, X.-D.; Dai, H.-B.; Liang, Y.; Fang, Z.-Z.; Wang, P.-J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, P. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)], E-mail: pingwang@imr.ac.cn; Cheng, H.-M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-04-15

    TiF{sub 3} shows a superior catalytic effect over TiCl{sub 3} in improving the hydrogen sorption kinetics of MgH{sub 2}. Combined phase analysis and microstructure characterization suggest that both titanium halide additives react with host MgH{sub 2} in a similar way. However, systematic X-ray photoelectron spectroscopy studies reveal that the incorporated fluorine (F) differs significantly from its analog chlorine (Cl) in terms of bonding state. The asymmetry of F 1s spectra and the sputtering-induced peak shift suggest that, in addition to the Mg-F bond, a new Ti-F-Mg bonding is formed in the TiF{sub 3}-doped MgH{sub 2}. In contrast, only one stable binding state of Cl is identified in the form of MgCl{sub 2} for the TiCl{sub 3}-doped MgH{sub 2}. In combination with the designed experiments, these findings suggest that the generation of active F-containing species may be responsible for the advantage of TiF{sub 3} over TiCl{sub 3} in improving both the absorption and desorption kinetics of MgH{sub 2}. Fundamentally, it emphasizes the functionality of F anion in tuning the activity of compound catalyst.

  3. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  4. Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions

    International Nuclear Information System (INIS)

    Oliveira, Larissa H.; Savioli, Julia; Moura, Ana P. de; Nogueira, Içamira C.; Li, Maximo S.; Longo, Elson; Varela, José A.; Rosa, Ieda L.V.

    2015-01-01

    In this work, CaTiO 3 powders doped with Mg 2+ ions and CaTiO 3 powders co-doped with Mg 2+ and Eu 3+ ions were prepared by the polymeric precursor method (PPM). These powders were characterized by different characterization techniques to study the influence of Mg 2+ doping as well as Mg 2+ and Eu 3+ co-doping in structural and optical properties of CaTiO 3 perovskite-type structure. The Rietveld refinement and Micro-Raman analyses suggested the substitution Mg 2+ and Eu 3+ ions in the A-site of CaTiO 3 perovskite. The influence of Mg 2+ doping can be detected by the displacement of calcium and oxygen atomic positions when compared to the non-doped CaTiO 3 powder. When Eu 3+ ions are added to the A-site of this perovskite the excess of positive charge can be compensated by the formation of calcium vacancies. Luminescence data showed that Ca 1-x Mg x TiO 3 and Ca 1x Mg x/2 Eu 2y/3 TiO 3 powders are potential materials for fabrication of lighting devices based on near-UV and blue LED using an excitation wavelength of 397 and/or 450 nm. - Highlights: • CaTiO 3 co-doped with Mg 2+ and Eu 3+ were obtained by the Polymeric Precursor Method. • Incorporation of Mg 2+ and Eu 3+ ions in the CaTiO 3 lattice. • Enhancement of the Eu 3+ photoluminescence

  5. GO@CuSilicate nano-needle arrays hierarchical structure: a new route to prepare high optical transparent, excellent self-cleaning and anticorrosion superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping; Chen, Jingyi; Yang, Jintao; Chen, Feng; Zhong, Mingqiang, E-mail: zhongmingqiang@hotmail.com [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2017-02-15

    Transparent superhydrophobic coatings, which are highly desired for the protection of material surfaces, have been limited to particular kinds of materials, e.g. silicon dioxide. In this work, a hybrid compound of graphene oxide and copper silicate with hierarchical structure was developed and was used to fabricate coatings. Due to the high transparency of graphene oxide and the nanoscopic roughness created by nanoneedles of CuSilicate, with very low compound loading (0.052 mg/cm{sup 2}), the as-prepared coating was found not only showing superhydrophobic properties with a water contact angle (CA) of ∼152° and a near zero sliding angle (SA) of 0.5 but also showing high optical transparent (light transmittance is as high as 94.5 % at 500 nm). Furthermore, this surface also showed efficient anticorrosion properties and excellent self-cleaning ability. This study not only fabricated a new surface with transparency and surperhydrophobicity based on graphene materials, but also hopefully offers a method for the fabrication of multifunctional coatings.

  6. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

    Science.gov (United States)

    Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

    2017-11-01

    A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

  7. Interference of intrinsic UV response of LiF:Mg,Ti (Poland) pellets in dose reassessment

    International Nuclear Information System (INIS)

    Bhasin, B.D.; Kalyane, G.N.; Kathuria, S.P.; Sunta, C.M.

    1987-01-01

    The thermoluminescence (TL) behaviour of sintered pellets of LiF:Mg,Ti (Poland) (LiF(P)) is markedly different from that of LiF:Mg,Ti TLD-100 (Harshaw) phosphor as far as their intrinsic responses to ultraviolet (UV) (253.7 nm) radiation are concerned. The intrinsic response of LiF(P) phosphor is very much dependent on the physical form of the phosphor. In addition, it is highly sensitive to any changes in experimental conditions such as the nature of the atmosphere during readout, the pre-heat and the readout history of the phosphor. The high intrinsic UV response (IUVR) of LiF(P) interferes in the dose reassessment by the PTTL (photo-transferred thermoluminescence) technique. Nevertheless, a fortuitous situation exists wherein a PTTL dosimetry peak signal is seen clearly over-riding the IUVR valley at the corresponding point of the glow curve. A procedure to correct for the IUVR interference and to re-estimate the dose by the PTTL technique is described. (author)

  8. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  9. A new ternary magnesium-titanium hydride Mg{sub 7}TiH{sub x} with hydrogen desorption properties better than both binary magnesium and titanium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-06-09

    A magnesium based titanium doped hydride was prepared in a high-pressure anvil cell by reacting a mixture of MgH{sub 2} and TiH{sub 1.9} at 8 GPa and 873 K. The metal structure has a Ca{sub 7}Ge type structure (a=9.532(2) A, space group Fm3-barm (no. 225), Z=4, V=866.06 A{sup 3}). The refined metal atom composition Mg{sub 7}Ti was almost in line with EDS analysis. This means that the new magnesium-titanium hydride has a structure that is more related to TiH{sub 1.9} than to MgH{sub 2}. The thermal properties of the new compound were also studied by TPD analysis. The new hydride, Mg{sub 7}TiH{sub x} exhibits 5.5 mass% (x{approx}12.7) and decomposes into Mg and TiH{sub 1.9} upon releasing 4.7 mass% of hydrogen around 605 K, that is at a 130 and 220 K lower desorption temperature compared to MgH{sub 2} and TiH{sub 1.9}, respectively.

  10. Comparison of characteristics of LiF:Mg,Ti e LiF:Mg,Cu,P thermoluminescent dosemeters; Comparacao das caracteristicas dos dosimetros termoluminescentes LiF:Mg,Ti e LiF:Mg,Cu,P

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.S.; Filipov, D., E-mail: dfilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR/DAFIS), Curitiba, PR (Brazil). Departamento Academicao de Fisica; Schelin, H.R. [Instituto de Pesquisa Pele Pequeno Principe (IPPPP), Curitiba, PR (Brazil)

    2014-07-01

    The aim of the current study was to compare the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (MCP) data, which were acquired by the Federal Technological University - Parana. Tests were realized, for this purpose, such as: sensitivity (only one MCP TLD did not present results within the limit range), linearity (whose MCP result was better than the TLD-100 one), energy dependence (TLD-100 presented lower variation than MCP TLD) and reproducibility (whose TLD-100 results were better than the MCP ones). The results from both dosimeters show that these TLDs attend radiodiagnostic dosimetry criteria, however MCP had more satisfactory results. (author)

  11. Effect of annealing on luminescence of Eu{sup 3+}- and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medić, Mina; Antić, Željka; Đorđević, Vesna [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Ahrenkiel, Phillip S. [South Dakota School of Mines & Technology, Rapid City, SD (United States); Marinović-Cincović, Milena [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Dramićanin, Miroslav D., E-mail: dramican@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2016-02-15

    This work explores the influence of annealing temperature on the structure and luminescence of 2 at% Eu{sup 3+} and 1 at% Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders produced via Pechini-type polymerized complex route. Mg{sub 2}TiO{sub 4} samples were annealed at 7 different temperatures (400 °C, 450 °C, 500 °C, 550 °C, 600 °C, 650 °C and 700 °C) to determine the temperature range in which cubic inverse spinel structure is stable and to follow the changes of material luminescence properties. X-ray diffraction revealed that crystallization of both Eu{sup 3+} and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders starts at 400 °C, and that Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 650 °C, while Eu{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 700 °C. Samples annealed at higher temperatures show higher crystallinity and larger crystallite size. Mg{sub 2}TiO{sub 4} powder annealed at 600 °C is composed of ~5 nm size nanoparticles agglomerated in micron-size and dense chunks. The emission spectra of nanoparticles are composed of emissions from defects in Mg{sub 2}TiO{sub 4} host and characteristic emissions of Eu{sup 3+} ({sup 5}D{sub 0}→{sup 7}F{sub J}) and Sm{sup 3+} ({sup 4}G{sub 5/2}→{sup 6}H{sub J}) ions. The stronger emission and longer emission decays are observed with samples annealed at high temperatures. In the case of the Eu{sup 3+} ions emission intensity increased one order of magnitude between samples annealed at 400 °C and 650 °C. - Highlights: • Mg{sub 2}TiO{sub 4} nanoparticles of 5–10 nm in size are prepared by polymerized complex route. • Emission spectra and decays of Eu{sup 3+} and Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} nanoparticles are shown. • Eu{sup 3+}(Sm{sup 3+}) doped Mg{sub 2}TiO{sub 4} can be annealed at temperatures <700 °C (650 °C). • Emission intensity of nanoparticles increases with increase of annealing temperature.

  12. Effects of MgO impurities and micro-cracks on the critical current density of Ti-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Liang, G.; Alessandrini, M.; Yen, F.; Hanna, M.; Fang, H.; Hoyt, C.; Lv, B.; Zeng, J.; Salama, K.

    2007-01-01

    Ti-sheathed monocore MgB 2 wires with improved magnetic critical current density (J c ) have been fabricated by in situ powder-in-tube (PIT) method and characterized by magnetization, X-ray diffraction, scanning electron microscopy and electrical resistivity measurements. For the best wire, the magnetic J c values at 5 K and fields of 2 T, 5 T, and 8 T are 4.1 x 10 5 A/cm 2 , 7.8 x 10 4 A/cm 2 , and 1.4 x 10 4 A/cm 2 , respectively. At 20 K and fields of 0.5 T and 3 T, the J c values are about 3.6 x 10 5 A/cm 2 and 3.1 x 10 4 A/cm 2 , respectively, which are much higher than those of the Fe-sheathed mono-core MgB 2 wires fabricated with the same in situ PIT process and under the same fabricating conditions. It appears that the overall J c for the average Ti-sheathed wires is comparable to that of the Fe-sheathed wires. Our X-ray diffraction and scanning electron microscopy analysis indicates that J c in the Ti-sheathed MgB 2 wires can be strongly suppressed by MgO impurities and micro-cracks

  13. LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Carter-Bond, Jade C.; O' Brien, David P. [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Delgado Mena, Elisa; Israelian, Garik; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Santos, Nuno C., E-mail: j.bond@unsw.edu.au [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-03-15

    Simulations have shown that a diverse range of extrasolar terrestrial planet bulk compositions are likely to exist based on the observed variations in host star elemental abundances. Based on recent studies, it is expected that a significant proportion of host stars may have Mg/Si ratios below 1. Here we examine this previously neglected group of systems. Planets simulated as forming within these systems are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various feldspars. Planetary carbon abundances also vary in accordance with the host star C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs, lending validity to this approach. Further studies are required to determine the full planetary impacts of the bulk compositions predicted here.

  14. High photocatalytic activity of immobilized TiO{sub 2} nanorods on carbonized cotton fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: bwang23@cityu.edu.hk [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); Karthikeyan, Rengasamy; Lu, Xiao-Ying [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); Xuan, Jin [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China); State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Leung, Michael K.H., E-mail: mkh.leung@cityu.edu.hk [Ability R and D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong (China)

    2013-12-15

    Highlights: • Hollow carbon fibers derived from natural cotton was successfully prepared by pyrolysis method. • TiO{sub 2} nanorods immobilized on carbon fibers by a facile hydrothermal method showed high photocatalytic activity. • The enhancement was due to the reduced band gap, improved dye adsorption capacity and effective electron–hole separation. -- Abstract: In this study, TiO{sub 2} nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO{sub 2}-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV–vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO{sub 2} was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (q{sub m}) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and q{sub m} of TiO{sub 2}-CCFs-1000 (9.0 mg/g) was 6–7 times higher than that of TiO{sub 2} nanorods. Photocatalytic activity of TiO{sub 2} nanorods prepared with 3 mL Ti(OBu){sub 4} showed the highest photocatalytic activity. TiO{sub 2}-CCFs-1000 exhibited higher activity than TiO{sub 2} immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO{sub 2}-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron–hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO{sub 2} on carbon fibers for environmental remediation.

  15. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    Science.gov (United States)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  16. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  17. Electromagnetic and microwave absorption properties of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Meng, Pingyuan [Huzhou Innovation Center of Advanced Materials, Shanghai Institute of Ceramics Chinese Academy of Sciences, Huzhou 215100 (China); Wang, Meiling [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Guanchen [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xinqing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-09-15

    To improve the impedance matching and then achieve a better microwave absorption performance in electromagnetic absorber, the Mg{sup 2+} was added to occupy the sites of Co{sup 2+} in hexagonal-type ferrite BaCoTiFe{sub 10}O{sub 19}. BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} were synthesized by a simple sol-gel combustion technique and the phase of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was confirmed by X-ray diffraction analysis (XRD). The grain size of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was in the range of 100–400 nm and crystal particles were refined with the augment of doped Mg{sup 2+}. Based on the static magnetic measurement, the coercivity (H{sub c}) increased and the saturation magnetization (M{sub s}) decreased as the x increased. Moreover, it was found that BaMg{sub 0.4}Co{sub 0.6}TiFe{sub 10}O{sub 19} possessed a maximum reflection loss of −33.7 dB with a matching thickness of 2.0 mm measured by the vector net-analyzer in the frequency of 0.5–18 GHz, which also had a bandwidth below −20 dB ranging from 11.5 GHz to 17.2 GHz. Meanwhile, the permeability of the prepared ferrites could be adjusted and a proper match was provided between dielectric and magnetic properties by controlling the doped content of Mg{sup 2+}, which would be significant to the application of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} in the field of the microwave absorbing materials. - Highlights: • The Mg{sup 2+} ions were first employed to occupy the place of Co{sup 2+} ions in BaCoTiFe{sub 10}O{sub 19}. • The grains were refined as Co substitution by Mg in ferrite. • The peaks of complex permeability shift to high frequency with Mg{sup 2+} substituted. • The coercivity increased and saturation magnetization slightly decreased. • Substitution of Mg{sup 2+} enhanced microwave absorption and broadened bandwidth.

  18. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  19. A comparative study of radiation damage in Al2O3, FeTiO3, and MgTiO3

    International Nuclear Information System (INIS)

    Mitchell, J.N.; Yu, Ning; Sickafus, K.E.; Nastasi, M.; Taylor, T.N.; McClellan, K.J.; Nord, G.L. Jr.

    1995-01-01

    Oriented single crystals of synthetic alpha-alumina (α-Al 2 O 3 ), geikielite (MgTiO 3 ) natural ilmenite (FeTiO 3 ) were irradiated with 200 keV argon ions under cryogenic conditions (100 K) to assess their damage response. Using Rutherford backscattering spectrometry combined with ion channeling techniques, it was found that ilmenite amorphized readily at doses below 5x10 14 , alumina amorphized at a dose of 1-2x 15 , and geikielite was amorphized at ∼2x10 15 Ar cm -2 . The radiation damage response of the ilmenite crystal may be complicated by the presence of hematite exsolution lamellae and the experimentally induced oxidation of iron. The relative radiation-resistance of geikielite holds promise for similar behavior in other Mg-Ti oxides

  20. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  1. Fe, Cr, Ni, Cu, Mg, Al, Ti, and S contents in plants and soil of heaps of nickel smelting works

    Energy Technology Data Exchange (ETDEWEB)

    Banasova, V; Hajduk, J

    1977-01-01

    The writers established the Fe, Ce, Cr, Ni, Ca, Mg, Al, Ti and S contents in the neopedon of heaps piling up from processing of nickel ore as well as in the plants: Cardaria draba, Salsola cali, Agropyrum repens, Bromus erectus, Calamagrostis epigeios, Cynodon dactylon and Matricaria inodora, growing on such heaps. Ca, Mg and S contents were found to be higher in dicotyledons and Fe, Al, Ti, Ni and Cr contents higher in monocotyledons. The analyzed dicotyledons appeared to be concentrators of Ca and S. Highest Fe, Al, Ti, Ni and Cr contents were found in individuals of the species Agropyrum repens. The neopedon as well as the plants had extraordinarily high Cr concentrations. The species Salsola cali has been found to possess an unusually higher affinity to the dump substrate after processing of nickel ore and to be a concentrator of Mg. 16 references, 1 table.

  2. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    Science.gov (United States)

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  3. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  4. A study into the mechanism of thermoluminescence in a LiF:Mg,Ti dosimetry material

    Energy Technology Data Exchange (ETDEWEB)

    Piters, T M

    1993-10-11

    Thermoluminescence (TL) is the phenomenon of light emission from an insulator or semiconductor when it is heated after a previous absorption of energy from ionising radiation. The purpose of the research described in this thesis is to get more insight into the mechanism of TL in LiF:Mg, Ti. In chapter 2 the idea of defect reactions during the readout is introduced as a possible explanation for the dependence of the read-out heating rate on TL. In chapter 3 a mode for the description of the emission band is described. The construction of a TL facility comprising the TL emission spectrometer is described in chapter 4. Chapter 5 gives an estimation for the possible errors that are made in the data analysis due to imperfect heat transfer from heater to sample. In chapter 6 results of measurements of TL emission spectra of a LiF:Mg, Ti (TLD-100) sample and three LiF:Mg, Ti samples with different impurity concentrations (0-6 ppm Ti and 80-100 ppm Mg) at different read out, annealing procedure and irradiation dose are described. At dose levels less than 22 Gy the emission spectra of the TLD-100 sample and the sample without Ti comprise one emission band at 420 nm and 620 nm, respectively. The TL emission spectra of the other two samples comprise two emission bands at 420 nm and 620 nm. (orig./MM).

  5. A study into the mechanism of thermoluminescence in a LiF:Mg,Ti dosimetry material

    International Nuclear Information System (INIS)

    Piters, T.M.

    1993-01-01

    Thermoluminescence (TL) is the phenomenon of light emission from an insulator or semiconductor when it is heated after a previous absorption of energy from ionising radiation. The purpose of the research described in this thesis is to get more insight into the mechanism of TL in LiF:Mg, Ti. In chapter 2 the idea of defect reactions during the readout is introduced as a possible explanation for the dependence of the read-out heating rate on TL. In chapter 3 a mode for the description of the emission band is described. The construction of a TL facility comprising the TL emission spectrometer is described in chapter 4. Chapter 5 gives an estimation for the possible errors that are made in the data analysis due to imperfect heat transfer from heater to sample. In chapter 6 results of measurements of TL emission spectra of a LiF:Mg, Ti (TLD-100) sample and three LiF:Mg, Ti samples with different impurity concentrations (0-6 ppm Ti and 80-100 ppm Mg) at different read out, annealing procedure and irradiation dose are described. At dose levels less than 22 Gy the emission spectra of the TLD-100 sample and the sample without Ti comprise one emission band at 420 nm and 620 nm, respectively. The TL emission spectra of the other two samples comprise two emission bands at 420 nm and 620 nm. (orig./MM)

  6. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  7. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics

    International Nuclear Information System (INIS)

    Salman, S.M.; Darwish, H.; Mahdy, E.A.

    2008-01-01

    The crystallization characteristics of glasses based on the Li 2 O-CaO-SiO 2 eutectic (954 ± 4 deg. C) system containing Al 2 O 3 , MgO and ZnO has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li 2 O by Al 2 O 3 and CaO by MgO or ZnO in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium meta- and di-silicates, lithium calcium silicates, α-quartz, diopside, clinoenstatite, wollastonite, β-eucryptite ss, β-spodumene, α-tridymite, lithium zinc orthosilicate, hardystonite and willemite using various heat-treatment processes. The dilatometric thermal expansion of the glasses and their corresponding glass-ceramics were determined. A wide range of thermal expansion coefficient values were obtained for the investigated glasses and their corresponding crystalline products. The thermal expansion coefficients of the investigated glasses were decreased by Al 2 O 3 , MgO or ZnO additions. The α-values of the investigated glasses were ranged from (+18) to (+108) x 10 -7 K -1 (25-300 deg. C), while those of the glass-ceramics were (+3) to (+135) x 10 -7 K -1 (25-700 deg. C). The chemical durability of the glass-ceramics, towards the attack of 0.1N HCl solution, was markedly improved by Al 2 O 3 with MgO replacements. The composition containing 11.5 mol% Al 2 O 3 and 6.00 mol% MgO exhibited low thermal expansion values and good chemical durability

  8. Study of the structural and electrical behavior of Bi(Mg,TiO3 modified (Ba,CaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Md. Kashif Shamim

    2016-12-01

    Full Text Available The ability of BaTiO3 to form solid solutions with different dopants (both iso- and aliovalent makes it versatile for various applications. In the present study, (Ba,CaTiO3 (BCT is modified with Bi(MgTiO3 (BMT in search for new lead-free ferroelectric material and improve their properties. For this purpose, BCT acts as a main base material and BMT acts as a modifier to fabricate a multifunctional material. In this study, we report the structural and electrical properties of lead free piezo-ceramics (1−x(Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5O3 with x=0.2, 0.4, 0.5 prepared by solid-state sintering technique. Single perovskite phase with tetragonal structure is obtained for all the compositions, which is reconfirmed by the Raman Spectroscopic study. Dielectric study confirm the temperature stable behavior of the dielectric permittivity values above 300∘C. The dielectric constant value decreases with increase in BMT doping content. Impedance Spectroscopic study confirms non-Debye type dielectric relaxation in the specimen. The Nyquist plot and conductivity studies show the negative temperature coefficient of resistance behavior (NTCR of the samples.

  9. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.

  10. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    Science.gov (United States)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  11. Quasi-elastic transfer and charge-exchange reactions in collisions of 48Ti on 42Ca and 26Mg

    International Nuclear Information System (INIS)

    Brendel, C.

    1985-01-01

    At the GSI magnetic spectrometer quasi-elastic transfer and charge-exchange reactions of the system 48 Ti + 42 Ca at incident energies E lab = 240, 300, and 385 MeV and additionally at the higher projectile energy the system 48 Ti + 26 Mg were studied each in the excitation energy range up to E x ≅ 80 MeV. The transition strength was for each particle-hole configuration of the final system calculated by means of the DWBA and subsequently folded with a Breit-Wigner distribution. The localization of the strength of the cross section and the specific structure of the energy spectra were at incident energies between 6 and 8 MeV/amu for all angles well reproduced. By an extension of the core-excitation model to many-stage reactions the charge-exchange reaction 48 Ti + 42 Ca → 48 Sc + 42 Sc could be described as sequential two-stage process. In the two-neutron stripping reaction 48 Ti + 42 Ca → 46 Ti + 44 Ca a surprisingly narrow line with a width of the experimental resolution and an excitation energy of E x = 17.8 MeV was measured at angles smaller than the grazing angle. In the 48 Ti + 26 Mg system the corresponding 46 Ti spectra show also under forward angles structures at excitation energies between 8 and 16 MeV. These lines can be explained as two-neutron states with high spin. (orig./HSI) [de

  12. Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts

    NARCIS (Netherlands)

    Kan Parker, M. van; Mason, P.R.D.; Westrenen, W. van

    2011-01-01

    We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon.

  13. Long-term changes in the radiation-induced optical absorption bands of LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Kelemen, A.

    1996-01-01

    Optical absorption spectroscopy plays an exceptional role in the identification of charge traps responsible for the different TL peaks of the TL phosphors. Experiments carried out under different conditions, e.g. with different types of ionising radiation and/or different dose rates, applying different annealing procedures and/or different storage times after the irradiation, may lead to contradictory results. Therefore, a systematic investigation was conducted of the build-up and decay characteristics of the optical absorption bands of different LiF:Mg,Ti single crystal samples. Important changes were found in the long (hours and days) time scale. For example, the 350 nm optical absorption increases continuously in the Mg free LiF:Ti sample, while the intensities of the 310 nm and 380 nm absorption bands decrease in the sample containing Mg even several hours after irradiation with ∼ 5 μs, 4 MeV linear accelerator electron pulses. These experimental results may have serious consequences for the interpretation of optical absorption data and for the understanding of defect and energy storage mechanisms of thermoluminescence in LiF:Mg,Ti. (author)

  14. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    Science.gov (United States)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  15. Effect of soaking of seeds in potassium silicate and uniconazole on ...

    African Journals Online (AJOL)

    ... by low concentration of uniconazole treatment as compared to the control and other treatments. The growth of tomato seedlings was efficiently regulated by uniconazole 50 mg L-1 (12 h soaking) treatment. Key words: Chlorophyll fluorescence, plant growth retardants, plug plants, potassium silicate, seed treatment, silicon, ...

  16. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO 2 (u-TiO 2 ) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO 2 was realized. • u-TiO 2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO 2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO 2 (c-TiO 2 ) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO 2 (u-TiO 2 ) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl 4 solution at 70 °C, u-TiO 2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH 3 NH 3 PbI 3 film. The perovskite solar cell using u-TiO 2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO 2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO 2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  17. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer

    International Nuclear Information System (INIS)

    Wang, Jing; Qin, Minchao; Tao, Hong; Ke, Weijun; Chen, Zhao; Wan, Jiawei; Qin, Pingli; Lei, Hongwei; Fang, Guojia; Xiong, Liangbin; Yu, Huaqing

    2015-01-01

    In this letter, we report perovskite solar cells with thin dense Mg-doped TiO 2 as hole-blocking layers (HBLs), which outperform cells using TiO 2 HBLs in several ways: higher open-circuit voltage (V oc ) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO 2 as compared to TiO 2 such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V oc . In addition, the Mg-modulated TiO 2 with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device

  18. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  19. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    Science.gov (United States)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  20. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    , the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  1. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  2. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  3. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  4. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  5. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  6. Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering

    Directory of Open Access Journals (Sweden)

    T. Santhosh Kumar

    2014-06-01

    Full Text Available We report the structural, dielectric and leakage current properties of Co doped MgTiO3 thin films deposited on platinized silicon (Pt/TiO2/SiO2/Si substrates by RF magnetron sputtering. The role of oxygen mixing percentage (OMP on the growth, morphology, electrical and dielectric properties of the thin films has been investigated. A preferred orientation of grains along (110 direction has been observed with increasing the OMP. Such evolution of the textured growth is explained on the basis of the orientation factor analysis followed the Lotgering model. (Mg1-xCoxTiO3 (x = 0.05 thin films exhibits a maximum relative dielectric permittivity of ɛr = 12.20 and low loss (tan δ ∼ 1.2 × 10−3 over a wide range of frequencies for 75% OMP. The role of electric field frequency (f and OMP on the ac-conductivity of (Mg0.95Co0.05TiO3 have been studied. A progressive increase in the activation energy (Ea and relative permittivity ɛr values have been noticed up to 75% of OMP, beyond which the properties starts deteriorate. The I-V characteristics reveals that the leakage current density decreases from 9.93 × 10−9 to 1.14 × 10−9 A/cm2 for OMP 0% to 75%, respectively for an electric field strength of 250 kV/cm. Our experimental results reveal up to that OMP ≥ 50% the leakage current mechanism is driven by the ohmic conduction, below which it is dominated by the schottky emission.

  7. Multi-functional TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} coatings for low-emissivity and hydrophilic applications

    Energy Technology Data Exchange (ETDEWEB)

    Loka, Chadrasekhar; Park, Kyoung Ryeol; Lee, Kee-Sun, E-mail: kslee@kongju.ac.kr

    2016-02-15

    Graphical abstract: - Highlights: • Multi-functional thin films were deposited by RF and DC magnetron sputtering. • High visible transmittance (∼85.5% at 550 nm) was achieved with low-e value 0.067. • Different bandgap concept was used to improve the hydrophilic properties. • Transparent, superhydropbilic films with water contact angle ∼5° were achieved. - Abstract: Multi-functional (coatings with some additional functional properties such as high transparency, antireflection, hydrophilicity and antifogging) coatings are indispensable for the modern energy saving systems. In this regard, we deposited TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} multilayer thin films on soda-lime glass by using RF and DC magnetron sputtering to achieve a multi-functional thin film stack with the combination low-emissivity (low-e) and hydrophilicity properties in addition to the high transparency. Primary deposition of Ag(Cr)/TiN{sub x} was tried for the low-e effect and successfully obtained a very low emissivity value of 0.067, and then Si and TiO{sub 2} films with different bandgap were subsequently deposited to provide the hydrophilic properties. X-ray diffraction results revealed the anatase phase formation of TiO{sub 2} after annealing the films at 673 K by using the rapid thermal annealing system. Rutherford Backscattering Spectrometry (RBS) was carried out to determine the chemical composition and elemental depth distribution. The multilayer stack exhibited superhydrophilicity with a water contact angle of about 5° after irradiation by UV light. A Heterojunction film with wide and narrow bandgap semiconductor materials was effective to improve the hydrophilicity. The films exhibited a high visible transmittance (∼85.5%, at 550 nm) and low infrared transmittance (7%, at 2000 nm) including low-e and superhydrophilicity.

  8. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  9. Mechanical properties of the Mg-14Ti-1Al-0.9Mn (%Wt) synthesized by physical vapour

    International Nuclear Information System (INIS)

    Garces, G.; Cristina, M. C.; Torralba, M.; Adeva, P.

    2001-01-01

    The mechanical properties of the alloy Mg-14% Ti-1% Al-0.9 Mn obtained by PVD techniques have been evaluated up to 300 degree centigree. The alloy presents a columnar grain microstructure, typical of the zone 2 of the structure zone model of MD, where surface diffusion takes place. The alloy tested in compression at room temperature presented a high yield stress, 360 MPa. This resistance to the plastic deformation is principally due to a solid solution hardening and small grain size. The yield stress decrease with the compression temperature. However, the alloy showed low fracture resistance, especially at room temperature. The presence of pores at the grain boundaries, results in the crack formation, running fast along the grain boundary. (Author) 13 refs

  10. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  11. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  12. Thermal activation energies and peak temperatures in thermoluminescence of LiF (Mg, Ti) and CaF2:Mn at low temperatures

    International Nuclear Information System (INIS)

    Jain, V.K.; Jahan, M.S.

    1987-01-01

    Low temperature thermoluminescence (TL) of LiF (TLD-100) and CaF 2 :Mn is studied. The TLD-100 is dosimetry grade LiF manufactured by Harshaw-Filtrol Partnership. It is believed that it contains about 200 ppm Mg and 7 ppm Ti as impurities. In each case the glow curve shows several peaks. Some of these peaks are quite strong and develop with dose. Others are weak. Kinetic parameters are calculated for the former using the initial rise method and Chen's modified formula. The two sets of values are found to be different. Some authors have suggested empirical formulae connecting peak temperature, T m , and activation energy, E. The empirical relations are tried for the values of E calculated, as well as those available in literature (for T m above room temperature). It is found that a fairly reasonable relation existed between E and T m . (author)

  13. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  14. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    Science.gov (United States)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the

  15. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  16. Microwave-Assisted Conversion of Levulinic Acid to γ-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates

    Directory of Open Access Journals (Sweden)

    Alfonso Yepez

    2015-09-01

    Full Text Available The microwave-assisted conversion of levulinic acid (LA has been studied using low-loaded supported Fe-based catalysts on porous silicates. A very simple, productive, and highly reproducible continuous flow method has been used for the homogeneous deposition of metal oxide nanoparticles on the silicate supports. Formic acid was used as a hydrogen donating agent for the hydrogenation of LA to effectively replace high pressure H2 mostly reported for LA conversion. Moderate LA conversion was achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal-based catalysts.

  17. Synthesis, Characterization, and NIR Reflectance of Highly Dispersed NiTiO3 and NiTiO3/TiO2 Composite Pigments

    Directory of Open Access Journals (Sweden)

    Yuping Tong

    2016-01-01

    Full Text Available The highly dispersed nanostructured NiTiO3 pigments and NiTiO3/TiO2 composite pigments can be synthesized at relative low temperature. The activation energy of crystal growth of NiTiO3 during calcinations via salt-assistant combustion method is 9.35 kJ/mol. The UV-vis spectra results revealed that the absorbance decreased with the increasing of calcinations temperature due to small size effect of nanometer particles. The optical data of NiTiO3 nanocrystals were analyzed at the near-absorption edge. SEM showed that the obtained NiTiO3 nanocrystals and NiTiO3/TiO2 nanocomposite were composed of highly dispersed spherical-like and spherical particles with uniform size distribution, respectively. The chromatic properties and diffuse reflectance of samples were investigated. The obtained NiTiO3/TiO2 composite samples have higher NIR reflectance than NiTiO3 pigments.

  18. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6AI-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A. M.; Khan, T. I.

    2013-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20 micro m) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg/sub 2/ and Mg/sub 3/AlNi/sub 2/ was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement. (author)

  19. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6Al-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A M; Khan, T I

    2014-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20μm) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg 2 and Mg 3 AlNi 2 was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement

  20. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    Science.gov (United States)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  1. Silicic, high- to extremely high-grade ignimbrites and associated deposits from the Paraná Magmatic Province, southern Brazil

    Science.gov (United States)

    Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José

    2018-04-01

    The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.

  2. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    Science.gov (United States)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  3. Properties of hot pressed MgB2/Ti tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Melisek, T.; Fedor, J.; Cambel, V.; Morawski, A.; Kario, A.

    2009-01-01

    Hot axial and hot isostatic pressing was applied for single-core MgB 2 /Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.

  4. Thermal desensitization of gamma irradiated LiF:Mg,Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.; Rogalev, B.; Afonin, G. (Institute of Geochemistry, Irkutsk (Russian Federation))

    1993-01-01

    The thermoluminescence sensitivity variation of gamma irradiated LiF:Mg,Ti after annealing at temperatures of 300-500[sup o]C has been studied. This variation is shown to be due to concurrent processes of sensitization and damage. Annealing of irradiated crystals leads to the restoration of the initial sensitivity. The damage decay time is approximately an order of magnitude greater than the decay time of the sensitization. The experimental data are interpreted quantitatively within the scope of included gamma track overlapping. (author).

  5. Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuhide, E-mail: simizu-tetuhide@tmu.ac.jp [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan); Teranishi, Yoshikazu; Morikawa, Kazuo; Komiya, Hidetoshi; Watanabe, Tomotaro; Nagasaka, Hiroshi [Surface Finishing Technology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10, Aomi, Kohtoh-ku, 135-0064 Tokyo (Japan); Yang, Ming [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan)

    2015-04-30

    (Ti,Al)N films were deposited from a Ti{sub 0.33}Al{sub 0.67} alloy target with a high Al content at a substrate temperature of less than 150 °C using high power impulse magnetron sputtering (HIPIMS) plasma. The pulse duration was varied from 60 to 300 μs with a low frequency of 333 Hz to investigate the effects on the dynamic variation of the substrate temperature, microstructural grain growth and the resulting mechanical properties. The chemical composition, surface morphology and phase composition of the films were analyzed by energy dispersive spectroscopy, scanning electron microscopy and X-ray diffraction, respectively. Mechanical properties were additionally measured by using a nanoindentation tester. A shorter pulse duration resulted in a lower rate of increase in the substrate temperature with an exponentially higher peak target current. The obtained films had a high Al content of 70–73 at.% with a mixed highly (0002) textured wurtzite phase and a secondary phase of cubic (220) grains. Even with the wurtzite phase and the relatively high Al contents of more than 70 at.%, the films exhibited a high hardness of more than 30 GPa with a relatively smooth surface of less than 2 nm root-mean-square roughness. The hardest and smoothest surfaces were obtained for pulses with an intermediate duration of 150 μs. The differences between the obtained film properties under different pulse durations are discussed on the basis of the grain growth process observed by transmission electron microscopy. The feasibility of the low-temperature synthesis of AlN rich wurtzite phase (Ti,Al)N films with superior hardness by HIPIMS plasma duration was demonstrated. - Highlights: • Low temperature synthesis of AlN rich wurtzite phase (Ti,Al)N film was demonstrated. • 1 μm-thick TiAlN film was deposited under the temperature less than 150 °C by HIPIMS. • High Al content with highly (0002) textured wurtzite phase structure was obtained. • High hardness of 35 GPa were

  6. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  7. High-performance polymer/layered silicate nanocomposites

    Science.gov (United States)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  8. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Mitlin, David

    2012-01-01

    We utilized transmission electron microscopy (TEM) analysis, with a cryogenically cooled sample stage, to detail the microstructure of partially transformed pure and titanium fluoride-catalyzed magnesium hydride powder during hydrogenation cycling. The TiF 3 -catalyzed MgH 2 powder demonstrated excellent hydrogen storage kinetics at various temperatures, whereas the uncatalyzed MgH 2 showed significant degradation in both kinetics and capacity. TEM analysis on the partially hydrogen absorbed and partially desorbed pure Mg(MgH 2 ) revealed a large fraction of particles that were either not transformed at all or were completely transformed. On the other hand, in the MgH 2 +TiF 3 system it was much easier to identify regions with both the hydride and the metal phase coexisting in the same particle. This enabled us to establish the metal hydride orientation relationship (OR) during hydrogen absorption. The OR was determined to be (1 1 0)MgH 2 || (−1 1 0 −1)Mg and [−1 1 1]MgH 2 || [0 1 −1 1]Mg. During absorption the number density of the hydride nuclei does not show a dramatic increase due the presence of TiF 3 . Conversely, during desorption the TiF 3 catalyst substantially increases the number of the newly formed Mg crystallites, which display a strong texture correlation with respect to the parent MgH 2 phase. Titanium fluoride also promotes extensive twinning in the hydride phase.

  9. Surface structure of MgO underlayer with Ti diffusion for (002 oriented L10 FePt-based heat assisted magnetic recording media

    Directory of Open Access Journals (Sweden)

    Sintaro Hinata

    2018-05-01

    Full Text Available Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm/Cr80Mn20 (0-30 nm/Cr50Ti50 (0-50 nm/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  10. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    Science.gov (United States)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  11. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite α-Mg2SiO4

    International Nuclear Information System (INIS)

    Pilati, T.; Bianchi, R.; Gramaccioli, C.M.

    1990-01-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg 2 SiO 4 , an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO 4 group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.)

  12. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    Science.gov (United States)

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  13. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    International Nuclear Information System (INIS)

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H 2 O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer

  14. Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite

    Science.gov (United States)

    Xiong, Ting; Yuan, Xingzhong; Chen, Xiaohong; Wu, Zhibin; Wang, Hou; Leng, Lijian; Wang, Hui; Jiang, Longbo; Zeng, Guangming

    2018-01-01

    Water pollution is one of the forefront environmental problems. Due to the simplification, flexibility and low cost, the adsorption becomes one of the most fashionable technology and the exploitation of adsorbents has drawn greatly attention. In this study, a novel magnesium silicate-hydrothermal carbon composite (MS-C) was synthesized by facile hydrothermal carbonization and used to remove the cadmium (Cd(II)) and methylene blue (MB) from wastewater. It was shown that the porous and lump-like magnesium silicate (MS) was decorated with multiple hydrothermal carbon (HC) via the Csbnd Osbnd Si covalent bonding. Further, the adsorption behavior of Cd(II) and MB based on the MS, HC, and MS-C were systematically investigated. The equilibrium data of both Cd(II) and MB were fitted well with Langmuir model. Compared to pure MS and HC, the adsorption capacity of composite was significantly improved, accompanied by the maximum adsorption capacity of 108 mg/g for Cd(II) and 418 mg/g for MB, respectively. In the Cd(II)-MB binary system, the adsorption of Cd(II) was favored in comparison with that of MB. The removal of Cd(II) was mainly ascribed to electrostatic attraction and the ion exchange interaction. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction, π-π interaction and hydrogen bond. In view of these empirical results and real water treatment, the environmental friendly and low-cost MS-C holds a potential for separate or simultaneous removal of Cd(II) and MB in practical applications.

  15. Pressure-induced coordination change of Ti in silicate glass: a XANES study

    OpenAIRE

    Paris, Eleonora; Dingwell, Donald B.; Seifert, Friedrich; Mottana, Annibale; Romano, Claudia

    1994-01-01

    The effect of pressure on titanium coordination in glasses, with composition K2TiSi4O11, quenched isobarically from liquids equilibrated at high pressure (5, 10, 15, 20, 25, 30 kbar respectively) and T=1600° C has been investigated by X-ray absorption spectroscopy (XAS). The XANES spectra collected at the Ti K-edge clearly show a variation with pressure that is related to changes in the geometrical environment around the Ti atoms. By comparison with spectra of standard materials, the XANES sp...

  16. The determination of kinetic parameters of LiF : Mg,Ti from thermal decaying curves of optical absorption bands

    CERN Document Server

    Yazici, A N

    2003-01-01

    In this paper, the thermal bleaching curves (TBCs) of specific optical absorption bands of LiF : Mg,Ti were measured as a function of temperature. The TBCs obtained were analysed to extract the kinetic parameters (the thermal activation energy (E) and the frequency factor (s)) of some TL glow peaks of LiF : Mg,Ti on the basis of the developed first-order kinetic model over a specified temperature region.

  17. Dry cryomagnetic system with MgB2 coil

    Science.gov (United States)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.

    2017-12-01

    MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.

  18. Genesis of Cenozoic intraplate high Mg# andesites in Northeast China

    Science.gov (United States)

    Liu, J. Q.; Chen, L. H.; Zhong, Y.; Wang, X. J.

    2017-12-01

    High-Mg# andesites (HMAs) are usually generated in the converged plate boundary and have genetic relationships with slab subduction. However, it still remained controversial about the origin of those HMAs erupted in the intra-plate setting. Here we present major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate HMAs from Northeast China to constrain their origin and formation process. Cenozoic Xunke volcanic rocks are located in the northern Lesser Khingan Range, covering an area of about 3, 000 km2. These volcanic rocks are mainly basaltic andesite and basaltic trachyandesite, with only several classified as trachyandesite and andesites. They have high SiO2 contents (54.3-57.4 wt%) and Mg# (49.6-57.8), falling into the scope of high Mg# andesites. The Xunke HMAs are enriched in large ion lithophile elements but depleted in high field strength elements, with positive Ba, K, Sr and negative Zr-Hf, and Ti anomalies. Their trace element absolute concentrations are between those of potassic basalts and Wuchagou HMAs. The Xunke HMAs have relatively enriched Sr-Nd-Hf isotopes (87Sr/86Sr = 0.705398-0.705764, ɛNd=-8.8-3.8, ɛHf=0.5-11.7), and low radiogenic Pb isotopes (206Pb/204Pb = 16.701-17.198), towards to the EM1 end-member, which indicates that they are ultimately derived from ancient, recycled crustal components. Primitive silica-rich melts were generated from higher degrees of partial melting of recycled crustal materials (relative to potassic basalts) and then interacted with the peridotite to produce the Xunke HMAs.

  19. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  20. Energy dependence of thermoluminescent response of CaSO{sub 4}:Dy, LiF:Mg and micro LiF:Mg,Ti in clinical beams of electrons by using different simulator objects; Dependencia energetica da resposta TL de dosimetros de CaSO{sub 4}:Dy, LiF:Mg e microLiF:Mg,Ti em feixes clinicos de eletrons utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda; Campos, Leticia Lucente, E-mail: abravin@ipen.b, E-mail: rsakuraba@einstein.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Cruz, Jose Carlos da, E-mail: rsakuraba@einstein.b, E-mail: josecarlosc@einstein.b [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-10-26

    Yet not so widely applied in radiotherapy, the calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) is used in radioprotection and studies has been demonstrated its great potential for the dosimetry in radiotherapy. This work evaluates the energy dependence of the thermoluminescent answer of the CaSO{sub 4}:D, LiF:Mg,Ti (TLD-100) and micro LiF:Mg,Ti in clinical beams of electrons by using water simulators, PMMA and solid water

  1. Corrosion of low Si-alloyed steels in aqueous solution at 90 deg. C. Inhibitive action of silicates; Corrosion d'aciers faiblement allies au silicium en solution aqueuse a 90 deg. C. Action inhibitrice des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, S

    2002-02-01

    Low-Si alloyed steels, with Si content ranging from 0.25 to 3.2 wt%, as potential candidate materials for high-level nuclear waste disposal containers, have been studied four the point of view of their corrosion behaviour at 90 deg C in an aqueous solution simulating groundwater (0.1 M NaCl borate-buffered solution with a pH of 8.5) both in reducing and in aerated conditions. The influence of silicate addition to the solution is examined so as to represent the silicon of groundwater, coming from the clay dissolution. When no silicate was added to the solution, silicon as an alloying element was proved to degrade in the first moments the steel ability to passivate. For longer immersion times, protective effects developed most efficiently on the steel containing 3.2 wt% silicon both in reducing an in aerating conditions, Infrared spectroscopy, EDSX, XRD and Raman microprobe were applied to characterise the oxide layer composition, which was found to be a mixture of magnetite and maghemite. In the presence of silicate in the solution, clay-like iron silicates appeared in the corrosion layer. Electrochemical tests results show that adding silicate into solution resulted in increasing the steel ability to passivate. In the short term, the inhibiting effect of silicate was confirmed by mass loss tests, but the tendency was inverse in the long term. Silicate iron layers were eventually less protective than the magnetite layers formed in the absence of silicate. (author)

  2. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  3. Nanostructured MgTiO{sub 3} thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Mahajan, Amit [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, 66120 Font Romeu Odeillo (France); Venkata Saravanan, K., E-mail: venketvs@cutn.ac.in [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 61010 (India)

    2015-12-15

    Highlights: • Obtaining nano-crystalline magnesium titanium oxide powders by solar physical vapor deposition (SPVD) process. And using these nano-powders to obtain thick films on conducting substrates by electrophoretic deposition (EPD). • SPVD is a core innovative, original and environmentally friendly process to prepare nano-materials in a powder form. • Sintered thick films exhibited dielectric constant, ε{sub r} ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz, which is comparable to the values reported earlier. • New contributions to the pool of information on the preparation of nano-structured MgTiO{sub 3} thick films at low temperatures. • A considerable decrease in synthesis temperature of pure MgTiO{sub 3} thick film was observed by the combination of SPVD and EPD. - Abstract: A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO{sub 3} nanostructured thick films is presented. Obtaining nanostructured MgTiO{sub 3} thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro – DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22–25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The

  4. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    Science.gov (United States)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  5. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  6. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    Science.gov (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  7. Cooperative doping effects of Ti and nano-SiC on transport critical current density and grain connectivity of in situ MgB{sub 2} tapes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F., E-mail: PAN.Xifeng@nims.go.jp [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)] [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China); Matsumoto, A.; Kumakura, H. [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, C.H.; Zhao, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China)] [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2011-11-15

    We studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} tape. Ti doping significantly weakens the current dependence of T{sub c} of MgB{sub 2} tapes at self-field, and does not change T{sub c} or slightly increases T{sub c}. Further Ti adding can enhance in-field J{sub c} performance of SiC doped MgB{sub 2} tapes by a factor of 50-100% at 4.2 K and 10 T. Ti addition improves the J{sub c} performance of undoped and SiC doped MgB{sub 2} by modifying their grains connection. By now, nano-SiC powder (20-30 nm) is still the most effective additive for improving upper critical field and critical current density of MgB{sub 2}-based superconducting materials. However, some decomposed carbon aggregates at grain boundaries and results in serious weak-links of MgB{sub 2} grains, and these weak-links limit the further improvement of critical current density, J{sub c} of MgB{sub 2}, especially at lower fields. Ti doping is reported to increase the compactness of MgB{sub 2}, and modify its intergranular coupling by forming ultrathin TiB{sub 2} layer at grain boundaries. In this work, we studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} and the possibility to improve transport J{sub c} of SiC doped MgB{sub 2} by introducing Ti additive. The results suggest the Ti addition can obviously improve J{sub c} of MgB{sub 2} at lower fields and also enhance the J{sub c} of SiC doped MgB{sub 2} by improving their grain connectivity which shows serious intergranular weak-links.

  8. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    Science.gov (United States)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  9. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-01-01

    A series of Mg/TiO 2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%

  10. The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Razaghian, A. [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2014-01-10

    Current study was undertaken to investigate the effect of different amounts of titanium (0.001–0.5 wt%) on the microstructure, tensile properties and quality index of a high strength aluminum alloy (Al–4.5 Cu–0.3Mg). It was found that this alloy is susceptible to hot tearing and at least 0.05 wt% Ti is necessary to remove such a defect. The microstructural studies of the alloy revealed that Ti addition reduces the grain size from 190 μm to 48 μm, but adding higher Ti content (>0.05 wt% Ti) does not change the grain size considerably. Further investigations on tensile tests revealed that the addition of Ti increases ultimate tensile strength (UTS) but reduces elongation values. T6 heat treatment improved UTS, elongation and quality index values of the casting. Fracture surfaces via scanning electron microscopy (SEM) revealed ductile fracture mode in both as-cast and heat-treated conditions. At higher Ti contents, the presence of Al{sub 3}Ti intermetallic on grain boundaries was found to be the favored path for crack growth.

  11. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Shintaro, E-mail: sichi@meiji.ac.jp [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan); Nakamura, Toshihiro [Department of Applied Chemistry, Meiji University, Kawasaki 214-8571 (Japan)

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na{sub 2}O, MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, P{sub 2}O{sub 5}, K{sub 2}O, CaO, TiO{sub 2}, MnO, and total Fe{sub 2}O{sub 3}). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g{sup −1} range (e.g., 140 μg g{sup −1} for Na{sub 2}O, 31 μg g{sup −1} for Al{sub 2}O{sub 3}, and 8.9 μg g{sup −1} for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry. - Highlights: • X-ray fluorescence determination of major oxides was performed using 1.1 mg of sample. • Preparation and measurement techniques of the XRF micro glass bead specimen were optimized. • Calibration curves using synthetic standards showed good

  12. Water-bearing, high-pressure Ca-silicates

    Science.gov (United States)

    Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.

    2017-07-01

    Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this

  13. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  14. Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction

    DEFF Research Database (Denmark)

    Du, X.Y.; He, W.; Zhang, X.D.

    2013-01-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a ‘nanocrystal-glass’ configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by ...... nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass–ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries....

  15. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  16. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    Science.gov (United States)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  17. Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg)

    International Nuclear Information System (INIS)

    Godbole, Vikram A.; Villevieille, Claire; Novák, Petr

    2013-01-01

    Various metal titanium oxyphosphates, M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were synthesized via modified solution route synthesis. The as synthesized M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were electrochemically tested using galvanostatic cycling, cyclic voltammetry, and rate performance measurements in order to investigate the effect of metal ion (M) on the electrochemical performance of this family of materials. All the studied materials reacted with 3 Li + during the 1st lithiation showing reaction plateaus at different potentials versus Lithium. Similar studies were performed on M 0.5 TiOPO 4 (M = Ni, Cu, Mg) samples with smaller particle size, obtained via ball milling, in order to understand the effect of particle size on the electrochemistry of the materials. The ball milled samples delivered higher specific charge during the 1st cycle showing reaction plateaus at different potentials, poorer capacity retention, and poorer rate capability as compared to the as synthesized ones. This was attributed to a change in morphology and particle size of the samples upon ball milling. Amongst all the tested materials, the as synthesized Cu 0.5 TiOPO 4 showed the best electrochemistry. The ball milled Mg 0.5 TiOPO 4 reacted with ∼5.5 Li + during 1st lithiation (as compared to 3 Li + expected from this family of compounds) and 3.3 Li + during the 1st delithiation (rather than the expected 2 Li + ). This suggests a reaction mechanism where Mg 0.5 TiOPO 4 undergoes a phase transformation forming Mg 0 , which reversibly alloys with 2.5 extra Li + . Thus the electrochemical cycling of Mg 0.5 TiOPO 4 gives insights into the reaction mechanism in this family of materials

  18. Low temperature formation of ferroelectric PbTiO3 films by laser ablation with 2nd laser irradiation; Reiki hikari laser heiyo laser ablation ho ni yoru kyoyudentai PbTiO3 usumaku no teion keisei

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H.; Kawai, T. [Osaka University, Osaka (Japan)

    1997-08-20

    The unique advantage of the pulsed laser deposition is its ability to produce highly oriented stoichiometric films at a low substrate temperature. Ferroelectric PbTiO3 thin films have been formed using 2nd laser assisted laser ablaion technique at low temperature, i.e., 350degC, on Sr7iO3 single-crystal substrates and Pt/MgO electrodes. The second laser irradiation at the substrate surface is quite effective for crystallization of the films at low substrate temperature below 400degC. The suitable energy density (fluence) of the irradiation laser is in the range of 30-100 mJ/cm{sup 2}. X-ray diffraction patterns of PbTiO3 thin films show c-axis orientation, with a rocking angle of 1.0 - 0.5deg. These films exhibit ferroelectric hysteresis loop. The dielectric constant and remanent polalyzation of the PbTiO3 films are in the range of 120-150 and 60-80 {mu}C/cm{sup 2}, respectively. 31 refs., 10 figs., 1 tab.

  19. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  20. Separation of DR synthesized Ti-Mg Alloy by dissolution of waste by-products in acid media

    CSIR Research Space (South Africa)

    Mushove, T

    2010-06-01

    Full Text Available The objective of this work is to isolate synthesized Ti-Mg alloy powder through leaching out of MgO and any unreduced oxides of Titanium. Leaching media investigated are H2SO4, HCl and organic acids ascorbic acid/oxalic and L-cysteine /ascorbic...

  1. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  2. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  3. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    MgB2 samples doped with TiO2 nanoparticles were prepared and the effect of TiO2 addition on the superconducting transition temperature (T-c), irreversibility field (H-irr) and critical current density (J(c)) were investigated. It is found that the hexagonal lattice parameters a and c decrease...... with TiO2 doping. Tc decreases gradually from 38.2 to 37.8 K as the TiO2 content increases from 0 to 15 wt%. The H-irr increases at 20 K from 4.3 to 4.9 T as the TiO2 content increases from 0 to 10 wt%, and at the same temperature J(c) increases from 450 to 4250 A/cm(2) at 4.2 T. (C) 2004 Published...

  4. Characterization of the personal thermoluminescent dosemeter of LiF: Mg, Ti + Ptfe

    International Nuclear Information System (INIS)

    Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.

    1991-01-01

    The objective of this work is to characterize the thermoluminescent dosemeters taken place in the laboratory in form of pellets of LiF: Mg, Ti + Ptfe like personal dosemeters, subjecting them to the operation tests proposed by the international standards and comparing them with the TLD-100, the Tl dosemeter more used at the moment for personal dosimetry

  5. Speleothem Mg-isotope time-series data from different climate belts

    Science.gov (United States)

    Riechelmann, S.; Buhl, D.; Richter, D. K.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Niedermayr, A.; Vonhof, H. B.; Wassenburg, J.; Immenhauser, A.

    2012-04-01

    from caves in Morocco, Germany and Peru are presented. The lowest mean Mg-isotope compositions are found in two Pleistocene Moroccan stalagmites (delta26Mg: -4.26 ± 0.07‰ and -4.17 ± 0.15‰). The cyclical shifts in both stalagmites are best explained by periods of increasing and decreasing aridity. In contrast, Holocene Peruvian stalagmites (0 to 14 ka) show a high mean delta26Mg-value of -3.96 ± 0.04‰ and a very low level of variability in time. This is probably due to the equatorial climate lacking significant variations in temperature and/or rainfall amount. Changes in precipitation rate show effects in stalagmites from western Germany and Peru resulting in a small variability exceeding the error of the delta26Mg-values. Stalagmites from Western Germany (BU 4 mean delta26Mg: -4.20 ± 0.10‰; AH-1 mean delta26Mg: -4.01 ± 0.07‰) are, in terms of the factors that control isotope fractionation, complex. This is because factors such as precipitation rate, changes in silicate versus carbonate weathering ratios, air temperature and rainfall amount interfere in a highly complicated manner.

  6. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  7. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  8. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    Science.gov (United States)

    Yan, Yongke; Wang, Yu. U.; Priya, Shashank

    2012-05-01

    [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d33 = 1000 pC/N, d31 = 371 pC/N, ɛr = 2591, and tanδ = ˜0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition.

  9. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    International Nuclear Information System (INIS)

    Gadikota, Greeshma; Natali, Claudio; Boschi, Chiara; Park, Ah-Hyung Alissa

    2014-01-01

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe) 3 Si 2 O 5 (OH) 4 )) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO 2 emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P CO2 of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO 2 via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO 3 ) 2 ), whewellite (CaC 2 O 4 ·H 2 O) and glushinskite (MgC 2 O 4 ·2H 2 O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation

  10. Observation of indium ion migration-induced resistive switching in Al/Mg_0_._5Ca_0_._5TiO_3/ITO

    International Nuclear Information System (INIS)

    Lin, Zong-Han; Wang, Yeong-Her

    2016-01-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg_0_._5Ca_0_._5TiO_3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In_2O_3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In"3"+ ion migration is proposed. In"3"+ ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

  11. An evaluation of a single-step extraction chromatography separation method for Sm-Nd isotope analysis of micro-samples of silicate rocks by high-sensitivity thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Li Chaofeng; Li Xianhua; Li Qiuli; Guo Jinghui; Li Xianghui; Liu Tao

    2011-01-01

    Graphical abstract: Distribution curve of all eluting fractions for a BCR-2 (1-2-3.5-7 mg) on LN column using HCl and HF as eluting reagent. Highlights: → This analytical protocol affords a simple and rapid analysis for Sm and Nd isotope in minor rock samples. → The single-step separation method exhibits satisfactory separation effect for complex silicate samples. → Corrected 143 Nd/ 144 Nd data show excellent accuracy even if the 140 Ce 16 O + / 144 Nd 16 O + ratio reached to 0.03. - Abstract: A single-step separation scheme is presented for Sm-Nd radiogenic isotope system on very small samples (1-3 mg) of silicate rock. This method is based on Eichrom LN Spec chromatographic material and affords a straightforward separation of Sm-Nd from complex matrix with good purity and satisfactory blank levels, suitable for thermal ionization mass spectrometry (TIMS). This technique, characterized by high efficiency (single-step Sm-Nd separation) and high sensitivity (TIMS on NdO + ion beam), is able to process rapidly (3-4 h), with low procedure blanks ( 143 Nd/ 144 Nd ratios and Sm-Nd concentrations are presented for eleven international silicate rock reference materials, spanning a wide range of Sm-Nd contents and bulk compositions. The analytical results show a good agreement with recommended values within ±0.004% for the 143 Nd/ 144 Nd isotopic ratio and ±2% for Sm-Nd quantification at the 95% confidence level. It is noted that the uncertainty of this method is about 3 times larger than typical precision achievable with two-stage full separation followed by state-of-the-art conventional TIMS using Nd + ion beams which require much larger amounts of Nd. Hence, our single-step separation followed by NdO + ion beam technique is preferred to the analysis for microsamples.

  12. Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics

    Science.gov (United States)

    Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2018-03-01

    Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.

  13. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  14. Comparative study of the interface composition of TiN and TiCN hard coatings on high speed steel substrates obtained by arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E. (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Segovia, J.L. de (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Alberdi, A. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Calvo, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Laucirica, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain))

    1993-05-15

    In this paper the composition of the interface of TiN and TiCN hard coatings deposited onto high speed steel substrates obtained by the arc discharge technique is studied using Auger electron spectroscopy at two different substrate temperatures, 520 K and 720 K. The low temperature (520 K) TiN coating developed an oxygen phase at the interface, producing a weak adherence of 40 N, while the high temperature coatings (720 K) had a less intense oxygen phase, giving a greater adherence to the substrate of 60 N. TiCN coatings at 520 K are characterized by a low oxygen intensity at the interface. However, their adherence of 50 N is lower than the value of 60 N for the high temperature TiN coatings and is independent of the substrate temperature. (orig.)

  15. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  16. Thermoluminescence of LiF: Mg, Ti between 77 and 315 K

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da.

    1989-01-01

    A special thermoluminescent system was developed. It is able to operate right from liquid nitrogen temperature and also permits the determination of the sample thermoluminescent emission spectrum. Using this system, the thermoluminescence displayed by 77 K irradiated LiF:Mg,Ti (TLD-100), from the irradiation temperature to 315 K, was studied. In this temperature range seven glow peaks, at 139, 153, 194, 240, 260, 283 and 300 K, were determined. (author)

  17. Characteristics of Ti:LaMgAl11O19 crystals grown by the Heat Exchanger Method (HEM)

    International Nuclear Information System (INIS)

    Khattak, C.P.; Lai, S.T.

    1989-01-01

    This paper reports single crystals of Ti:LaMgAl 11 O 19 (Ti:LMAO) up to 20 mm length obtained from unseeded ingots grown by the Heat Exchanger Method (HEM). The ingots were grown under reducing atmosphere in order to minimize formation of Ti 4+ . Strong fluorescence centered at 780 nm with a half-width ranging from 700 to 880 nm has been observed. The upper state fluorescence lifetime at room temperature was between 3.7 and 7.6 μs. The main broad-band absorption due to Ti 3+ was centered at 510 nm. In addition, parasitic absorptions at 600 nm and 959 nm have been observed which may be associated with the formation of Ti 2+

  18. Chemistry of the subalkalic silicic obsidians

    Science.gov (United States)

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    liquid-state differentiation mechanisms, or in other words a complex interaction of petrogenetic processes (CIPP types). Such rocks may also form by volatile-fluxed partial melting of the wallrocks, and subsequent mixing into the magma reservoir. Compositional ranges and averages for CLPD and CIPP obsidians are given. It is shown by analogy with well-documented, zoned ash-flow ruffs that obsidians fractionated by CIPP have very low Mg, P, Ba, and Sr contents, flat rare-earth-element patterns with extensive Eu anomalies, low K/Rb and Zr/Nb ratios, and relatively high Na2O/K2O ratios. There is, however, considerable compositional overlap between CLPD and CIPP obsidians. The effects of magma mixing, assimilation, and vapor-phase transport in producing compositional variations in the obsidians are briefly assessed. The geochemistry of the subalkalic silicic obsidians is described on an element-by-element basis, in order to provide a database for silicic magma compositions that will hopefully contribute to studies of granitic rocks. Attempts are also made to isolate the geochemical effects of tectonic environment and genetic mechanism for each element, by comparison with data from crystal-liquid equilibria-controlled systems, from ash-flow sheets zoned by CIPP, and from mixed-magma series. A final tabulation relates the complexities of obsidian geochemistry to all the tectonic and genetic variables.

  19. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials.

    Science.gov (United States)

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  20. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Vandrovcova, Marta, E-mail: marta.vandrovcova@fgu.cas.cz [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Stankova, Lubica; Lisa, Vera [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Bacakova, Lucie [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2015-12-01

    Graphical abstract: - Highlights: • Hydrocarbon plasma polymer films with Ti in concentration of 0–20 at.% were prepared. • The Ti concentration was positively correlated with the material surface wettability. • The optimum Ti concentrations for the MG-63 cells behavior were identified. • The Ti concentration also influenced the cell immune activation. - Abstract: Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  1. High-dose dosimetry using natural silicate minerals

    International Nuclear Information System (INIS)

    Carmo, Lucas S. do; Mendes, Leticia; Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina; Barbosa, Renata F.

    2015-01-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  2. High-dose dosimetry using natural silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Lucas S. do; Mendes, Leticia, E-mail: isatiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina, E-mail: lacifid@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica. Departamento de Fisica Nuclear; Barbosa, Renata F., E-mail: profcelta@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil). Departamento de Ciencias do Mar

    2015-07-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  3. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  4. Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums.

    Science.gov (United States)

    Dudefoi, William; Terrisse, Hélène; Popa, Aurelian Florin; Gautron, Eric; Humbert, Bernard; Ropers, Marie-Hélène

    2018-02-01

    Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO 2 , the estimated intakes of TiO 2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO 2 . The coatings of four kinds of chewing gum, where the presence of TiO 2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO 2 varies from one coating to another. TiO 2 particles constitute the entire coating of some chewing gums, whereas for others, TiO 2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO 2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO 2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO 2 per piece of chewing gum. These data should serve to refine the exposure scenario.

  5. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Fatimah, Hayyiratul, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Wilfred, Cecilia, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  6. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    Science.gov (United States)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  7. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  8. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  9. Comparative study of thermoluminescent properties of LiF: Mg, Cu, P, LiF: Mg, Ti and TLD-100 irradiated with X-rays

    International Nuclear Information System (INIS)

    Azorin, J.; Rivera, T.; Gonzalez, P.; Ortega, X.; Ginjaume, M.

    2000-01-01

    The thermoluminescent properties (Tl) of LiF: Mg, Cu, P, and LiF: Mg, Ti, were investigated both developed in Mexico and comparing them with the properties of TLD-100 when they are exposure to X-rays. The Tl curve of LiF: Mg, Cu, P exhibited two peaks at 200 and 300 Centigrade. Its response Tl in function of dose resulted linear in the interval of 0.5 Gy until 5 Gy and its sensitivity to X-ray was around 25 times greater that of the TLD-100. Also it was measured the Tl response of the three materials in function of photon energy. The results showed that LiF: Mg, Cu, P has potential to be used as X-ray dosemeter. (Author)

  10. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    Science.gov (United States)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, aFeO∗silicate melt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from

  11. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Zhu, Yihan; Alshareef, Husam N.; Kim, Moon J.; Gnade, Bruce E.

    2016-01-01

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post

  12. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  13. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  14. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO{sub 2} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo, E-mail: boyang@szu.edu.cn [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Jiang, Chaojin [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Zhuo, Qiongfang [South China Institute of Environmental Sciences, The Ministry of Environment Protection, Guangzhou 510655 (China); Deng, Shubo [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Wu, Jinhua [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Hong [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China)

    2015-12-15

    Highlights: • A novel SnO{sub 2} electrode is prepared by F doping instead of the traditional Sb doping. • SnF{sub 4} as single-source precursor is used to fabricate the long-life Ti/SnO{sub 2}–F anode. • F-doped Ti/SnO{sub 2} anode possesses high OEP and decomposition ability for PFOA. • Further mechanistic detail of PFOA degradation on Ti/SnO{sub 2}–F electrode is proposed. - Abstract: The novel F-doped Ti/SnO{sub 2} electrode prepared by SnF{sub 4} as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO{sub 2}–F electrode than Ti/SnO{sub 2}–X (X = Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L{sup −1}) within 30-min electrolysis. The property of Ti/SnO{sub 2}–F electrode and its electrooxidation mechanism were investigated by XRD, SEM–EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed ·OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F{sup −}, and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO{sub 2}–F electrode is promising for highly efficient treatment of PFOA in wastewater.

  15. High Dielectric Constant Study of TiO2-Polypyrrole Composites with Low Contents of Filler Prepared by In Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2016-01-01

    Full Text Available TiO2/polypyrrole composites with high dielectric constant have been synthesized by in situ polymerization of pyrrole in an aqueous dispersion of low concentration of TiO2, in the presence of small amount of HCl. Structural, optical, surface morphological, and thermal properties of the composites were investigated by X-ray diffractometer, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis, respectively. The data obtained from diffractometer and thermal gravimetric analysis confirmed the crystalline nature and thermal stability of the prepared composites. The dielectric constant of 5 wt% TiO2 increased with filler content up to 4.3 × 103 at 1 kHz and then decreased to 1.25 × 103 at 10 kHz.

  16. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite. alpha. -Mg sub 2 SiO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Pilati, T.; Bianchi, R. (Consiglio Nazionale delle Ricerche, Milan (Italy). Centro per lo Studio delle Relazioni tra Struttura e Reattivita' Chimica); Gramaccioli, C.M. (Milan Univ. (Italy). Dipt. di Scienze della Terra)

    1990-06-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg{sub 2}SiO{sub 4}, an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO{sub 4} group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.).

  17. Decorating TiO2 Nanowires with BaTiO3 Nanoparticles: A New Approach Leading to Substantially Enhanced Energy Storage Capability of High-k Polymer Nanocomposites.

    Science.gov (United States)

    Kang, Da; Wang, Guanyao; Huang, Yanhui; Jiang, Pingkai; Huang, Xingyi

    2018-01-31

    The urgent demand of high energy density and high power density devices has triggered significant interest in high dielectric constant (high-k) flexible nanocomposites comprising dielectric polymer and high-k inorganic nanofiller. However, the large electrical mismatch between polymer and nanofiller usually leads to earlier electric failure of the nanocomposites, resulting in an undesirable decrease of electrical energy storage capability. A few studies show that the introduction of moderate-k shell onto a high-k nanofiller surface can decrease the dielectric constant mismatch, and thus, the corresponding nanocomposites can withstand high electric field. Unfortunately, the low apparent dielectric enhancement of the nanocomposites and high electrical conductivity mismatch between matrix and nanofiller still result in low energy density and low efficiency. In this study, it is demonstrated that encapsulating moderate-k nanofiller with high-k but low electrical conductivity shell is effective to significantly enhance the energy storage capability of dielectric polymer nanocomposites. Specifically, using BaTiO 3 nanoparticles encapsulated TiO 2 (BaTiO 3 @TiO 2 ) core-shell nanowires as filler, the corresponding poly(vinylidene fluoride-co-hexafluoropylene) nanocomposites exhibit superior energy storage capability in comparison with the nanocomposites filled by either BaTiO 3 or TiO 2 nanowires. The nanocomposite film with 5 wt % BaTiO 3 @TiO 2 nanowires possesses an ultrahigh discharged energy density of 9.95 J cm -3 at 500 MV m -1 , much higher than that of commercial biaxial-oriented polypropylene (BOPP) (3.56 J cm -3 at 600 MV m -1 ). This new strategy and corresponding results presented here provide new insights into the design of dielectric polymer nanocomposites with high electrical energy storage capability.

  18. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo

    2016-12-28

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post-annealing temperatures were studied to determine the thermal stability of each contact metal. The specific contact resistivity (SCR) was determined using the Cross Bridge Kelvin Resistor (CBKR) method. Ni contacts exhibits the best thermal stability, maintaining stability up to 400 °C, with a SCR of approximately 10−2 Ω-cm2 after annealing. The increased SCR after high temperature annealing is correlated with the formation of a Mg-Si-Ni mixture identified by cross-sectional scanning transmission electron microscopy (STEM) characterization, X-ray diffraction characterization (XRD) and other elemental analyses. The formation of this Mg-Si-Ni mixture is attributed to Ni diffusion and its reaction with the Mg2Si film.

  19. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    Science.gov (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  20. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  1. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  2. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, S.S.; Zhang, R.R. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China)

    2012-02-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of {approx}1.5 {mu}m, including an outer Ti-O film of {approx}250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF{sub 2}), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E{sub corr}) of -1.60 V and a corrosion current density (I{sub corr}) of 0.17 {mu}A/cm{sup 2}, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 k{Omega} cm{sup 2} for the Ti-O coated sample and 0.42 k{Omega} cm{sup 2} for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  3. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    International Nuclear Information System (INIS)

    Hou, S.S.; Zhang, R.R.; Guan, S.K.; Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z.

    2012-01-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF 2 ), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E corr ) of -1.60 V and a corrosion current density (I corr ) of 0.17 μA/cm 2 , which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm 2 for the Ti-O coated sample and 0.42 kΩ cm 2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  4. Formation of long-period stacking ordered structures in Mg88M5Y7 (M = Ti, Ni and Pb) casting alloys

    International Nuclear Information System (INIS)

    Jin, Qian-Qian; Fang, Can-Feng; Mi, Shao-Bo

    2013-01-01

    Highlights: •Apart from 18R-LPSO, 14H-LPSO structure was determined in the Mg-Ni-Y alloys. •The appearance of twin-related structure in 18R-LPSO structure results from the stacking faults in the stacking sequence of the closely packed planes. •A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure was determined in the Mg-Pb-Y alloy. •No LPSO structures were found in the Mg-Pb-Y and Mg-Ti-Y casting alloys. -- Abstract: Formation of long-period stacking ordered (LPSO) structures is investigated in Mg 88 M 5 Y 7 (M = Ti, Ni and Pb) casting alloys by means of electron microscopy and X-ray diffraction. In the Mg 88 Ni 5 Y 7 casting alloy, 14H-LPSO structure is observed in a small amount, which coexists with 18R-LPSO structure. The appearance of stacking faults in 18R-LPSO structure results in twin-related structure in the stacking sequence of the closely packed planes. A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure is determined in the Mg 88 Pb 5 Y 7 alloy. No LPSO structures are found in the Mg 88 Pb 5 Y 7 and Mg 88 Ti 5 Y 7 casting alloys. In terms of the atomic radius and heat of mixing, the formation ability of LPSO structure in the present alloys is discussed

  5. Silicate bonding properties: Investigation through thermal conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  6. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  7. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gadikota, Greeshma [Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Natali, Claudio; Boschi, Chiara [Institute of Geosciences and Earth Resources – National Research Council, Pisa (Italy); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Lenfest Center for Sustainable Energy, Columbia University, 500 West 120th Street, New York, NY 10027 (United States)

    2014-01-15

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe){sub 3}Si{sub 2}O{sub 5}(OH){sub 4})) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO{sub 2} emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P{sub CO2} of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO{sub 2} via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO{sub 3}){sub 2}), whewellite (CaC{sub 2}O{sub 4}·H{sub 2}O) and glushinskite (MgC{sub 2}O{sub 4}·2H{sub 2}O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation.

  8. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    International Nuclear Information System (INIS)

    Chen, Jiali; Wang, Jinwei; Yuan, Hongye

    2013-01-01

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (I corr ) and higher corrosion potential (E corr ) than those of the substrate.

  9. Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiali; Wang, Jinwei, E-mail: wangjw@ustb.edu.cn; Yuan, Hongye

    2013-11-01

    Oxide films on Ti6Al4V alloy are prepared using sodium hydroxide–sodium silicate as the base electrolyte with addition of aminopropyl trimethoxysilane (APS) as additive by potentiostatic anodizing under 10 V. APS is incorporated into the films during anodizing and the surface morphology of the oxide films is changed from particle stacked to honeycomb-like porous surfaces as shown by scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDX). The surface roughness and aminopropyl existence on the oxide films result in their differences in wettability as tested by the surface profile topography and contact angle measurements. The anti-abrasive ability of the anodic films is improved with the addition of APS due to its toughening effects and serving as lubricants in the ceramic oxide films as measured by ball-on-disk friction test. Also, potentiodynamic corrosion test proves that their anticorrosive ability in 3.5 wt.% NaCl is greatly improved as reflected by their much lower corrosion current (I{sub corr}) and higher corrosion potential (E{sub corr}) than those of the substrate.

  10. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  11. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  12. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  13. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    Science.gov (United States)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  14. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  15. TiO{sub 2}–graphene sponge for the removal of tetracycline

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianqin [Southwest University for Nationalities, College of Chemistry and Environment Protection Engineering (China); Xue, Fumin [Shandong Academy of Science, Shandong Provincial Analysis and Tester Center (China); Yu, Baowei; Xie, Jingru; Zhang, Xiaoliang; Wu, Ruihan; Wang, Ruijue; Hu, Zhiyan; Yang, Sheng-Tao, E-mail: yangst@pku.edu.cn; Luo, Jianbin, E-mail: luojb1971@163.com [Southwest University for Nationalities, College of Chemistry and Environment Protection Engineering (China)

    2015-01-15

    Spongy graphene adsorbents have attracted great research interest recently, because of the high adsorption capacity, easy handling, and low operating cost. Fabrication of graphene sponge with other high-performance adsorbents might combine the merits of both materials, thus deserves more investigations. In this study, TiO{sub 2}–graphene sponge (TiO{sub 2}–GS) was prepared by the deposition of amorphous TiO{sub 2} on graphene oxide (GO) sheets for the adsorption of tetracycline antibiotics, where lyophilization was adopted to obtain the porous structure. TiO{sub 2}–GS adsorbed tetracycline with a large adsorption capacity of 1,805 mg/g, larger than that of GO (313 mg/g) and GO-chitosan aerogel (1,470 mg/g). The adsorption kinetics, which finally reached the equilibrium at 48 h, was clearly controlled by the diffusion of tetracycline to TiO{sub 2}–GS in the initial stage according to intraparticle diffusion model. Thermodynamics investigation indicated that the adsorption process was endothermic and promoted at higher temperature, with a positive ΔH of 35.8 kJ/mol. Generally, higher pH facilitated the adsorption of tetracycline on TiO{sub 2}–GS, except that the adsorption was also very effective at pH 1. In contrast, ionic strength had insignificant influence. The adsorbed tetracycline could be washed out with acidic ice-cold water to regenerate TiO{sub 2}–GS. The implication to the applications of TiO{sub 2}–GS in water treatment is discussed.

  16. Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane

    Directory of Open Access Journals (Sweden)

    Mônica Sartori de Camargo

    2013-10-01

    Full Text Available Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si, three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay, with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI of sugarcane increased over time, and was highest in RA.

  17. Measurements of low photon doses using LiF:Mg,Cu,P and CaF{sub 2}:Cu dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Prokert, K [Dresden Univ. of Technology (Germany). Inst. of Radiation Protection Physics; Mann, G [Dresden Univ. of Technology (Germany). Inst. of Radiation Protection Physics

    1997-03-01

    The new thermoluminophors LiF:Mg, Cu, P and CaF{sub 2}:Cu in form of pellets exhibit a significantly higher TL-response than the well-known dosimeters of the types TLD-100 (LiF:Mg, Ti), TLD-400 (CaF{sub 2}:Mn), TLD-900 (CaSO{sub 4}:Dy), etc. Furthermore, the thermoluminophor LiF:Mg, Cu, P shows besides its high sensitivity a good tissue equivalence and therefore, only a small variation of the dose response with the photon energy. The lower limits of detection of these new materials are about 5 {mu}Gy and 0.2 {mu}Gy resp. Therefore, short term measurements of absorbed dose can be realised in radiation fields at very low dose rates (environmental radiation, scattering radiation at medical equipment`s etc.) with an accuracy of {+-}10%. In the field of environmental monitoring the period of exposure can be limited to about 10 days. Using CaF{sub 2}:Cu detectors an exposure of 24 hours is sufficient for dose measurements with lower accuracy. The reusability of CaF{sub 2}:Cu pellets is guaranteed without loss of sensitivity independently of the application of different reading and annealing procedures. In the case of LiF:Mg, Cu, P detectors special procedures are needed in order to keep constant TL-properties. The results of dose measurements at low dose levels in different radiation fields demonstrate the advantages of these detector types. (orig.)

  18. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  19. Study of LiTiMg-ferrite radome for the application of satellite communication

    International Nuclear Information System (INIS)

    Saxena, Naveen Kumar; Kumar, Nitendar; Pourush, P.K.S.

    2010-01-01

    In this paper the characteristics of LiTiMg-ferrite radome are presented. A thin layer of LiTiMg-ferrite is used as superstrate or radome, which controls the radiation, reception, and scattering from a printed antenna or array by applying a dc magnetic bias field in the plane of the ferrite, orthogonal to the RF magnetic field. In this analysis absorbing and transmission power coefficients are calculated to obtain the power loss and transmitted power through the radome layer respectively. The absorbing power coefficient verifies the switching behavior of radome for certain range of applied external magnetic field (Ho), which depends on the resonance width parameter (ΔH) of ferrite material. By properly choosing the bias field, electromagnetic wave propagation in the ferrite layer can be made zero or negligible over a certain frequency range, resulting in switching behavior of the ferrite layer. In this communication we also show precise preparation of radome layer and present its electric and magnetic properties along with its Curie temperature, which shows the working efficiency of layer under extreme situation. This radome layer can be very useful for the sensitive and smart communication systems.

  20. Properties of zirconium silicate and zirconium-silicon oxynitride high-k dielectric alloys for advanced microelectronic applications: Chemical and electrical characterizations

    Science.gov (United States)

    Ju, Byongsun

    2005-11-01

    As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3

  1. Study and characterization of dosimeter LiF:Mg,Cu,P for using in aeronautical dosimetry; Estudo e caracterizacao do dosimetro de LiF:Mg,Cu,P para utilizacao em dosimetria aeronautica

    Energy Technology Data Exchange (ETDEWEB)

    Flavia, Hanna, E-mail: hannasantana.f@gmail.com [Universidade Paulista (UNIP), Sao Jose dos Campos, SP (Brazil); Federico, Claudio; Lelis, Odair; Pereira, Heloisa; Pereira, Marlon, E-mail: claudiofederico@ieav.cta.br [Instituto de Estudos Avancados (EFA-A/IEAV), Sao Jose dos Campos, SP (Brazil). Div. de Fisica Aplicada

    2014-07-01

    The effects of cosmic ionizing radiation incidents in aircraft components and crews has been a source of concern and motivated increasingly studies and improvements in the area. The low dose rates involved in this radiation field in aircraft flight altitudes imply Dosimetric necessity of using materials with high efficiency of detection, to enable studies lower cumulative doses resulting in shorter routes or lower altitude. The choice of thermoluminescent dosimeters LiF: Mg, Cu, P was done by having a detection efficiency of about fifteen times higher than its predecessor (LiF: Mg, Ti), and therefore, applied in very low doses dosimetry, and environmental dosimetry . The implementation of the use of pair dosimetric TLD-600H and 700H-TLD will serve as support for testing and studies on the effects of low doses of cosmic radiation in environmental dosimetry applied in the aviation environment in the usual flight altitudes. In this paper are presented the results of development of a methodology for dosimetry low doses of gamma radiation and neutrons using the pair dosimetric TLD-600H and 700H-TLD. The results demonstrate a sensitivity of dosimeters well above the dosimeters LiF: Mg, Ti confirming its suitability for dosimetry of low doses.

  2. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  3. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  4. Luminescent emission of LiF: Mg, Ti exposed to UV radiation; Emision luminiscente del LiF: Mg, Ti expuesto a la radiacion UV

    Energy Technology Data Exchange (ETDEWEB)

    Estrada G, A. [Estudiante de Facultad de Ciencias, UNAM, Circuito Exterior, 04500 Mexico D.F. (Mexico); Castano M, V.M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, Queretaro (Mexico); Cruz Z, E.; Garcia F, F. [Instituto de Ciencias Nucleares UNAM, A.P. 70-543 Mexico D.F. (Mexico)

    2002-07-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  5. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  6. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  7. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  8. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    Science.gov (United States)

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pcement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  9. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  10. The mitochondrial activation of silicate and its role in silicosis, black lung disease and lung cancer.

    Science.gov (United States)

    Hadler, H I; Cook, G L

    1979-01-01

    Silicate substitutes for phosphate in the transitory uncoupling of rat liver mitochondria induced by hydrazine when beta-hydroxy-butyrate is the substrate. Uncoupling is blocked by rutamycin. Just as in the case when phosphate is combined with hydrazine, ATP, ADP, PPi, and Mg++ protect against hydrazine when silicate is combined with hydrazine. A high level of ADP in the absence of added phosphate, but in the presence of silicate, induces a pseudo state three of the mitochondria. Silicate, like sulfate and arsenate which have been reported previously, is activated by the enzymes which mediate oxidative phosphorylation. These results serve to explain a role for silicate in silicosis, black lung disease, and cancer. In addition, since there is suggestive evidence in the literature that lung tissue solubilizes asbestos fibers, these results not only expand the confluence between oxidative phosphorylation and chemical carcinogenesis but are correlated with the synergistic carcinogenicity of asbestos and smoking observed by epidemiologists.

  11. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    Science.gov (United States)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0ceramic powder. The newly developed CMFTO2/PDMS composite based thin film shows a higher dielectric constant (ε‧) value (~350), extremely low tangent loss (tanδ) ( 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  12. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  13. Application of low-level laser radiation with TiO2, Ag/TiO2 and S/TiO2 on Streptococcus salivarius isolated from the oral cavity

    Directory of Open Access Journals (Sweden)

    Panas Marta

    2014-09-01

    Full Text Available In our research, we determine the effect of low-level laser irradiation with nanoparticles on Streptococcus salivarius. Photodynamic killing of periodontopathogenic bacteria may be an alternative to the systemic application of antibacterial drugs used in the treatment of periodontal diseases. The application of photosensitizing nanoparticles and their excitation by visible light of blue spectra enables effective killing of periodontopathogens. This data combined with the results demonstrates that TiO2, AgTiO2 and S/TiO2 can inhibit the proliferation of Streptococcus salivarius due to its high photocatalytic activity, which irreversibly damages the cell walls and membranes.

  14. Synthesis of the Tube Silicate Litidionite and Structural Relationships between It and Some Other Silicates.

    Science.gov (United States)

    1982-02-17

    CuSi4015 Others are agrellite, NaCa2Si4O0oF, 1 6 narsarsukite, Na2TiSi4O 1 7 miserite, KCa5 i2 07 Si601 5 (OH)F,18 and probably canasite , Na4K2Ca 5...and canasite are rare. Litidionite is apparently very rare, the only reported occurrence of it being in the crater of Mt. Vesuvius. Both litidionite1...narsarsukite, miserite, and probably canasite contain, like 13-19 lititionite, tube silicate ions. The first three contain ions that are the same as that in

  15. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    Science.gov (United States)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  16. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  17. Comparison of the efficacy and safety of rosuvastatin 10 mg and atorvastatin 20 mg in high-risk patients with hypercholesterolemia – Prospective study to evaluate the Use of Low doses of the Statins Atorvastatin and Rosuvastatin (PULSAR

    Directory of Open Access Journals (Sweden)

    García Hugo

    2006-12-01

    Full Text Available Abstract Background Many patients at high risk of cardiovascular disease do not achieve recommended low-density lipoprotein cholesterol (LDL-C goals. This study compared the efficacy and safety of low doses of rosuvastatin (10 mg and atorvastatin (20 mg in high-risk patients with hypercholesterolemia. Methods A total of 996 patients with hypercholesterolemia (LDL-C ≥ 3.4 and Results Rosuvastatin 10 mg reduced LDL-C levels significantly more than atorvastatin 20 mg at week 6 (44.6% vs. 42.7%, p Conclusion In high-risk patients with hypercholesterolemia, rosuvastatin 10 mg was more efficacious than atorvastatin 20 mg at reducing LDL-C, enabling LDL-C goal achievement and improving other lipid parameters. Both treatments were well tolerated.

  18. Effect of TiO2 nanoparticles on the reproduction of silkworm.

    Science.gov (United States)

    Ni, Min; Li, Fanchi; Wang, Binbin; Xu, Kaizun; Zhang, Hua; Hu, Jingsheng; Tian, Jianghai; Shen, Weide; Li, Bing

    2015-03-01

    Silkworm (Bombyx mori) is an important economic insect and the model insect of Lepidoptera. Because of its high fecundity and short reproduction cycle, it has been widely used in reproduction and development research. The high concentrations of titanium dioxide nanoparticles (TiO2 NPs) show reproductive toxicity, while low concentrations of TiO2 NPs have been used as feed additive and demonstrated significant biological activities. However, whether the low concentrations of TiO2 NPs affect the reproduction of B. mori has not been reported. In this study, the growth and development of gonad of B. mori fed with a low concentration of TiO2 NPs (5 mg/L) were investigated by assessing egg production and expression of reproduction-related genes. The results showed that the low concentration of TiO2 NPs resulted in faster development of the ovaries and testes and more gamete differentiation and formation, with an average increase of 51 eggs per insect and 0.34 × 10(-4) g per egg after the feeding. The expressions of several reproduction-related genes were upregulated, such as the yolk-development-related genes Ovo-781 and vitellogenin (Vg) were increased by 5.33- and 6.77-folds, respectively. This study shows that TiO2 NPs feeding at low concentration can enhance the reproduction of B. mori, and these results are useful in developing new methods to improve fecundity in B. mori and providing new clues for its broad biological applications.

  19. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  20. Multiple matching scheme for broadband 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 single crystal phased-array transducer

    OpenAIRE

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-01-01

    Lead magnesium niobate–lead titanate single crystal 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and back...

  1. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  2. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.

    Science.gov (United States)

    Dong, Renfeng; Zhang, Qilu; Gao, Wei; Pei, Allen; Ren, Biye

    2016-01-26

    A highly efficient light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control is described. Unlike chemically propelled micromotors which commonly require the addition of surfactants or toxic chemical fuels, the fuel-free Janus micromotor (diameter ∼1.0 μm) can be powered in pure water under an extremely low ultraviolet light intensity (2.5 × 10(-3) W/cm(2)), and with 40 × 10(-3) W/cm(2), they can reach a high speed of 25 body length/s, which is comparable to common Pt-based chemically induced self-electrophoretic Janus micromotors. The photocatalytic propulsion can be switched on and off by incident light modulation. In addition, the speed of the photocatalytic TiO2-Au Janus micromotor can be accelerated by increasing the light intensity or by adding low concentrations of chemical fuel H2O2 (i.e., 0.1%). The attractive fuel-free propulsion performance, fast movement triggering response, low light energy requirement, and precise motion control of the TiO2-Au Janus photocatalytic micromotor hold considerable promise for diverse practical applications.

  3. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  4. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants

    International Nuclear Information System (INIS)

    Madusanka, Nadeesh; Shivareddy, Sai G; Hiralal, Pritesh; Choi, Youngjin; Amaratunga, Gehan A J; Eddleston, Mark D; Oliver, Rachel A

    2016-01-01

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO 2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO 2 . The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO 2 /CRS nanofilms on SiO 2 /Si wafers were used to form metal–insulator–metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz–1 MHz were measured. At 1 kHz CRS-TiO 2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO 2 respectively, significantly higher than reported values of pure CRS (21), TiO 2 (41) and other dielectric polymer-TiO 2 nanocomposite films. Furthermore, all three CRS-TiO 2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10 −6 –10 −7 A cm −2 ). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO 2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported. (paper)

  5. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    International Nuclear Information System (INIS)

    Shi Yongjing; Long Siyuan; Yang Shicai; Pan Fusheng

    2008-01-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2 . The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS)

  6. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  7. Thermal stability of (AlSi){sub x}(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, S.K. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Czerwinski, F., E-mail: Frank.Czerwinski@nrcan.gc.ca [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Kasprzak, W. [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-11-10

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi){sub x}(TiVZr) phases with D0{sub 22}/D0{sub 23} tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi){sub x}(TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals.

  8. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.

  9. Investigation of LiF, Mg and Ti (TLD-100) Reproducibility.

    Science.gov (United States)

    Sadeghi, M; Sina, S; Faghihi, R

    2015-12-01

    LiF, Mg and Ti cubical TLD chips (known as TLD-100) are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy) with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC) were obtained 4 times by irradiating them to doses of 81 mGy (two times), 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%.

  10. Lunar mare TiO2 abundances estimated from UV/Vis reflectance

    Science.gov (United States)

    Sato, Hiroyuki; Robinson, Mark S.; Lawrence, Samuel J.; Denevi, Brett W.; Hapke, Bruce; Jolliff, Bradley L.; Hiesinger, Harald

    2017-11-01

    The visible (400-700 nm) and near-infrared (700-2800 nm) reflectance of the lunar regolith is dominantly controlled by variations in the abundance of plagioclase, iron-bearing silicate minerals, opaque minerals (e.g., ilmenite), and maturation products (e.g., agglutinate glass, radiation-produced rims on soil grains, and Fe-metal). The same materials control reflectance into the near-UV (250-400 nm) with varying degrees of importance. A key difference is that while ilmenite is spectrally neutral in the visible to near-infrared, it exhibits a diagnostic upturn in reflectance in the near-UV, at wavelengths shorter than about 450 nm. The Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) filters were specifically designed to take advantage of this spectral feature to enable more accurate mapping of ilmenite within mare soils than previously possible. Using the reflectance measured at 321 and 415 nm during 62 months of repeated near-global WAC observations, first we found a linear correlation between the TiO2 contents of the lunar soil samples and the 321/415 nm ratio of each sample return site. We then used the coefficients from the linear regression and the near-global WAC multispectral mosaic to derive a new TiO2 map. The average TiO2 content is 3.9 wt% for the 17 major maria. The highest TiO2 values were found in Mare Tranquillitatis (∼12.6 wt%) and Oceanus Procellarum (∼11.6 wt%). Regions contaminated by highland ejecta, lunar swirls, and the low-TiO2 maria (e.g., Mare Frigoris, the northeastern units of Mare Imbrium) exhibit very low TiO2 values (2.6 Ga), whereas only medium to high TiO2 values (average = 6.8 wt%, minimum = 4.5 wt%) are found for younger mare units (<2.6 Ga).

  11. Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance.

    Science.gov (United States)

    Qin, Ping; Li, Xingxing; Gao, Biao; Fu, Jijiang; Xia, Lu; Zhang, Xuming; Huo, Kaifu; Shen, Wenli; Chu, Paul K

    2018-05-10

    Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.

  12. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    International Nuclear Information System (INIS)

    Ildefonse, P.; Calas, G.; Flank, A.M.; Lagarde, P.

    1995-01-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaO-MgO-2SiO 2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mg-O distances of 2.01 A. In aluminosilicate gels, Al-K XANES has been used to investigate the [4]Al/Al total ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Si-K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si=1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels. (orig.)

  13. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  14. Studies on gelation of sodium silicate hydrosol for immobilization of high level liquid waste (HLLW).

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Raouf, M W [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Sharaf El-deen, A N; El-Dessouky, M M [Military Technical College, Kobry El-Kobbah, Cairo (Egypt)

    1995-10-01

    Immobilization of the simulated high-level liquid waste (HLLW) was performed via the gelation with sodium silicate hydrosol at room temperature. The simulated waste in this study, was represented by the electrolytes of Li, Na, K, Cs, Co and Sr at different concentrations. Specific loading of the liquid waste with 0.6 M Mg (NO{sub 3})2 and tailoring with Al salts were tried during most of the gelation processes. Mineral acid (HCl or {sub 3}) were added during the gelation processes to achieve the gel point, especially when lower concentrations of the simulated waste were used. The obtained hydrogel were dried to obtain the solid gel form. The gelation processes were investigated in terms of the different factors that affected them, namely: temperature, pH, changes in the concentration of the initial hydrosol and the used electrolytes. The efficiency of the gelation processes was investigated from the ratio of the amount of simulated waste reacted (m mole) to the initial silicate used (m mole), i.e. X value. Lower X values were observed when using multi valent cations (higher polarizing power). A special effect of increasing the sorption of metal cations in the silica matrix was observed when Al{sup 3+} replaced Si{sup 4+} in the three-dimensional network structure of the matrix. 3 figs., 7 tabs.

  15. Stability of the lamellar structure in Mo-TiC eutectic composite under a low vacuum at high temperatures

    International Nuclear Information System (INIS)

    Goto, Shoji; Nishijima, Yuzo; Yoshinaga, Hideo

    1986-01-01

    Thermal stability of the lamellar structure in a Mo-TiC eutectic composite has been investigated through the heat-treatment at 1523 - 2223 K for 5.76 x 10 4 - 3.6 x 10 5 s under a low vacuum pressure of 13 mPa. It was found that the TiC phase in the eutectic lamellar disappeared above the critical temperature of about 1750 K, but below the critical temperature the disappearance of TiC phase was hardly observed and TiO film was formed on the surface. The Mo matrix phase was not oxidized and was stable at all test temperatures, since its affinity for oxygen is lower than that for carbon and titanium. It is presumed that at higer temperatures the disappearance process of TiC phase is controlled by the diffusion of carbon atoms through the matrix to the surface, and carbon and titanium atoms on the surface are removed by CO gas formation and TiO evaporation, respectively, but at lower temperatures the evaporation of TiO is so slow that the TiO film is formed on the surface. (author)

  16. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    Science.gov (United States)

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering

    Science.gov (United States)

    Roy, S.; Gaillardet, J.; Allègre, C. J.

    1999-05-01

    are transported in a solid form, the rest being transported in solution. CO 2 consumption by carbonate weathering approaches 400 × 10 3 mol/km 2/yr. In the Seine river at Paris, about 2-3 mg/l of dissolved cations are found to originate from the chemical weathering of silicates. By taking dissolved silica into accounts, the total dissolved load derived from silicate weathering is about 6-7 mg/l. This value is minimal because biological uptake of silica probably occur in the Seine river. The chemical weathering rate of aluminosilicates is estimated to be 2 t/km 2/yr . The ratio of physical over chemical weathering of silicates range between 1 and 3 and the total (chemical and physical) erosion rates of sedimentary silicates are about 2-3 mm/kyr. The CO 2 consumption by silicate weathering 15-24 × 10 3 mol/km 2/yr and is independent of dissolved silica concentration. Silicate consumption is thus 20 times less than carbonate consumption in the Paris basin. Compared to the neighboring granitic areas, the sedimentary region drained by the Seine river has 2 to 3 times lower CO 2 consumption rates. We attribute this difference to the cation-depleted nature of the Seine basin aluminosilicates, which are of sedimentary origin. At a world scale, the chemical denudation rates found for the Seine basin are very low and comparable to those given for tropical lowland rivers draining silicates, such as the rivers of the Congo and Amazon basins, in spite of huge climatic differences. We attribute this similarity to the low mechanical denudation that characterizes these two types of regions.

  18. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Science.gov (United States)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  19. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    Science.gov (United States)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  20. 26Al-26Mg dating of asteroidal magmatism in the young Solar System

    DEFF Research Database (Denmark)

    Schiller, Martin; Baker, Joel A.; Bizzarro, Martin

    2010-01-01

    We present high-precision Mg isotope data for most classes of basaltic meteorites including eucrites, mesosiderite silicate clasts, angrites and the ungrouped Northwest Africa (NWA) 2976 measured by pseudo-high-resolution multiple-collector inductively coupled plasma mass spectrometry and utilisi...

  1. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  2. ION-INDUCED PROCESSING OF COSMIC SILICATES: A POSSIBLE FORMATION PATHWAY TO GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, C.; Sabri, T. [Max Planck Institute for Astronomy, Heidelberg, Laboratory Astrophysics and Cluster Physics Group, Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Wendler, E. [Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th., E-mail: cornelia.jaeger@uni-jena.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO{sub 4} and Mg{sub 2}SiO{sub 4} grains by 10 and 20 keV protons and 90 keV Ar{sup +} ions. The Ar{sup +} ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe{sup 2+}) ions and the formation of iron inclusions in the MgFeSiO{sub 4} grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si{sup 4+} and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  3. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion.

    Science.gov (United States)

    Afonso, Conrado R M; Amigó, Angelica; Stolyarov, Vladimir; Gunderov, Dmitri; Amigó, Vicente

    2017-10-19

    β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

  4. Grotrian diagrams for highly ionized titanium Ti V-Ti XXII

    International Nuclear Information System (INIS)

    Mori, Kazuo

    1982-06-01

    Grotrian diagrams of Ti V-Ti XXII have been prepared. Data of wavelengths, energy levels, oscillator strengths and transition probabilities are updated for diagnostics of high temperature plasmas, and tabulated with references. (author)

  5. Photoelectrocatalytic property of microporous Pt-TiO2/Ti electrodes

    International Nuclear Information System (INIS)

    Hung, Chung-Hsuang; Wu, Kee-Rong; Yeh, Chung-Wei; Sun, Jui-Ching; Hsu, Chuan-Jen

    2013-01-01

    This study investigates the photoelectrocatalytic (PEC) property of microporous WO 3 -loaded TiO 2 /Ti layer, prepared via micro-arc oxidation (MAO) of Ti plate, followed by sputtering deposition of a thin Pt layer as a Pt-TiO 2 /Ti electrode. The WO 3 -loaded TiO 2 layer which is associated with a more acidic surface forms many local electrochemical cells on its micro-pores immersed in cationic dye solution. The electrocatalytic (EC) reactions can take place in the local cells by the applied electrons. A low resistivity that is accomplished by MAO technique and by platinization offers an easy path for the electron motions in the Pt-TiO 2 /Ti electrode. All these features make the EC oxidation of aqueous dye pollutants practically feasible without using counter electrodes and supporting electrolytes. Our experiments demonstrate that, under PEC condition, the Pt-TiO 2 /Ti shows the highest degradation rate constant of 0.83 h − 1 at an applied bias of 1.0 V and exhibits significantly high PEC and EC oxidation activities at a low applied bias of 0.25 V. This is attributable to high anodic currents generated in the Pt-TiO 2 /Ti even at low bias. The modified microporous electrodes conclusively reveal a very interesting EC property as a two double-sided device that functions the PEC and EC oxidation simultaneously without a need of supporting electrolyte and expensive Pt cathode. - Highlights: ► Pt-TiO 2 /Ti exhibits enhanced photoelectrocatalytic (PEC) activity at low applied bias. ► The proposed device uses low applied bias (< 1.0 V) with no explicit cathode. ► PEC oxidation can be performed without supporting electrolyte and Pt cathode

  6. Study and characterization of dosimeter LiF:Mg,Cu,P for using in aeronautical dosimetry

    International Nuclear Information System (INIS)

    Flavia, Hanna; Federico, Claudio; Lelis, Odair; Pereira, Heloisa; Pereira, Marlon

    2014-01-01

    The effects of cosmic ionizing radiation incidents in aircraft components and crews has been a source of concern and motivated increasingly studies and improvements in the area. The low dose rates involved in this radiation field in aircraft flight altitudes imply Dosimetric necessity of using materials with high efficiency of detection, to enable studies lower cumulative doses resulting in shorter routes or lower altitude. The choice of thermoluminescent dosimeters LiF: Mg, Cu, P was done by having a detection efficiency of about fifteen times higher than its predecessor (LiF: Mg, Ti), and therefore, applied in very low doses dosimetry, and environmental dosimetry . The implementation of the use of pair dosimetric TLD-600H and 700H-TLD will serve as support for testing and studies on the effects of low doses of cosmic radiation in environmental dosimetry applied in the aviation environment in the usual flight altitudes. In this paper are presented the results of development of a methodology for dosimetry low doses of gamma radiation and neutrons using the pair dosimetric TLD-600H and 700H-TLD. The results demonstrate a sensitivity of dosimeters well above the dosimeters LiF: Mg, Ti confirming its suitability for dosimetry of low doses

  7. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i......-TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The obtained results suggest a better silver dispersion and better regeneration capability in the case of Ti- and Si-modified Ag/Al2O3 catalysts........e. reduces the SCR onset temperature by about 10°C under the applied conditions. However, it does not increase the SO2 resistance. The catalysts and the supports have been characterized by BET, conventional and synchrotron XRD, X-ray absorption spectroscopy during temperature-programmed reduction (XAS......Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i...

  8. Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite

    Directory of Open Access Journals (Sweden)

    Markus Alfreider

    2016-08-01

    Full Text Available The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt% Ti and 25 vol% (11.4 wt% Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

  9. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Toft Sørensen, O.

    1998-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a PO2 dependence according to R proportional to PO2-1/4 in the considered PO2 range(2.5 x 10(-5) bar

  10. Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors

    OpenAIRE

    Giachero, A.; Day, P.; Falferi, P.; Faverzani, M.; Ferri, E.; Giordano, C.; Marghesin, B.; Mattedi, F.; Mezzena, R.; Nizzolo, R.; Nucciotti, A.

    2013-01-01

    We present our current progress on the design and test of Ti/TiN Multilayer for use in Kinetic Inductance Detectors (KIDs). Sensors based on sub-stoichiometric TiN film are commonly used in several applications. However, it is difficult to control the targeted critical temperature $T_C$, to maintain precise control of the nitrogen incorporation process and to obtain a production uniformity. To avoid these problems we investigated multilayer Ti/TiN films that show a high uniformity coupled wit...

  11. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: xfpang@aliyun.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Honglei [College of Chemistry Environmental Science, Hebei University, Baoding 071000 (China); Qiao, Haixia; Nian, Xiaofeng [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Zhang, Xuejiao, E-mail: 527238610@qq.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2015-12-01

    Highlights: • We developed a ZnHA/CS-coated Ti implant by using an ED method. • The obtained ZnHA/CS coatings presented a net-like micro-porous. • The ZnHA/CS coating possessed an excellent corrosion protection ability. • The composite coated CP-Ti possesses favourable cytocompatibility. - Abstract: This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO{sub 3}. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si{sup 4+} and Zn{sup 2+} were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn{sup 2+} and Si{sup 4+}). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  12. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  13. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  14. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    Science.gov (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  15. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  16. Silicate species of water glass and insights for alkali-activated green cement

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Helén, E-mail: helen.jansson@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Bernin, Diana, E-mail: diana.bernin@nmr.gu.se [Swedish NMR Centre, Gothenburg University, Gothenburg, 41390 Sweden (Sweden); Ramser, Kerstin, E-mail: kerstin.ramser@ltu.se [Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå (Sweden)

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  17. Visible Light Induced Green Transformation of Primary Amines to Imines Using a Silicate Supported Anatase Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sifani Zavahir

    2015-01-01

    Full Text Available Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  18. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    Science.gov (United States)

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  19. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  20. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Sørensen, Ole Toft

    2000-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a P-o2 dependence according to R proportional to p(o2)(-1/4) in the considered P-o2 range(2.5 x 10(-5) bar

  1. Investigation of LiF, Mg and Ti (TLD-100 Reproducibility

    Directory of Open Access Journals (Sweden)

    Sadeghi M.

    2015-12-01

    Full Text Available LiF, Mg and Ti cubical TLD chips (known as TLD-100 are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC were obtained 4 times by irradiating them to doses of 81 mGy (two times, 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%.

  2. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  3. Chronology of formation of early solar system solids from bulk Mg isotope analyses of CV3 chondrules

    Science.gov (United States)

    Chen, Hsin-Wei; Claydon, Jennifer L.; Elliott, Tim; Coath, Christopher D.; Lai, Yi-Jen; Russell, Sara S.

    2018-04-01

    We have analysed the petrography, major element abundances and bulk Al-Mg isotope systematics of 19 ferromagnesian chondrules from the CV3 chondrites Allende, Mokoia, and Vigarano, together with an Al-rich chondrule and refractory olivine from Mokoia. Co-variations of Al/Mg with Na/Mg and Ti/Mg in our bulk chondrules suggest their compositions are dominantly controlled by reworking of different proportions of chondrule components (e.g. mafic minerals and mesostatis); their precursors are thus fragments from prior generations of chondrules. Our samples show a range in fractionation corrected 26Mg/24Mg (Δ‧26Mg) ∼ 60 ppm, relative to precisions behaviour once 26Al was effectively extinct ((26Al/27Al)0 3.4 ± 0.6 × 10-5. Overall, our samples record a sequence of events from the formation of ferromagnesian objects within 0.5 Ma of CAI to re-equilibration of chondrules and silicate vapour >2 Ma post CAI, assuming an initially homogeneous 26Al/27Al. Metamorphism on the asteroid parent body may have played a subsequent role in affecting Mg isotope composition, but we argue this had a minor influence on the observations here.

  4. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    Science.gov (United States)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  5. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Science.gov (United States)

    Vandrovcova, Marta; Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan; Stankova, Lubica; Lisa, Vera; Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek; Bacakova, Lucie

    2015-12-01

    Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  6. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenfang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Duan, Jingzhu; Wang, Huan [Spinal surgery, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10 N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti{sub 4}N{sub 3−x} transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (L{sub c1} = 80 N, L{sub c2} = 120 N), hardness (21 GPa) and anti-wear performance (6.2 × 10{sup −7} mm{sup 3}/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. - Highlights: • A graded nano-TiN coating was prepared on biomedical Ti alloy by PVD. • The combination of hard and soft phase increases hardness and toughness. • The coating exhibits high bonding, low coefficient of friction and wear rate. • The new coating has good bio-safety and great clinical application prospect.

  7. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Livshits, V.Ya.; Marchuk, E.A.

    1993-01-01

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO 2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO 2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  8. Microstructure and kinetics evolution in MgH{sub 2}–TiO{sub 2} pellets after hydrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mirabile Gattia, D., E-mail: daniele.mirabile@enea.it; Di Girolamo, G.; Montone, A.

    2014-12-05

    Highlights: • MgH{sub 2} was ball milled with TiO{sub 2} anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH{sub 2} powder with 5 wt.% TiO{sub 2} was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H{sub 2} absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction.

  9. Luna 24 ferrobasalt as a low-Mg primary melt

    International Nuclear Information System (INIS)

    Norman, M.; Ryder, G.

    1980-01-01

    Luna 24 very-low titanium (VLT) ferrobasalts, metabasalts, brown glasses and impact melts form a tight compositional cluster with no gradation to other groupings postulated for the Luna 24 core components. This suggests that the Luna 24 VLT ferrobasalt was extruded as a liquid of its own composition and was not derived by fractional crystallization from a more magnesian parent in a surface flow. Furthermore, the characteristics of the core lithologies are not easily visualized as components of such a differential flow, e.g. brown glasses. Gravitative settling models purporting to demonstrate the validity of the flow differentiation model are merely permissive. Subsurface fractionation requires that plagioclase, not olivine, be the liquidus phase. The high-Mg component in the Luna 24 core can be constrained, though not identified, chemically, and it has neither the major element, trace element, isotopic, nor mineralogical characteristics required of a possible parent to the Luna 24 VLT ferrobasalt. Thus models of fractionation lack a physical expression of the less differentiated compositions, contrary to the belief that the high-Mg component in the core is the parent material. The Luna 24 VLT ferrobasalt is probably a primary low-Mg melt from a plagioclase-bearing source region, and may have undergone little or no fractionation prior to eruption. Such a model is compatible with, and suggested by, chemical and experimental data. Caution against posulating that all Mg-poor melts are fractionated products, based on terrestrial models, is advised. The terrestrial oceanic situation of 'primary melts' with similar Mg/Fe is probably not valid for the Moon. (Auth.)

  10. Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite for bone repair application

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadi

    2015-07-01

    Full Text Available Objective(s: Hardystonite (HT is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Materials and methods:The HT and Sr-Ti-HT were prepared by mechanical milling and subsequent heat treatment. Calcium oxide (CaO, zinc oxide (ZnO and silicon dioxide (SiO2 (all from Merck were mixed with molar ratio of 2:1:2. The mixture of powders mixture was then milled in a planetary ball mill for 20 h. In the milling run, the ball-to-powder weight ratio was 10:1 and the rotational speed was 200 rpm. After synthesis of HT, 3% nanotitanium dioxide (TiO2, Degussa and 3% strontium carbonate (SrCO3, Merck were added to HT and then the mixture was ball milled and calcined at 1150°C for 6 h. Simultaneous thermal analysis (STA, X-ray diffraction (XRD, Transmission electron microscopy (TEM and Fourier transform infra-red spectroscopy (FT-IR performed to characterize the powders. Results:XRD and FT-IR confirmed the crystal phase and silicate structure of HT and TEM images demonstrated the nanostructure of powders. Further, Sr-Ti-HT induced apatite formation and showed a higher human mesenchymal stem cell (hMSCs adhesion and proliferation compared to HT. Conclusion:Our study revealed that Sr-Ti-HT with a nanostructured crystal structure of 50 nm, can be prepared by mechanical activation to use as biomaterials for orthopedic applications.

  11. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  12. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A. [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Venezia, A. M., E-mail: aciaravella@astropa.unipa.it [ISMN—CNR, Via Ugo La Malfa 153, I-90146 Palermo (Italy)

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  13. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  14. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  15. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system

    International Nuclear Information System (INIS)

    Bonatto Minella, Christian; Garroni, Sebastiano; Pistidda, Claudio; Baró, Maria Dolors; Gutfleisch, Oliver; Klassen, Thomas; Dornheim, Martin

    2015-01-01

    Highlights: • Faster desorption reaction for doped materials vs. the pure composite system. • Kinetic improvement concerning re-hydrogenation reaction showed by the addition of NbF 5 . • Full characterization of the de-hydrogenation reaction pathway by means of both SR-PXD and 11 B{ 1 H} MAS-NMR. • Study of the evolution of the chemical state of the additives upon both milling and sorption reactions. - Abstract: In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH 4 ) 2 and the Ca(BH 4 ) 2 + MgH 2 reactive hydride composites (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications. In this study, the addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous suppression of CaB 12 H 12 . Structural characterization of the specimens was performed by means of in-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and 11 B{ 1 H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 system have not suppressed completely the formation of CaB 12 H 12 and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite material

  16. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  17. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  18. The evolution of grain mantles and silicate dust growth at high redshift

    Science.gov (United States)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  19. Mechanical properties of heat treated and worn PVD, TiN, (Ti, Al)N, (Ti, Nb)N and Ti(C, N) coatings as measured by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Vancoille, E.; Celis, J.P.; Roos, J.R. (Dept. of Metallurgy and Materials Engineering, Katholieke Univ. Leuven, Heverlee (Belgium))

    1993-03-15

    Steered arc ion plated TiN, (Ti[sub 50], Al[sub 50])N, (Ti[sub 85], Nb[sub 15])N and Ti(C[sub 60], N[sub 40]) coatings were heat treated in an inert argon atmosphere at temperatures up to 900degC. The hardness, Young's modulus and plasticity of the coatings were measured with nanoindentation after heating. As the coatings were annealed at higher temperatures, the hardness decreased and the plasticity increased. X-ray diffraction of the coatings showed that this corresponds to a decrease in internal stress and a change of crystallographic texture. The nanohardness of the cutting edge of coated drills was also measured after these were used in AISI 4140 steel. Scanning electron microscopy demonstrated the presence of a silicate layer located near the cutting edge of (Ti[sub 85], Nb[sub 15])N coated drills. Nanoindentation showed that the mechanical signature of the surface film further away from the cutting edge corresponded to a heat-treated coating covered with an oxide layer. (orig.).

  20. Mg-containing hydroxyapatite coatings on Ti-6Al-4V alloy for dental materials

    Science.gov (United States)

    Yu, Ji-Min; Choe, Han-Cheol

    2018-02-01

    In this study, Mg-containing hydroxyapatite coatings on Ti-6A1-4 V alloy for dental materials were researched using various experimental instruments. Plasma electrolytic oxidation (PEO) was performed in electrolytes containing Mg (symbols of specimens: CaP, 5M%, 10M%, and 20M%) at 280 V for 3 min. The electrolyte used for PEO was produced by mixing Ca(CH3COO)2·H2O, C3H7NaCaO6P, and MgCl2·6H2O. The phases and composition of the oxide films were evaluated by X-ray diffraction and field-emission scanning electron microscopy with energy dispersive X-ray spectrometry. The irregularity of the surface, pore size, and number of pores decreased as the Mg concentration increased. The ratio of the areas occupied and not occupied by pores decreased as the Mg concentration increased, with the numbers of both large and small pores decreasing with increasing Mg concentration. The number of particles on the internal surfaces of pores was increased as the Mg content increased. Mg content of all samples containing Mg ions showed higher in the pore outside than that of pore inside, whereas the Ca content was higher inside the pores. The P content of samples with the addition of Mg ions showed higher values inside the pores than outside. The Ca/P and [Mg + Ca]/P molar ratios in the PEO films decreased with Mg content. The crystallite size of anatase was increased with increasing Mg concentration in the solution.

  1. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    International Nuclear Information System (INIS)

    Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J.

    2012-01-01

    Highlights: ► Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. ► Microstructure, microhardness and corrosion of remelted samples are deeply analysed. ► Microstructural changes of laser remelted TiG2 lead to microhardness increase. ► Remelted Ti6Al4V presents microhardness increase and corrosion improvement. ► Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  2. The results of dosimetric type tests on the sample of LiF:Mg,Ti thermoluminescence dosimeters produced in Iran

    International Nuclear Information System (INIS)

    Jafarizadeh, M.; Hosseini Pooya, S. M.; Firoozi, B.; Kamali Shoroodani, A. R.; Mohammadi, Kh.

    2011-01-01

    In this investigation, the standard type tests performed on the LiF:Mg,Ti chip samples which have been produced in Iran. The dosimetry tests are consisting of sensitivity, homogeneity, linearity, reproducibility, minimum measurable dose, self and residual doses. The obtained results show that some of the tests such as sensitivity, minimum measurable dose, self and residual doses fulfill the criteria given by IEC 61066 and ASTM E668 standards; however, the remaining tests show some discrepancies in comparison with the standards. Also the sensitivity was measured to be 0.92 of that of commercially available TLD-100 (Harshaw) sample. So, the produced LiF:Mg,Ti dosimeter can be used in a routine personal/environmental and medical dosimetry with considering its precision.

  3. Ti-dopant-enhanced photocatalytic activity of a CaFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} bulk heterojunction under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borse, Pramod H. [International Advanced Research Center for Powder Metallurgy and New Materials, Hyderabad (India); Kim, Jae Y.; Lee, Jae S. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lim, Kwon T. [Pukyong National University, Busan (Korea, Republic of); Jeong, Euh D.; Bae, Jong S.; Yoon, Jang H.; Yu, Seong M.; Kim, Hyun G. [Korea Basic Science Institute, Busan (Korea, Republic of)

    2012-07-15

    The effect substitution of Ti{sup 4+} at the Fe{sup 3+} site in a CaFe{sub 2}O{sub 4{sup -}}MgFe{sub 2}O{sub 4} bulk hetero-junction (BH) lattice photocatalyst was explored and the Ti ion concentration was optimized to fabricate an efficient photocatalyst. A BH consisting of an optimum dopant concentration (Ti{sup +4}) level of x = 0.03 exhibited an increased band gap and generated a 1.5 times higher photocurrent. The newly fabricated Ti ion doped photocatalyst showed an enhanced quantum yield (up to ∼13.3%) for photodecomposition of a H{sub 2}O-CH{sub 3}OH mixture, as compared to its undoped BH counterpart under visible light (λ ≥ 420 nm). In contrast, the material doped with a very high Ti-dopant concentration displayed deteriorated photochemical properties. An efficient charge-separation induced by Ti-ion doping seems to be responsible for the higher photocatalytic activity in a doped bulk BH.

  4. High-speed growth of TiO{sub 2} nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Xiaoliang; Zheng Maojun; Shen Wenzhong [Key Laboratory of Artificial Structures and Quantum Control, Ministry of Education, Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma Li, E-mail: mjzheng@sjtu.edu.cn [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-10-08

    Highly ordered TiO{sub 2} nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 {mu}m min{sup -1}), which is nearly 16 times faster than traditional fabrication of TiO{sub 2} at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO{sub 2} nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO{sub 2} nanotubular arrays for practical applications.

  5. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  6. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    Science.gov (United States)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  7. Fabrication and Mechanical Properties of Nanostructured TiC-TiAl by the Pulsed Current Activated Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Bong-Won; Shon, In-Jin [Chonbuk National University, Chonbuk (Korea, Republic of); Kim, Byung-Su [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Yoon, Jin-Kook; Hong, Kyung-Tae [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2016-08-15

    TiC-Co or TiC-Ni hard materials have been used for cutting tools. However, the high cost and the low hardness of Ni or Co, and the low corrosion resistance of the TiC-Ni and TiC-Co cermets have generated interest in recent years in using them as alternative binder phases. In this study, TiAl was used as a novel binder and consolidated by the pulsed current activated sintering(PCAS) method. Nanopowders of TiC and TiAl were fabricated using high energy ball milling. Highly dense TiC-TiAl hard materials with a relative density of up to 99.5% were sintered within three min by PCAS. Not only the hardness but also the fracture toughness of the TiC-10 vol%TiAl were better than those of TiC-10 vol%Ni or TiC-10 vol%Co.

  8. Fabrication and Mechanical Properties of Nanostructured TiC-TiAl by the Pulsed Current Activated Sintering

    International Nuclear Information System (INIS)

    Kwak, Bong-Won; Shon, In-Jin; Kim, Byung-Su; Yoon, Jin-Kook; Hong, Kyung-Tae

    2016-01-01

    TiC-Co or TiC-Ni hard materials have been used for cutting tools. However, the high cost and the low hardness of Ni or Co, and the low corrosion resistance of the TiC-Ni and TiC-Co cermets have generated interest in recent years in using them as alternative binder phases. In this study, TiAl was used as a novel binder and consolidated by the pulsed current activated sintering(PCAS) method. Nanopowders of TiC and TiAl were fabricated using high energy ball milling. Highly dense TiC-TiAl hard materials with a relative density of up to 99.5% were sintered within three min by PCAS. Not only the hardness but also the fracture toughness of the TiC-10 vol%TiAl were better than those of TiC-10 vol%Ni or TiC-10 vol%Co.

  9. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  10. Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pH-ISFET fabricated by CMOS compatible process

    International Nuclear Information System (INIS)

    Bunjongpru, W.; Sungthong, A.; Porntheeraphat, S.; Rayanasukha, Y.; Pankiew, A.; Jeamsaksiri, W.; Srisuwan, A.; Chaisriratanakul, W.; Chaowicharat, E.; Klunngien, N.; Hruanun, C.; Poyai, A.; Nukeaw, J.

    2013-01-01

    High sensitivity and very low drift rate pH sensors are successfully prepared by using nanocrystal-TiO 2 as sensing membrane of ion sensitive field effect transistor (ISFET) device fabricated via CMOS process. This paper describes the physical properties and sensing characteristics of the TiO 2 membrane prepared by annealing Ti and TiN thin films that deposited on SiO 2 /p-Si substrates through reactive DC magnetron sputtering system. The X-ray diffraction, scanning electron microscopy and Auger electron spectroscopy were used to investigate the structural and morphological features of deposited films after they had been subjected to annealing at various temperatures. The experimental results are interpreted in terms of the effects of amorphous-to-crystalline phase transition and subsequent oxidation of the annealed films. The electrolyte–insulator–semiconductor (EIS) device incorporating Ti-O-N membrane that had been obtained by annealing of TiN thin film at 850 °C exhibited a higher sensitivity (57 mV/pH), a higher linearity (1), a lower hysteresis voltage (1 mV in the pH cycle of 7 → 4 → 7 → 10 → 7), and a smaller drift rate (0.246 mV/h) than did those devices prepared at the other annealing temperatures. Furthermore, this pH-sensing device fabrication process is fully compatible with CMOS fabrication process technology.

  11. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  12. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  13. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  14. Negative thermal expansion up to 1000 C of ZrTiO4-Al2TiO5 ceramics for high-temperature applications

    International Nuclear Information System (INIS)

    Kim, I.J.; Kim, H.C.; Han, I.S.; Aneziris, C.G.

    2005-01-01

    High temperature structural ceramics based on Al 2 TiO 5 -ZrTiO 4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600 C had a negative thermal expansions up to 1000 C and a much lower thermal expansion coefficient (0.3 ∝ 1.3 x 10 -6 /K) than that of polycrystalline Al 2 TiO 5 (1.5 x 10 -6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al 2 TiO 5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer. (orig.)

  15. Enhanced luminescence in Mg{sup 2+} codoped CaTiO{sub 3}:Eu{sup 3+} phosphor prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vandana, C. Sai; Rudramadevi, B. Hemalatha [Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

    2016-05-23

    CaTiO{sub 3} phosphors doped with Eu{sup 3+} and codoped with Mg{sup 2+} were prepared by Solid State Reaction method. The powders were characterized by X-ray diffraction, SEM with EDS, Raman scattering, and photoluminescence spectroscopy. The Crystalline phase and vibrational modes of the phosphors were studied using XRD pattern and Raman Spectrum respectively. The morphological studies of the phosphor samples were carried out using SEM analysis. From PL spectra we have observed two prominent red emission peaks around at 595 nm ({sup 5}D{sub 0}→{sup 7}F{sub 1}), 619 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}) with the excitation of 399 nm for Eu{sup 3+} doped CaTiO{sub 3} powders. The PL intensity of CaTiO{sub 3}:Eu{sup 3+} phosphor is enhanced significantly on codoping with Mg{sup 2+}. The observed enhanced emissions are due to energy transfer from Mg{sup 2+} to Eu{sup 3+}, which is due to radiative recombination. Eu{sup 3+} doped phosphors are well known to be promising materials for electroluminescent devices, optical amplifiers, and lasers.

  16. Microstructure degradation in high temperature fatigue of TiAl

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Obrtlík, Karel

    2014-01-01

    Roč. 65, AUG (2014), s. 28-32 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP107/11/0704 Institutional support: RVO:68081723 Keywords : Low cycle fatigue * lamellar TiAl alloy * high temperature fatigue * dislocations Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  17. High-temperature silicate volcanism on Jupiter's moon Io

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Spencer, J.R.; Schubert, G.; Matson, D.L.; Lopes-Gautier, R.; Klaasen, K.P.; Johnson, T.V.; Head, J.W.; Geissler, P.; Fagents, S.; Davies, A.G.; Carr, M.H.; Breneman, H.H.; Belton, M.J.S.

    1998-01-01

    Infrared wavelength observations of Io by the Galileo spacecraft show that at last 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patea, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with thse high-temperature hot spots.

  18. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin

    2016-01-01

    In the present work, “water dispersible” TiO 2 nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO 2 nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO 2 nanoparticles (P25), the “water dispersible” TiO 2 nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L −1 . Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO 2 nanoparticles. These results suggest that the “water dispersible” TiO 2 nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO 2 nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L −1 ) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  19. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  20. Effect of process control agent (PCA) on the characteristics of mechanically alloyed Ti-Mg powders [Journal article

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2011-03-01

    Full Text Available This paper reports the results of a study to determine the effect of process control agent (PCA) on the characteristics of Ti-Mg powders during milling. It has been shown that a 2% increase in PCA content leads to up to a 40% increase in yield...

  1. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  2. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  3. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    Science.gov (United States)

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  4. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  5. Suppression of spin fluctuations in TiBe2 by high magnetic fields

    International Nuclear Information System (INIS)

    Stewart, G.R.; Smith, J.L.; Brandt, B.L.

    1982-01-01

    Measurement of the low-temperature specific heat of a well-characterized 15.6-mg sample of TiBe 2 was performed in magnetic fields of 0, 6.5, 11.4, 14.2, and 17.0 T. The results indicate a striking depression of the spin-fluctuation-caused upturn with increasing field in the lower-temperature specific heat and very little change at higher temperatures where the spin fluctuations are less predominant. A field for full suppression of the spin fluctuations is extrapolated to be above about 25 T. The field at which the onset of spin-fluctuation depression occurs is 5.2 +- 0.3 T, suggesting that the previously observed anomalies in the susceptibility and differential susceptibility of TiBe 2 at 5.5 T are connected to the onset of the depression of spin fluctuations. Furthermore, this onset of spin-fluctuation depression at 5.2 +- 0.3 T coupled with the extrapolation to full suppression above 25 T serves to unify the interpretations of previous data on TiBe 2 by Wohlfarth, by Acker et al., and by van Deursen et al. which were previously thought to be in contradiction

  6. The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level

    International Nuclear Information System (INIS)

    Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.; Vargas, Andre Luis Marin; Blando, Eduardo; Huebler, Roberto

    2008-01-01

    This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). These techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications

  7. The high-flux effect on deuterium retention in TiC and TaC doped tungsten at high temperatures

    Science.gov (United States)

    Zibrov, Mikhail; Bystrov, Kirill; Mayer, Matej; Morgan, Thomas W.; Kurishita, Hiroaki

    2017-10-01

    Samples made of tungsten (W) doped either with titanium carbide (W-1.1TiC) or tantalum carbide (W-3.3TaC) were exposed to a low-energy (40 eV/D), high-flux (1.8-5 × 1023 D/m2s) deuterium (D) plasma at temperatures of about800 K, 1050 K, and 1250 K to a fluence of about1 × 1027 D/m2. The deuterium (D) inventory in the samples was examined by nuclear reaction analysis and thermal desorption spectroscopy. At 800 K the D bulk concentrations and total D inventories in W-1.1TiC and W-3.3TaC were more than one order of magnitude higher compared to that in pure polycrystalline W. At 1050 K and 1250 K the D concentrations in all types of samples were very low (≤10-5 at. fr.); however the D inventories in W-1.1TiC were significantly higher compared to those in W-3.3TaC and pure W. It is suggested that D trapping inside the carbide precipitates and at their boundaries is essential at high temperatures and high incident fluxes, especially in W-1.1TiC.

  8. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  9. Dose Measurements in a Phantom Simulating Neonates by Using Different TL Materials: LiF:Mg,Cu,P and LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Saez-Vergara, J.C.; Romero, A.M.; Fernandez, C.; Gomez, S.; Vazquez, J.; Olivares, M.P.

    1999-01-01

    A study reproducing usual exposure conditions in a special care baby unit has been performed to measure doses using TL materials in a versatile phantom specially designed for neonates having X ray examinations. The phantom offers the possibilities of reproducing different patient thicknesses and representing either a solid or hollow lung region. The results of the dose measurements using TL materials at the entrance, exit and both laterals of the phantom during different chest radiograph conditions are presented. Test conditions were reproduced in both hollow and solid chest cages simulating patient thicknesses of 5, 6 and 7 cm. The study was completed using two types of TL materials, LiF:Mg,Cu,P and LiF:Mg,Ti, in order to analyse and correct the differences on energy response between the two phosphors. (author)

  10. Low temperature intermediate band metallic behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Javier, E-mail: oleaariza@fis.ucm.es; Pastor, David; Garcia-Hemme, Eric; Garcia-Hernansanz, Rodrigo; Prado, Alvaro del; Martil, Ignacio; Gonzalez-Diaz, German

    2012-08-31

    Si samples implanted with very high Ti doses and subjected to Pulsed-Laser Melting (PLM) have been electrically analyzed in the scope of a two-layer model previously reported based on the Intermediate Band (IB) theory. Conductivity and Hall effect measurements using the van der Pauw technique suggest that the insulator-metal transition takes place for implantation doses in the 10{sup 14}-10{sup 16} cm{sup -2} range. Results of the sample implanted with the 10{sup 16} cm{sup -2} dose show a metallic behavior at low temperature that is explained by the formation of a p-type IB out of the Ti deep levels. This suggests that the IB would be semi-filled, which is essential for IB photovoltaic devices. - Highlights: Black-Right-Pointing-Pointer We fabricated high dose Ti implanted Si samples for intermediate band research. Black-Right-Pointing-Pointer We measured the electronic transport properties in the 7-300 K range. Black-Right-Pointing-Pointer We show an insulator to metallic transition when the intermediate band is formed. Black-Right-Pointing-Pointer The intermediate band is semi-filled and populated by holes. Black-Right-Pointing-Pointer We satisfactorily explain the electrical behavior by an intermediate band model.

  11. Luminescent emission of LiF: Mg, Ti exposed to UV radiation

    International Nuclear Information System (INIS)

    Estrada G, A.; Castano M, V.M.; Cruz Z, E.; Garcia F, F.

    2002-01-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  12. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  13. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    Science.gov (United States)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  14. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  15. Promoting Photocatalytic Overall Water Splitting by Controlled Magnesium Incorporation in SrTiO3 Photocatalysts.

    Science.gov (United States)

    Han, Kai; Lin, Yen-Chun; Yang, Chia-Min; Jong, Ronald; Mul, Guido; Mei, Bastian

    2017-11-23

    SrTiO 3 is a well-known photocatalyst inducing overall water splitting when exposed to UV irradiation of wavelengths water-splitting efficiency of the Mg:SrTiO x composites is up to 20 times higher compared to SrTiO 3 containing similar catalytic nanoparticles, and an apparent quantum yield (AQY) of 10 % can be obtained in the wavelength range of 300-400 nm. Detailed characterization of the Mg:SrTiO x composites revealed that Mg is likely substituting the tetravalent Ti ion, leading to a favorable surface-space-charge layer. This originates from tuning of the donor density in the cubic SrTiO 3 structure by Mg incorporation and enables high oxygen-evolution rates. Nevertheless, interfacing with an appropriate hydrogen evolution catalyst is mandatory and non-trivial to obtain high-performance in water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soo Woo [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of)

    2017-04-15

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  17. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    International Nuclear Information System (INIS)

    Nam, Soo Woo

    2017-01-01

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  18. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    Science.gov (United States)

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  19. High-level radioactive waste isolation by incorporation in silicate rock

    International Nuclear Information System (INIS)

    Schwartz, L.L.; Cohen, J.J.; Lewis, A.E.; Braun, R.L.

    1978-01-01

    A number of technical possibilities for isolating high-level radioactive materials have been theoretically investigated at various times and places. Isolating such wastes deep underground to ensure long term removal from the biosphere is one such possibility. The present concept involves as a first step creating the necessary void space at considerable depth, say 2 to 5 km, in a very-low-permeability silicate medium such as shale. Waste in dry, calcined or vitrified form is then lowered into the void space, and the access hole or shaft sealed. Energy released by the radioactive decay raises the temperature to a point where the surrounding rock begins to melt. The waste is then dissolved in it. The extent of this melt region grows until the heat generated is balanced by conduction away from the molten zone. Resolidification then begins, and ends when the radioactive decay has progressed to the point that the temperature falls below the melting point of the rock-waste solution. Calculations are presented showing the growth and resolidification process. A nuclear explosion is one way of creating the void space. (author)

  20. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  1. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO3/SrTiO3/SmTiO3 Quantum Well Structures.

    Science.gov (United States)

    Hardy, Will J; Isaac, Brandon; Marshall, Patrick; Mikheev, Evgeny; Zhou, Panpan; Stemmer, Susanne; Natelson, Douglas

    2017-04-25

    Heterointerfaces of SrTiO 3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO 3 /SrTiO 3 , support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO 3 sandwiched between layers of SmTiO 3 , in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T 2 ) to a non-Fermi liquid (ρ ∝ T 5/3 ) by controlling the SrTiO 3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

  2. Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn

    2015-01-01

    Mn/TiO2and Mn–Fe/TiO2catalysts have been prepared by impregnation (IMP) and deposition-precipitation (DP) techniques and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, XPS and TGA. 25 wt% Mn0.75Fe0.25Ti-DP catalyst, prepared by deposition precipitation with ammonium carbamate (AC......) as a precipitating agent, showed superior low-temperature SCR (selective catalytic reduction) of NO with NH3. The superior catalytic activity of the 25 wt% Mn0.75Fe0.25Ti-DP catalyst is probably due to the presence of amorphous phases of manganese oxide, iron oxide, high surface area, high total acidity......, acidstrength and ease of reduction of manganese oxide and iron oxide on TiO2in addition to formation of an SCR active MnOx phase with high content of chemisorbed oxygen (Oα). The optimum catalyst might beused as tail-end SCR catalysts in, e.g., biomass-fired power plants and waste incineration plants....

  3. Effect of Ti concentration on the structure and texture of SiTiOC glasses

    International Nuclear Information System (INIS)

    Tellez, L.; Rubio, J.; Valenzuela, M.A.; Rubio, F.; Oteo, J.L.

    2009-01-01

    Five different silicon-titanium organic-inorganic hybrid materials were prepared by the reaction of tetraethoxysilane, titanium tetrabutoxide and silanol-terminated polydimethylsiloxane. Si-Ti oxycarbide glasses were prepared by pyrolysis of the hybrid materials in nitrogen atmosphere in the range of 400 to 1500 deg. C. The obtained Si-Ti oxycarbide materials were characterized by Fourier Transform-Infra Red spectroscopy, X-ray-diffraction, mercury porosimetry and SEM. The study indicated that the reactivity towards water increases up to 1000 deg. C, at higher temperatures it decreases for all samples. During the pyrolysis, Ti atoms were incorporated into the silicate network leading to the formation of Si-Ti oxycarbide glasses, except with sample containing 7% of Ti which presented also the formation of β-SiC and TiC crystalline phases. The porosity was increased up to 600 deg. C and then decreased tending to disappear at 1500 deg. C. When the titanium concentration increased from 1 to 3% in the oxycarbide glass, the porosity decreased; for higher concentration, an increase in the porosity was observed.

  4. Effect of Ti concentration on the structure and texture of SiTiOC glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, L. [Dpt. Ing. Metalurgica. ESIQIE-Instituto Politecnico Nacional. Zacatenco, 07738 Mexico D.F. (Mexico); Rubio, J. [Instituto de Ceramica y Vidrio. C.S.I.C. Campus de la Universidad Autonoma de Madrid, Canto Blanco 28049, Madrid (Spain); Valenzuela, M.A., E-mail: mavalenz@ipn.mx [Lab. Catalisis y Materiales, ESIQIE-Instituto Politecnico Nacional. Zacatenco, 07738 Mexico D.F. (Mexico); Rubio, F.; Oteo, J.L. [Instituto de Ceramica y Vidrio. C.S.I.C. Campus de la Universidad Autonoma de Madrid, Canto Blanco 28049, Madrid (Spain)

    2009-06-15

    Five different silicon-titanium organic-inorganic hybrid materials were prepared by the reaction of tetraethoxysilane, titanium tetrabutoxide and silanol-terminated polydimethylsiloxane. Si-Ti oxycarbide glasses were prepared by pyrolysis of the hybrid materials in nitrogen atmosphere in the range of 400 to 1500 deg. C. The obtained Si-Ti oxycarbide materials were characterized by Fourier Transform-Infra Red spectroscopy, X-ray-diffraction, mercury porosimetry and SEM. The study indicated that the reactivity towards water increases up to 1000 deg. C, at higher temperatures it decreases for all samples. During the pyrolysis, Ti atoms were incorporated into the silicate network leading to the formation of Si-Ti oxycarbide glasses, except with sample containing 7% of Ti which presented also the formation of {beta}-SiC and TiC crystalline phases. The porosity was increased up to 600 deg. C and then decreased tending to disappear at 1500 deg. C. When the titanium concentration increased from 1 to 3% in the oxycarbide glass, the porosity decreased; for higher concentration, an increase in the porosity was observed.

  5. Humidity Sensitivity of MgCr2O4-TiO2-LiO2 Ceramics Sensor Prepared by Sol-Gel Routes

    Directory of Open Access Journals (Sweden)

    H. Y. He

    2010-05-01

    Full Text Available 79.5MgCr2O4–19.5TiO2–Li2O porous ceramics were investigated as a humidity sensor. The sensors obtain by a cold isostatic pressing and sintering of the fine MgCr2O4 and TiO2 and LiCO3 powders. The MgCr2O4 and TiO2 powders were respectively synthesized by sol-gel methods. The effects of sintering temperature on the humidity sensitivity of sensors were studied by measuring electrical resistance in different conditions of relative humidity (R.H. at 27 °C. The results indicated that the calcining temperature obviously affected the resistance variation of the sensor in range of 11.3-84.7 % RH. The resistance variation was small at the calcining temperature of 600 oC for 2 h. With increasing calcining temperature, the resistance variation increased to 5.4×104% and 7.0×104 % at 800 oC and 1000 oC for 2 h, but decreased to 3.1×104 % at 1200 oC for 2 h respectively. The response times are 25 s and 35 s respectively for humidity adsorption and humidity desorption between 11.3 %RH and 84.7 %RH.

  6. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  7. Graphene-reinforced calcium silicate coatings for load-bearing implants.

    Science.gov (United States)

    Xie, Youtao; Li, Hongqing; Zhang, Chi; Gu, Xin; Zheng, Xuebin; Huang, Liping

    2014-04-01

    Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of ceramics. In the present study, various ratios of graphene (0.5 wt%, 1.5 wt% and 4 wt%) were reinforced into calcium silicate (CS) coatings for load-bearing implant surface modification. Surface characteristics of the graphene/calcium silicate (GC) composite coatings were characterized by scanning electron microscopy. Results show that the graphene plates (less than 4 wt% in the coatings) were embedded in the CS matrix homogeneously. The surfaces of the coatings showed a hierarchical hybrid nano-/microstructure, which is believed to be beneficial to the behaviors of the cell and early bone fixation of the implants. Wear resistance measured by a pin-on-disc model exhibited an obvious enhancement with the adoption of graphene plates. The weight losses of the GC coatings decreased with the increase of graphene content. However, too high graphene content (4 wt% or more) made the composite coatings porous and the wear resistance decreased dramatically. The weight loss was only 1.3 ± 0.2 mg for the GC coating containing 1.5 wt% graphene (denoted as GC1.5) with a load of 10 N and sliding distance of 500 m, while that of the pure CS coating reached up to 28.6 ± 0.5 mg. In vitro cytocompatibility of the GC1.5 coating was evaluated using a human marrow stem cell (hMSC) culture system. The proliferation and alkaline phosphatase, osteopontin and osteocalcin (OC) osteogenesis-related gene expression of the cells on the GC1.5 coating did not deteriorate with the adoption of graphene. Conversely, even better adhesion of the hMSCs was observed on the GC1.5 coating than on the pure CS coating. All of the results indicate that the GC1.5 coating is a good candidate for load-bearing implants.

  8. Wastewater remediation by TiO2-impregnated chitosan nano-grafts exhibited dual functionality: High adsorptivity and solar-assisted self-cleaning.

    Science.gov (United States)

    Essawy, Amr A; Sayyah, S M; El-Nggar, A M

    2017-08-01

    This work provides a very infrequent and unique avenue of a novel bio-based nanografted polymeric composites achieving encouraging results in green management of dye contaminants in wastewater. A chitosan-grafted-polyN-Methylaniline (Ch-g-PNMANI) and chitosan-grafted-polyN-Methylaniline imprinted TiO 2 nanocomposites (Ch-g-PNMANI/TiO 2 ) were prepared and efficiently applied in wastewater remediation. The nanocomposites were characterized by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and Brunauer-Emmett-Teller surface area (BET) measurements. The prepared composites exhibit higher adsorptivity in removing remazol red RB-133 (RR RB-133) dye compared to other adsorbents reported in literature. The effects of TiO 2 loadings, initial dye concentration, contact time, and pH on dye adsorption were investigated. The maximum adsorption of dye was found at low pH values. Furthermore, Ch-g-PNMANI/TiO 2 of the optimum TiO 2 loading has higher adsorption capacity (116.3mg/g) than the pristine Ch-g-PNMANI (108.7mg/g). Moreover, the prepared adsorbents are photoactive under sunlight-irradiation. The study addresses a nanocomposite of considerable adsorption and in the same time has the fastest self-cleaning photoactivity (t 1/2 =31.5min.) under sunlight irradiation where a plausible photodegradation mechanism was proposed. Interestingly, the presented photoactive adsorbents are still effective in removing dye after five adsorption/sunlight-assisted self-cleaning photoregeneration cycles and therefore, they can be potentially applied to the rapid, "green" and low-cost remediation of RR RB-133 enriched industrial printing and dyeing wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  10. Calibration of thermoluminescent dosimeters (LiF : Mg : Ti) at different x-ray energies

    International Nuclear Information System (INIS)

    Osman, Aziza Mobark

    1998-04-01

    In this work the distance between the x-ray target (source) and the reference point on the housing of the newly installed secondary standard dosimetry laboratory (SSDL) at Sudan Atomic Energy Commission in Soba were determined, using the inverse square law. Six x-ray qualities were used at different positions. The results showed that the distance of the source to reference point is found to be (22± 2 cm). The calibration factors for the (LIF: Mg: Ti) TLD chips with the harshow model 2000C reader was determined for x-ray energies for quality (3) (KV = 80, filtration (1mm Al +5.30 mm Cu, HVL= 0.59 mm Cu), and for quality (4) (KV = 100, filtration ( 1mm Al + 5.30 mm Cu), HVL= 1.15 mm Cu) at 3 meter distance. The calibration factors for these two qualities is found to be ( 0.1030 ± 0.0002 ), (o.1098± 0.0004 ) m Gray per nano coulomb respectively. These values m and those obtained earlier at SAEC (1996) lab, by using Sr-90 irradiator (Beta- energy 2.27 MeV) calibration factor is found to be ( 0.1030 mGray per nano coulomb), confirm that within accuracies needed at radiation protection level, ( LiF: Mg: TI ) TLDs chips can be considered as an energy independent detector in the studied energy range. It is suggested that further measurements should be carried for other energies for determination of calibration factors for the full range of energies in use. ( Author )

  11. Structural, dielectric and ferroelectric studies of (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} magnetoelectric nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Khader, S. Abdul, E-mail: khadersku@gmail.com; Sankarappa, T., E-mail: sankarappa@rediffmail.com [Department of Physics, Gulbarga University, Gulbarga-585106, Karnataka (India); Muneeswaran, M.; Giridharan, N. V. [Department of Physics, National Institute of Technology, Tiruchirapalli-620015 (India)

    2016-05-06

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO{sub 3} (BT) and highly magneto-strictive magnetic component Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4}(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  12. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  13. Process for growing a film epitaxially upon a MgO surface

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  14. Kinetic Modeling of the Lif:Mg,Ti TL System including Defect Creation: Implications to, and Development of Track Structure Theory Calculations of Heavy Charged Particle Radiation Effects

    International Nuclear Information System (INIS)

    Eliyahu, Ian

    2015-01-01

    In this research, various kinetic models were developed for LiF:Mg,Ti crystals, both in the irradiation and recombination stages. The models were later used to improve on track structure theory, which attempts to describe radiation effects of Heavy charged particle. To achieve this goal, the research focused on three main areas of endeavor. 1. In the first experimental measurements of optical absorption on LiF:Mg,Ti following low ionization density radiation (photons) and high ionization density protons and He ions were carried out in order to investigate the degree of applicability of track structure theory to the prediction of heavy charged particle induced effects of radiation. These measurements are described below. a) Photon induced optical absorption (OA) dose response was measured over an extended dose-range from 10 Gy to 105 Gy for the main OA bands in LiF:Mg,Ti, i.e., the 4.0 eV band (trapping center associated with glow peak 5 in the thermoluminescence glow curve), 4.77 eV band , 5.08 eV (F band) and 5.45 eV band. The extended dose-range allowed the unambiguous determination of linear/exponentially saturation behavior for all the OA bands. For the two main OA bands of interest at 4.0 eV and 5.08 eV, the dose filling factor was determined to be 5 ± 0.6.10-4 Gy-1 and 6.1 ± 0.4 × 10-5 Gy-1 respectively. The surprising, previously unexplained, linear/exponentially saturating dose response of the F band even though vacancies/F centers are being created by the radiation was explained in a kinetic analysis also described in the following. b) Heavy charged particle (HCP) optical absorption was carried out for 1.4 MeV protons and 4 MeV He ions at the SARAF, RARAF and BINA accelerators. Fluence response was measured over the extended range from 1010 cm-2 to 2.1014 cm-2. The low fluence region from 1010 cm-2 to 1011 cm-2 in the no-track-overlap regime allows a comparison of the experimental measurements and the track structure theory (TST) evaluations of the

  15. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  16. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  17. Characterization of jade and silicates of the jade family for application in radiation dosimetry

    International Nuclear Information System (INIS)

    Melo, Adeilson Pessoa de

    2007-01-01

    The main dosimetric properties of jade and of Brazilian silicates of the jade family were studied for application in radiation dosimetry of high doses. Jade is a common denomination of two different silicates: jadeite, Na Al(Si 2 O 6 ), and nephrite, Ca 2 (Mg, Fe) 5 (Si 4 O 11 ) 2 (OH) 2 , that belong to the subclasses of the pyroxenes and amphiboles respectively. The jade samples studied in this work were from: Austria, New Zealand, United States and Brazil. The Brazilian silicates of the jade family studied in this work were the amphiboles: tremolite,Ca 2 Mg 5 (Si 4 O 11 ) 2 (OH) 2 e actinolite, Ca 2 Fe 5 (Si 4 O 11 ) 2 (OH) 2 ; and the pyroxenes: rhodonite, MnSiO 3 and diopside, Ca Mg(Si 2 O 6 ). The mineralogical and chemical composition of these materials were obtained using the neutron activation analysis and X-ray diffraction techniques. The main dosimetric properties (emission curves, calibration curves, reproducibility, lower detection limits, angular and energy dependence, etc) were studied using the thermoluminescent (T L), thermally stimulated exo-emission (TSEE) and electronic paramagnetic resonance (EPR) techniques. The jade-Teflon and the silicate-Teflon samples present two T L peaks around 115 deg C (peak 1) and 210 deg C (peak 2). The calibration curves of the studied materials present a linear behaviour between 0.5 Gy and 1 kGy. The TSEE emission peak occurs at 240 deg C for all samples, and the calibration curves present a sub linear behaviour between 100 Gy and 20 kGy. In the case of the EPR technique, only jade USA has a potential application for radiation dosimetry. A static computational simulation of the most probable intrinsic and extrinsic defects in rhodonite was also realized. Among the basic defects, the Schottky defects of rhodonite are the most probable to occur and, among the extrinsic defects, the divalent and trivalent dopants present the best possibility of inclusion in rhodonite. (author)

  18. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    Science.gov (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  19. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1979-01-01

    Silicate and troilite (FeS) from IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurbole: - 3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, + 1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)sub(trapped) ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns. Troilite samples were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 Myr; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te gave an age of -10.8 +- 0.7 Myr. Thus, low-melting troilite predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate; meteorites with older silicates have greater Ni contents. No model easily accounts for this result as well as other properties of IAB irons; nevertheless, these results, taken at face value, favour a nebular formation model. The great age of troilite from Mundrabilla suggests that this troilite formed in a different nebular region from the silicate and metal, and was later mechanically mixed with these other phases. The correlation between the trace elements in the metal and the I-Xe ages of the silicate provides one of the first known instances in which another well-defined meteoritic property correlates with I-Xe ages. In addition, almost all the 129 Xe in Mundrabilla silicate (etched in acid) was correlated with 128 Xe. These two results further support the validity of the I-Xe dating method. (author)

  20. Evaluation of the thermoluminescent detector answers of CaSO{sub 4}:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator; Avaliacao da resposta de detectores termoluminescentes de CaSO4:Dy, LiF:Mg,Ti e microLiF:Mg,Ti na dosimetria de feixes clinicos de fotons utilizando simulador de agua

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L., E-mail: lmatsushima@usp.b, E-mail: veneziani@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (GMR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Sakuraba, Roberto K.; Cruz, Jose C. da, E-mail: rsakuraba@einstein.b, E-mail: jccruz@einstein.b [Sociedade Beneficente Israelita Brasileira, Sao Paulo, SP (Brazil). Hospital Albert Einstein (HAE)

    2011-10-26

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO{sub 4}:Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  1. Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X=Ni, Si) hydrogen storage alloys

    NARCIS (Netherlands)

    Gobichettipalayam Manivasagam, T.; Iliksu, M.; Danilov, D.L.; Notten, P.H.L.

    2017-01-01

    Mg-based hydrogen storage alloys are promising candidate for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties

  2. High-temperature apparatus for chaotic mixing of natural silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  3. High-temperature apparatus for chaotic mixing of natural silicate melts

    International Nuclear Information System (INIS)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.

    2015-01-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10 6 Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment

  4. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Naik, Kshipra; Kowshik, Meenal

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO 2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO 2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO 2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO 2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO 2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO 2 being porous and inorganic in nature acts as a good supporting matrix

  5. Grinding behavior and surface appearance of (TiCp + TiBw/Ti-6Al-4V titanium matrix composites

    Directory of Open Access Journals (Sweden)

    Ding Wenfeng

    2014-10-01

    Full Text Available (TiCp + TiBw/Ti-6Al-4V titanium matrix composites (PTMCs have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.

  6. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  7. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. (Argonne National Lab., IL (United States)); Pelton, A.; Eriksson, G. (Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering)

    1992-01-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  8. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1992-07-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  9. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  10. The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of the Manihiki Plateau and the Troodos ophiolite

    Science.gov (United States)

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Sobolev, Alexander; Kuzmin, Dimitry; Werner, Reinhard

    2017-12-01

    High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20-25% of total melting with 8-10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb Y 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents ( 2 wt% in boninites), 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM + 0.2) and originated from deeper and hotter mantle (1.4-1.7 GPa, 1440 °C vs. 0.8-1.0 GPa, 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.

  11. Synthesis and characterizations of isolated WO{sub 4} anchored on mesoporous TiTUD-1 support

    Energy Technology Data Exchange (ETDEWEB)

    Pachamuthu, Muthusamy P. [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401 (India); Maheswari, Rajamanickam [Center for Environmentally Beneficial Catalysis (CEBC), The University of Kansas, Lawrence, KS, 66047 (United States); Ramanathan, Anand, E-mail: anand@ku.edu [Center for Environmentally Beneficial Catalysis (CEBC), The University of Kansas, Lawrence, KS, 66047 (United States)

    2017-04-30

    Highlights: • Incorporation of (WO{sub 4}{sup 2−}) species into amorphous mesoporous silicate TiTUD-1. • Typical TUD-1 structure with dispersed Ti{sup 4+} and WO{sub 4}{sup 2−} species. • FT Raman and XPS results evidenced the WO{sub 4}{sup 2−} species dispersion. • Catalyst with 20% W loading yields higher conversion in esterification reaction. - Abstract: The titanium incorporated mesoporous silicate TUD-1 (Si/Ti ratio 40) was synthesized by non-surfactant route, and utilized as a support for tungstate (WO{sub 4}{sup 2−}) species with variable loading (5–30 wt%). The structural and textural properties of these samples were evaluated from X-ray diffraction (XRD) and N{sub 2} physisorption studies. Diffuse reflectance UV–vis (DR UV–vis), Fourier transform infrared (FTIR), Fourier transform Raman (FT Raman) spectra evidenced the Ti{sup 4+} coordination and the formation of WO{sub 4}{sup 2−} species, further supported by X-ray photoelectron spectroscopy (XPS) studies. Scanning electron microscope–energy dispersive X-ray analysis (SEM-EDAX), High resolution transmission electron microscope (HRTEM) further support the materials morphology corroborating other characterizations. The catalytic activities of these materials were tested in the liquid phase, solvent free esterification of acetic acid with n-butanol. About 95% of acetic acid conversion resulted by these catalysts with 8 h of reaction time.

  12. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  13. Platinum-Group Minerals in Chromitites of the Niquelândia Layered Intrusion (Central Goias, Brazil: Their Magmatic Origin and Low-Temperature Reworking during Serpentinization and Lateritic Weathering

    Directory of Open Access Journals (Sweden)

    Nelson Angeli

    2012-10-01

    Full Text Available A variety of platinum-group-minerals (PGM have been found to occur associated with the chromitite and dunite layers in the Niquelândia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary, and others formed or modified during post-magmatic serpentinization and lateritic weathering (secondary. Primary PGM have been found in moderately serpentinized chromitite and dunite, usually included in fresh chromite grains or partially oxidized interstitial sulfides. Due to topographically controlled lateritic weathering, the silicate rocks are totally transformed to a smectite-kaolinite-garnierite-amorphous silica assemblage, while the chromite is changed into a massive aggregate of a spinel phase having low-Mg and a low Fe3+/Fe2+ ratio, intimately associated with Ti-minerals, amorphous Fe-hydroxides, goethite, hematite and magnetite. The PGM in part survive alteration, and in part are corroded as a result of deep chemical weathering. Laurite is altered to Ru-oxides or re-crystallizes together with secondary Mg-ilmenite. Other PGM, especially the Pt-Fe alloys, re-precipitate within the altered chromite together with kaolinite and Fe-hydroxides. Textural evidence suggests that re-deposition of secondary PGM took place during chromite alteration, controlled by variation of the redox conditions on a microscopic scale.

  14. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraei, O. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Farhangi, H. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-01-10

    In current research, the effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy have been investigated. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis were utilized to study the microstructure and fracture surfaces of samples. Microstructural analysis of the cast alloy showed the dendrites of a primary {alpha}-phase solid solution within the eutectic matrix which consists of {beta}-Al{sub 3}Mg{sub 2} intermetallic and {alpha}-solid solution. The results indicated that adding Al-5Ti-1B to the alloy caused a significant rise in the ultimate tensile strength (UTS) and elongation values from 168 MPa and 1.2% to maximum 253 MPa and 2.4%, respectively. The main mechanisms for the observed enhancement were found to be due to the refinement of grains during solidification and also segregation of Ti to the tip of Al ({alpha}) dendrites. This phenomenon controls the dendritic growth and changes the morphology of this phase from interconnected coarse dendrites to a star-like morphology.

  15. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  16. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  17. Investigation of structural and electrical properties of (1 - x) Bi0.5Mg0.5TiO3-(x) PbTiO3 ceramic system

    International Nuclear Information System (INIS)

    Rai, Radheshyam; Sinha, Abinhav; Sharmac, Seema; Sinha, N.K.P.

    2009-01-01

    [(BiMg 0.5 Ti 0.5 O 3 ) 1-x ][PbTiO 3 ] x (BMT-PT) ceramic powders of different compositions were prepared by solid-state reaction method. X-ray diffraction analysis of the compounds suggest the structural change (rhombohedral to tetragonal) in these ceramics. SEM photographs exhibit the uniform distribution of grains with less porosity. Polarization vs. electric field (P-E) studies show maximum remanent polarization (P r ∼ 7.9 μC/cm 2 ) for composition x = 0.34. The dielectric peaks were found to be broadened that indicates the existence of diffuse phase transition. Diffusivity (γ) study of phase transition in these compounds provided values between 1 and 2 indicating the variation of degree of disorderness in the system.

  18. Marvel Analysis of the Measured High-resolution Rovibronic Spectra of TiO

    Science.gov (United States)

    McKemmish, Laura K.; Masseron, Thomas; Sheppard, Samuel; Sandeman, Elizabeth; Schofield, Zak; Furtenbacher, Tibor; Császár, Attila G.; Tennyson, Jonathan; Sousa-Silva, Clara

    2017-02-01

    Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic {}48{{Ti}}16{{O}} molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2-22,160 cm-1 region. Out of the 49,679 measured transitions, 43,885 are triplet-triplet, 5710 are singlet-singlet, and 84 are triplet-singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of {}48{{Ti}}16{{O}}, including 71 triplet and 22 singlet ones. There are 276 (73) triplet-triplet (singlet-singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet {}48{{Ti}}16{{O}} rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for {}48{{Ti}}16{{O}} are deposited in the supporting information to this paper.

  19. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  20. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates

    International Nuclear Information System (INIS)

    McMillan, Nancy J.; Harmon, Russell S.; De Lucia, Frank C.; Miziolek, Andrzej M.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca-Mg carbonate dolomite was misidentified as the Ca-Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes

  1. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  2. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  3. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO{sub 2}) nanoparticles and natural organic matter (NOM) in aqueous suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Elke, E-mail: elke.fries@bgr.de [Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Bureau de Recherches Géologiques et Minières (BRGM), Orléans (France); Crouzet, Catherine; Michel, Caroline; Togola, Anne [Bureau de Recherches Géologiques et Minières (BRGM), Orléans (France)

    2016-09-01

    The aim of the present study was to investigate interactions of the antibiotic ciprofloxacin (CIP), titanium dioxide nanoparticles (TiO{sub 2} NP) and natural organic matter (NOM) in aqueous suspensions. The mean hydrodynamic diameter of particles of TiO{sub 2} NP and NOM in the suspensions ranged from 113 to 255 nm. During batch experiments the radioactivity resulting from {sup 14}CIP was determined in the filtrate (filter pore size 100 nm) by scintillation measurements. Up to 72 h, no significant sorption of NOM to TiO{sub 2} NP was observed at a TiO{sub 2} NP concentration of 5 mg/L. When the concentration of TiO{sub 2} NP was increased to 500 mg/L, a small amount of NOM of 9.5% ± 0.6% was sorbed at 72 h. The low sorption affinity of NOM on TiO{sub 2} NP surfaces could be explained by the negative charge of both components in alkaline media or by the low hydrophobicity of the NOM contents. At a TiO{sub 2} NP concentration of 5 mg L{sup −1}, the sorption of CIP on TiO{sub 2} NP was insignificant (TiO{sub 2} NP/CIP ratio: 10). When the TiO{sub 2} NP/CIP ratio was increased to 1000, a significant amount of 53.6% ± 7.2% of CIP was sorbed on TiO{sub 2} NP under equilibrium conditions at 64 h. In alkaline media, CIP is present mainly as zwitterions which have an affinity to sorb on negatively charged TiO{sub 2} NP surfaces. The sorption of CIP on TiO{sub 2} NP in the range of TiO{sub 2} NP concentrations currently estimated for municipal wastewater treatment plants is estimated to be rather low. The Freundlich sorption coefficients (K{sub F}) in the presence of NOM of 2167 L{sup n} mg mg{sup −n} kg{sup −1} was about 10 times lower than in the absence of NOM. This is an indication that the particle fraction of NOM < 100 nm could play a role as a carrier for ionic organic micro-pollutants as CIP. - Highlights: • Ciprofloxacine (CIP) and titanium dioxide nanoparticles (TiO{sub 2} NP) interact. • Organic carbon (OC) could influence such interactions. • Batch

  4. Preparation and characterization of TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} electrolyte via a citrate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Shi-Jie; Yang, Li-Ping; Liu, Xiao-Min; Wei, Xiao-Ling [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Yang, Hui, E-mail: yanghui@njut.edu.cn [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Shen, Xiao-Dong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China)

    2013-06-25

    Highlights: ► TiO{sub 2} doped Na–β″-Al{sub 2}O{sub 3} electrolyte is synthesized via a sol–gel method with C{sub 16}H{sub 36}O{sub 4}Ti as the precursor for TiO{sub 2}. ► The optimized sample contains 90.28% of β″ phase and presents a very high relative density (99.5%). ► The optimized sample exhibits the bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} (350 °C). -- Abstract: TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} is synthesized via a citrate sol–gel method starting with Al(NO{sub 3}){sub 3}, NaNO{sub 3}, Mg(NO{sub 3}){sub 2} and C{sub 16}H{sub 36}O{sub 4}Ti (tetrabutyl titanate, abbreviated as TBT). It is found that the TBT amount in the starting materials is the key factor to affect the properties of the final product, therefore, the samples sintered from precursors containing different amounts of TBT are systematically investigated by means of powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Meanwhile, the relative density, mechanical strength and electrical properties of the prepared samples are also measured. The optimized sample contains 90.28% of β″ phase, exhibits a uniform and compact microstructure with a relative density as high as 99.5% of theoretical density (TD). In addition, this sample exhibits a bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} at 350 °C.

  5. Pinning in high performance MgB{sub 2} thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Prikhna, Tatiana, E-mail: prikhna@mail.ru [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Shapovalov, Andrey [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Eisterer, Michael [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Shaternik, Vladimir [G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Academician Vernadsky blvd., Kiev, 03680 (Ukraine); Goldacker, Wilfried [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein (Germany); Weber, Harald W. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Boutko, Viktor [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Grechnev, Gennadiy [B. Verkin Institute for Low Temperature Physics of the National Academy of Sciences of Ukraine, 47, Prospekt Nauky, Kharkiv 61103 (Ukraine); Gusev, Alexandr [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Kovylaev, Valeriy; Shaternik, Anton [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine)

    2017-02-15

    Highlights: • Pinning in MgB{sub 2} depends on the Mg-B-O nano-scaled inhomogeneities. • Finer oxygen-enriched inhomogeneities is the reason of the higher J{sub c} in MgB{sub 2} thin films as compared to bulk. • The results of DOS calculations for MgB{sub 2-x}O{sub x} compounds demonstrate that they have metal-like behavior. • Ordered oxygen distribution in MgB{sub 2} (in pairs or zigzags) reduces binding energy. - Abstract: The comparison of nano-crystalline MgB{sub 2} oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, J{sub c}, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB{sub 2} bulks with high J{sub c} in low (∼10{sup 6} A/cm{sup 2} in 0-1 T at 10 K) and medium magnetic fields contain MgB{sub 0.6-0.8}O{sub 0.8-0.9} nano-inclusions, where δT{sub c} or a combined δT{sub c} (dominant) / δ{sub l} pinning mechanism prevails, while in bulk MgB{sub 2} with high J{sub c} in high magnetic fields (B{sub irr}(18.5 K) = 15 T, B{sub c2}(0 K) = 42.1 T) MgB{sub 1.2-2.7}O{sub 1.8-2.5} nano-layers are present and δ{sub l} pinning prevails. The structure of oxygen-containing films with high J{sub c} in low and high magnetic fields (J{sub c} (0 T) = 1.8 × 10{sup 7} A/cm{sup 2} and J{sub c} (5 T) = 2 × 10{sup 6} A/cm{sup 2} at 10 K) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δ{sub l} pinning is realized. The results of DOS calculations in MgB{sub 2-x}O{sub x} cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, E{sub b}, does not increase sufficiently as compared with that for MgB{sub 2}, while when oxygen atoms form zigzag chains the calculated E{sub b} is even lower (E{sub b} = −1.15712 Ry).

  6. 197Au Moessbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M.

    2000-01-01

    We have studied nano-sized Au catalysts supported on Mg(OH) 2 and TiO 2 using 197 Au Moessbauer spectroscopy. 197 Au Moessbauer spectra observed for Au/Mg(OH) 2 catalysts can be decomposed into one singlet with zero isomer shift and several doublets. One of the doublets shows an isomer shift that is typical for Au I , and other doublets are due to Au III . The relative area of the Au I component shows the maximum value for a specimen calcined at 523 K, which also shows the highest catalytic activity

  7. Individual Low-Energy Toroidal Dipole State in Mg 24

    Science.gov (United States)

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  8. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the

  9. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH{sub 4}){sub 2}-MgH{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto Minella, Christian, E-mail: christian.minella@kit.edu [Institute for Metallic Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Garroni, Sebastiano [Dipartimento di Chimica e Farmacia, Universitá di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Pistidda, Claudio [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Gutfleisch, Oliver [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany)

    2015-02-15

    Highlights: • Faster desorption reaction for doped materials vs. the pure composite system. • Kinetic improvement concerning re-hydrogenation reaction showed by the addition of NbF{sub 5}. • Full characterization of the de-hydrogenation reaction pathway by means of both SR-PXD and {sup 11}B{"1H} MAS-NMR. • Study of the evolution of the chemical state of the additives upon both milling and sorption reactions. - Abstract: In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH{sub 4}){sub 2} and the Ca(BH{sub 4}){sub 2} + MgH{sub 2} reactive hydride composites (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications. In this study, the addition of NbF{sub 5} or TiF{sub 4} to the Ca(BH{sub 4}){sub 2} + MgH{sub 2} reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous suppression of CaB{sub 12}H{sub 12}. Structural characterization of the specimens was performed by means of in-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and {sup 11}B{"1H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF{sub 5} or TiF{sub 4} to the Ca(BH{sub 4}){sub 2} + MgH{sub 2} system have not suppressed completely the formation of CaB{sub 12}H{sub 12} and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite material.

  10. High production rate of IBAD-MgO buffered substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, M., E-mail: myoshizumi@istec.or.j [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan); Miyata, S.; Ibi, A.; Fukushima, H.; Yamada, Y.; Izumi, T.; Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan)

    2009-10-15

    The conventional IBAD (Ion Beam Assisted Deposition) process using fluorite materials yields low production rates, resulting in high production cost, which reduces the motivation for practical application in spite of its high quality. The IBAD process using rock salt materials, e.g. MgO, is well known as a strong candidate of practical application due to its potential of high production rate and high in-plane grain alignment. In this work, the IBAD-MgO process was investigated for a newly developed architecture of PLD (Pulsed Laser Deposition)-CeO{sub 2}/sputter-LMO (LaMnO{sub 3})/IBAD-MgO/sputter-GZO (Gd{sub 2}Zr{sub 2}O{sub 7})/Hastelloy{sup TM} to make long buffered metal tapes with high properties and a high production rate. The 50 m-long IBAD-MgO substrates with about 4 deg. of DELTAphiCeO{sub 2} in an XRD phi scan could be fabricated repeatedly. A GdBCO (GdBa{sub 2}Cu{sub 3}O{sub x}) layer deposited on the buffered substrate showed the minimum I{sub c} value of 325 A/cm-w in a 41 m-long tape. Almost of the tape showed 500-600 A/cm-w of I{sub c} value. The deposition time for the IBAD-MgO layer was 60 s which was about 2 orders of magnitude shorter than the conventional IBAD process. The production rate of 24 m/h was realized at the IBAD-MgO process to fabricate the GdBCO coated conductor with high J{sub c} and I{sub c} properties.

  11. In situ beam analysis of radiation damage kinetics in MgTiO3 single crystals at 170-470 K

    International Nuclear Information System (INIS)

    Yu, Ning; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1995-01-01

    Radiation damage kinetics in synthetic MgTiO 3 (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of I and 5x l0 15 Xe/cm 2 were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5xl0 16 Xe/cm 2 at the irradiation temperature of 470 K. This study has shown that MgTiO 3 , which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments

  12. Pre- and post-irradiation fading effect for LiF:Mg,Ti and LiF:Mg,Cu,P materials used in routine monitoring

    International Nuclear Information System (INIS)

    Carinou, E.; Askounis, P.; Dimitropoulou, F.; Kiranos, G.; Kyrgiakou, H.; Nirgianaki, E.; Papadomarkaki, E.; Kamenopoulou, V.

    2011-01-01

    LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Dept. of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ±5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months. (authors)

  13. Infrared spectroscopy of four carbon stars with 9.8 micron emission from silicate grains

    International Nuclear Information System (INIS)

    Lambert, D.L.; Smith, V.V.; Hinkle, K.H.

    1990-01-01

    High-resolution K band and low resolution 4 micron spectra were obtained for four carbon stars showing IR emission by silicate grains. The results of the analysis of the K band spectra show that they are J-type stars. These results, together with published spectral classifications, show that all known carbon stars with a silicate emission feature are J-type stars. The 4 micron spectra are very similar to the spectra of classical J-type carbon stars, and do not show SiO bands that might come from a M giant companion. A binary model with a luminous M giant companion as a source of the silicate grain is rejected. It is proposed that the silicate grains formed from gas ejecta at or before the He-core flash, and that the flash initiates severe mixing, leading to the star's conversion to a J-type carbon star. The ejecta are stored in an accretion disk around a low mass unevolved companion. If it can be shown that the hypothesized accretion disk is stable and may be heated adequately, this binary model appears to account for these peculiar carbon stars. 41 refs

  14. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

    Science.gov (United States)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

  15. On the low-lying states of TiC

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1984-01-01

    The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.

  16. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  17. Influence of milling parameters on the sorption properties of the LiH–MgB{sub 2} system doped with TiCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Nina; Jepsen, Julian; Pistidda, Claudio [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Puszkiel, Julián A. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Combatientes de Malvinas 3150, 1427 Buenos Aires (Argentina); Karimi, Fahim [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Milanese, Chiara [Pavia H_2 Lab, Department of Chemistry, Physical Chemistry Division, University of Pavia, Viale Taramelli 16, I-27100 Pavia (Italy); Tolkiehn, Martin [SRXPD Beamline HASYLAB, Deutsches-Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Chaudhary, Anna-Lisa, E-mail: anna-lisa.chaudhary@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany)

    2015-10-05

    Highlights: • The LiH–MgB{sub 2} system was doped with TiCl{sub 3} and milling conditions varied. • A heuristic model was used to estimate energy transfer from milling conditions. • Milling parameters were correlated with the energy transfer calculation. • 20 kJ g{sup −1} of energy transfer correlates to the optimum conditions for the system. - Abstract: Hydrogen sorption properties of the LiH–MgB{sub 2} system doped with TiCl{sub 3} were investigated with respect to milling conditions (milling times, ball to powder (BTP) ratios, rotation velocities and degrees of filling) to form the reactive hydride composite (RHC) LiBH{sub 4}–MgH{sub 2}. A heuristic model was applied to approximate the energy transfer from the mill to the powders. These results were linked to experimentally obtained quantities such as crystallite size, specific surface area (SSA) and homogeneity of the samples, using X-ray diffraction (XRD), the Brunauer–Emmett–Teller (BET) method and scanning electron microscopy (SEM), respectively. The results show that at approximately 20 kJ g{sup −1} there are no further benefits to the system with an increase in energy transfer. This optimum energy transfer value indicates that a plateau was reached for MgB{sub 2} crystallite size therefore the there was also no improvement of reaction kinetics due to no change in crystallite size. Therefore, this study shows that an optimum energy transfer value was reached for the LiH–MgB{sub 2} system doped with TiCl{sub 3}.

  18. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria-A Challenge for Life on Mars.

    Science.gov (United States)

    Bak, Ebbe N; Larsen, Michael G; Moeller, Ralf; Nissen, Silas B; Jensen, Lasse R; Nørnberg, Per; Jensen, Svend J K; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis , and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  19. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    Directory of Open Access Journals (Sweden)

    Ebbe N. Bak

    2017-09-01

    Full Text Available The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis, and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  20. Integration of High-Performance Nanocrystalline TiO2 Photoelectrodes for N719-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ke-Jian Jiang

    2013-01-01

    Full Text Available We report on enhanced performance of N719-sensitized TiO2 solar cells (DSCs incorporating size and photoelectron diffusion-controlled TiO2 as sensitizer-matched light-scatter layers on conventional nanocrystalline TiO2 electrodes. The double-layered N719/TiO2 composite electrode with a high dye-loading capacity exhibits the diffused reflectance of more than 50% in the range of λ = 650–800 nm, even when the films are coupled with the titania nanocrystalline underlayer in the device. As a result, the increased near-infrared light-harvesting produces a high light-to-electricity conversion efficiency of over 9% mainly due to the significant increase of Jsc. Such an optical effect of the NIR-light scattering TiO2 electrodes will be beneficial when the sensitizers with low molar extinction coefficients, such as N719, are introduced in the device.