WorldWideScience

Sample records for low-temperature methanol synthesis

  1. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  2. Surface-Bound Intermediates in Low-Temperature Methanol Synthesis on Copper. Participants and Spectators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.; Mims, Charles A.

    2015-11-03

    The reactivity of surface adsorbed species present on copper catalysts during methanol synthesis at low temperatures was studied by simultaneous infrared spectroscopy (IR) and mass spectroscopy (MS) measurements during “titration” (transient surface reaction) experiments with isotopic tracing. The results show that adsorbed formate is a major bystander species present on the surface under steady-state methanol synthesis reaction conditions, but it cannot be converted to methanol by reaction with pure H2, nor with H2 plus added water. Formate-containing surface adlayers for these experiments were produced during steady state catalysis in (a) H2:CO2 (with substantial formate coverage) and (b) moist H2:CO (with no IR visible formate species). Both these reaction conditions produce methanol at steady state with relatively high rates. Adlayers containing formate were also produced by (c) formic acid adsorption. Various "titration" gases were used to probe these adlayers at modest temperatures (T = 410-450K) and 6 bar total pressure. Methanol gas (up to ~1% monolayer equivalent) was produced in "titration" from the H2:CO2 catalytic adlayers by H2 plus water, but not by dry hydrogen. The decay in the formate IR features accelerated in the presence of added water vapor. The H2:CO:H2O catalytic adlayer produced similar methanol titration yields in H2 plus water but showed no surface formate features in IR (less than 0.2% monolayer coverage). Finally, formate from formic acid chemisorption produced no methanol under any titration conditions. Even under (H2:CO2) catalytic reaction conditions, isotope tracing showed that pre-adsorbed formate from formic acid did not contribute to the methanol produced. Although non-formate intermediates exist during low temperature methanol synthesis on copper which can be converted to methanol gas

  3. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahoba-Sam, Christian [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway); Olsbye, Unni [Department of Chemistry, University of Oslo, Oslo (Norway); Jens, Klaus-Joachim, E-mail: Klaus.J.Jens@usn.no [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway)

    2017-07-14

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO{sub 2}) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  4. Obtaining low temperature catalysts for methanol synthesis by no-waste process

    Energy Technology Data Exchange (ETDEWEB)

    Il' ko, E G; Sushchaya, L E; Bondar' , P G

    1982-11-01

    Low temperature production of catalysts for methanol synthesis involves considerable pollution of the environment as well as formation of side products. The authors propose producing such catalysts from joint precipitates of copper and zinc carbonates includiing stabilizers produced by decomposing solvents, then drying, aging and shaping. This method avoids waste water usually formed in scrubbing to remove ions of alkaline metals. Aluminum hydroxide is suggested as a stabilizer. The catalyst tablets prepared in this way were found to have activity like those produced by other methods, and were suitable for industrial use.

  5. Process assessment of small scale low temperature methanol synthesis

    International Nuclear Information System (INIS)

    Hendriyana; Susanto, Herri; Subagjo

    2015-01-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H 2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H 2 for increasing H 2 /CO ratio. CO 2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  6. Process assessment of small scale low temperature methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hendriyana [Chemical Engineering Department, Faculty of Engineering, Jenderal Achmad Yani Univerity (Indonesia); Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia); Susanto, Herri, E-mail: herri@che.itb.ac.id; Subagjo [Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia)

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  7. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  8. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Gardini, Diego; Sharafutdinov, Irek; Damsgaard, Christian Danvad

    that the highest methanol yield is obtained with a Ni5Ga3 alloy exposed to a 25% CO2 – 75% H2 reaction mixture at 210 °C [2]. Under these experimental conditions, the catalyst is found to lose 35% of its activity after 20 hours of continuous testing at both 1 and 5 Bars. Although in situ XRD and EXAFS studies [3......In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni......-Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed...

  10. A novel process for methanol synthesis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, J.W.; Wender, I.

    1994-01-25

    The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH -- the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.

  11. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2013-01-01

    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  12. Theoretical and experimental researches of methanol clusters in low - temperature matrices

    International Nuclear Information System (INIS)

    Chernolevs'ka, Je.A.; Doroshenko, Yi.Yu.; Pogorelov, V.Je.; Vas'kyivs'kij, Je.V.; Shablyinskas, V.; Balyavyichus, V.; Yasajev, O.

    2015-01-01

    Molecular vibrational spectra of methanol in argon and nitrogen matrices have been studied. Since methanol belongs to a class of substances with hydrogen bonds, there is a possibility of forming molecular associations and clusters with various numbers of molecules. IR spectra of methanol in Ar and N 2 matrices experimentally obtained in the temperature range from 10 to 50 K are compared with the results of computer simulation using the ab initio Car-Parrinello molecular dynamics (CPMD) method. The results obtained for small clusters in model calculations demonstrate a good correlation with experimental data for various matrices at the corresponding temperatures

  13. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    Science.gov (United States)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  14. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  15. Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor

    Directory of Open Access Journals (Sweden)

    Christian Ahoba-Sam

    2018-01-01

    Full Text Available Cu nanoparticles are known to be very active for methanol (MeOH synthesis at relatively low temperatures, such that smaller particle sizes yield better MeOH productivity. We aimed to control Cu nanoparticle (NP size and size distribution for catalysing MeOH synthesis, by using the spinning disk reactor. The spinning disk reactor (SDR, which operates based on shear effect and plug flow in thin films, can be used to rapidly micro-mix reactants in order to control nucleation and particle growth for uniform particle size distribution. This could be achieved by varying both physical and chemical operation conditions in a precipitation reaction on the SDR. We have used the SDR for a Cu borohydride reduction to vary Cu NP size from 3 nm to about 55 nm. XRD and TEM characterization confirmed the presence of Cu2O and Cu crystallites when the samples were dried. This technique is readily scalable for Cu NP production by processing continuously over a longer duration than the small-scale tests. However, separation of the nanoparticles from solution posed a challenge as the suspension hardly settled. The Cu NPs produced were tested to be active catalyst for MeOH synthesis at low temperature and MeOH productivity increased with decreasing particle size.

  16. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  17. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  18. Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration

    International Nuclear Information System (INIS)

    Xu, Da; Liu, Qibin; Lei, Jing; Jin, Hongguang

    2015-01-01

    Highlights: • A new middle-and-low temperature solar thermochemical CCHP system is proposed. • The thermodynamic performances of the new system are numerically evaluated. • The superiorities of the new system are demonstrated. - Abstract: In this paper, a new distributed energy system that integrates the mid-and-low temperature solar energy thermochemical process and the methanol decomposition is proposed. Through the solar energy receiver/reactor, the energy collected by a parabolic trough concentrator, at 200–300 °C, is used to drive the decomposition reaction of the methanol into the synthesis gas, and thus the solar thermal energy is converted to the chemical energy. The chemical energy of the synthesis gas released in the combustion chamber of a micro gas turbine is used to drive the combined cooling heating and power systems. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under the considerations of the changes of the solar irradiation intensity, the off-design performances of the micro turbine and the variations of the load, the design and off-design thermodynamic performances of the system and the characteristics of the chemical energy storage are numerically studied. Numerical results indicate that the primary energy ratio of the system is 76.40%, and the net solar-electricity conversion rate reaches 22.56%, which is higher than exiting large-scale solar thermal power plants. Owing to the introduction of a the solar thermochemical energy storage in the proposed system, the power generation efficiency is insensitive to the variations of the solar radiation, and thus an efficient and stable utilization approach of the solar thermal energy is achieved at all work condition

  19. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Bermudez; B. Fidalgo; A. Arenillas; J.A. Menendez [Instituto Nacional del Carbn, Oviedo (Spain)

    2010-10-15

    The dry reforming of coke oven gases (COG) over an activated carbon used as catalyst has been studied in order to produce a syngas suitable for methanol synthesis. The primary aim of this work was to study the influence of the high amount of hydrogen present in the COG on the process of dry reforming, as well as the influence of other operation conditions, such us temperature and volumetric hourly space velocity (VHSV). It was found that the reverse water gas shift (RWGS) reaction takes place due to the hydrogen present in the COG, and that its influence on the process increases as the temperature decreases. This situation may give rise to the consumption of the hydrogen present in the COG, and the consequent formation of a syngas which is inappropriate for the synthesis of methanol. This reaction can be avoided by working at high temperatures (about 1000{sup o}C) in order to produce a syngas that is suitable for methanol synthesis. It was also found that the RWGS reaction is favoured by an increase in the VHSV. In addition, the active carbon FY5 was proven to be an adequate catalyst for the production of syngas from COG. 25 refs., 7 figs., 2 tabs.

  20. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  1. A Two-Dimensional Multiphysics Coupling Model of a Middle and Low Temperature Solar Receiver/Reactor for Methanol Decomposition

    Directory of Open Access Journals (Sweden)

    Yanjuan Wang

    2017-10-01

    Full Text Available Abstract: In this paper, the endothermic methanol decomposition reaction is used to obtain syngas by transforming middle and low temperature solar energy into chemical energy. A two-dimensional multiphysics coupling model of a middle and low temperature of 150~300 °C solar receiver/reactor was developed, which couples momentum equation in porous catalyst bed, the governing mass conservation with chemical reaction, and energy conservation incorporating conduction/convection/radiation heat transfer. The complex thermochemical conversion process of the middle and low temperature solar receiver/reactor (MLTSRR system was analyzed. The numerical finite element method (FEM model was validated by comparing it with the experimental data and a good agreement was obtained, revealing that the numerical FEM model is reliable. The characteristics of chemical reaction, coupled heat transfer, the components of reaction products, and the temperature fields in the receiver/reactor were also revealed and discussed. The effects of the annulus vacuum space and the glass tube on the performance of the solar receiver/reactor were further studied. It was revealed that when the direct normal irradiation increases from 200 W/m2 to 800 W/m2, the theoretical efficiency of solar energy transformed into chemical energy can reach 0.14–0.75. When the methanol feeding rate is 13 kg/h, the solar flux increases from 500 W/m2 to 1000 W/m2, methanol conversion can fall by 6.8–8.9% with air in the annulus, and methanol conversion can decrease by 21.8–28.9% when the glass is removed from the receiver/reactor.

  2. Low-temperature synthesis of silicon carbide powder using shungite

    International Nuclear Information System (INIS)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-01-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  3. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  4. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  5. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  6. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol

    International Nuclear Information System (INIS)

    Yin Jianzhong; Xiao Min; Wang Aiqin; Xiu Zhilong

    2008-01-01

    Biodiesel synthesis from soybean oil and methanol was investigated under supercritical and subcritical conditions. Under the supercritical conditions, the maximum methyl ester yield exceeded 98% when the molar ratio of methanol to oil was 42:1 and the reaction temperature ranged from 260 deg. C to 350 deg. C. In order to decrease the operational temperature and pressures and to increase the conversion efficiency of methanol, first co-solvent was added to the reaction mixture to improve the reaction process, and then a novel idea was presented in which catalysis and supercritical effect were coupled together. Thus, with 2.5 wt% hexane, temperature of 300 deg. C, methanol to oil ratio of 42, a 85.5% conversion is observed in 30 min, while a 62.2% conversion is observed without hexane in the same condition; with less carbon dioxide, temperature of 300 deg. C, methanol to oil ratio of 42, a 91.6% conversion is observed in 20 min, while a 51.4% conversion is observed without carbon dioxide in the same condition; With only a little amount of potassium hydroxide as the catalyst (KOH/oil = 0.1 wt%), a 98% yield of methyl esters was obtained in 10 min at a reaction temperature of 160 deg. C and the molar ratio (methanol/oil) of 24:1. In contrast, above 1 wt% of catalyst is required in the conventional alkali-catalyzed method; while only 6% yield of methyl ester was obtained at 260 deg. C (corresponding to subcritical conditions) without the catalyst. This result demonstrated that by coupling the catalysis and subcritical operation, the amount of catalyst could be largely reduced and the methanol utilization could be significantly enhanced. Thus, the present method offers some advantages over both the conventional alkali-catalyst method and the expensive supercritical method

  7. One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst

    Directory of Open Access Journals (Sweden)

    Lei Kun

    2015-03-01

    Full Text Available The present work was a study on global reaction rate of methanol synthesis. We measured experimentally the global reaction rate in the internal recycle gradientless reactor over catalyst SC309. The diffusion-reaction model of methanol synthesis was suggested. For model we chose the hydrogenation of CO and CO2 as key reaction. CO and CO2 were key components in our model. The internal diffusion effectiveness factors of CO and CO2 in the catalyst were calculated by the numerical integration. A comparison with the experiment showed that all the absolute values of the relative error were less than 10%. The simulation results showed that decreasing reaction temperature and catalyst diameter were conducive to reduce the influence of the internal diffusion on the methanol synthesis.

  8. Solution-phase synthesis of nanomaterials at low temperature

    Science.gov (United States)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  9. Synthesis of dimethyl carbonate by oxidative carbonylation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.G.; Han, M.S.; Kim, H.S.; Ahn, B.S.; Park, K.Y.

    1999-07-01

    Dimethyl carbonate (DMC) synthesis reaction by oxidative carbonylation of methanol has been studied using vapor phase flow reaction system in the presence of Cu-based catalysts. A series of Cu-based catalysts were prepared by the conventional impregnation method using activated carbon (AC) as support. The effect of various promoters and reaction conditions on the catalytic reactivities was intensively evaluated in terms of methanol conversion and DMC selectivity. The morphological change of catalysts during the reaction was also compared by X-ray diffraction and SEM analysis. Regardless of catalyst compositions, the optimal reaction temperature for oxidative carbonylation of methanol was found to be around 120--130 C. The reaction rate was too slow below 100 C, while too many by-products were produced above 150 C. Among the various catalysts employed, CuCl{sub 2}/NaOH/AC catalyst with the mole ratio of OH/Cu = 0.5--1.0 has shown the best catalytic performance, which appears to have a strong relationship with the formation of intermediate species, Cu{sub 2}(OH){sub 3}Cl.

  10. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.

  11. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics.......Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex...

  12. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...

  13. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  14. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  15. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  16. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  17. Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001)

    DEFF Research Database (Denmark)

    Medford, Andrew James; Sehested, Jens; Rossmeisl, Jan

    2014-01-01

    In this work, we examine the thermochemistry of methanol synthesis intermediates using density functional theory (DFT) and analyze the methanol synthesis reaction network using a steady-state micro-kinetic model. The energetics for methanol synthesis over Zn-terminated ZnO (0001) are obtained from...... DFT calculations using the RPBE and BEEF-vdW functionals. The energies obtained from the two functionals are compared and it is determined that the BEEF-vdW functional is more appropriate for the reaction. The BEEF-vdW energetics are used to construct surface phase diagrams as a function of CO, H2O......, and H2 chemical potentials. The computed binding energies along with activation barriers from literature are used as inputs for a mean-field micro-kinetic model for methanol synthesis including the CO and CO2 hydrogenation routes and the water–gas shift reaction. The kinetic model is used to investigate...

  18. Kinetics of the ammonia synthesis at low temperatures. II. Sources of discrepancies

    International Nuclear Information System (INIS)

    Kuchaev, V.L.; Shapatina, E.N.; Temkin, M.I.

    1988-01-01

    A method is developed for calculating the degree of conversion during the synthesis of ammonia in a continuous flow, tubular reactor, taking longitudinal diffusion into account. Such a calculation shows that the available data in the literature on the rate of ammonia synthesis at low temperatures in a tubular reactor agree with the rate equation based on the idea that the predominant intermediate substance is adsorbed ammonia (and not imide). The seeming conflict between this idea and the ratio of the rates of synthesis of ammonia and deuteroammonia at low temperatures is explained

  19. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hong Seok; Lee, Chung Ho; Suh, Jeong Se [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-11-15

    Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than 250℃). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and 220℃ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of 180℃ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

  20. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

    International Nuclear Information System (INIS)

    Seong, Hong Seok; Lee, Chung Ho; Suh, Jeong Se

    2016-01-01

    Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than 250℃). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and 220℃ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of 180℃ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

  1. Novel efficient process for methanol synthesis by CO2 hydrogenation

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Pragt, J.J.; Vos, H.J.; Bargeman, Gerrald; de Groot, M.T.

    2016-01-01

    Methanol is an alternative fuel that offers a convenient solution for efficient energy storage. Complementary to carbon capture activities, significant effort is devoted to the development of technologies for methanol synthesis by hydrogenation of carbon dioxide. While CO2 is available from plenty

  2. Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether

    International Nuclear Information System (INIS)

    Ravaghi-Ardebili, Zohreh; Manenti, Flavio

    2015-01-01

    Graphical abstract: Biomass-to-methanol/DME synthesis process layout. - Highlights: • Design, simulation, and control of the direct-storage concentrating solar plant. • Feasibility study of the low-temperature biomass gasification. • First-principles model of biomass gasifier. • First-principles model of one-step methanol/dimethylether synthesis reactor. • Integrated numerical platform for total plant simulation. - Abstract: A novel, integrated and unified process is proposed, modeled and studied for converting biomass to methanol (MeOH)/dimethylether (DME) to demonstrate its feasibility and applicability for the global industrial sector. The unified process consists of a concentrating solar power (CSP) plant, which supplies the produced steam to the biomass gasification process as well as to the downstream conversions to chemical commodities and energy carriers. To preserve the effectiveness of the biomass gasification with low-temperature solar-powered generated steam (approximately 400–410 °C), the gasification process is studied by means of a multi-complex (multi-scale, multi-phase, and multi-component) model and adapted to the novel proposed conditions. The syngas generated in the biomass gasification unit is then converted into MeOH/DME by means of one-step synthesis technology to improve the overall yield of the biomass-to-methanol process

  3. Short Review: Mitigation of Current Environmental Concerns from Methanol Synthesis

    Directory of Open Access Journals (Sweden)

    Andrew Young

    2013-06-01

    Full Text Available Methanol has become a widely used and globally distributed product. Methanol is very important due to the current depletion of fossil fuels. Industrially, methanol produced from the catalytic reaction of synthetic gas composed of hydrogen, carbon monoxide, and carbon dioxide. Methanol production has brought great attention due to carbon dioxide as the main source of greenhouse gas emissions. Combined of reducing CO2 emissions and supplying an alternative fuel source has created the idea of a carbon neutral cycle called “the methanol economy”. The best catalyst for the methanol economy would show a high CO2 conversion and high selectivity for methanol production. This paper investigates research focused on catalyst development for efficient methanol synthesis from hydrogenation of carbon dioxide through added various supports and additives such as silica, zirconium, and palladium. Catalysts that displayed the highest activity included a zirconia and silicon-titanium oxide promoted Cu/Zn/Al2O3 catalyst. Alternative method of catalyst preparation, include the oxalate-gel, solid-state reaction, co-precipitation and combustion method also investigated.  © 2013 BCREC UNDIP. All rights reservedReceived: 10th October 2012; Revised: 7th February 2012; Accepted: 10th February 2013[How to Cite: Young, A., Lesmana, D., Dai, D.J., Wu, H.S. (2013. Short Review: Mitigation of Current En-vironmental Concerns from Methanol Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 1-13. (doi:10.9767/bcrec.8.1.4055.1-13][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4055.1-13] | View in  |

  4. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  5. Ruthenium(V) oxides from low-temperature hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hiley, Craig I.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Lees, Martin R. [Department of Physics, University of Warwick, Coventry (United Kingdom); Fisher, Janet M.; Thompsett, David [Johnson Matthey Technology Centre, Reading (United Kingdom); Agrestini, Stefano [Max-Planck Institut, CPfS, Dresden (Germany); Smith, Ronald I. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom)

    2014-04-22

    Low-temperature (200 C) hydrothermal synthesis of the ruthenium oxides Ca{sub 1.5}Ru{sub 2}O{sub 7}, SrRu{sub 2}O{sub 6}, and Ba{sub 2}Ru{sub 3}O{sub 9}(OH) is reported. Ca{sub 1.5}Ru{sub 2}O{sub 7} is a defective pyrochlore containing Ru{sup V/VI}; SrRu{sub 2}O{sub 6} is a layered Ru{sup V} oxide with a PbSb{sub 2}O{sub 6} structure, whilst Ba{sub 2}Ru{sub 3}O{sub 9}(OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu{sub 2}O{sub 6} exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Systematic staging design applied to the fixed-bed reactor series for methanol and one-step methanol/dimethyl ether synthesis

    International Nuclear Information System (INIS)

    Manenti, Flavio; Leon-Garzon, Andres R.; Ravaghi-Ardebili, Zohreh; Pirola, Carlo

    2014-01-01

    This work investigates possible design advances in the series of fixed-bed reactors for methanol and dimethyl ether synthesis. Specifically, the systematic staging design proposed by Hillestad [1] is applied to the water-cooled and gas-cooled series of reactors of Lurgi's technology. The procedure leads to new design and operating conditions with respect to the current best industrial practice, with relevant benefits in terms of process yield, energy saving, and net income. The overall mathematical model for the process simulation and optimization is reported in the work together with dedicated sensitivity analysis studies. - Highlights: • Systematic staging design is applied to methanol and methanol/DME synthesis. • New configurations for the synthesis reactor network are proposed and assessed. • Comparison with the industrial best practice is provided. • Energy-process optimization is performed to improve the overall yield of the process

  7. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    Science.gov (United States)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  8. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    Science.gov (United States)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  9. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B; Kogelschatz, U [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  10. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  11. Preparation and characterization of stable copper/zinc oxide/alumina catalysts for methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppener, R H; Doesburg, E B; Scholten, J J

    1986-08-15

    A series of Cu/ZnO/Al/sub 2/O/sub 3/ catalysts for the low pressure methanol synthesis has been prepared by coprecipitation with a sodium carbonate solution from solutions of a mixture of the corresponding metal nitrates, followed by drying, calcination and reduction. The catalysts and their precursors were analyzed by techniques like X-ray diffraction, X-ray line broadening, differential thermal analysis, chemical analysis, adsorptive decomposition of N/sub 2/O and B.E.T.-measurements. The catalytic activity for the methanol synthesis was determined in a flow reactor under industrial conditions. Depending on the metal ion ratio in the initial metal nitrate solutions different compounds were formed during coprecipitation, like rosasite, malachite, Cu, Zn-hydrotalcite and a ternary compound which was called roderite. Its structure is unknown and it contains, besides Zn/sup 2+/, up to 28 at% Cu/sup 2+/ and up to 17 at% Al/sup 3+/. Addition of 7 at% Mg/sup 2+/ stabilizes the Cu, Zn-hydrotalcite structure but leads to a drastic decrease in catalytic activity. The rate of methanol production depends on the phase composition of the precursors. Rosasite containing precursors give the highest activity; hydrotalcite proves to be an excellent catalyst stabilizer which evokes the formation of small Cu and ZnO particles. Mg/sup 2+/ inhibits methanol production. 6 figs., 1 tab., 18 refs.

  12. Fatty acid methyl esters synthesis from non-edible vegetable oils using supercritical methanol and methyl tert-butyl ether

    International Nuclear Information System (INIS)

    Lamba, Neha; Modak, Jayant M.; Madras, Giridhar

    2017-01-01

    Highlights: • FAMEs were synthesized from non-edible oils using supercritical MeOH and MTBE. • Effect of time, temperature, pressure and molar ratio on conversions was studied. • Rate constants of reaction with methanol and MTBE differ by an order of magnitude. • Non-catalytic supercritical reactions are one order faster than acid catalyzed synthesis. - Abstract: Fatty acid methyl esters (FAMEs) are useful as biodiesel and have environmental benefits compared to conventional diesel. In this study, these esters were synthesized non-catalytically from non-edible vegetable oils: neem oil and mahua oil with two different methylating agents: methanol and methyl tert-butyl ether (MTBE). The effects of temperature, pressure, time and molar ratio on the conversion of triglycerides were studied. The temperature was varied in the range of 523–723 K with molar ratios upto 50:1 and a reaction time of upto 150 min. Conversion of neem and mahua oil to FAMEs with supercritical methanol was found to be 83% in 15 min and 99% in 10 min, respectively at 698 K. Further, a conversion of 46% of mahua oil and 59% of neem oil was obtained in 15 min at 723 K using supercritical MTBE. The rate constants evaluated using pseudo first order reaction kinetics were in the range of 4.7 × 10"−"6 to 1.0 × 10"−"3 s"−"1 for the investigated range of temperatures. The activation energies obtained were in the range of 62–113 kJ/mol for the reaction systems investigated. The supercritical synthesis was found to be superior to the catalytic synthesis of the corresponding FAMEs.

  13. Nanocrystalline CdSnO3 Based Room Temperature Methanol Sensor

    Directory of Open Access Journals (Sweden)

    Shanabhau BAGUL

    2017-04-01

    Full Text Available Synthesis of nanocrystalline CdSnO3 powder by ultrasonic atomizer assisted wet chemical method is reported in this paper. Synthesized CdSnO3 powder was characterized by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and Transmission Electron Microscopy (TEM to examine phase and microstructure. FESEM and TEM analysis reveals that the CdSnO3 powder prepared here is porous monodisperse nanocrystalline in nature, with average particle size of approximately 17 nm or smaller. The material is also characterized by UV-Visible and Photoluminescence (PL spectroscopy. Thick films of synthesized CdSnO3 powder fired at 850 0C are made by using screen printing method. The films surface is modified by using dipping method. CuCl2 (0.005 M dipped (for 2 min thick film shows high response (R= 477 to 100 ppm methanol at room temperature (35 0C. The sensor shows good selectivity and fast response recovery time to methanol. The excellent methanol sensing performance, particularly high response values is observed to be mainly due to porous CdSnO3 surface.

  14. Effect of fuel temperature on the methanol spray and nozzle internal flow

    International Nuclear Information System (INIS)

    Chen, Zhifang; Yao, Anren; Yao, Chunde; Yin, Zenghui; Xu, Han; Geng, Peilin; Dou, Zhancheng; Hu, Jiangtao; Wu, Taoyang; Ma, Ming

    2017-01-01

    Highlights: • Cavitation region increases with the increasing of methanol temperature. • The nozzle exit velocity increases with the increasing of methanol temperature. • The discharge coefficient decreases with the increasing of methanol temperature. • Droplet SMD reduces when methanol temperature increases measured by PDPA system. • Droplet velocity has the maximum value when methanol temperature is 60 °C. - Abstract: The increasing of fuel temperature can reduce the droplet size and have an advantage of improving spray atomization, while investigations of the effect of temperature on the methanol injector internal flow and external spray is rare. Firstly, a detailed three dimensional numerical simulations of nozzle internal flow have been conducted to probe into the cavitation in methanol injector nozzles, and then an experimental study has been carried out to investigate the droplet size and velocity of methanol spray at various temperatures using the Phase Doppler Particle Analyzer (PDPA) detecting system. And results show that the region of cavitations in nozzle orifice enlarges as methanol temperature and injection pressure increases, and the temperature for 'super-cavitation' occurring decreases gradually with the increasing of injection pressure. Moreover, the nozzle exit velocity, discharge coefficient and cavitations number were also analyzed. However, the discharge coefficient reduces nearly equal under various pressure when the methanol temperature is higher than 60 °C. In addition, the Sauter Mean Diameter (SMD) and velocity of methanol droplet were also analyzed, and found that the droplet velocity reaches the maximum value when the methanol temperature is 60 °C.

  15. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  16. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  17. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... sintering temperature needed to obtain a fully dense ceramic body, which can result in undesired reactions with YSZ. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. Such a low temperature synthesis provides control over particle size and sinterability...

  18. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 deg. C down to 450 deg. C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  19. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  20. Synthesis of MIL-100(Fe at Low Temperature and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Jing Shi

    2013-01-01

    Full Text Available MIL-100(Fe, a mesoporous metal-organic framework (MOF, has a large BET specific surface area and pore volume with the presence of a significant amount of accessible Lewis acid metal sites upon dehydration. The structural characteristics of MIL-100(Fe make it a good candidate for potential applications in gas storage, separation, and heterogeneous catalysis. Mainly, this MOF is obtained by the hydrothermal synthesis in a Teflon-lined autoclave at high temperature (>150°C under static conditions. However, this method has several disadvantages such as high temperature, high (autogenous pressure, long time, and comparable low MOF yield. Therefore, development of a facile method for synthesis of MIL-100(Fe is vitally important for fundamental understanding and practical application. Herein, MIL-100(Fe is synthesized by a facile low-temperature (90% still could be achieved, suggesting that this simple and energy saving method has the potential to be used practically.

  1. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  2. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  3. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  4. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Thorhauge, Max; Falsig, Hanne

    2016-01-01

    Promoter elements enhance the activity and selectivity of heterogeneous catalysts. Here, we show how methanol synthesis from synthesis gas over copper (Cu) nanoparticles is boosted by zinc oxide (ZnO) nanoparticles. By combining surface area titration, electron microscopy, activity measurement, d...

  5. Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier

    Directory of Open Access Journals (Sweden)

    IGBN Makertihartha

    2009-05-01

    Full Text Available The synthesis of hydrogen from hydrocarbons through the steam reforming of methanol on Cu/ZnO/Al2O3 catalyst has been investigated. This process is assigned to be one of the promising alternatives for fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of methanol steam reforming which is a gas phase catalytic reaction between methanol and water. In this research, the Cu/ZnO/Al2O3 catalyst prepared by the dry impregnation was used. The specific surface area of catalyst was 194.69 m2/gram.The methanol steam reforming (SRM reaction was carried out by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding the reaction, catalyst was reduced in the H2/N2 mixture at 160 °C. This study shows that at 300 °C reaction temperature, methanol conversion reached 100% at 28 mL/minute gas flow rate. This conversion decreased significantly with the increase of gas flow rate. Meanwhile, the catalyst prepared for SRM was stable in 36 hours of operation at 260 °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.

  6. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  7. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.

    Science.gov (United States)

    Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F

    2015-05-01

    This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A New Process for Co-production of Ammonia and Methanol

    International Nuclear Information System (INIS)

    Soliman, A.

    2004-01-01

    A new process for co-production of ammonia and methanol is proposed. The process involves the production of synthesis gas by oxygen blown auto thermal reformer (ATR) at a pressure of 40-100 bars, a methanol synthesis loop at a pressure of 50-100 bars and an ammonia synthesis loop at a pressure of 200-300 bars. The oxygen required for the ATR is supplied by an air separation plant. The synthesis gases from the ATR are cooled and compressed, in a first stage compression, to the required methanol loop pressure. The purge stream from the methanol loop is sent to an intermediate temperature shift converter ITSC followed by a physical solvent CO 2 removal unit and them purified in a pressure Swing Adsorber (PSA). The purified hydrogen from the PSA together with the almost pure nitrogen from the air separation plant are re compressed, in a second stage compression

  9. Microwave-Assisted Synthesis of Co3(PO42 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Prabhakarn Arunachalam

    2017-04-01

    Full Text Available Low-cost and high-performance advanced electrocatalysts for direct methanol fuel cells are of key significance for the improvement of environmentally-pleasant energy technologies. Herein, we report the facile synthesis of cobalt phosphate (Co3(PO42 nanospheres by a microwave-assisted process and utilized as an electrocatalyst for methanol oxidation. The phase formation, morphological surface structure, elemental composition, and textural properties of the synthesized (Co3(PO42 nanospheres have been examined by powder X-ray diffraction (XRD, Fourier transform-infrared spectroscopy (FT-IR, field emission-scanning electron microscopy (FE-SEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, and nitrogen adsorption-desorption isotherm investigations. The performance of an electrocatalytic oxidation of methanol over a Co3(PO42 nanosphere-modified electrode was evaluated in an alkaline solution using cyclic voltammetry (CV and chronopotentiometry (CP techniques. Detailed studies were made for the methanol oxidation by varying the experimental parameters, such as catalyst loading, methanol concentration, and long-term stability for the electro-oxidation of methanol. The good electrocatalytic performances of Co3(PO42 should be related to its good surface morphological structure and high number of active surface sites. The present investigation illustrates the promising application of Co3(PO42 nanospheres as a low-cost and more abundant electrocatalyst for direct methanol fuel cells.

  10. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  11. Process for obtaining methanol. Verfahren zur Gewinnung von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Link, H; Watson, A

    1983-12-08

    Synthetic gas is generated and converted to methanol in a reactor. After the separation of the crude methanol, there is a multi-stage methanol distillation. Condensate occurring during distillation is at least partly fed back before the methanol synthesis.

  12. Utilisation of reactor heat in methanol synthesis to reduce compressor duty : application of power cycle principles and simulation tools

    NARCIS (Netherlands)

    Greeff, I.L.; Visser, J.A.; Ptasinski, K.J.; Janssen, F.J.J.G.

    2002-01-01

    The chemical conversion in a methanol reactor is restricted by equilibrium, therefore the synthesis loop is operated at high pressure and unconverted gas is recycled. Such a synthesis loop consumes large amounts of compression work. In this paper a new flow sheet for methanol synthesis is presented.

  13. Low temperature synthesis of InP nanocrystals

    International Nuclear Information System (INIS)

    Ung Thi Dieu Thuy; Tran Thi Thuong Huyen; Nguyen Quang Liem; Reiss, Peter

    2008-01-01

    We present a simple method for the chemical synthesis of InP nanocrystals, which comprises several advantages: (i) the use of simple reagents, namely InCl 3 .4H 2 O and yellow P as the In and P precursors, respectively, and NaBH 4 as the reducing agent in a mixed solvent of ethanol and toluene; (ii) a short reaction time (1-5 h) and low temperature (<75 deg. C); (iii) a high reaction yield approaching 100%. InP NCs in the zinc-blende structure have been obtained as confirmed by powder X-ray diffraction and Raman scattering measurements. Their mean size of 4 nm has been determined by transmission electron microscopy, Raman scattering and absorption spectroscopy

  14. Methanol Synthesis: Optimal Solution for a Better Efficiency of the Process

    Directory of Open Access Journals (Sweden)

    Grazia Leonzio

    2018-02-01

    Full Text Available In this research, an ANOVA analysis and a response surface methodology are applied to analyze the equilibrium of methanol reaction from pure carbon dioxide and hydrogen. In the ANOVA analysis, carbon monoxide composition in the feed, reaction temperature, recycle and water removal through a zeolite membrane are the analyzed factors. Carbon conversion, methanol yield, methanol productivity and methanol selectivity are the analyzed responses. Results show that main factors have the same effect on responses and a common significant interaction is not present. Carbon monoxide composition and water removal have a positive effect, while temperature and recycle have a negative effect on the system. From central composite design, an optimal solution is found in order to overcome thermodynamic limit: the reactor works with a membrane at lower temperature with carbon monoxide composition in the feed equal to 10 mol % and without recycle. In these conditions, carbon conversion, methanol yield, methanol selectivity, and methanol production are, respectively, higher than 60%, higher than 60%, between 90% and 95% and higher than 0.15 mol/h when considering a feed flow rate of 1 mol/h. A comparison with a traditional reactor is also developed: the membrane reactor ensures to have a carbon conversion higher of the 29% and a methanol yield higher of the 34%. Future researches should evaluate an economic analysis about the optimal solution.

  15. Foundations of low-temperature plasma enhanced materials synthesis and etching

    Science.gov (United States)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  16. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  17. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  18. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous...

  19. Low temperature synthesis of InP nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ung Thi Dieu Thuy [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Tran Thi Thuong Huyen [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); National University of Thai Nguyen, 2 Luong Ngoc Quyen, Thai Nguyen (Viet Nam); Nguyen Quang Liem [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: liemnq@ims.vast.ac.vn; Reiss, Peter [DSM/INAC/SPrAM, UMR 5819 CEA-CNRS-Universite Joseph Fourier/LEMOH, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2008-12-20

    We present a simple method for the chemical synthesis of InP nanocrystals, which comprises several advantages: (i) the use of simple reagents, namely InCl{sub 3}.4H{sub 2}O and yellow P as the In and P precursors, respectively, and NaBH{sub 4} as the reducing agent in a mixed solvent of ethanol and toluene; (ii) a short reaction time (1-5 h) and low temperature (<75 deg. C); (iii) a high reaction yield approaching 100%. InP NCs in the zinc-blende structure have been obtained as confirmed by powder X-ray diffraction and Raman scattering measurements. Their mean size of 4 nm has been determined by transmission electron microscopy, Raman scattering and absorption spectroscopy.

  20. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

    Science.gov (United States)

    Antolini, Ermete

    2017-02-13

    Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

  1. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  2. Direct synthesis of dimethyl carbonate from CO2 and methanol over ...

    Indian Academy of Sciences (India)

    The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol is ... Zirconia and ceria-based catalysts were most effective ... construction of a validation plant for dialkyl carbonates .... (mmol of MeOH consumed/2).

  3. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  4. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...... temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium...

  5. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    Science.gov (United States)

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  6. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  7. Synthesis and Characterization of 1D Ceria Nanomaterials for CO Oxidation and Steam Reforming of Methanol

    Directory of Open Access Journals (Sweden)

    Sujan Chowdhury

    2011-01-01

    Full Text Available Novel one-dimensional (1D ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several general synthesis routes as including soft and hard template-assemble phenomenon for the preparation of 1D cerium oxide are discussed. This preparation phenomenon is consisting with low cost and ecofriendly. Nanometer-sized 1D structure provides a high-surface area that can interact with methanol and carbon-monoxide reaction. Overall, nanometer-sized structure provides desirable properties, such as easy recovery and regeneration. As a result, the use of 1D cerium has been suitable for catalytic application of reforming. In this paper, we describe the 1D cerium oxide syntheses route and then summarize their properties in the field of CO oxidation and steam reforming of methanol approach.

  8. Methanol Metabolism in Yeasts : Regulation of the Synthesis of Catabolic Enzymes

    NARCIS (Netherlands)

    Egli, Th.; Dijken, J.P. van; Veenhuis, M.; Harder, W.; Fiechter, A.

    1980-01-01

    The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of

  9. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  10. Methanol adsorption by amorphous silica alumina in the critical temperature range

    NARCIS (Netherlands)

    Kuczynski, M.; van Ooteghem, A.; Westerterp, K.R.

    1986-01-01

    The methanol adsorption capacity of an amorphous silica-alumina was measured using an equilibrium technique. The experimental temperature range was of 140 to 260°C and the pure methanol pressure range was 0.1 to 1.2 MPa. A multilayer adsorption was found, also for temperatures above the critical

  11. Low temperature synthesis of graphene on arbitrary substrates and its transport properties

    Science.gov (United States)

    Zhao, Rong; Akhtar, Meysam; Alruqi, Adel; Jasinski, Jacek; Sumanasekera, Gamini; Department of Physics; Astronomy, University of Louisville Collaboration; Conn CenterRenewable Energy, University of Louisville Collaboration

    Here we report the direct synthesis of uniform and vertically oriented graphene films on multiple substrates including glass, Si/SiO2, and copper foil by radio-frequency plasma enhanced chemical vapor deposition (PECVD) using methane as the carbon precursor at relatively low temperatures. Raman spectra of all the samples show characteristic Raman peaks of graphene. The temperature dependence of electrical transport properties such as 4-probe resistance, thermo electrical power and hall mobility were measured for graphene grown on glass substrates at varying temperature from 500 ° C to 700 ° C. The morphological and surface characteristics were also studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This work demonstrates the potential of low temperature and transfer-free graphene growth for future graphene-based electronic applications.

  12. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what

  13. Low temperature solution synthesis of zinc antimonide, manganese antimonide, and strontium ruthenate compounds

    Science.gov (United States)

    Noblitt, Jennifer Lenkner

    2011-12-01

    Increasing energy demands are fueling research in the area of renewable energy and energy storage. In particular, Li-ion batteries and superconducting wires are attractive choices for energy storage. Improving safety, simplifying manufacturing processes, and advancing technology to increase energy storage capacity is necessary to compete with current marketed energy storage devices. These advancements are accomplished through the study of new materials and new morphologies. Increasing dependence on and rising demand for portable electronic devices has continued to drive research in the area of Li-ion batteries. In order to compete with existing batteries and be applicable to future energy needs such as powering hybrid vehicles, the drawbacks of Li-ion batteries must be addressed including (i) low power density, (ii) safety, and (iii) high manufacturing costs. These drawbacks can be addressed through new materials and morphologies for the anode, cathode, and electrolyte. New intermetallic anode materials such as ZnSb, MnSb, and Mn2Sb are attractive candidates to replace graphite, the current industry standard anode material, because they are safer while maintaining comparable theoretical capacity. Electrodeposition is an inexpensive method that could be used for the synthesis of these electrode materials. Direct electrodeposition allows for excellent electrical contact to the current collector without the use of a binder. To successfully electrodeposit zinc and manganese antimonides, metal precursors with excellent solubility in water were needed. To promote solubility, particularly for the antimony precursor, coordinating ligands were added to the deposition bath solutions. This work shows that the choice of coordinating ligand and metal-ligand speciation can alter both the electrochemistry and the film composition. This work focuses on the search for appropriate coordinating ligands, solution pH, and bath temperatures so that high quality films of ZnSb, MnSb, and

  14. Study on methanol synthesis from coal-based syngas

    Energy Technology Data Exchange (ETDEWEB)

    Hong-fang Ma; Wei-yong Ying; Ding-ye Fang [East China University of Science and Technology, Shanghai (China). State Key Laboratory of Chemical Engineering

    2009-03-15

    The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO{sub 2} hydrogenation in the form of reactant fugacity. The parameters were estimated by the Universal Global Optimization using the Marquardt method. Residual error distribution and statistic tests show that the intrinsic kinetic models are reliable and acceptable. The mathematic model of a combined converter formed by gas-cooled and water-cooled reactor was developed and the gas-cooled reactor and the water-cooled reactor were characterized with one-dimensional mathematic model. The distributions of temperature and concentration in the catalytic bed of the gas-cooled reactor and the water-cooled reactor in a combined converter with a yield of 1.2 Mt/a were simulated. The parallel cross linking pore model was used to describe the transfer process of multi-component diffusion system in the catalyst. The calculated value computed by the internal diffusion efficiency factor calculation model established for methanol synthesis catalyst fit the experimental value very well. 11 refs., 3 figs., 3 tabs.

  15. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Xu Weilin; Lu Tianhong; Liu Changpeng; Xing Wei

    2005-01-01

    Nafion/silica/phosphotungstic acid (PWA) composite membranes were studied for low temperature ( max = 70 mW/cm 2 ) than those of commercial Nafion without treatment (OCV = 0.68 V, P max = 62 mW/cm 2 ) at 80 deg. C

  16. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    Science.gov (United States)

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  17. Stability studies of oxytetracycline in methanol solution

    Science.gov (United States)

    Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting

    2018-02-01

    As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.

  18. Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, Roy; Parmentier, Tanja E.; Elkjaer, Christian F.; Gommes, Cedric J.; Sehested, Jens; Helveg, Stig; de Jongh, Petra E.; de Jong, Krijn P.

    A main reason for catalyst deactivation in supported catalysts for methanol synthesis is copper particle growth. We have functionalized the support surface in order to suppress the formation and/or transport of mobile copper species and thereby catalyst deactivation. A Stober silica support was

  19. Synthesis of dimethyl carbonate from urea and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, M.; Kalevaru, V.N.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis; Mueller, K.; Arlt, W. [Erlangen-Nuernberg Univ. (Germany); Strautmann, J.; Kruse, D. [Evonik Industries AG, Marl (Germany). Creavis Technologies and Innovation

    2012-07-01

    Alcoholation of urea with methanol to produce dimethyl carbonate (DMC) is an interesting approach from both the ecological and economical points of view because the urea synthesis usually occurs by the direct use of carbon dioxide. Literature survey reveals that metal oxide catalysts for instance MgO, ZnO, etc. or polyphosphoric acids are mostly used as catalysts for this reaction. In this contribution, we describe the application of ZnO, MgO, CaO, TiO{sub 2}, ZrO{sub 2} or Al{sub 2}O{sub 3} catalysts for the above mentioned reaction. The catalytic activity of different metal oxides towards DMC synthesis was checked and additionally a comparison of achieved conversions with that of predictions made by thermodynamic calculations was also carried out. The achieved conversions are in good agreement with those of calculated ones. The test results reveal that the reaction pressure and temperature have a strong influence on the formation of DMC. Higher reaction pressure improved the yield of DMC. Among different catalysts investigated, ZnO displayed the best performance. The conversion of urea in most cases is close to 100 % and methyl carbamate MC is the major product of the reaction. A part of MC is subsequently converted to DMC, which however depends upon the reaction conditions applied and nature of catalyst used. From the best case, a DMC yield of ca. 8 % could be successfully achieved over ZnO catalyst. (orig.)

  20. A microkinetic model of the methanol oxidation over silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.

    2003-01-01

    A simple microkinetic model for the oxidation of methanol on silver based on surface science studies at UHV and low temperatures has been formulated. The reaction mechanism is a simple Langmuir-Hinshelwood mechanism, with one type of active oxygen and one route to formaldehyde and carbon dioxide......, respectively. The model explains observed reaction orders, selectivity, apparent activation enthalpies and the choice of industrial reaction conditions. More interesting the model disproves the notion that the mechanism deduced from surface science in UHV cannot be responsible for formaldehyde synthesis...

  1. Room and low temperature synthesis of carbon nanofibres

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.

    2002-01-01

    Carbon nanotubes and nanofibres have attracted attention in recent years as new materials with a number of very promising potential applications. Carbon nanotubes are potential candidates for field emitters in flat panel displays. Carbon nanofibres could also be used as a hydrogen storage material and as a filling material in polymer composites. Carbon nanotubes are already used as tips in scanning probe microscopy due to their remarkable mechanical and electrical properties, and could be soon used as nanotweezers. Use of carbon nanotubes in nanoelectronics will open further miniaturisation prospects. Temperatures ranging from 450 to 1000 deg C have been a required for catalytic growth of carbon nanotubes and nanofibres. Researchers have been trying to reduce the growth temperatures for decades. Low temperature growth conditions will allow the growth of carbon nanotubes on different substrates, such glass (below 650 deg C) and as plastics (below 150 deg C) over relatively large areas, which is especially suitable for fiat panel display applications. Room temperature growth conditions could open up the possibility of using different organic substrates and bio-substrates for carbon nanotubes synthesis. Carbon nanofibres have been synthesised at room temperature and low temperatures below 250 deg C using radio frequency plasma enhanced chemical vapour deposition (r.f. PECVD). Previously, the growth of carbon nanofibres has been via catalytic decomposition of hydrocarbons or carbon monoxide at temperatures above 300 deg C. To the best of our knowledge, this is the first evidence of the growth of carbon nanofibres at temperatures lower than 300 deg C by any method. The use of a transition metal catalyst and r.f.-PECVD system is required for the growth of the carbon nanofibre when a hydrocarbon flows above the catalyst. Within the semiconductor industry r.f.-PECVD is a well established technique which lends itself for the growth of carbon nanofibres for various

  2. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, Andrea [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: andrea.casalegno@polimi.it; Grassini, Paolo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: PGrassini@seal.it; Marchesi, Renzo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: renzo.marchesi@polimi.it

    2007-03-15

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature.

  3. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Casalegno, Andrea; Grassini, Paolo; Marchesi, Renzo

    2007-01-01

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature

  4. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  5. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  6. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  7. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia

    International Nuclear Information System (INIS)

    Jung, Kyeong Taek; Bell, Alexis T.

    2001-01-01

    The mechanism of dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide over monoclinic zirconia has been investigated using in situ infrared spectroscopy. The dissociative adsorption of methanol occurs more slowly than the adsorption of carbon dioxide, but the species formed from methanol are bound more strongly. Upon adsorption, the oxygen atom of methanol binds to coordinately unsaturated Zr4+ cations present at the catalyst surface. Rapid dissociation of the adsorbed methanol leads to the formation of a methoxide group (Zr-OCH3) and the release of a proton, which reacts with a surface hydroxyl group to produce water. Carbon dioxide inserts in the Zr-O bond of the methoxide to form a mondentate methyl carbonate group (Zr-OC(O)OCH3). This process is facilitated by the interactions of C and O atoms in CO2 with Lewis acid-base pairs of sites (Zr4+O2-) on the surface of the catalyst. Methyl carbonate species can also be produced via the reaction of methanol with carbon dioxide adsorbed in the form of bicarbonate species with methanol, a process that results in the transfer of a methyl group to the carbonate and restores a hydroxyl group to the zirconia surface. The decomposition of DMC on monoclinic zirconia has also been investigated and has been observed to occur via the reverse of the processes described for the synthesis of DMC

  8. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  9. 1995 world methanol conference

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base

  10. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    Science.gov (United States)

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  11. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae [Kyungpook National University, Daegu (Korea, Republic of)

    2013-04-15

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors.

  12. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    International Nuclear Information System (INIS)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae

    2013-01-01

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors

  13. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  14. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    Science.gov (United States)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  15. Synthesis of Li2SiO3 at low temperature

    International Nuclear Information System (INIS)

    Mondragon G, G.

    2007-01-01

    The main objective of this work is to develop a new synthesis method to obtain one of the more studied ceramics in this field Li 2 SiO 3 ) in a simple and economic way using different solutions (urea and ammonium hydroxide). The particular objectives are first to prepare the Li 2 SiO 3 ceramic, by means of the use of the reaction conventional technique in solid state at temperatures between 800 and 900 C to compare it with the one proposed in this work and this way to observe the advantages that it would gives us the new method. Later on, the same one was synthesized lithium ceramic (Li 2 SiO 3 ) by means of the new method at low temperature (between 80 and 90 C), using silicic acid and lithium hydroxide like precursory reagents and different solutions (urea and ammonium hydroxide) for the optimization in their synthesis. Finally, it was carried out the characterization of these materials by means of X-ray diffraction (XRD), electronic microscopes (SEM and TEM), nitrogen physisorption (method BET) and thermal gravimetric analysis (TGA) to observe the differences that exist among the conventional method and the proposed method and by this way to determine the advantages of the last method. (Author)

  16. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    OpenAIRE

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru?Rh bimetallic catalyst using imidazole as the ligand and LiI as the promot...

  17. Synthesis and Electrical Resistivity of Nickel Polymethacrylate

    Science.gov (United States)

    Chohan, M. H.; Khalid, A. H.; Zulfiqar, M.; Butt, P. K.; Khan, Farah; Hussain, Rizwan

    Synthesis of nickel polymethacrylate was carried out using methanolic solutions of sodium hydroxide and polymethacrylic acid. The electrical resistivity of the pellets made from Ni-polymethacrylate was measured at different voltages and temperatures. Results showed that the electrical resistivity of Ni-polymethacrylate decreases significantly with voltage in high temperature regions but the decrease is insignificant at temperatures nearing room temperature. The activation energy at low temperatures is approximately 0.8 eV whereas at high temperature it is in the range 0.21-0.27 eV.

  18. Integration of high temperature PEM fuel cells with a methanol reformer

    DEFF Research Database (Denmark)

    Pan, Chao; He, Ronghuan; Li, Qingfeng

    2005-01-01

    On-board generation of hydrogen by methanol reforming is an efficient and practical option to fuel PEMFC especially for vehicle propulsion purpose. The methanol reforming can take place at temperatures around 200°C with a nearly 100% conversion at a hydrogen yield of about 400 L–(h–kg catalyst)-1...

  19. Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: Role of catalyst support and reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Srivastava, Vimal Chandra; Mishra, Indra Mani [Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2015-09-15

    Ceria and zinc oxide catalyst were impregnated onto various oxide supports, namely Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, individually by deposition-coprecipitation method. The synthesized catalysts (CZA, CZS and CZT having supports Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, respectively) were characterized by X-ray diffraction (XRD), NH{sub 3}- and CO{sub 2}-temperature programmed desorption (TPD) and N2 adsorption. These catalysts were used for synthesis of dimethyl carbonate (DMC) from methanol and propylene carbonate in a batch reactor. CZS was found to have larger average grain size as compared to CZA and CZT. Composite oxides (catalysts) were found to contain individual phases of ZnO, CeO{sub 2} and some spinel forms of Zn, Ce along with their supports. CZS having highest basicity and surface area showed better catalytic activity as compared to CZA and CZT. Effect of reaction temperature and methanol/PC molar ratio on DMC yield was studied and a reaction mechanism has been discussed. Maximum DMC yield of 77% was observed with CZS catalyst at 170 .deg. C with methanol/PC molar ratio of 10.

  20. Advances in direct oxidation methanol fuel cells

    Science.gov (United States)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  1. Sorption phenomena of methanol on heat treated coal; Netsushori wo hodokoshita sekitan no methanol kyuchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Kaiho, M.; Yamada, O.; Soneda, Y.; Kobayashi, M.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Experiments were carried out to learn methanol sorption characteristics of heat-treated coal. When Taiheiyo coal is heat-treated at 125{degree}C, performed with a first methanol adsorption at 25{degree}C, and then desorption at 25{degree}C, a site with strong interaction with methanol and a site with relatively weak interaction are generated in test samples. A small amount of methanol remains in both sites. Then, when the methanol is desorbed at as low temperature as 70{degree}C, the methanol in the site with strong interaction remains as it has existed therein, but the methanol in the site with relatively weak interaction desorbs partially, hence the adsorption amount in a second adsorption at 25{degree}C increases. However, when desorption is performed at as high temperature as 125{degree}C, the methanol in the site with strong interaction also desorbs, resulting in increased adsorption heat in the second adsorption. The adsorption velocity drops, however. Existence of methanol in a site with strong interaction affects the adsorption velocity, but no effect is given by methanol in a site with weak interaction. 3 refs., 4 figs.

  2. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Directory of Open Access Journals (Sweden)

    Li Chunfang

    2011-01-01

    Full Text Available Abstract The citrate reduction method for the synthesis of gold nanoparticles (GNPs has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  3. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Science.gov (United States)

    Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo

    2011-07-01

    The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  4. Insight into the influence of liquid paraffin for methanol synthesis on Cu(110) surface using continuum and atomistic models

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei-Hong [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Shi-Zhong [Department of Chemistry, Stony Brook University, Stony Brook, NY 11794 (United States); Zuo, Zhi-Jun, E-mail: zuozhijun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ren, Rui-Peng; Gao, Zhi-Hua [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Huang, Wei, E-mail: huangwei@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2016-11-30

    Highlights: • The influence of liquid paraffin is studied using continuum and atomistic models. • Liquid paraffin does not alter the reaction pathways of CO hydrogenation and WGS. • Liquid paraffin alters the reaction pathways of CO{sub 2} hydrogenation. - Abstract: Methanol synthesis from CO/CO{sub 2} hydrogenation and water-gas shift (WGS) reaction on Cu(110) in liquid paraffin and vacuum have been systematically researched with density functional theory calculation (DFT). For methanol synthesis from CO hydrogenation, the reaction pathways in liquid paraffin and vacuum are CO + H → HCO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH; in the case of WGS, the reaction pathways in liquid paraffin and vacuum are CO + 2H{sub 2}O → CO + 2OH + 2H → CO + H{sub 2}O + O + H{sub 2} → CO{sub 2} + H{sub 2}O + H{sub 2}; the reaction pathways of methanol synthesis from CO{sub 2} hydrogenation in liquid paraffin and vacuum are CO{sub 2} + H → HCOO → H{sub 2}COO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH and CO{sub 2} + H → HCOO → HCOOH → H{sub 2}COOH → H{sub 3}CO → H{sub 3}COH, respectively. The result shows that liquid paraffin does not affect the reaction mechanisms of methanol synthesis from CO and WGS, but it changes the reaction mechanisms of methanol synthesis from CO{sub 2} hydrogenation. Hirshfeld charge and the d-band centers indicate that the catalytic activity of Cu(110) in liquid paraffin is smaller than that in vacuum. Our results also show that it is necessary to consider both continuum and atomistic models in the slurry bed.

  5. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over {gamma}-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Freshteh Raoof; Majid Taghizadeh; Ali Eliassi; Fereydoon Yaripour [Babol University of Technology, Babol (Iran). Chemical Engineering Department

    2008-10-15

    Catalytic dehydration of methanol to dimethyl ether (DME) is performed in an adiabatic fixed bed heterogeneous reactor by using acidic {gamma}-alumina. By changing the mean average temperature of the catalyst bed (or operating temperature of the reactor) from 233 up to 303{sup o}C, changes in methanol conversion were monitored. The results showed that the conversion of methanol strongly depended on the reactor operating temperature. Also, conversion of pure methanol and mixture of methanol and water versus time were studied and the effect of water on deactivation of the catalyst was investigated. The results revealed that when pure methanol was used as the process feed, the catalyst deactivation occurred very slowly. But, by adding water to the feed methanol, the deactivation of the {gamma}-alumina was increased very rapidly; so much that, by increasing water content to 20 weight percent by weight, the catalyst lost its activity by about 12.5-fold more than in the process with pure methanol. Finally, a temperature dependent model developed to predict pure methanol conversion to DME correlates reasonably well with experimental data. 11 refs., 9 figs., 3 tabs.

  6. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  7. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  8. Microwave-irradiation polyol synthesis of PVP-protected Pt–Ni electrocatalysts for methanol oxidation reaction

    CSIR Research Space (South Africa)

    Mathe, Ntombizodwa R

    2017-01-01

    Full Text Available ://doi.org/10.1007/s12678-017-0441-3 Microwave-Irradiation Polyol Synthesis of PVP-Protected Pt–Ni Electrocatalysts for Methanol Oxidation Reaction Ntombizodwa R. Mathe Manfred R. Scriba Rirhandzu S. Rikhotso Neil J. Coville ABSTRACT: Bimetallic Pt...

  9. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  10. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  11. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  12. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Science.gov (United States)

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  13. Facile, low temperature synthesis of SnO_2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-01-01

    Highlights: • Facile, one-pot, low temperature synthesis of SnO_2-RGO composite. • In-situ reduction of graphene oxide and growth of SnO_2 nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO_2-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO_2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO_2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO_2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g"−"1 at 3200 mA g"−"1) and stable capacitance (522 mAh g"−"1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO_2 nanoparticle aggregation and degrade the Li ion storage property.

  14. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    Science.gov (United States)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  15. Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission with effective use of energy

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T [and others; Tohoku University, Sendai (Japan)

    1993-01-01

    The system proposed involves injection of natural gas at the tuyeres to reduce coke consumption, and methanol synthesis from the top gas. Operating data are calculated with a mathematical model, showing that significant reductions in emission of greenhouse gases and in exergy losses can be expected. (Development of an effective catalyst for the methanol synthesis is described in a companion paper: A. Muramatsu et al., 1144-1149).

  16. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Quynh, Bui Ngoc [Institut de recherches sur la catalyse et l’environnement de Lyon, UMR5256, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2016-01-15

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  17. Methanol Reforming over Cobalt Catalysts Prepared from Fumarate Precursors: TPD Investigation

    Directory of Open Access Journals (Sweden)

    Eftichia Papadopoulou

    2016-02-01

    Full Text Available Temperature-programmed desorption (TPD was employed to investigate adsorption characteristics of CH3OH, H2O, H2, CO2 and CO on cobalt-manganese oxide catalysts prepared through mixed Co-Mn fumarate precursors either by pyrolysis or oxidation and oxidation/reduction pretreatment. Pyrolysis temperature and Co/Mn ratio were the variable synthesis parameters. Adsorption of methanol, water and CO2 was carried out at room temperature. Adsorption of H2 and H2O was carried out at 25 and 300 °C. Adsorption of CO was carried out at 25 and 150 °C. The goal of the work was to gain insight on the observed differences in the performance of the aforementioned catalysts in methanol steam reforming. TPD results indicated that activity differences are mostly related to variation in the number density of active sites, which are able to adsorb and decompose methanol.

  18. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  19. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiangyang Zhou; Chalkova, E. [Pennsylvania State University (United States). The Energy Institute; Weston, J.; Lvov, S.N. [Pennsylvania State University (United States). The Energy Institute; Pennsylvania State University (United States). Department of Energy and Geo-Environment Engineering; Hofmann, M.A.; Ambler, C.M.; Allcock, H.R. [Pennsylvania State University (United States). Department of Chemistry

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 {sup o}C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 {sup o}C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 {sup o}C. This is a significant improvement over the behavior of Nafion 117. (author)

  20. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117.

  1. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N.

    2003-01-01

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117

  2. Direct synthesis of multi-layer graphene film on various substrates by microwave plasma at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jae [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Ahn, Byung Wook; Kim, Tae Yoo; Lee, Jung Woo [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Yong Ho; Choi, Yong Sup [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Song, Young Il, E-mail: physein01@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Suh, Su Jeong, E-mail: suhsj@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    We introduce a possible route for vertically standing multi-layer graphene films (VMGs) on various substrates at low temperature by electron cyclone resonance microwave plasma. VMG films on various substrates, including copper sheet, glass and silicon oxide wafer, were analyzed by studying their structural, electrical, and optical properties. The density and temperature of plasma were measured using Cylindrical Langmuir probe analysis. The morphologies and microstructures of multi-layer graphene were characterized using field emission scattering electron microscope, high resolution transmission electron microscope, and Raman spectra measurement. The VMGs on different substrates at the same experimental conditions synthesized the wrinkled VMGs with different heights. In addition, the transmittance and electrical resistance were measured using ultra-violet visible near-infrared spectroscopy and 4 probe point surface resistance measurement. The VMGs on glass substrate obtained a transmittance of 68.8% and sheet resistance of 796 Ω/square, whereas the VMGs on SiO{sub 2} wafer substrate showed good sheet resistance of 395 Ω/square and 278 Ω/square. The results presented herein demonstrate a simple method of synthesizing of VMGs on various substrates at low temperature for mass production, in which the VMGs can be used in a wide range of application fields for energy storage, catalysis, and field emission due to their unique orientation. - Highlights: • We present for synthesis method of graphene at low temperature on various substrates. • We grow the graphene films at low temperature under of 432 °C. • Structural information of graphene films were studied upon Raman spectroscopy. • Inter-layer spacing of vertically standing graphene relies on synthesis time. • We measured a transmittance and a resistance for graphene films on difference substrate.

  3. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    Science.gov (United States)

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Annealing and Operating Substrate Temperature on Methanol Gas Sensing Properties of SnO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2017-04-01

    Full Text Available SnO2 based sensing nano-material have been synthesized by simple chemical route using Stannic (IV chloride-pentahydrate (SnCl4.5H2O as precursor. The structural properties of the prepared SnO2 nano-particles annealed at different temperatures have been characterized by X-ray diffraction (XRD analysis. The XRD patterns showed pure bulk SnO2 with a tetragonal rutile structure in the nano-powders. By increasing the annealing temperatures, the size of crystals were seen to increase, the diffraction peaks were found narrower and the intensity was higher. SnO2 films prepared by spin coating the prepared nano-material solution was tested at different temperatures for methanol vapour and it showed that the film prepared from SnO2 powder annealed at 500 0C shows the higher sensitivity to methanol vapour at 150 0C substrate temperature with significantly low response and recovery time.

  5. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  6. Facile, low temperature synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Chang, Chia-Chin [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China)

    2017-08-15

    Highlights: • Facile, one-pot, low temperature synthesis of SnO{sub 2}-RGO composite. • In-situ reduction of graphene oxide and growth of SnO{sub 2} nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO{sub 2}-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO{sub 2}-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO{sub 2} nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO{sub 2}-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g{sup −1} at 3200 mA g{sup −1}) and stable capacitance (522 mAh g{sup −1} after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO{sub 2} nanoparticle aggregation and degrade the Li ion storage property.

  7. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  8. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  9. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  10. Effect of reducing agents on low-temperature synthesis of nanostructured LiFePO4

    Science.gov (United States)

    Kulka, Andrzej; Walczak, Katarzyna; Zając, Wojciech; Molenda, Janina

    2017-09-01

    Simple co-precipitation synthesis procedure yielding nanometric LiFePO4 with enhanced electrochemical properties without any post-synthesis heat treatment is presented. XRD, SEM and TEM analysis of the obtained powders revealed platelet crystallites and well crystalized bulk structure. Effective way of decreasing amount of Fe3+ containing phases by addition of reducing agents (KI, (NH4)2S2O3, glucose and the atmosphere of 5%H2-95%Ar) during low-temperature (107 °C) synthesis is described. The traditional analytical chemistry methods or the Mӧssbauer spectroscopy methods revealed that utilization of selected reducing agents diminished Fe3+ concentration from 25 to 12 at%. The constructed cells with optimized LiFePO4 as a cathode material showed superior electrochemical performances, including high reversible capacity up to 162 mAh/g at C/10 current discharge rate, flat voltage plateau with a value close to 3.45 V vs. Li0/+.

  11. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a pro......Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of Zn......O as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...

  12. The (p, ρ, T) of (methanol + benzene) and (methanol + ethylbenzene)

    International Nuclear Information System (INIS)

    Naziev, Yashar M.; Shahverdiyev, Astan N.; Hasanov, Vaqif H.

    2005-01-01

    The (p, ρ, T) of methanol, ethylbenzene and (methanol + benzene) and (methanol + ethylbenzene) at temperatures between (290 and 500) K and pressures in the range (0.1 to 60) MPa have been measured with a magnetic suspension densimeter with an uncertainty of ±0.1%. Our measurements with methanol deviate from the literature values by less than 0.2%. The (p, ρ, T) measurements were fitted with experimental uncertainties by an empirical equation. The temperature and mole fraction dependence of the coefficients of the equation of state are presented

  13. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  14. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y; Harada, T; Kusaka, J; Daisho, Y; Kihara, R; Saito, T [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  15. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry

    International Nuclear Information System (INIS)

    Dhand, Vivek; Rhee, K.Y.; Park, Soo-Jin

    2014-01-01

    A simple and facile wet chemistry route was used to synthesize nanophase hydroxyapatite (HaP) crystals at low temperature. The synthesis was carried out at a pH of 11.0 and at a temperature of 37 °C. The resulting samples were washed several times and subjected to further analysis. XRD studies revealed that the HaP crystals were polycrystalline in nature with a crystallite size of ∼ 15–60 ± 5 nm. SEM-EDXA images confirmed the presence of calcium (Ca), phosphorous (P), and oxygen (O) peaks. Likewise, FTIR confirmed the presence of characteristic phosphate and hydroxyl peaks in samples. Lastly, HRTEM images clearly showed distinctive lattice fringes positioned in the 100 and 002 planes. TGA analysis shows that HaP crystals can withstand higher calcination temperatures and are thermally stable. - Highlights: • Facile and low temperature nanophase HaP crystals synthesized at pH 11 and 37 °C • Electron microscopy image of HaP shows characteristic rice grain like morphology. • FTIR results show the characteristic and fingerprint functional groups of HaP. • Thermal stability of HaP crystals up to 500 °C • Growth of Hap crystals occur parallel to c-axis and a possible mechanism proposed

  16. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming

    International Nuclear Information System (INIS)

    Ajamein, Hossein; Haghighi, Mohammad; Alaei, Shervin

    2017-01-01

    Graphical abstract: CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the fast and simple microwave enhanced combustion method. Considering that the fuel type is one of the effective parameters on quality of the prepared nanocatalysts, different fuels such as sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used. XRD, FESEM, FTIR, EDX, and BET analyses were applied to determine the physicochemical properties of fabricated nanocatalysts. The catalytic experiments were performed in a fixed bed reactor in the temperature range of 160–300 °C. The characteristic and reactivity properties of fabricated nanocatalysts proved that ethylene glycol is the suitable fuel for preparation of CuO/ZnO/Al 2 O 3 nanocatalysts via microwave enhanced combustion method. - Highlights: • Microwave combustion synthesis of CuO/ZnO/Al 2 O 3 nanocatalysts by different fuels. • Enhancement of methanol conversion at low temperatures by selecting proper fuel. • Providing a large number of combustion pores by application of ethylene glycol as fuel. • Increase of CO selectivity in steam methanol reforming by Zn(0 0 2) crystallite facet. - Abstract: A series of CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the microwave enhanced combustion method to evaluate the influence of fuel type. Sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used as fuel. XRD results revealed that application of ethylene glycol led to highly dispersed CuO and ZnO crystals. It was more highlighted about Cu(1 1 1) crystallite facet which known as the main active site of methanol steam reforming. Moreover, using ethylene glycol resulted homogeneous morphology and narrow particles size distribution (average surface particle size is about 265 nm). Due to the significant physicochemical properties, the catalytic experiments showed that the sample prepared by ethylene glycol achieved total conversion of methanol at 260 °C. Its carbon monoxide

  17. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    Science.gov (United States)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  18. Energy conservation in methanol plant using CHP system

    International Nuclear Information System (INIS)

    Azadi, Marjan; Tahouni, Nassim; Panjeshahi, M. Hassan

    2016-01-01

    Highlights: • Feasibility of turbo expander integration with an industrial plant was studied. • Combined pinch-exergy analysis was used to achieve optimum performance of process. • Generation of power led to profitability of gas turbine integrated plant. - Abstract: Today, the efficient use of energy is a significant critical issue in various industries such as petrochemical industries. Hence, it seems essential to apply proper strategies to reduce energy consumption in such processes. A methanol production plant at a live Petrochemical Complex was selected as the case study in this research. The plant was first evaluated with combined pinch and exergy analysis from exergetic dissipation point of view. Owing to high temperature and pressure of reactor outlet stream, methanol synthesis reactor products contain considerable content of exergy. For the purpose of the present survey, the available content of exergy was used for power production by integrating a turbine expander with methanol reactor product. Utilization of reactor product’s high pressure in turbine reduces the temperature of turbine outlet stream to levels lower than those required for heating demands of existing streams in methanol synthesis cycle. Therefore, to keep the stream thermally balanced, the required hot utility of the process is increased and to compensate this increase, the heat exchanger network of the process was retrofitted based on pinch analysis concepts. The results showed that in gas turbine integrated scheme, approximately a net power of 7.5 MW is produced. Also, the total investment of turbine, compressor and heat exchangers area equals to 18.2 × 10 6 US$, and the annual saving value is about 6.1 × 10 6 US$/y. Based on economic data, payback period is estimated to be 3 years.

  19. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  20. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures.

    Science.gov (United States)

    Krauss, M; Wilcke, W

    2001-06-01

    We evaluated a method to determine organic carbon-normalized soil-water partition coefficients (Koc) of 20 PAHs and 12 PCBs by desorption in the presence of a cosolvent (methanol fractions of 0.1-0.9) and at different temperatures (20-80 degrees C). The Koc values, the deviation factor from ideal sorption alpha, and the desorption enthalpies delta Hdes were estimated by nonlinear regression of log Koc on the methanol fractions and on T. The Koc values of individual compounds varied up to a factor of 100 among the studied 11 urban soils. The calculated alpha and delta Hdes of individual compounds varied considerably among the soils (coefficients of variation 5-20% and 20-30%, respectively), alpha increased with increasing hydrophobicity of the compounds. A sequential extraction with four temperature/methanol fraction combinations followed by a nonlinear regression allowed for the direct determination of the Koc, alpha, and delta Hdes. The use of less temperature/methanol fraction combinations requires a suitable estimation of alpha and delta Hdes, as their choice may change the obtained Koc values by up to a factor of 10. The proposed method is suitable for a routine determination of Koc values of PAHs and PCBs for small soil samples (2-6 g) and low concentrations (down to 0.3 mg kg-1 of sigma 20 PAHs and 1.2 micrograms kg-1 of sigma 12 PCBs).

  1. A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces

    Science.gov (United States)

    Reimers, Walter; Zubieta, Carolina; Baltanás, Miguel Angel; Branda, María Marta

    2018-04-01

    A systematic theoretical study of the consecutive hydrogenation reactions of the CO molecule for the methanol synthesis catalyzed by different oxides of Zn, Ce and Ga is reported in this work. First, the CO hydrogenation with the formation of formyl species (HCO) was analyzed, followed by the successive hydrogenations that lead to formaldehyde (H2CO), methoxy (H3CO) and, finally, methanol (H3COH). The co-adsorption with H, in almost all the intermediate species, allows the corresponding hydrogenation reaction. Oxygen vacancies promote the reactivity in the generation of both formaldehyde and methoxy species. The formation of these species involves an important geometric difference between the initial and the final states, leading to high activation barriers. Comparing the surfaces studied in this work, we found that ZnO (0001)vacO has shown to be of a greater interest for methanol synthesis. However, the foregoing is not the most relevant of our results, but, instead, that the Brönsted Evans Polanyi (BEP) relationships between the initial or the final states and the transition states (TS) allowed to find a very good correlation between surface structure and reactivity.

  2. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol

    Energy Technology Data Exchange (ETDEWEB)

    Macina, Daniel; Piwowarska, Zofia; Tarach, Karolina; Góra-Marek, Kinga [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland); Ryczkowski, Janusz [Maria Curie Skłodowska University, Faculty of Chemistry, Maria Curie-Skłodowska 2, 20-031 Lublin (Poland); Chmielarz, Lucjan, E-mail: chmielar@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland)

    2016-02-15

    Highlights: • Deposition of alumina ologoctaions on mesoporous silicas modified with surface −SO{sub 3}H groups. • Alumina aggregates generated acid properties in the silica supports. • Alumina modified SBA-15 and MCF were active and selective catalysts in DME synthesis. - Abstract: Mesoporous silica materials (SBA-15 and MCF) were used as catalytic supports for the deposition of aggregated alumina species using the method consisting of the following steps: (i) anchoring 3-(mercaptopropyl)trimethoxysilane (MPTMS) on the silica surface followed by (ii) oxidation of −SH to−SO{sub 3}H groups and then (iii) deposition of aluminum Keggin oligocations by ion-exchange method and (iv) calcination. The obtained samples were tested as catalysts for synthesis of dimethyl ether from methanol. The modified silicas were characterized with respect to the ordering of their porous structure (XRD), textural properties (BET), chemical composition (EDS, CHNS), structure ({sup 27}Al NMR, FTIR) and location of alumina species (EDX-TEM), surface acidity (NH{sub 3}-TPD, Py-FTIR) and thermal stability (TGA). The obtained materials were found to be active and selective catalysts for methanol dehydration to dimethyl ether (DME) in the MTD process (methanol-to-dimethyl ether).

  3. The effect of temperature in flux-assisted synthesis of SnNb2O6

    KAUST Repository

    Noureldine, Dalal

    2014-10-03

    A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of synthesis temperature was investigated in detail using different reaction temperatures (300, 500, 600, 800, 1000 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET). The synthesis with SnCl2 as a flux led to tin niobate particles in the platelet morphology with smooth surfaces. The synthesized crystal showed 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1:10 or higher) exhibited improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Low Temperature Synthesis of Li2SiO3: Effect on Its Morphological and Textural Properties

    Directory of Open Access Journals (Sweden)

    Georgina Mondragón-Gutiérrez

    2008-01-01

    Full Text Available Synthesis, at low temperature, of Li2SiO3 was investigated using different Li : Si molar ratios and urea, which was used as template. This new synthesis was performed in order to look for different textural and morphological properties than those obtained usually by conventional methods in this kind of ceramics. XRD and SEM analyses showed that Li2SiO3 was obtained pure and with ceramic particle morphology of hollow spheres of 2–6 μm. TEM analysis showed that those spheres were composed by needle-like particles crosslinked among them. This morphology provided a high surface area, probed by N2 adsorption. Therefore, this method of synthesis may be used to obtain other similar ceramics and test them in different applications.

  5. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  6. Ethanol and water adsorption in methanol-derived ZIF-71

    KAUST Repository

    Lively, Ryan P.; Dose, Michelle E.; Thompson, Joshua A.; McCool, Benjamin A.; Chance, Ronald R.; Koros, William J.

    2011-01-01

    A room temperature method for synthesizing zeolitic imidizolate framework 71 (ZIF-71) is described. The methanol-based synthesis results in >95% yields (based on Zn) and produces crystals with 70% greater surface area than reported earlier. Ethanol uptake into the ZIF compares favorably with a recent modeling-based study. Water uptake was significantly higher than model predictions. © The Royal Society of Chemistry 2011.

  7. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  8. Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Chang, C.L. [Institute of Nuclear Energy Research (INER), Longtan Township, Taoyuan County (China); Sung, C.C. [National Taiwan University (China)

    2012-10-15

    The application of methanol sensor-less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor-less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor-less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor-less control but can also aid in the improvement and application of DMFC systems in portable and low-power transportation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor.

    Science.gov (United States)

    Zhao, Yuxi; Song, Jeong-Gyu; Ryu, Gyeong Hee; Ko, Kyung Yong; Woo, Whang Je; Kim, Youngjun; Kim, Donghyun; Lim, Jun Hyung; Lee, Sunhee; Lee, Zonghoon; Park, Jusang; Kim, Hyungjun

    2018-05-08

    The efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (CVD) with Mo(CO)6 and H2S. We investigated the effect of the growth temperature and Mo concentration on the layered growth by Raman spectroscopy and microscopy. 2D MoS2 was grown by using low Mo concentration at a low temperature. Through optical microscopy, Raman spectroscopy, X-ray photoemission spectroscopy, photoluminescence, and transmission electron microscopy measurements, MoS2 produced by low-temperature CVD was determined to possess a layered structure with good uniformity, stoichiometry, and a controllable number of layers. Furthermore, we demonstrated the realization of a 2D MoS2-based flexible gas sensor on a PI substrate without any transfer processes, with competitive sensor performance and mechanical durability at room temperature. This fabrication process has potential for burgeoning flexible and wearable nanotechnology applications.

  10. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    Science.gov (United States)

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  11. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-06-01

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  12. Low temperature activation of methane over a zinc-exchanged heteropolyacid as an entry to its selective oxidation to methanol and acetic acid

    KAUST Repository

    Patil, Umesh; Saih, Youssef; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    A Zn-exchanged heteropolyacid supported onto silica (Zn-HPW/SiO2) activates methane at 25 °C into Zn-methyl. At higher temperatures and with CH4/O2 or CH4/CO2, it gives methanol and acetic acid respectively. This journal is

  13. Synthesis and characterization of bimetallic Pd-Ni catalysts in a CeO_2 matrix for the generation of H_2 by the reforming reaction of methanol

    International Nuclear Information System (INIS)

    Contreras C, R.

    2016-01-01

    The hydrothermal method was used for the synthesis of CeO_2 nano rods using Ce(NO_3)_3·6H_2O and NH_4OH. The catalytic support was calcined at 700 degrees Celsius. The synthesis of CeO_2 nano rods were impregnated with an aqueous solution of Ni(NO_3)_2·6H_2O by an incipient wetness impregnation method at an appropriate concentration to yield 5 and 15% of Ni in the catalysts. Then 0.5% of Pd was impregnated using PdCl_2. The samples obtained were calcined at 400 and reduced at 450 degrees Celsius. The catalytic materials were characterized by: temperature programmed reduction (TPR), Scanning Electron Microscopy (Sem) , surface area and X-ray diffraction (XRD) . Sem results showed that the CeO_2 is formed by nano rods and in lesser proportion semi spherical particles. Bet surface area of the catalysts decreases with Ni loading onto the CeO_2 nano rods. Pd O and Ni O were reduced at low and high temperature as was observed by TPR. The CeO_2 one-dimensional nano rods showed a highly crystalline structure with sharp diffraction peaks, with a typical fluorite structure (cubic structure of the CeO_2) and characteristic peaks corresponding to metallic Ni. No diffraction peaks of Pd were found. This is due to the low concentration of this metal in the catalyst. These catalysts showed high activity and selectivity to H_2 at maximum reaction temperature. According to the results of activity and selectivity, the catalysts with Pd-Ni are an alternative for the H_2 production in auto thermal reforming reaction of methanol. (Author)

  14. Synthesis and characterization of boron-oxygen-hydrogen thin films at low temperatures

    International Nuclear Information System (INIS)

    Music, D.; Koelpin, H.; Atiser, A.; Kreissig, U.; Bobek, T.; Hadam, B.; Schneider, J.M.

    2005-01-01

    We have studied the influence of synthesis temperature on chemical composition and mechanical properties of X-ray amorphous boron-oxygen-hydrogen (B-O-H) films. These B-O-H films have been synthesized by RF sputtering of a B-target in an Ar atmosphere. Upon increasing the synthesis temperature from room temperature to 550 deg. C, the O/B and H/B ratios decrease from 0.73 to 0.15 and 0.28 to 0.07, respectively, as determined by elastic recoil detection analysis. It is reasonable to assume that potential sources of O and H are residual gas and laboratory atmosphere. The elastic modulus, as measured by nanoindentation, increases from 93 to 214 GPa, as the O/B and H/B ratios decreases within the range probed. Hence, we have shown that the effect of impurity incorporation on the elastic properties is extensive and that the magnitude of the incorporation is a strong function of the substrate temperature

  15. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Li, M M; Liu, C; Liang, J S; Wu, C B; Xu, Z

    2006-01-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC

  16. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    Science.gov (United States)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  17. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  18. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  19. Synthesis and Activation of Catalysts for Biofuel Synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Elkjær, Christian Fink

    The synthesis of transportation fuels from sustainable resources requires new and better production paths. Our approach is to use biogas to synthesize alcohols, such as methanol or higher alcohols for fuel and other chemical products. For the production of methanol a reduction of processing...... temperature and pressure to lower the process cost and make the product more competitive is desired. Higher alcohols are in general favorable over methanol due to their high energy density and ease of use in current internal combustion engines. However, better catalysts for this reaction are needed...

  20. Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties

    International Nuclear Information System (INIS)

    Kumar, R. Rakesh; Parmar, Mitesh; Narasimha Rao, K.; Rajanna, K.; Phani, A.R.

    2013-01-01

    Graphical abstract: -- A simple thermal evaporation method is presented for the growth of crystalline SnO 2 nanowires at a low substrate temperature of 450 °C via an gold-assisted vapor–liquid–solid mechanism. The as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and were also tested for methanol vapor sensing. Transmission electron microscopy studies revealed the single-crystalline nature of the each nanowire. The fabricated sensor shows good response to methanol vapor at an operating temperature of 450 °C.

  1. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  2. Temperature effects on the structure of liquid D-methanol through ...

    Indian Academy of Sciences (India)

    Here, the liquid consists of deuterated methanol and neutron data was collected on the high- diffractometer at Dhruva, BARC. The corrected data at elevated temperatures (BP (boiling point) and double the BP) show that there is a large change in the H-bonded structure of this liquid. The pre-peak or hump, known to be ...

  3. Comparison between two methods of methanol production from carbon dioxide

    International Nuclear Information System (INIS)

    Anicic, B.; Trop, P.; Goricanec, D.

    2014-01-01

    Over recent years there has been a significant increase in the amount of technology contributing to lower emissions of carbon dioxide. The aim of this paper is to provide a comparison between two technologies for methanol production, both of which use carbon dioxide and hydrogen as initial raw materials. The first methanol production technology includes direct synthesis of methanol from CO 2 , and the second has two steps. During the first step CO 2 is converted into CO via RWGS (reverse water gas shift) reaction, and methanol is produced during the second step. A comparison between these two methods was achieved in terms of economical and energy-efficiency bases. The price of electricity had the greatest impact from the economical point of view as hydrogen is produced via the electrolysis of water. Furthermore, both the cost of CO 2 capture and the amounts of carbon taxes were taken into consideration. Energy-efficiency comparison is based on cold gas efficiency, while economic feasibility is compared using net present value. Even though the mentioned processes are similar, it was shown that direct methanol synthesis has higher energy and economic efficiency. - Highlights: • We compared two methods for methanol production. • Process schemes for both, direct synthesis and two-step synthesis, are described. • Direct synthesis has higher economical and energy efficiency

  4. Low temperature synthesis of Ba1–xSrxSnO3 (x= 0–1) from molten ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Low temperature synthesis of Ba1–SrSnO3 ( = 0–1) from molten alkali hydroxide flux. B Ramdas R Vijayaraghavan. Electrical Properties Volume 33 Issue 1 February 2010 pp 75- ...

  5. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  6. Low-temperature synthesis of CuFeO{sub 2} (delafossite) at 70 °C: A new process solely by precipitation and ageing

    Energy Technology Data Exchange (ETDEWEB)

    John, Melanie, E-mail: melanie.john@min.uni-muenchen.de [Section Mineralogy, Petrology & Geochemistry, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Heuss-Aßbichler, Soraya [Section Mineralogy, Petrology & Geochemistry, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Park, So-Hyun [Section Crystallography, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Ullrich, Aladin [Experimental Physics II, University of Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany); Benka, Georg [Physics Department, Technical University Munich, James-Franck-Straße 1, 85748 Garching (Germany); Petersen, Nikolai [Section Geophysics, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Rettenwander, Daniel [Department of Materials Research & Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Horn, Siegfried R. [Experimental Physics II, University of Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany)

    2016-01-15

    This study presents a new low temperature synthesis method to obtain pure delafossite (Cu{sup 1+}Fe{sup 3+}O{sub 2}) at a temperature of 70 °C within 24 h. For the first time delafossite is synthesized solely by precipitation and subsequent ageing process and without usage of any additives controlling the oxidation state of copper. The synthesized material, called LT-delafossite, consists of pure Cu{sup 1+}Fe{sup 3+}O{sub 2} exclusive of any side products. Rietveld analysis confirms the presence of both 3R (space group (SG): R-3m) and 2H (SG: P6{sub 3}/mmc) polytypes in LT-delafossite. Electron microscopy images show nanometer-sized hexagonal plates with a diameter <500 nm and a thickness of <30 nm. Measurements of the magnetic susceptibility from 2 K to 350 K in zero-field show one peak ∼18.5 K, which is attributed to an AFM phase transition. Zero-field-cooled magnetization data between −14 T and +14 T at 2 K revealed an s-shape form around the origin having no remanent magnetization. - Highlights: • New process: low temperature synthesis of pure CuFeO{sub 2} nanoparticles. • Synthesis at 70 °C within 24 h solely by precipitation and ageing. • Nanoparticle characterization by XRD, FTIR, SEM, ICP–OES, TEM and Mößbauer. • Special magnetic properties of nano-sized CuFeO{sub 2} synthesized at low temperatures.

  7. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites

    International Nuclear Information System (INIS)

    Liu, Jinsong; Zhu, Kongjun; Sheng, Beibei; Li, Ziquan; Tai, Guoan; Qiu, Jinhao; Wang, Jing; Chen, Jiankang; You, Yuncheng; Gu, Qilin; Liu, Pengcheng

    2015-01-01

    Highlights: • Using a low-temperature solid-state method, ZnO/CdS nanocomposites were obtained • Grain growth kinetics of cubic CdS and hexagonal ZnO phase was described. • Sufficient grinding and heating treatment was a key for formation of composites. • Optical properties could be easily manipulated by reaction temperature and time. - Abstract: A simple low-temperature solid-state reaction in the presence of the surfactant PEG400 was developed to obtain ZnO/CdS nanocomposites. The effects of synthesis temperature and reaction time on crystal structure and optical properties of the nanocomposites were investigated by several technologies. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) characterizations showed that the products consisted of the nanoparticles, and the grain growth kinetics of the cubic CdS and the hexagonal ZnO phase in the nanocomposites was described. The mechanism analysis suggested that sufficient grinding and heating treatment was a key to form the ZnO/CdS nanocomposites, and the surfactant PEG400 was proved not to involve the reaction and prevent the nanoparticles from aggregating to larger in whole grinding and heat-treatment process. Ultraviolet–visible (UV–vis) spectra revealed that the band gaps of the nanocomposites could be tuned by the reaction temperature and reaction time. Photoluminescence (PL) spectra showed that the changing position and the intensity of the emission peaks resulted from the rate of electron transfer and recombination probability under the different conditions

  8. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  9. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    Science.gov (United States)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  10. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  11. The enhancement of methanol oxidation electrocatalysis at low and high overpotentials

    International Nuclear Information System (INIS)

    Teliz, E.; Díaz, V.; Zinola, C.F.

    2014-01-01

    Highlights: • EIS results depicted two time constants. • Between 0.40 and 0.55 V methanol dehydrogenation was the rds. • Above 0.55 V CO-type and formiate adsorbed intermediates oxidation was the rds. • PtRuMo/C showed the highest tolerance to methanol intermediates. - Abstract: The preparation of new surfaces for anodic processes in methanol/air fuel cells has gained major attention due to the efficiency loss in the course of long-time operations. This paper proposes the use of electrochemical activated Pt/C, PtMo/C, PtRu/C, PtRuMo/C electrodes to study changes in the electrocatalytic behaviour of methanol oxidation under the potential ranges of interest for fuel cells. Electrochemical impedance spectroscopy together with polarization curves are applied to typify the interfacial behaviour of methanol electrooxidation on these activated electrodes. Impedance information discloses that these catalysts allow two distinct responses, i.e. methanol dehydrogenation as rate determining step in the low potential region (0.400-0.550 V), whereas a surface oxidation of adsorbed intermediates determining the process at high potentials (larger than 0.550 V). Moreover, we found new effects caused by molybdenum or ruthenium inclusions that are explained using the true Tafel slopes, that is, those corrected for mass transport. Thus, Tafel slopes of 0.060 V decade −1 are found for all carbon supported electrodes except for PtRu/C where the first electrochemical step as rate determining explained the experimental 0.120 V decade −1 value. The catalytic performance of carbon supported PtRuMo/C towards methanol electrooxidation showed the highest tolerance upon methanol intermediates formation

  12. Organization of Genes Required for the Oxidation of Methanol to Formaldehyde in Three Type II Methylotrophs

    Science.gov (United States)

    Bastien, C.; Machlin, S.; Zhang, Y.; Donaldson, K.; Hanson, R. S.

    1989-01-01

    Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome cL, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome cL structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed. PMID:16348074

  13. Methanol and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Lafaye, J.; Perron, R.

    1987-01-01

    The overall focus of the book is on homogeneous catalysed processes which were seen to offer the most promising routes to C/sub 2/ oxygenates. The first three chapters review the industrial synthesis and applications of carbon monoxide such as in the manufacture of gasoline (e.g. Fischer-Tropsch, Mobil processes), organic chemicals (e.g. ethanol, acetic acid, etc.), industrial importance of C/sub 2/ oxygenates, and use of methanol as a future feedstock are discussed. The next six chapters are each concerned with the production of a particular C/sub 2/ oxygenate and a detailed analysis of the methods and catalysts used. The hydrocarbonylation of methanol occupies a large chapter (136 references) with a comparative examination of the catalysts available, and their modification to increase selectivity to either acetylaldehyde or ethanol. Following chapters examine the synthesis of ethyl acetate, acetic acid, acetic anhydride, vinyl acetate, ethylene glycol and oxalic acid.

  14. Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio

    International Nuclear Information System (INIS)

    Sakdasri, Winatta; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat

    2015-01-01

    Highlights: • Continuous production of biofuel in SCM at low molar ratio was studied. • The actual density of mixture was applied to calculate residence times. • The maximum FAME of 80–90% was observed for refined and used palm oils. • The glycerol–methanol reaction showed a positive effect in fuel yield. - Abstract: The high energy consumption and high environmental impact in the supercritical methanol (SCM) process primarily originates from the preheating of reactants and the recovery of excess alcohols. This work demonstrated the synthesis of biofuel using a lowered methanol to oil molar ratio of 12:1, instead of the 40:1–42:1 ratios that are commonly employed in conventional SCM. The apparent density of the reacting mixture was measured and applied to accurately calculate residence times in a continuous reactor. The effects of residence time were considered from 10 to 25 min. The results revealed that excessive residence times reduced the ester content, especially for unsaturated esters, in the resulting biofuel. A residence time of 20 min was recommended to simultaneously achieve a maximum ester content of 90% and a triglyceride conversion of up to 99%. Used palm olein oil with high free fatty acid (4.56 wt.%) can be employed as a feedstock and give a maximum ester content of 80%. In addition, the side reaction between glycerol and methanol at 400 °C and 15 MPa showed a positive effect in increasing fuel yield by 2%–7%

  15. Direct synthesis of 2-methyl-1-propanol/methanol fuels and feedstocks: Quarterly technical progress report for the period June--August 1985

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R. G.; Simmons, G. W.; Nunan, J.; Himelfarb, P. B.

    1985-09-01

    During the present quarter, and intensive series of aluminum- supported catalysts, both Cs promoted and unpromoted, have been prepared by a special preparation technique and tested to determine alcohol synthesis activity, selectivities, and stability. Preparation of a single-phase hydrotalcite-like ((Cu/sub x/Zn/sub 1 -x/)/sub 6/Al/sub 2/CO/sub 3/(OH)/sub 16//center dot/4H/sub 2/O) catalyst precursor has been successfully accomplished. Some of these catalysts have been tested to determine their activities in producing methanol and higher alcohols. It has been observed that catalysts obtained by calcination and reduction of the hydrotalcite-like precursor are very active methanol synthesis catalysts. Doping these catalysts with cesium in an aqueous solution leads to initial deactivation, which is partially recovered by doping at higher cesium levels. Results give us guidelines for altering the promoter doping procedure so that a more active and selective aluminum-supported higher alcohol synthesis catalyst will be obtained. 4 refs., 13 figs., 13 tabs.

  16. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance

    International Nuclear Information System (INIS)

    Yi, Qun; Gong, Min-Hui; Huang, Yi; Feng, Jie; Hao, Yan-Hong; Zhang, Ji-Long; Li, Wen-Ying

    2016-01-01

    A novel process designed for producing methanol from coke oven gas (COG) integrated with CO 2 recycle is proposed. In the new system, oxygen replacing air is blown to combustor for assisting combustion of COG and unreacted syngas from methanol synthesis process. The combustion process provides to the heat required in the coking process. The rest COG reacts with the recycled CO 2 separated from the exhaust gas to produce syngas for methanol synthesis. The unreacted syngas from methanol synthesis process with low grade energy level is recycled to the combustor. In the whole methanol production process, there is no additional process with respect to supplementary carbon, and the carbon resource only comes from the internal CO 2 recycle in the plant. With the aid of techno-economic analysis, the new system presents the energy or exergy saving by 5–10%, the CO 2 emission reduction by about 70% and the internal rate of return increase by 5–8%, respectively, in comparison with the traditional COG to methanol process. - Highlights: • A process for producing methanol from COG integrated with CO 2 recycle is first proposed. • CO 2 from the exhaust gas is recycled to supply carbon for producing syngas. • New integrated plant simplifies the production process with 5–8% IRR increase. • New system presents about 5–10% energy saving, about 70% CO 2 emission reduction.

  17. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  18. Effect of operating conditions on energy efficiency for a small passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Chu Deryn; Jiang Rongzhong

    2006-01-01

    Energy conversion efficiency was studied in a direct methanol fuel cell (DMFC) with an air-breathing cathode using Nafion 117 as electrolyte membrane. The effect of operating conditions, such as methanol concentration, discharge voltage and temperature, on Faradic and energy conversion efficiencies was analyzed under constant voltage discharge with quantitative amount of fuel. Both of Faradic and energy conversion efficiencies decrease significantly with increasing methanol concentration and environmental temperature. The Faradic conversion efficiency can be as high as 94.8%, and the energy conversion efficiency can be as high as 23.9% if the environmental temperature is low enough (10 deg. C) under constant voltage discharge at 0.6 V with 3 M methanol for a DMFC bi-cell. Although higher temperature and higher methanol concentration can achieve higher discharge power, it will result in considerable losses of Faradic and energy conversion efficiencies for using Nafion electrolyte membrane. Development of alternative highly conductive membranes with significantly lower methanol crossover is necessary to avoid loss of Faradic conversion efficiency with temperature and with fuel concentration

  19. Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol.

    Science.gov (United States)

    Du, Xian-Long; Jiang, Zheng; Su, Dang Sheng; Wang, Jian-Qiang

    2016-02-19

    Methanol is a sustainable source of liquid fuels and one of the most useful organic chemicals. To date, most of the work in this area has focused on the direct hydrogenation of CO2 to methanol. However, this process requires high operating temperatures (200-250 °C), which limits the theoretical yield of methanol. Thus, it is desirable to find a new strategy for the efficient conversion of CO2 to methanol at relatively low reaction temperatures. This Minireview seeks to outline the recent advances on the indirect hydrogenation of CO2 to methanol. Much emphasis is placed on discussing specific systems, including hydrogenation of CO2 derivatives (organic carbonates, carbamates, formates, cyclic carbonates, etc.) and cascade reactions, with the aim of critically highlighting both the achievements and remaining challenges associated with this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Golshadi

    2013-04-01

    Full Text Available A computational fluid dynamic (CFD study of methanol (MeOH to dimethyl ether (DME process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MATLAB optimization module. A two-dimensional CFD simulation of the reaction is demonstrated and considered as numerical experiments. A sensitivity analysis was run in order to find the effect of temperature, pressure, and WHSV on the reactor performance. Good agreement was achieved between bench experimental data and the model. The results show that the maximum conversion of reaction (about 85.03% is obtained at WHSV=10 h-1 and T=563.15 K, whereas the inlet temperature has a greater effect on methanol conversion. Moreover, the effect of water in inlet feed on methanol conversion is quantitatively studied. It was concluded that the results obtained from CFD analysis give precise guidelines for further studies on the optimization of reactor performance.

  1. Low-temperature synthesis and structural properties of ferroelectric K 3WO 3F 3 elpasolite

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-06-01

    Low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 has been prepared by chemical synthesis. Structural and chemical properties of the final product have been evaluated with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Structure parameters of G2-K 3WO 3F 3 are refined by the Rietveld method from XRD data measured at room temperature (space group Cm, Z = 2, a = 8.7350(3) Å, b = 8.6808(5) Å, c = 6.1581(3) Å, β = 135.124(3) Å, V = 329.46(3) Å 3; RB = 2.47%). Partial ordering of oxygen and fluorine atoms has been found over anion positions. Mechanism of ferroelectric phase transition in A 2BMO 3F 3 oxyfluorides is discussed.

  2. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst

    Science.gov (United States)

    Dou, Maobin; Zhang, Minhua; Chen, Yifei; Yu, Yingzhe

    2018-06-01

    The interactions between ZrO2 support and In2O3 catalyst play pivotal role in the catalytic conversion of CO2 to methanol. Herein, a density functional theory study has been conducted to research the mechanism of methanol synthesis from CO2 and CO hydrogenation on the defective ZrO2 supported In2O3(110) surface (D surface). The calculations reveal that methanol is produced mainly via the HCOO reaction pathway from CO2 hydrogenation on D surface, and the hydrogenation of HCOO to form H2COO species with an activation barrier of 1.21 eV plays the rate determining step for the HCOO reaction pathway. The direct dissociation of CO2 to CO on D surface is kinetically and energetically prohibited. Methanol synthesis from CO hydrogenation on D surface is much facile comparing with the elementary steps involved in CO2 hydrogenation. The rate determining step of CO hydrogenation to methanol is the formation of H3CO species on the vacancy site with a barrier of 0.51 eV. ZrO2 support has significant effect on the suppressing of the dissociation of CO2 and stabilization of H2COO species on the surface of In2O3 catalyst.

  3. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kun; Miao, Peng; Tang, Yuguo, E-mail: tangyg@sibet.ac.cn [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tong, Hui; Zhu, Xiaoli [Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Tao; Cheng, Wenbo [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  4. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging

  5. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media.

    Science.gov (United States)

    Fernández-Lucas, Jesús; Fresco-Taboada, Alba; de la Mata, Isabel; Arroyo, Miguel

    2012-07-01

    The effect of several water-miscible cosolvents on activity and stability of soluble and immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri on Sepabeads® has been studied in order to establish optimal conditions for enzymatic synthesis of nucleosides using purine bases with low solubility in aqueous buffer. As a rule of thumb, there was a general reduction of soluble enzyme activity when cosolvent content was gradually increased in reaction medium. In contrast, immobilized enzyme activity was enhanced 1.2-1.4-fold at 20% of methanol, ethanol, 2-propanol, diethylene glycol, and acetone; and at 10% and 30% acetonitrile. Likewise, highest increased activity (1.8-fold) was also obtained in presence of 20% acetonitrile. Immobilized enzyme was successfully used in the synthesis of 2'-deoxyxanthosine and 2'-deoxyguanosine using 2'-deoxyuridine as sugar donor and the corresponding poor water-soluble base in the presence of 30% of methanol, ethanol, 2-propanol, ethylene glycol, acetonitrile, and DMSO, giving high nucleoside yields at 4h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  7. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  8. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-01-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW 12 -GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW 12 -GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H 3 PW 12 O 40 (PW 12 ) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW 12 -GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW 12 -GNs exhibit the forward peak current density of 445 mA mg −1 , which is much higher than that (220 mA mg −1 ) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications

  9. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  10. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

    DEFF Research Database (Denmark)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank

    2014-01-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO 2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO...... 2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO 2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni......-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni 5 Ga 3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al 2 O 3 catalysts revealed the same or better methanol synthesis activity, as well as considerably...

  11. Metabolism of methanol in acetogenic bacteria

    International Nuclear Information System (INIS)

    Ivey, D.K.W.

    1987-01-01

    Acetogens can grown on methanol in the presence of a cosubstrate that is more oxidized than methanol. Three mol of acetate is formed from 4 mol methanol and 2 mol CO 2 . One mol of methanol is oxidized to CO 2 . The levels of the tetrahydrofolate enzymes, carbon monoxide dehydrogenase, and corrinoids indicate the presence of the acetyl CoA pathway when growing on methanol. The acetyl-CoA pathway of acetate synthesis as presently understood does not include methanol as a substrate. It is demonstrated that methanol is oxidized to formaldehyde and then to formate by a methanol dehydrogenase. It is also possible that the methyl group of methanol is transferred directly to either a corrinoid-type enzyme, or tetrahydrofolate. When cells of C. thermoautotrophicum are grown on 14 CO 2 , acetate becomes labeled in both carbons with a ratio 14 CH 3 / 14 COOH of 0.7. In addition, methanol gets labeled. When cells are grown on 14 CH 3 OH, label appears in both acetate carbons with a ratio of 3.3, and also appears in CO 2 . Thus methanol is preferentially incorporated into the methyl group of acetate, whereas CO 2 is the preferred source of the carboxyl carbon

  12. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available Acta 182 (2015) 1060–1069 Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries P. Nithyadharsenia,b, M.V. Reddya,c,*, Kenneth I. Ozoemenab,d, R. Geetha Balakrishnae, B.V.R. Chowdaria a Advanced Batteries...

  13. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Calibration of the methanol sensor system was done in a medium environment with ... by taking protein induction at a low temperature and a pH where protease ... molecular weight of 66.5 kDa, HSA comprises about one-.

  14. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  15. Cobalt catalysts for the conversion of methanol and for Fischer-tropsch synthesis to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1987-01-01

    A regeneration stable catalyst is described for the conversion at reaction conditions of methanol or synthesis gas to liquid hydrocarbons which consists essentially of from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added sufficient of a zirconium, hafnium, cerium, or uranium promoter to provide a weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt greater than about 0.101:1

  16. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  17. Development of a Crosslinked Pore-filling Membrane with an Extremely Low Swelling Ratio and Methanol Crossover for Direct Methanol Fuel Cells

    International Nuclear Information System (INIS)

    Li, Yunxi; Hoorfar, Mina; Shen, Kuizhi; Fang, Jiyong; Yue, Xigui; Jiang, Zhenhua

    2017-01-01

    A poly (ether sulphone)-based pore-filling membrane was successfully fabricated and tested against a conventional Nafion-based membrane in direct methanol fuel cells. An amino-containing polymer with a low degree of sulphonation (DS) was synthesized and used as the supporting substrate. The porous substrate was prepared by introducing the porogenic agent (tetrafluoroborate) into the membrane casting solution. The effects of the content of the porogenic agent on the pore morphologies were evaluated using field emission scanning electron microscopy. Then, an epoxy resin was introduced into the porous electrolyte for the first time to minimize the swelling and methanol crossover that resulted from the high degree of sulphonation. In essence, solidification of the amino groups in the substrate results in 3D crosslinking of epoxy resins, which greatly suppresses the swelling and methanol crossover of the composite membranes with enhanced mechanical properties and enhances the thermal and oxidation stability compared to Nafion 117. The resulting composite membrane also shows high proton conductivity that is only slightly lower than that of Nafion 117. However, the selectivity between the proton conductivity and methanol permeability is higher for the composite membranes than that of Nafion 117. The composite membrane also shows a better performance in single cell tests with 10 M methanol.

  18. Reverse Topotactic Transformation of a Cu–Zn–Al Catalyst during Wet Pd Impregnation : Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures

    NARCIS (Netherlands)

    Fierro, J.L.G.; López Granados, M.; Melián-Cabrera, I.

    2002-01-01

    The effect of palladium metal on the performance of a CuO–ZnO–Al2O3 catalyst is studied for methanol synthesis by hydrogenation of carbon dioxide. The dramatic decrease in the methanol yield (in mol CH3OH/h · gcat) seen for the Pd-containing catalysts is discussed in terms of formation,

  19. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    Science.gov (United States)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  20. Kinetics of methanol decomposition on Cu/ZnO/ZrO2 catalysts

    International Nuclear Information System (INIS)

    Grabowski, R.; Kozlowska, A.

    2004-01-01

    Interaction of methanol with Cu/ZnO/ZrO 2 (with different copper content) has been investigated by gravimetric and TPD methods. The TPD measurements of methanol adsorption on these catalysis show that it forms the complexes of two types. The first complex (I) decomposes at low temperature (453 K) yielding H 2 and CO 2 and second (II) decomposes at temperature (573 K) giving CO and H 2 . In the process of decomposition of the complex (I) takes part water which is adsorbed on the surface of the catalyst and the decomposition of the complex (II) occurs without participation of adsorbed water. Gravimetric measurements of methanol and that an increase of copper content leads to the changes in the kinetics of methanol adsorption and its decomposition. On the basis of gravimetric measurements a model of methanol adsorption and decomposition on Cu/ZnO/ZrO 2 catalyst has been proposed and the rate constants of methanol adsorption (k a ) and decomposition with and without participation of water (k 1 and k 2 ) have been determined. (author)

  1. Synthesis of Pd₃Co₁@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells.

    Science.gov (United States)

    Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo

    2014-08-18

    A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  3. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  4. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  5. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  6. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  7. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  8. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  9. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  10. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  11. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  12. Cobalt catalysts, and use thereof for the conversion of methanol and for fischer-tropsch synthesis, to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1988-01-01

    This patent describes a process useful for the conversion of methanol to hydrocarbons which comprises contacting the methanol at reaction conditions with a catalyst which comprises from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added a zirconium, hafnium, cerium, or uranium promoter, the weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt being greater than about 0.010:1; the reaction conditions being defined within ranges as follows: Methanol:H/sub 2/ ratio: greater than about 4:1, Space Velocities, Hr/sup -1/:about 0.1 to 10, Temperatures, 0 C.:about 150 to 350, Methanol Partial Pressure, psia: about 100 to 1000

  13. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2013-01-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC

  14. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    , i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...... and burner and the behaviour of the CO concentration of the reformate gas....... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...

  15. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H; Heinzelmann, G; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  16. Low temperature synthesis of carbon encapsulated Fe7S8 nanocrystals as high performance anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Boyang; Zhang, Fuhua; Wu, Qianlin; Wang, Junhua; Li, Wenge; Dong, Lihua; Yin, Yansheng

    2015-01-01

    A novel method is developed for low temperature synthesis of carbon encapsulated spherical Fe 7 S 8 nanocrystals with core–shell structure (Fe 7 S 8 @C) by the reaction of ferrocene with ammonium persulphate. The phase structure, morphology, specific surface area and composition of the nanocomposite are systematically characterized. It is found that the Fe 7 S 8 nanocrystals with a weight percent of 33.5% have a median size of 25.2 nm. The Fe 7 S 8 @C electrodes retain a reversible capacity of 815 and 539 mAh g −1 after 50 cycles at a current density of 200 and 2284 mA g −1 , respectively. The high capacity, good cycling behavior and rate capability of Fe 7 S 8 @C electrodes are attributed to the good protection and electrical conductivity of carbon shell. - Highlights: • Large scale and low temperature synthesis of Fe 7 S 8 @C with core–shell structure. • The Fe 7 S 8 @C electrodes retain a capacity of 815 mAh g −1 after 50 cycles at 200 mA g −1 . • The Fe 7 S 8 @C electrodes show good cycling behavior and rate capability

  17. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  18. Low-temperature solid-state synthesis and optical properties of CdS-ZnS and ZnS-CdS alloy nanoparticles

    International Nuclear Information System (INIS)

    Liu Jinsong; Zhao Chuanbao; Li Ziquan; Chen Jiankang; Zhou Hengzhi; Gu Shanqun; Zeng Youhong; Li Yongchan; Huang Yongbing

    2011-01-01

    Highlights: → Using a simple low-temperature solid-state synthetic method, ZnS-CdS and CdS-ZnS alloy nanoparticles were obtained, respectively. → The size of the nanoparticles increased with increasing reaction temperature, and reaction sequence had no effect on the size of the nanoparticles under the same temperature. → The particle diameters of the CdS-ZnS products decreased gradually with increasing Cd 2+ /Zn 2+ molar ratio, whereas those of the ZnS-CdS products increased gradually with increasing Zn 2+ /Cd 2+ molar ratio. → The study shows that sufficient grinding and crystalline water may be a key in forming the alloy nanoparticles. → Optical properties of the products depend on reaction temperature, reactant addition sequence, and reactant molar ratio. - Abstract: A simple low-temperature solid-state synthetic method was employed to obtain ZnS-CdS and CdS-ZnS alloy nanoparticles. The effects of reaction sequence, reactant molar ratios, and synthesis temperature on the products were investigated. The crystal structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared (FT-IR) spectroscopy. The results show that the products are alloy nanoparticles with a cubic phase structure. The formation mechanism of the alloy nanoparticles is briefly discussed. Sufficient grinding and crystalline water may be essential to form alloy nanoparticles. Ultraviolet-visible (UV-vis) spectra show that the edge absorptions of the CdS-ZnS and ZnS-CdS nanoparticles were located between those of ZnS and CdS bulks, and the absorbance at the peak maximum was practically dependent on reaction temperature, reaction sequence, and molar ratio. Extrinsic deep-level emission resulted in strong peaks in the photoluminescence (PL) spectra. The position and intensity of the emission peaks varied with the conditions during synthesis.

  19. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique

    International Nuclear Information System (INIS)

    Jadalannagari, Sushma; More, Sandeep; Kowshik, Meenal; Ramanan, Sutapa Roy

    2011-01-01

    Hydroxyapatite (HAp) nano-rods were successfully synthesized by a modified sol-gel method using a solution of CaCl 2 .2H 2 O in water, along with a solution of H 3 PO 4 in triethylamine and NH 4 OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The sol obtained was dried in an oven for 2 days at 100 deg. C after being dialyzed for 12 h. Pellets were made from the crystalline powders and immersed in simulated body fluid (SBF) to check its biocompatibility after 15, 45 and 180 days of immersion. The HAp powders and pellets were characterized by X-Ray Diffraction crystallography (XRD), Fourier transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The HAp nano-rods had an average diameter of 25 nm and length 110-120 nm. Immersion of the HAp pellets in SBF led to the formation of a highly porous interconnecting HAp layer on the surface. The porosity increased with increase in immersion time. Highlights: → Low temperature synthesis of hydroxyapatite nanorods using Ca and P sources and triethylamine. → The synthesis time was only 0.5 hours. → Crystalline material was obtained after drying at 100oC only in air. → SBF studies showed the HAP bodies to be biocompatible.

  20. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Yi-Ge; Chen, Jing-Jing; Wang, Feng-bin; Sheng, Zhen-Huan; Xia, Xing-Hua

    2010-08-28

    A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.

  1. Fuel from the synthesis gas - the role of process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, Marek; Nowicki, Lech [Technical Univ. of Lodz, Dept. of Environmental Engineering Systems, Lodz (Poland)

    2003-02-01

    The paper presents the conclusions obtained in the investigations of methanol synthesis, Fischer-Tropsch synthesis, and higher alcohols synthesis from syngas as a raw material in slurry reactors. The overview of the role of process engineering was made on the basis of the experience in optimizing process conditions, modeling reactors and working out new technologies. Experimental data, obtained with a laboratory-stirred autoclave and theoretical considerations were used to develop the kinetic models that can describe the product formation and the model of the simultaneous phase and chemical equilibrium for the methanol and Fischer-Tropsch syntheses in the slurry reactors. These models were employed in modeling of the bubble-column slurry reactor (BCSR). Based on these considerations, a computer simulation of the low-pressure methanol synthesis for the pilot-scale, BCSR, was devised. The results of the calculations and the conclusions could be employed in the process for designing an industrial plant. (Author)

  2. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment

    International Nuclear Information System (INIS)

    Pérez-Fortes, Mar; Schöneberger, Jan C.; Boulamanti, Aikaterini; Tzimas, Evangelos

    2016-01-01

    Highlights: • A carbon utilisation plant that synthesise methanol is simulated in CHEMCAD. • The total amount of CO 2 demand is 1.46 t/t methanol . • The CO 2 not-produced compared to a conventional plant is 0.54 t/t methanol . • Production costs results too high for a financially attractive project. • There is a net potential for CO 2 emissions reduction of 2.71 MtCO 2 /yr in Europe. - Abstract: The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H 2 and captured CO 2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO 2 emissions and (ii) the cost of production, in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD, and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO 2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr, and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However, raw materials prices, i.e. H 2 and captured CO 2 , do not allow such a project to be financially viable. In order to make the CCU plant financially attractive, the price of MeOH should increase in a factor of almost 2, or H 2 costs should decrease almost 2.5 times, or CO 2 should have a value of around 222 €/t, under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO 2 emissions of a pulverised coal (PC) power plant that produces 550 MW net of electricity. The net CO 2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional Me

  3. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    Science.gov (United States)

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  4. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.

    Science.gov (United States)

    Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S

    2010-11-01

    The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  6. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  7. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  8. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yongzhong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Chen, Jian, E-mail: wuhangzs@163.com [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Fu, Qingshan [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Li, Binghong [China Rubber Group Carbon Black Industry Research and Design Institute, 643000 Zigong, Sichuan (China); Zhang, Huazhi; Gong, Yong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China)

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C{sub 4}H{sub 4}CuO{sub 6} → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  9. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    International Nuclear Information System (INIS)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C 4 H 4 CuO 6 → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system

  10. Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance

    International Nuclear Information System (INIS)

    Kiyani, Roya; Rowshanzamir, Soosan; Parnian, Mohammad Javad

    2016-01-01

    In this work, palladium and palladium-cobalt supported on nitrogen doped graphene as anode materials in direct methanol fuel cells is reported. A simple and low temperature solvothermal method is used to directly prepare nanoflower-like NG and then, Pd and Pd−Co nanoparticles are precipitated onto the surface of NG using a modified polyol reduction method. The synthesized electrocatalysts are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) are used to measure electrocatalytic methanol oxidation activity and the durability of electrocatalysts. The results show that Pd−Co/NG has better electrocatalytic activity than Pd/NG toward methanol oxidation reaction (MOR) in alkaline media that is related at the presence of cobalt atoms. In addition, chronoamperometric results indicate that Pd−Co/NG is more stable than commercial Pt/C for MOR. - Highlights: • Nitrogen doped graphene (NG) was prepared by a simple solvothermal method. • Pd and Pd−Co nanoparticles were deposited on NG by polyol reduction method. • Promoting effects of cobalt over Pd/NG for MOR were investigated. • Higher activity and enhanced durability was observed for Pd−Co/NG catalyst.

  11. Catalytic conversion of 11CO2 and 11CO into synthesis precursors for 11C labelling

    International Nuclear Information System (INIS)

    Patt, J.T.

    1994-03-01

    The positron emitter carbon-11 (T 1/2 =20.3 min) is an ideal radio nuclide for tracers in positron emission tomography (PET). In this study catalytic methods for the synthesis of [ 11 C]alcohols have been investigated. The formation of [ 11 C]methanol has been studied on Pd/Al 2 O 3 and Cu/ZnO/Al 2 O 3 catalysts with respect to CO and CO 2 carrier addition to the synthesis gas. Carbon monoxide was identified as the precursor of methanol formation on the Pd/Al 2 O 3 -catalyst. In contrast on the Cu/ZnO/Al 2 O 3 -catalyst methanol was formed on a reaction pathway via an adsorbed CO 2 -species. A n.c.a.-[ 11 C]methanol synthesis basing on the Cu/ZnO/Al 2 O 3 -catalyst has been developed by substitution of the oxygen containing components CO and CO 2 in the synthesis gas by N 2 O. The radiochemical yield, the low selectivity of [ 11 C]methanol production and the rather slow kinetics of this process were arguments against the practical use of this process in the synthesis of 11 C-labelling agents. (orig.)

  12. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  13. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  14. Recent progresses in materials for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C; Leger, J M [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-12-31

    Research programs are being conducted worldwide to develop a clean, zero emissions electric vehicle. However, even with the most advanced batteries, such as nickel/metal hydride, or lithium ion batteries, the driving range is limited and the recharging time is long. Only fuel cells which can convert chemical energy directly into electrical energy can compete with internal combustion engines. This paper reviewed the recent progress made in the development of a direct methanol fuel cell using the concept developed for the proton exchange membrane fuel cell (PEMFC). It was noted that the electrode materials, at the methanol anode and oxygen cathode need to be improved by using multifunctional electrocatalysts. The development of new temperature resistant proton exchange membranes with good ionic conductivity and low methanol cross-over, which resulted from the need to increase operating temperatures above 100 degrees C was also reviewed. 35 refs., 1 tab., 2 figs.

  15. (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures

    International Nuclear Information System (INIS)

    Arce, Alberto; Rodriguez, Hector; Rodriguez, Oscar; Soto, Ana

    2005-01-01

    (Liquid + liquid) equilibrium data for the ternary system (dibutyl ether + methanol + water) were experimentally determined at T = (298.15, 308.15, and 318.15) K. The experimental results were correlated by means of the NRTL and UNIQUAC equations, the best results being achieved with the UNIQUAC equation, both for the individual correlations at each temperature and for the overall correlation considering all the three experimental data sets. The experimental tie-lines were also compared to the values predicted by the UNIFAC method

  16. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  17. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C., E-mail: fcd@mps.ohio-state.edu [Department of Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States)

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  18. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature

    International Nuclear Information System (INIS)

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-01-01

    Highlights: • Ethanol and isopropanol were used for transesterification in wet microalgae cell. • Decreased droplet size and polarity of lipid were observed after transesterification. • Ethanol and isopropanol dosage needed for 95% FAAE yield were 75% of methanol dosage. • Crystallization temperature of crude biodiesel decreased from 2.08 °C to −3.15 °C. - Abstract: Renewable ethanol and isopropanol were employed for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature and reduce the alcohol volume needed for biodiesel production. Decreased droplet size and lipid polarity were observed after transesterification with alcohol in microalgae cells. Such decrease was beneficial in extracting lipid from microalgae with apolar hexane. The effects of reaction temperature, reaction time, and alcohol volume on microwave-assisted transesterification with ethanol and isopropanol were investigated, and results were compared with those with methanol. Microwave-assisted transesterification with ethanol and isopropanol, which were more miscible with lipid in cells, resulted in higher fatty acid alkyl ester (FAAE) yields than that with methanol when the reaction temperature was lower than 90 °C. The ethanol and isopropanol volumes in the transesterification with 95% FAAE yield were only 75% of the methanol volume. The crystallization temperatures (0.19 °C and −3.15 °C) of biodiesels produced from wet microalgae through lipid transesterification in cells with ethanol and isopropanol were lower than that with methanol (2.08 °C), which was favorable for biodiesel flow in cold districts and winter.

  19. Low-temperature magnetic modification of sensitive biological materials

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 142, mar (2015), s. 184-188 ISSN 0167-577X R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : magnetic iron oxides particles * microwave-assisted synthesis * low-temperature magnetic modification * immobilized enzymes Subject RIV: BO - Biophysics Impact factor: 2.437, year: 2015

  20. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  1. Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    Said Benmokhtar

    2013-10-01

    Full Text Available In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO43 (CaTP and Na5Ti(PO43 (NaTP compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.

  2. Synthesis of Pt–Pd Bimetallic Porous Nanostructures as Electrocatalysts for the Methanol Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-03-01

    Full Text Available Pt-based bimetallic nanostructures have attracted a great deal of attention due to their unique nanostructures and excellent catalytic properties. In this study, we prepared porous Pt–Pd nanoparticles using an efficient, one-pot co-reduction process without using any templates or toxic reactants. In this process, Pt–Pd nanoparticles with different nanostructures were obtained by adjusting the temperature and ratio of the two precursors; and their catalytic properties for the oxidation of methanol were studied. The porous Pt–Pd nanostructures showed better electrocatalytic activity for the oxidation of methanol with a higher current density (0.67 mA/cm2, compared with the commercial Pt/C catalyst (0.31 mA/cm2. This method provides one easy pathway to economically prepare different alloy nanostructures for various applications.

  3. The 11C-radioisotopic study of methanol conversion on V-MCM-41; the influence of methyl iodide on the transformation

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Szelecsenyi, F.; Kovacs, Z.; Solmaz, A.; Balci, S.; Dogu, T.

    2007-01-01

    Complete text of publication follows. The MCM-41 mesoporous material has Lewis and even Bronsted acid sites to produce dimethyl ether with some hydrocarbons, while over metal modified MCM-41 mostly formaldehyde and dimethoxy methane (i.e. methylal) or methyl formate are produced. In present experiments V incorporated basically mild acid sites of MCM-41 was prepared by low temperature direct synthesis. The V-MCM-41 has enough main active Lewis sites (by V-) to form formaldehyde and also light Bronsted acid sites to let the adsorbed formaldehyde eliminate and afterwards, with methanol, to form dimethoxy methane in nonoxidative environment. This V-MCM-41 has been tested by ethanol conversion in non-oxidative environments too and diethoxy methane as main product was detected. In present work the methanol conversion, as well as the methanol co-reaction with methyl iodide are studied from the same V-MCM-41 sample using 11 C-technique. The 11 C-labelled radioactive methanol has been already applied for determination of methanol conversion rates on Cu-modified MCM-41. The V-MCM-41 was prepared by direct hydrothermal synthesis method. The adsorption rate of 11 C-methanol and, after the reaction, the desorption rate of the remaining 11 C-derivatives on catalyst were continuously detected by gamma detectors. The derivatives were analyzed by radio-gas chromatography (gas chromatograph with FID coupled on-line with a radioactivity detector). Both dimethyl ether and hydrocarbon formation are also in slight degrees according to weak Lewis and Bronsted acidities. Since the conversion was carried out without added oxygen gas, only the frame oxygen can take part into catalysis. In presence of non-radioactive methyl iodide, the radioactive methanol is converted to radioactive methyl iodide on V-MCM-41. The radio-GC analysis confirmed that the iodide induced change of the reaction performance was reversible i.e. the radioactive methyl iodide was regenerated to non-radioactive methyl

  4. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  5. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  6. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Janssens, Ton V.W.; Temel, Burcin

    2012-01-01

    Catalysts based on copper, such as the Cu/ZnO/Al2O3 system are widely used for industrial scale methanol synthesis and the low temperature water gas shift reaction. A common characteristic of these catalysts is that they deactivate quite rapidly during operation and therefore understanding...... their deactivation by sintering is highly relevant. In this work, we study the nature of the species that are responsible for transport of the Cu metal in this catalyst type using density functional theory calculations within a chemical potential formalism. The stability and mobility of Cu–X (Cu, OH, CO, CH3O, HCOO...

  7. Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts

    NARCIS (Netherlands)

    Prieto, G.; de Jong, K.P.; de Jongh, P.E.

    2013-01-01

    The generation of large volumes of nitrate-containing wastewater is a major issue in the industrial production of solid catalysts such as Cu/ZnO/Al2O3 employed in methanol synthesis. Extensive washing with water is needed to remove nitrate (and sodium) residues in the as-precipitated metal

  8. A Comparative Characterization of the HPA-MCM-48 Type Catalysts Produced by the Direct Hydrothermal and Room Temperature Synthesis Methods

    International Nuclear Information System (INIS)

    Gucbilmez, Y.; Calis, I.; Yargic, A. S.

    2012-01-01

    MCM-48 type support materials synthesized by the direct hydrothermal synthesis (HTS) and room temperature synthesis (RTS) methods were incorporated with tungstophosphoric acid (TPA) in the range of 10-40 wt% by using a wet impregnation technique in methanol solutions. Resulting HPA-MCM-48 catalysts were characterized by the XRD, Nitrogen Physisorption, SEM, TEM, EDS, and FT-IR methods in order to determine the effects of different initial synthesis conditions on the catalyst properties. RTS samples were found to have better crystalline structures, higher BET surface areas, and higher BJH pore volumes than HTS samples. They also had slightly higher TPA incorporation, except for the 40 wt% samples, as evidenced by the EDS results. Keggin ion structure was preserved, for both methods, even at the highest acid loading of 40 wt%. It was concluded that the simpler and more economical RTS method was more successful than the HTS method for hetero poly acid incorporation into MCM-48 type materials

  9. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    Complete text of publication follows. The transformation of methanol has been investigated over alumina and H-ZSM-5 in our previous experiments by 11 C-radioisotope tracing. The main product in methanol conversion over alumina was dimethyl ether due to Lewis acid sites while over H-ZSM-5 mostly hydrocarbons were formed due to both Lewis and Brrnsted acid sites. With increasing temperature first the ethanol was dehydrated to diethyl ether followed by ethene formation over alumina and H-ZSM-5. In this work, 11 C-labelled methanol as radioisotope tracer was added to non-radioactive methanol for investigation of co-reaction with non-radioactive ethanol over alumina and H- ZSM-5. The 11 C-methanol tracer was used to distinguish the methanol derivates and co-reaction derivates of methanol with ethanol against non-radioactive ethanol derivates. The yield of methyl ethyl ether as mixed ether and the influence of ethanol for the yields of C 1 -C 5 hydrocarbons were studied as a function of reaction temperature and contact time. The 11 C-methanol was formed by a radiochemical process from 11 CO 2 produced at cyclotron. The mixture of methanol and ethanol was added to 11 C-methanol and injected to the catalyst. The catalysis was carried out in a glass tube fixed-bed reactor after its pretreatment. The derivates were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector coupled on-line with a radioactivity detector). The comparative analysis of yields of radioactive and non-radioactive products as a function of reaction temperature gives information about the reaction pathways. Over alumina the yields of dimethyl ether and methyl ethyl ether (co-product) as radioactive and diethyl ether with ethene as non-radioactive main products were monitored as a function of reaction temperature and reaction time in the range of 513-593 K. Alongside ethanol derivates the ethene turns into main product in contrast with methyl ethyl ether and diethyl

  10. The kinetics of the methanol synthesis on a copper catalyst: An experimental study

    NARCIS (Netherlands)

    Bos, A.N.R.; Borman, P.C.; Kuczynski, M.; Westerterp, K.R.

    1989-01-01

    The kinetics of the low pressure of methanol from feed gases containing solely CO and H2 were studied in an internally recycled gradientless reactor. As experimental accuracy impeded the application of high CO contents, the experimental range of mole fraction of CO was limited to 0.04 to 0.22. The

  11. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    Science.gov (United States)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  12. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  13. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    Science.gov (United States)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  14. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen.

    Science.gov (United States)

    Jena, Bikash Kumar; Raj, C Retna

    2007-03-27

    This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at approximately 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).

  15. A LCA (life cycle assessment) of the methanol production from sugarcane bagasse

    International Nuclear Information System (INIS)

    Reno, Maria Luiza Grillo; Lora, Electo Eduardo Silva; Palacio, Jose Carlos Escobar; Venturini, Osvaldo Jose; Buchgeister, Jens; Almazan, Oscar

    2011-01-01

    Nowadays one of the most important environmental issues is the exponential increase of the greenhouse effect by the polluting action of the industrial and transport sectors. The production of biofuels is considered a viable alternative for the pollution mitigation but also to promote rural development. The work presents an analysis of the environmental impacts of the methanol production from sugarcane bagasse, taking into consideration the balance of the energy life cycle and its net environmental impacts, both are included in a LCA (Life Cycle Assessment) approach. The evaluation is done as a case study of a 100,000 t/y methanol plant, using sugarcane bagasse as raw material. The methanol is produced through the BTL (Biomass to Liquid) route. The results of the environmental impacts were compared to others LCA studies of biofuel and it was showed that there are significant differences of environmental performance among the existing biofuel production system, even for the same feedstock. The differences are dependent on many factors such as farming practices, technology of the biomass conversion. With relation to the result of output/input ratio, the methanol production from sugarcane bagasse showed to be a feasible alternative for the substitution of an amount of fossil methanol obtained from natural gas. -- Highlights: → High and favorable energy ratio value of methanol from bagasse. → Sugarcane production has a low participation on environmental impacts. → The gasification and methanol synthesis can be combined in a biorefinery. → Farming biomass could cause the environmental impact land competition. → The trash of sugarcane can be used successfully in methanol production.

  16. Ionothermal synthesis of β-NH4AlF4 and the determination by single crystal X-ray diffraction of its room temperature and low temperature phases

    International Nuclear Information System (INIS)

    Parnham, Emily R.; Slawin, Alex M.Z.; Morris, Russell E.

    2007-01-01

    β-NH 4 AlF 4 has been synthesised ionothermally using 1-ethyl-3-methylimidazolium hexafluorophosphate as solvent and template provider. β-NH 4 AlF 4 crystals were produced which were suitable for single crystal X-ray diffraction analysis. A phase transition occurs between room temperature (298 K) and low temperature (93 K) data collections. At 298 K the space group=I4/mcm (no. 140), α=11.642(5), c=12.661(5) A, Z=2 (10NH 4 AlF 4 ), wR(F 2 )=0.1278, R(F)=0.0453. At 93 K the space group=P4 2 /ncm (no. 138), α=11.616(3), c=12.677(3) A, Z=2 (10NH 4 AlF 4 ), wR(F 2 )=0.1387, R(F)=0.0443. The single crystal X-ray diffraction study of β-NH 4 AlF 4 shows the presence of two different polymorphs at low and room temperature, indicative of a phase transition. The [AlF 4/2 F 2 ] - layers are undisturbed except for a small tilting of the AlF 6 octahedra in the c-axis direction. -Ionothermal synthesis, the use of an ionic liquid as the solvent in materials preparation, has been used to prepare β-NH 4 AlF 4 , and structural characterisation indicates that there are two versions of the structure, a low temperature primitive phase at 93 K and a high temperature body-centered phase at 298 K

  17. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  18. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB2)

    International Nuclear Information System (INIS)

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-01-01

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB 2 ) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB 2 ) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB 2 ). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions

  19. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  20. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  1. Chemical effects of 13N produced by recoil protons and deuterons in pile-irradiated methanol and methanol-d4

    International Nuclear Information System (INIS)

    Sensui, Y.; Tomura, K.; Matsuura, T.

    1982-01-01

    The stabilized chemical forms of 13 N resulting from the reactions 13 C(p,n) 13 N by a recoil proton and 12 C(d,n) 13 N by a recoil deuteron, were studied in pile-irradiated methanol and methanol-d 4 in the temperature range from 77 to 295 K. Contrary to the target of benzene, cyclohexane, acetone and diethyl ether previously studied, the relative yield of 13 N-compounds did not depend on the irradiation temperature in the present media. In the yield of 13 N-compounds no marked change was observed between methanol and methanol-d 4 , differing from the results between benzene and benzene-d 6 . A mechanism is proposed to explain the results. (author)

  2. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst

    International Nuclear Information System (INIS)

    Gojkovic, S.Lj.; Vidakovic, T.R.; Durovic, D.R.

    2003-01-01

    Methanol electrooxidation was investigated on the carbon-supported PtRu electrocatalyst (1:1 atomic ratio) in acid media. X-ray diffraction measurement indicated alloying of Pt and Ru. Cyclic voltammetry of the sample reflects the amount of Ru in the catalyst and its ability to adsorb OH radicals. Tafel plots for the oxidation of 0.02-3 M methanol in the solutions containing 0.05-1 M HClO 4 and in the temperature range 27-40 deg. C showed reasonably well-defined linear region with the slope of about 115 mV dec -1 at the low currents, irrespective of the experimental conditions employed. Reaction order with respect to methanol was found to be 0.5. A correlation between methanol oxidation rate and pseudocapacitive current of OH adsorption on Ru sites was established. It was proposed that bifunctional mechanism is operative with the reaction between methanol residues adsorbed on Pt sites and OH radicals adsorbed on Ru sites as the rate-determining step

  3. High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)

    International Nuclear Information System (INIS)

    Román-Figueroa, Celián; Olivares-Carrillo, Pilar; Paneque, Manuel; Palacios-Nereo, Francisco Javier; Quesada-Medina, Joaquín

    2016-01-01

    The synthesis of biodiesel from crude castor oil in a catalyst-free process using supercritical methanol in a batch reactor was investigated, studying the evolution of intermediate products as well as the conversion of triglycerides and the yield of FAMEs (fatty acid methyl esters) (biodiesel). Experiments were carried out in a temperature range of 250–350 °C (10–43 MPa) at reaction times of 15–90 min for a methanol-to-oil molar ratio of 43:1. Maintaining thermal stability of biodiesel is one of the most important concerns in high-yield supercritical biodiesel production. Hence, thermal decomposition degree of FAMEs was also investigated in different reaction conditions. The maximum yield of FAMEs (96.5%) was obtained at 300 °C (21 MPa) and 90 min. Under these conditions, the conversion of triglycerides was complete, the yield of intermediate products was low (3.29 and 1.41% for monoglycerides and diglycerides, respectively), and thermal decomposition of FAMEs did not occur. The maximum degree of thermal decomposition (80.9%) was produced at 350 °C (43 MPa) and 90 min. Methyl ricinoleate, whose fatty acid chain was the most abundant (88.09 mol%) in castor oil, was very unstable above 300 °C and 60 min, leading to low yields of FAMEs under these conditions. - Highlights: • Supercritical synthesis of biodiesel from crude castor oil was investigated. • Supercritical methanolysis of crude castor oil reached a high yield of FAMEs. • Ricinoleic acid methyl ester was very unstable above 300 °C and 60 min reaction.

  4. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  5. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  6. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  7. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barai, K. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-15

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a {approx}30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  8. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    control structure and interaction among units are also shown. The methanol plant was sized to handle a reductions of the power generation from an IGCC by 50%, producing a high purity methanol stream of 99.5 mol%. Advanced regulatory control structures were designed and play a significant role for the successful turndown of the methanol plant to 20% capacity. The cooled methanol reactor is controlled by the exit temperature instead of a peak temperature within the reactor. During times of low capacity and minimum vapor rate within the column, tray temperature is controlled by recycling some of the distillate and bottoms flow. The gasifier feed is held constant. The product hydrogen from the IGCC is fed to the combustion turbine as required by electric power demand. Synthesis gas fed into the methanol plant maintains pressure of the hydrogen stream. Make-up hydrogen is also fed to the methanol plant to maintain stoichiometry via a flow ratio. This ratio is adjusted to hold carbon monoxide composition of the recycle gas in the methanol plant. This dissertation also explores various methods on how to turn down distillation columns to very low capacity. Recycling flow back to the column was determined to be the best method. Inserting Langmuir-Hinshelwood-Hougen-Watson kinetics into Aspen was also demonstrated with an example.

  9. Methanol from biomass: A technoeconomic analysis

    International Nuclear Information System (INIS)

    Stevens, D.J.

    1991-01-01

    Biomass-derived methanol offers significant potential as an alternative transportation fuel. Methanol is cleaner burning and has a lower flame temperature than gasoline. These characteristics can result in lower carbon monoxide and nitrogen oxide emissions when methanol is used as a fuel. Methanol produced from biomass offers potential advantages over that from other sources. When produced from biomass which is subsequently regrown, methanol does not contribute net emissions of carbon dioxide, a greenhouse gas, to the atmosphere. The introduction of alternative fuels will likely be driven by a number of political and economic decisions. The ability of biomass to compete with other resources will be determined in part by the economics of the production systems. In this paper, recent technoeconomic analyses of biomass-methanol systems are presented. The results are compared with methanol production from coal and natural gas

  10. Compact methanol reformer test for fuel-cell powered light-duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Emonts, B; Hoehlein, B; Peters, R [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik (IEV); Hansen, J B; Joergensen, S L [Haldor Topsoe A/S, Lyngby (Denmark)

    1998-03-15

    On-board production of hydrogen from methanol based on a steam reformer in connection with the use of low-temperature fuel-cells (PEMFC) is an attractive option as energy conversion unit for light-duty vehicles. A steam reforming process at higher pressures with an external burner offers advantages in comparison to a steam reformer with integrated partial oxidation in terms of total efficiency for electricity production. The main aim of a common project carried out by the Forschungszentrum Juelich (FZJ), Haldor Topsoee A/S (HTAS) and Siemens AG is to design, to construct and to test a steam reformer reactor concept (HTAS) with external catalytic burner (FZJ) as heat source as well as catalysts for heterogeneously catalyzed hydrogen production (HTAS), concepts for gas treatment (HTAS, FZJ) and a low-temperature fuel cell (Siemens). Based on the experimental results obtained so far concerning methanol reformers, catalytic burners and gas conditioning units, our report describes the total system, a test unit and preliminary test results related to a hydrogen production capacity of 50 kW (LHV) and dynamic operating conditions. This hydrogen production system is aimed at reducing the specific weight (<2 kg/kW{sub th} or 4 kg/kW{sub el}) combined with high efficiency for net electricity generation from methanol (about 50%) and low specific emissions. The application of Pd-membranes as gas cleaning unit fulfill the requirements with high hydrogen permeability and low cost of the noble metal. (orig.)

  11. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  12. Study on fuel supplying method and methanol concentration sensor for the high efficient operation of methanol fuel cells. Methanol nenryo denchi no unten ni okeru nenryo kyokyu hoho no kento to methanol nodo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, Tsutomu; Doi, Ryota; Yasukawa, Saburo; Kuroda, Osamu [Hirachi, Ltd., Tokyo, (Japan)

    1990-01-20

    A fuel supplying method was studied and demonstrated, essential to the high efficient operation of methanol fuel cells. Methanol and water were supplied independently from each tank to an anordic electrolyte tank in a circulating system, detecting a methanol concentration and liquid level of anordic electrolyte by each sensor, respectively. A methanol sensor was also developed to detect accurately the concentration based on electrochemical reaction under a constant voltage. A detection control circuit was insulated from a constant-voltage power supply to prevent external noises. The methanol sensor output was compensated for temperature, and a new level sensing method was adopted to send out a command comparing different responses to electrolyte shortage. As the methanol fuel cell was operated with this fuel supplying system, the stable characteristics of the cell were obtained within the variation of {plus minus} 0.1mol/l from the specified methanol concentration. 6 refs., 17 figs., 1 tab.

  13. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    Science.gov (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  14. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Cai, Zhi-xiong; Liu, Cong-cong; Wu, Geng-huang; Chen, Xiao-mei; Chen, Xi

    2014-01-01

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl 4 2− first, then adding PtCl 4 2− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br - , I − ) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  15. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    TiO2 nanotubes were synthesized by the solvothermal process at low temperature in a highly alkaline water–methanol mixed solution. Their characteristics were identified by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (BET), Fourier transform infrared spectroscopy (FTIR) ...

  16. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  17. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  18. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  19. Synthesis of low polydisperse isotactic poly(N-isopropylacrylamide)s ...

    Indian Academy of Sciences (India)

    environment-friendly and less toxic methanol-water mixtures by RAFT polymerization ... effect on the LCST of the obtained water soluble polymers. 2. Experimental. 2.1 Materials ... at room temperature by comparing the integration of.

  20. Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts

    International Nuclear Information System (INIS)

    Ciliberto, E.; Condorelli, G.G.; La Delfa, S.; Viscuso, E.

    2008-01-01

    This paper concerns the synthesis and the characterization of nanometer particles of Sr(OH) 2 , a moderately high water soluble hydroxide (Ksp=3.2 x 10 -4 at 25 C). The reported process yields strontium hydroxide nanoparticles starting from low cost raw materials in aqueous medium (homogeneous phase) at low temperature (below 100 C) by chemical precipitation from salt solutions, involving very simple operational steps and avoiding the use of organic solvents. Observations by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and Fourier transform infrared spectroscopy (FTIR) indicate that the particles are well-crystallized and have nanometer dimensions (∝30 nm in diameter). Moreover, experimental evidence shows the potential use of this material for the protection and the consolidation of wall paintings (frescoes), paper, stone, wood and other artistic artefacts. (orig.)

  1. [Synthesis of vitamin K2 by isopentenyl transferase NovA in Pichia pastoris Gpn12].

    Science.gov (United States)

    Wu, Xihua; Li, Zhemin; Liu, Hui; Wang, Peng; Wang, Li; Fang, Xue; Sun, Xiaowen; Ni, Wenfeng; Yang, Qiang; Zheng, Zhiming; Zhao, Genhai

    2018-01-25

    The effect of methanol addition on the heterologous expression of isoprenyl transferase NovQ was studied in Pichia pastoris Gpn12, with menadione and isopentenol as precursors to catalyze vitamin K2 (MK-3) synthesis. The expression of NovQ increased by 36% when 2% methanol was added every 24 h. The influence of initial pH, temperature, methanol addition, precursors (menadione, isopentenol) addition, catalytic time and cetyltrimethyl-ammonium bromide (CTAB) addition were explored in the P. pastoris whole-cell catalytic synthesis process of MK-3 in shaking flask. Three significant factors were then studied by response surface method. The optimal catalytic conditions obtained were as follows: catalytic temperature 31.56 ℃, menadione 295.54 mg/L, catalytic time 15.87 h. Consistent with the response surface prediction results, the optimized yield of MK-3 reached 98.47 mg/L in shaking flask, 35% higher than that of the control group. On this basis, the production in a 30-L fermenter reached 189.67 mg/L when the cell catalyst of 220 g/L (dry weight) was used to catalyze the synthesis for 24 h. This method laid the foundation for the large-scale production of MK-3 by P. pastoris Gpn12.

  2. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy

    International Nuclear Information System (INIS)

    Hallberg, Fredrik; Vernersson, Thomas; Pettersson, Erik Thyboll; Dvinskikh, Sergey V.; Lindbergh, Goeran; Furo, Istvan

    2010-01-01

    Electrophoretic NMR (eNMR) and pulsed-field-gradient NMR (PFG-NMR) methods were used to study transport processes in situ and in a chemically resolved manner in the electrolyte of an experimental direct methanol fuel cell (DMFC) setup, constituted of several layers of Nafion 117. The measurements were conducted at room temperature for membranes fully swollen by methanol-water mixtures over a wide concentration interval. The experimental setup and the experimental protocol for the eNMR experiments are discussed in detail. The magnitude of the water and methanol self-diffusion coefficients show a good agreement with previously published data while the ratio of the two self-diffusion coefficients may indicate an imperfect mixing of the two solvent molecules. On the molecular level, the drag of water and methanol molecules by protons is roughly of the same magnitude, with the drag of methanol molecules increasing with increasing methanol content. The electro-osmotic drag defined on mass-flow basis increased for methanol from a low level with increasing methanol concentration while that of water remained roughly constant.

  3. New Catalysts for Direct Methanol Oxidation Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  4. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    Science.gov (United States)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  5. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    Science.gov (United States)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  6. High-speed conversion of carbon dioxide into methanol using catalyst. Shokubai ni yoru nisanka tanso no kosoku methanol ka

    Energy Technology Data Exchange (ETDEWEB)

    Inui, T. (Kyoto University, Kyoto (Japan). Faculty of Enineering)

    1993-02-01

    This paper describes high-speed conversion of CO2 into methanol. When a Cu-Zn-Cr-Al oxide-based catalyst (MSCp catalyst) prepared by using a sedimentation process used for synthesizing methanol from CO is applied to converting CO2 into methanol, the methanol yield decreases down to a several fraction of CO to methanol conversion, with a possibility of greater catalytic deactivation. If this catalyst prepared by using a homogeneous gelation process (MSCg catalyst) is used, the yield of methanol from CO2 increases by 240 plus percent over the case of using the MSCp catalyst, and no catalytic deactivation occurs at all during a use for ten and odd hours. Further, when La2O3 is added to the MSCg catalyst at 4% by weight, the methanol yield increases by about two times as much as the case without addition, and the temperature at which the maximum yield is achieved shifts to a lower temperature side by about 20[degree]C. Combining Ag or Pd with the MSCg catalyst provides the same effects. The paper touches on an attempt of high-speed CO2 conversion using this catalyst loaded with ceramic fibers. 15 refs., 5 figs., 2 tabs.

  7. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  9. Low Temperature Solid-State Synthesis and Characterization of LaBO3

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun KIPÇAK

    2016-11-01

    Full Text Available Rare earth (lanthanide series borates, possess high vacuum ultraviolet (VUV transparency, large electronic band gaps, chemical and environmental stability and exceptionally large optical damage thresholds and used in the development of plasma display panels (PDPs. In this study the synthesis of lanthanum borates via solid-state method is studied. For this purpose, lanthanum oxide (La2O3 and boric acid (H3BO3 are used for as lanthanum and boron sources, respectively. Different elemental molar ratios of La to B (between 3:1 to 1:6 as La2O3:H3BO3 were reacted by solid-state method at the reaction temperatures between 500°C - 700°C with the constant reaction time of 4 h. Following the synthesis, characterizations of the synthesized products are conducted by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy and scanning electron microscope (SEM. From the results of the experiments, three types of lanthanum borates of; La3BO6, LaBO3 and La(BO23 were observed at different reaction parameters. Among these three types of lanthanum borates LaBO3 phase were obtained as a major phase.

  10. Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells

    Czech Academy of Sciences Publication Activity Database

    Wang, C. H.; Chen, C. C.; Hsu, H. C.; Du, H. Y.; Chen, C. P.; Hwang, J. Y.; Chen, L. C.; Shih, H. C.; Stejskal, Jaroslav; Chen, K. H.

    2009-01-01

    Roč. 190, č. 2 (2009), s. 279-284 ISSN 0378-7753 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : DMFC * methanol crossover * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.792, year: 2009

  11. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  12. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    Science.gov (United States)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  13. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance

    Science.gov (United States)

    Park, Jong Cheol; Choi, Chang Hyuck

    2017-08-01

    Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.

  14. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@wust.edu.cn; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-15

    Highlights: • Uniform ZrC coatings are prepared on flake graphite at 900 °C. • ZrC coatings are composed of nanosized (30–50 nm) particles. • The template growth mechanism is believed to be dominant in the molten salt synthesis process. - Abstract: A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30–50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a “template mechanism” played an important role during the molten salt synthesis.

  15. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  16. Methanol May Function as a Cross-Kingdom Signal

    Science.gov (United States)

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  17. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111

    Directory of Open Access Journals (Sweden)

    Jin-Hao Jhang

    2015-09-01

    Full Text Available We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx grown on Pt(111 in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD and infrared reflection absorption spectroscopy (IRRAS, while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED. Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111 substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces.

  18. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    Science.gov (United States)

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  20. INFLUENCE OF THE ISOBUTENE METHANOL RATIO AND OF THE METHYL TERT-BUTYL ETHER CONTENT ON THE REACTION-RATE OF THE SYNTHESIS OF METHYL TERT-BUTYL ETHER

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The forward reaction rate constant of the MtBE synthesis was determined for different reaction mixture compositions. The forward rate constant decreases continuously with increasing isobutene/methanol ratio, while an increase in reaction rate constant is observed with an increasing amount of MtBE in

  1. Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Fereshteh Samimi

    2017-11-01

    Full Text Available Carbon capture and utilization as a raw material for methanol production are options for addressing energy problems and global warming. However, the commercial methanol synthesis catalyst offers a poor efficiency in CO2 feedstock because of a low conversion of CO2 and its deactivation resulting from high water production during the process. To overcome these barriers, an efficient process consisting of three stage heat exchanger reactors was proposed for CO2 hydrogenation. The catalyst volume in the conventional methanol reactor (CR is divided into three sections to load reactors. The product stream of each reactor is conveyed to a flash drum to remove methanol and water from the unreacted gases (H2, CO and CO2. Then, the gaseous stream enters the top of the next reactor as the inlet feed. This novel configuration increases CO2 conversion almost twice compared to one stage reactor. Also to reduce water production, a water permselective membrane was assisted in each reactor to remove water from the reaction side. The proposed process was compared with one stage reactor and CR from coal and natural gas. Methanol is produced 288, 305, 586 and 569 ton/day in CR, one-stage, three-stage and three-stage membrane reactors (MR, respectively. Although methanol production rate in three-stage MR is a bit lower than three stage reactors, the produced water, as the cause of catalyst poisoning, is notably reduced in this configuration. Results show that the proposed process is a strongly feasible way to produce methanol that can competitive with a traditional synthesis process.

  2. Sucrose Phosphate Synthase and Sucrose Accumulation at Low Temperature 1

    Science.gov (United States)

    Guy, Charles L.; Huber, Joan L. A.; Huber, Steven C.

    1992-01-01

    The influence of growth temperature on the free sugar and sucrose phosphate synthase content and activity of spinach (Spinacia oleracea) leaf tissue was studied. When plants were grown at 25°C for 3 weeks and then transferred to a constant 5°C, sucrose, glucose, and fructose accumulated to high levels during a 14-d period. Predawn sugar levels increased from 14- to 20-fold over the levels present at the outset of the low-temperature treatment. Sucrose was the most abundant free sugar before, during, and after exposure to 5°C. Leaf sucrose phosphate synthase activity was significantly increased by the low-temperature treatment, whereas sucrose synthase and invertases were not. Synthesis of the sucrose phosphate synthase subunit was increased during and after low-temperature exposure and paralleled an increase in the steady-state level of the subunit. The increases in sucrose and its primary biosynthetic enzyme, sucrose phosphate synthase, are discussed in relation to adjustment of metabolism to low nonfreezing temperature and freezing stress tolerance. Images Figure 1 Figure 2 Figure 3 PMID:16652990

  3. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    International Nuclear Information System (INIS)

    Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E.

    2010-01-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm -2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm -2 . Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  4. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  5. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2013-01-01

    Full Text Available The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, mesostructured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged mesopores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, mesostructured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the nonporous ZnO prepared through conventional coprecipitation approach, mesostructured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice.

  6. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  7. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based...... effects are similar for all the test cases, namely, CO alone, methanol alone and a mix of the two, suggesting that effects of methanol may include oxidation into CO on the catalyst layer....... on experimental evaluation of electrochemical impedance spectroscopy measurements were used to quantify the changes caused by different contamination levels. The changes are generally in good agreement with what is found in the literature. It is shown that an increased level of CO contamination resulted...

  8. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  9. Low-temperature atomic layer deposition of MoS{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Jurca, Titel; Wang, Binghao; Tan, Jeffrey M.; Lohr, Tracy L.; Marks, Tobin J. [Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL (United States); Moody, Michael J.; Henning, Alex; Emery, Jonathan D.; Lauhon, Lincoln J. [Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, IL (United States)

    2017-04-24

    Wet chemical screening reveals the very high reactivity of Mo(NMe{sub 2}){sub 4} with H{sub 2}S for the low-temperature synthesis of MoS{sub 2}. This observation motivated an investigation of Mo(NMe{sub 2}){sub 4} as a volatile precursor for the atomic layer deposition (ALD) of MoS{sub 2} thin films. Herein we report that Mo(NMe{sub 2}){sub 4} enables MoS{sub 2} film growth at record low temperatures - as low as 60 C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Model surface studies of metal oxides: Adsorption of water and methanol on ultrathin MgO films on Mo(100)

    International Nuclear Information System (INIS)

    Wu, M.; Estrada, C.A.; Corneille, J.S.; Goodman, D.W.

    1992-01-01

    Model surface studies of magnesium oxide have been carried out using surface sensitive techniques. Ultrathin MgO films have been synthesized under ultrahigh vacuum (UHV) conditions by thermally evaporating Mg onto Mo(100) in the presence of oxygen. Low-energy electron diffraction (LEED) studies indicate that the MgO films grow epitaxially with the (100) face of MgO oriented parallel to Mo(100). The MgO films, prepared under optimum synthesis conditions, have essentially one-to-one stoichiometry, are nearly free from pointlike surface defects, and have properties essentially identical to those of bulk, single-crystal MgO. Adsorption of water and methanol onto the MgO films has been studied using high-resolution electron energy-loss spectroscopy (HREELS) and temperature programmed desorption (TPD). In order to circumvent the difficulty associated with intense multiple surface optical phonon (Fuchs--Kliewer modes) losses, a new approach to acquisition of HREELS data has been demonstrated. This new approach enables the direct observation of weak loss features due to excitation of the adsorbates without serious interference from multiple phonon losses. Our HREELS studies show that water and methanol undergo heterolytic dissociation, leading to the formation of hydroxyl and methoxy species, respectively

  11. Fractionation of deuterium and protium between water and methanol

    International Nuclear Information System (INIS)

    Rolston, J.H.; Gale, K.L.

    1984-01-01

    The overall deuterium-protium separation factor, α, between hydrogen gas and aqueous methanol mixtures has been measured over the full composition range at temperatures between 25 and 55 0 C. At each temperature α increases smoothly with increasing mole fraction of methanol but the values fall significantly below the straight line joining the separation factors for the methanol-hydrogen and water-hydrogen systems. The equilibrium constant, K 1 (1), for exchange of a deuterium atom tracer between the hydroxyl groups of methanol and liquid water, calculated from the values of α for each solution, is independent of composition within experimental error. The value of K 1 (1) at 25 0 C is 0.54 +/- 0.02, so that deuterium favors the methanol environment rather than water. The dependence of k 1 (1) on absolute temperature, T, is given by the expression 1n K 1 (1) = -0.776 + 52.6/T, which corresponds to a reaction enthalpy of -0.43 kJ mol -1 . 24 references, 2 figures, 2 tables

  12. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  13. The consumption, production and transportation of methanol in China: A review

    International Nuclear Information System (INIS)

    Su, Li-Wang; Li, Xiang-Rong; Sun, Zuo-Yu

    2013-01-01

    Methanol is considered as one of the potential materials for fossil-based fuels because of its available applications in the fields of fuels and chemical materials. China has become the biggest methanol production country since 2006; hence, analysing the consumption, production and transportation of methanol in China has great importance. In the present article, the current status of methanol from production to consumption in China has been systematically described. Chinese industry and statistics data are introduced to analyse and discuss the total and segmental methanol amount in both production and consumption. In China, most of the methanol is primarily consumed in the synthesis of formaldehyde, alternative fuels and acetic acid, with the corresponding percentages of 35.0%, 33.0% and 8.0%. In 2011, about 22.27 million tons of methanol was generated on site, of which, 63.7%, 23.0% and 11.3% were produced by coal, natural gas and coke-oven gas, respectively. As regards transportation, approximately 82.6% of methanol was transported by overland freight, 9.0% by sea and the rest 8.4% by train. - Highlights: • The consumption of methanol in China has been reviewed in detail. • The production of methanol in China has been reviewed in detail. • The transportation of methanol in China has been systematically reviewed

  14. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Saveleva, Viktoriia A; Savinova, Elena R; Daletou, Maria K

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt 3 Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide. (paper)

  15. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  16. Catalytic reactions of synthesis gas. Part 2. Methanol carbonylation and homologation

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M.

    1993-01-01

    The aim of the review is to evaluate the applicability of methanol hydrocarbonylation as a second test reaction to study the nondissociative activation of CO by heterogeneous rhodium and cobalt catalysts. The main emphasis in methanol (hydro)carbonylation chemistry has been on homogeneous reactions. These systems have been seen advantageous in selectivity, activity and ease of modification. The heterogenization attempts have been carried out to obtain easier separation of the catalyst and the product. The activity of cobalt, rhodium and other metals supported on different materials have been studied in heterogeneous methanol (hydro)carbonylation. The observed activities have been considerably influenced by the support. The most effective catalyst support has been activated carbon. Good carbonylation activities and selectivities have also been observed in conjunction with zeolite supports. The literature study indicates that the typical experimental conditions of methanol (hydro)carbonylation do not exceed the constructional and operational limits of the available reactor system, i.e. 500 C and 50 bar. The reaction is suitable for testing Co and Rh precursors, since both cobalt and rhodium compounds have shown carbonylation activity.

  17. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu

    2012-12-15

    Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu-Ni catalysts for methanol synthesis from syngas. The following observations have been made: (1) Cu-Ni catalysts (Cu/Ni molar ratio equal to 1) supported on SiO2, ZrO2, {gamma}-Al2O3, and carbon nanotubes exhibit very different selectivities during CO hydrogenation. However, the metal area based CO conversion rates of all supported Cu-Ni catalysts are at the same level. Carbon nanotubes and SiO2 supported Cu-Ni catalysts show high activity and selectivity for methanol synthesis. The Cu-Ni/ZrO2 catalyst exhibits high methanol selectivity at lower temperatures (250 deg. C), but the selectivity shifts to hydrocarbons and dimethyl ether at higher temperatures (> 275 deg. C). It seems likely that the Cu-Ni alloys always produce methanol, but that some supports further convert methanol to different products. (2) Cu-Ni/SiO2 catalysts have been prepared with different calcination and reduction procedures and tested in the synthesis of methanol from H2/CO. The calcination of the impregnated catalysts (with/without calcination step) and different reduction procedures with varying hydrogen concentration have significant influence on Cu-Ni alloy formation and the alloy particle size and

  18. New ETFE-based membrane for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Saarinen, V.; Kallio, T.; Paronen, M.; Tikkanen, P.; Rauhala, E.; Kontturi, K.

    2005-01-01

    The investigated membranes are based on 35-bar μ m thick commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films. The films were made proton conductive by means of irradiation treatment followed by sulfonation. These membranes have exceptionally low water uptake and excellent dimensional stability. The new membranes are investigated widely in a laboratory-scale direct methanol fuel cell (DMFC). The temperature range used in the fuel cell tests was 30-85-bar o C and the measurement results were compared to those of the Nafion ( R)115 membrane. Also methanol permeability through the ETFE-based membrane was measured as a function of temperature, resulting in values less than 10% of the corresponding values for Nafion ( R)115, which was considerably thicker than the experimental membrane. Methanol crossover was reported to decrease when the thickness of the membrane increases, so the ETFE-based membrane compares favourably to Nafion ( R) membranes. The maximum power densities achieved with the experimental ETFE-based membrane were about 40-65% lower than the corresponding values of the Nafion ( R)115 membrane, because of the lower conductivity and noticeably higher IR-losses. Chemical and mechanical stability of the ETFE-based membrane appeared to be promising since it was tested over 2000-bar h in the DMFC without any performance loss

  19. Nanoparticles of Sr(OH){sub 2}: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberto, E.; Condorelli, G.G.; La Delfa, S.; Viscuso, E. [Universita di Catania, Dipartimento di Scienze Chimiche, Catania (Italy)

    2008-07-15

    This paper concerns the synthesis and the characterization of nanometer particles of Sr(OH){sub 2}, a moderately high water soluble hydroxide (Ksp=3.2 x 10{sup -4} at 25 C). The reported process yields strontium hydroxide nanoparticles starting from low cost raw materials in aqueous medium (homogeneous phase) at low temperature (below 100 C) by chemical precipitation from salt solutions, involving very simple operational steps and avoiding the use of organic solvents. Observations by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and Fourier transform infrared spectroscopy (FTIR) indicate that the particles are well-crystallized and have nanometer dimensions ({proportional_to}30 nm in diameter). Moreover, experimental evidence shows the potential use of this material for the protection and the consolidation of wall paintings (frescoes), paper, stone, wood and other artistic artefacts. (orig.)

  20. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  1. Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Janyasupab, Metini; Liu, Chung-Chiun [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Liu, Chen-Wei [Institute of Material Sciences and Engineering, National Central University, Chung-Li 320 (China); Li, Xinxin [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiaqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-09-11

    A strategy for the synthesis of PtRh alloy 3D porous nanostructures by controlled aggregation of nanoparticles in oleylamine is presented. The atomic ratio between the two components (Pt and Rh) is tuned by varying the concentration of precursor salts accommodating the oxidation of methanol. The morphology of PtRh alloy nanostructure is controlled by elevating the temperature of the reaction system to 240 C. The prepared 3D porous nanostructures provide a high degree of electrochemical activity and good durability toward the methanol oxidation reaction compared to those of the commercial Pt/C (E-TEK) and PtRh nanoparticles. Therefore, the 3D alloy porous nanostructures provide a good opportunity to explore their catalytic properties for methanol oxidation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Novel Synthesis of Ultra-Small Dextran Coated Maghemite Nanoparticles for MRI and CT Contrast Agents via a Low Temperature Co-Precipitation Reaction.

    Science.gov (United States)

    Rabias, Ioannis; Fardis, Michael; Kehagias, Thomas; Kletsas, Dimitris; Pratsinis, Harris; Tsitrouli, Danai; Maris, Thomas G; Papavassiliou, George

    2015-01-01

    Ultra-small dextran coated maghemite nanoparticles are synthesized via a low temperature modified co-precipitation method. A monoethylene glycol/water solution of 1:1 molar ratios and a fixed apparatus is used at a constant temperature of 5-10 degrees C. The growth of nanoparticles is prohibited due to low temperature synthesis and differs from usual thermal decomposition methods via Ostwald ripening. Strict temperature control and reaction timing of less than 20 minutes are essential to maintain narrow distribution in particle size. These nanoparticles are water-dispersible and biocompatible by capping with polyethylene glycol ligands. The aqueous suspensions are tested for cytotoxic activity on normal human skin fibroblasts. There is no reduction of the cells' viability at any concentration tested, the highest being 1% v/v of the suspension in culture medium, corresponding to the highest concentrations to be administered in vivo. Initial comparison with a T1 MRI contrast agent in sale shows that maghemite nanoparticles exhibit high r1 and r2 relaxivities in MRI tomography and strong contrast in computed tomography, demonstrating that these nanoparticles can be efficient T1, T2 and CT contrast agents.

  3. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  4. ISOBUTANOL-METHANOL MIXTURES FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia

    1998-09-01

    Isobutanol is potential as a fuel additive or precursor to methyl tert-butyl ether (MTBE). Alkali-promoted Cu/ZnO/Al{sub 2}O{sub 3} and Cu/MgO/CeO{sub 2} materials have been found to catalyze the formation of isobutanol from CO and H{sub 2} at temperatures (573-623 K) that allow their use in slurry reactors. Our studies focus on the mechanism and structural requirements for selective isobutanol synthesis on these types of catalysts. Alkali promoted Cu/MgO/CeO{sub 2}, Cu/MgO/ZnO, and CuZnAlO{sub x} materials and their individual components Cu/MgO, MgO/CeO{sub 2}, MgO and CeO{sub 2} have been prepared for the use in kinetic studies of alcohol coupling reactions, in identification of reaction intermediates, and in isobutanol synthesis at high pressures. These samples were prepared by coprecipitation of mixed nitrate solutions with an aqueous solution of KOH (2M) and K{sub 2}CO{sub 3} (1M) at 338 K at a constant pH of 9, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at a pH of 7, in a well-stirred thermostated container. The precipitate was filtered, washed thoroughly with dioinized water at 303 K in order to remove residual K ions, and dried at 353 K overnight. Dried samples were calcined at 723 K, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at 623 K, for 4 h in order to form the corresponding mixed oxides. Alkali addition (K or Cs) was performed by incipient wetness using K{sub 2}CO{sub 3} (0.25 M) and CH{sub 3}COOCs (0.25 M) aqueous solutions. The crystallinity and phase structures of resulting materials were analyzed by powered X-ray diffraction.

  5. One-pot low-temperature green synthesis of magnetic graphene nanocomposite for the selective reduction of nitrobenzene

    Science.gov (United States)

    Haridas, Vijayasree; Sugunan, Sankaran; Narayanan, Binitha N.

    2018-06-01

    In the present study, a green one-pot low-temperature method is adopted for the synthesis of a novel magnetic graphene nanocomposite catalyst. Graphene preparation is performed without employing any oxidizing agents or corrosive chemicals, under mild sonication in isopropyl alcohol - water mixture. Monolayered nanoplatelets of graphene are obtained in the green solvent mixture and the composite material is found to be ferromagnetic in nature, obvious from the vibrating sample magnetometric measurements. Fe in the nanocomposite exists in two different forms i.e., α-Fe2O3 and α-FeOOH, as evident from the material characterization results. The graphene nanocomposite is found to be highly efficient in the selective reduction of nitrobenzene to aniline under solvent free reaction conditions and magnetic separation of this fine nanomaterial from the reaction mixture is successfully carried out. The catalyst is efficiently reusable till five repeated cycles.

  6. CO hydrogenation to methanol on Cu–Ni catalysts

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Wu, Qiongxiao

    2012-01-01

    two descriptors, the carbon oxygen binding energies, are constructed. A micro-kinetic model of CO hydrogenation is developed and a volcano-shaped relation based on the two descriptors is obtained for methanol synthesis. A large number of bimetallic alloys with respect to the two descriptors...

  7. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  8. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  9. Phase equilibria at low temperature for light hydrocarbons-methanol-water-acid gases mixtures: measurements and modelling; Equilibres de phases a basse temperature de systemes complexes CO{sub 2} - hydrocarbures legers - methanol - eau: mesures et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffine, L.

    2005-10-15

    The need to develop and improve natural gas treatment processes is real. The petroleum industry usually uses separation processes which require phase equilibrium phenomena. Yet, the complexity of the phase equilibria involved results in a lack of data, which in turn limits the development of thermodynamic models. The first part of this work is devoted to experimental investigations for systems containing light hydrocarbons, methanol, water and acid gases. We present a new apparatus that was developed to measure vapor-liquid and vapor-liquid-liquid equilibria. It allowed us to obtain new phase composition data for the methanol-ethane binary system and different mixtures, and also to determine a part of the three phases equilibrium envelope of the same systems. In the second part of this work, we have developed a thermodynamic model based on the CPA equation of state. This choice may be justified by the presence of associating components like methanol, hydrogen sulfide and water in the systems. Such model is necessary for the design of gas treatment plants. Our model provides good results for phase equilibrium calculations for binaries systems without binary interaction parameter in many cases, and describes correctly the vapour-liquid and vapor-liquid-liquid equilibria for complex mixtures. (author)

  10. Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film

    Science.gov (United States)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2018-02-01

    Present work demonstrates the fabrication of graphene nanosheet (GN) based transparent conducting film (TCF) using spray coating. Green synthesis of GN is carried out by reduction of graphene oxide (GO) using urea as green reducing agent. The reductive ability of urea with varied concentration is studied for GO at low temperature (i.e., 90 °C). As synthesized graphene nanosheets (GNs) are characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscope (AFM), and X-ray Photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of oxygen species is noticed using 30 mg/ml urea concentration at 90 °C from GO, and found Raman D to G band ratio (ID/IG) of ∼1.30. XPS analysis validates the Raman signature of removal of oxygen functional groups from GO, and obtained C/O ratio of ∼5.28. Further, transparent conducting films (TCFs) are fabricated using synthesized GNs. Thermal graphitization is carried out to enhance the optical and electrical properties of TCFs. TCF shows best performance when it is annealed at 900 °C for 1 h in vacuum, and obtained sheet resistance is ∼1.89 kΩ/□ with transmittance of ∼62.53%.

  11. The effect of coadsorbed oxygen on the reaction of methanol on Rh(111) and on a rhodium/vanadium surface alloy

    International Nuclear Information System (INIS)

    Schennach, R.; Krenn, G.; Rendulic, K.D.

    2002-01-01

    Full text: Molecular adsorption of methanol can be observed on all transition metal surfaces at low temperatures. Methanol is adsorbed on Rh (111) at 98 K. With increasing methanol exposure first a mono-layer and then multi-layers of methanol are formed at this surface temperature. During heating, desorption of the methanol from physisorbed multi-layers is detected at about 120 K, followed by desorption of methanol from a chemisorbed mono-layer at 170 K. About 50 % of the adsorbed methanol undergoes a dehydrogenation reaction to form hydrogen and carbon monoxide adsorbed on the surface. These reaction products desorb at 300 K and 480 K, respectively. Less than 0.05 monolayers of coadsorbed oxygen increases the amount of methanol that reacts on the surface to about 80 %. Experiments using a Rh/V surface alloy were performed, in order to distinguish between steric and electronic effects in the adsorption and reaction processes. Deposition of 0.3 monolayers of V on the Rh (111) surface leads to the formation of a subsurface alloy, with V atoms in the second atomic layer only. The initial reaction probability was measured as a function of surface temperature and molecular beam energy. A marked difference was found between the two surfaces. On the clean surface methanol adsorption and reaction stops above 198 K, whereas on the alloy surface adsorption and subsequent reaction occurs up to 473 K. The effects of coadsorbed oxygen are similar on both surfaces. The results are discussed in terms of the possible reactions of the adsorbed methanol on the surface. (author)

  12. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  13. Environmental information volume: Liquid Phase Methanol (LPMEOH trademark) project

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature

  14. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  15. MICROWAVE-ASSISTED SYNTHESIS OF SOME 5(6)-NITRO-1H ...

    African Journals Online (AJOL)

    Preferred Customer

    temperature sensor. All reactions were monitored by TLC using precoated aluminum sheets. (silica gel 60 F 2.54 0.2 mm thickness). Synthesis of compounds 2a-d. Conventional method. A mixture of 4-nitro-o-phenylenediamine (0.01 mol) and corresponding iminoester hydrochloride 1(a-d) (0.013 mol) in methanol (30 mL) ...

  16. Synthesis of [18F]-5-fluorouridine (F-18-5-FUR) as a probe for measuring RNA synthesis and tumor growth rates in vivo

    International Nuclear Information System (INIS)

    Shiue, C.Y.; Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1979-01-01

    A method for the rapid synthesis of high specific activity of [ 18 F]-5-fluorouridine is described. The 20 Ne(d,α) 18 F nuclear reaction is used to produce high specific activity, anhydrous [ 18 F]-F 2 at the Brookhaven National Laboratory 60'' cyclotron. Fluorination of 2',3',5'-tri-0-acetyluridine with [ 18 F]-F 2 in glacial acetic acid at room temperature followed by hydrolysis with sodium methoxide in methanol gives [ 18 F]-5-fluorouridine with a radiochemical yield of 5 to 7% in a synthesis time of 90 minutes from EOB. The compound is required for the study of RNA synthesis and tumor growth rates in vivo

  17. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  18. Low-temperature synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with cubic garnet-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); Li, Yutao [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Goodenough, John B., E-mail: jgoodenough@mail.utexas.edu [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer One-step synthesis and its optimization of cubic garnet Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} at 750 Degree-Sign C. Black-Right-Pointing-Pointer Instability above 800 Degree-Sign C of the Al-free cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. Black-Right-Pointing-Pointer Li{sup +}-ion conductivity without adventitious Al{sup 3+}. -- Abstract: In this paper, we report the direct synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with the cubic garnet-type structure at low temperature with a lattice constant of 13.0035 Angstrom-Sign . The synthesis condition is optimized to be at 750 Degree-Sign C for 8 h with 30 wt% excess lithium salt. No intermediate grinding was involved in this straightforward route. Without the adventitious of Al{sup 3+}, the cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is unstable above 800 Degree-Sign C and has an ionic conductivity of the order of 10{sup -6} S cm{sup -1}.

  19. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  20. Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, Federico J.; Corti, Horacio R. [Grupo de Pilas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Av. General Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Buera, M. Pilar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2010-10-01

    The thermal properties of phosphoric acid-doped poly[2-2'-(m-phenylene)-5-5' bi-benzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI) membranes, ionomeric materials with promising properties to be used as electrolytes in direct methanol and in high temperature polymer electrolyte membrane (PEM) fuel cells, were studied by means of differential scanning calorimetry (DSC) technique in the temperature range from -145 C to 200 C. The DSC scans of samples equilibrated in water at different relative humidities (RH) and in liquid water-methanol mixtures were analyzed in relation to glass transition, water crystallization/melting and solvent desorption in different temperature regions. The thermal relaxation observed in the very low temperature region could be ascribed to the glass transition of the H{sub 3}PO{sub 4}-H{sub 2}O mixture confined in the polymeric matrix. After cooling the samples up to -145 C, frozen water was detected in PBI and ABPBI at different RH, although at 100% RH less amount of water had crystallized than that observed in Nafion membranes under the same conditions. Even more important is the fact that the freezing degree of water is much lower in ABPBI membranes equilibrated in liquid water-methanol mixtures than that observed for PBI and, in a previous study, for Nafion. Thus, apart from other well known properties, acid-doped ABPBI emerges as an excellent ionomer for applications in direct methanol fuel cells working in cold environments. (author)

  1. Zirconia thin film preparation by wet chemical methods at low temperature

    NARCIS (Netherlands)

    Popovici, M.; Graaf, de J.; Verschuuren, M.A.; Graat, P.C.J.; Verheijen, M.A.

    2010-01-01

    In this study the preparation of zirconia thin films with a high refractive index at low temperature is aimed for. Two non-hydrolytic type approaches of wet chemical synthesis are presented. Both by sol–gel and colloid chemistry, highly transmissive, smooth thin films of zirconia cubic and/or

  2. Studies on rapid ion-exchange separation of the transplutonium elements with mineral acid-methanol mixed media

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1989-03-01

    In order to study properties of short-lived transplutonium nuclides synthesized by heavy-ion bombardment, three methods for rapid separation of tri-valent transplutonium elements by ion-exchange chromatography with mineral acid-methanol mixed media at elevated temperature were investigated. The first separation method was anion-exchange chromatography with nitric acid-methanol mixed media. The second method was anion-exchange choromatography with dilute hydrochloric acid-methanol mixed media. The third method was improved cation-exchange chromatography with single-column operation using the mixed media of hydrochloric acid and methanol. The separation methods developed were found applicable to studies on synthesis of the trans-plutonium nuclides, 250 Fm (T 1/2 :30 min), 244,245,246 Cf (T 1/2 :20 min, 46 min and 35.7 h, respectively) from the 16 O + 238 U and 12 C + 242 Pu reactions, and on the decay property of 245 Cf. Attempts to search for new actinide nuclides, such as 240 U and neutron deficient nuclides of Am, Cm and Bk, were made by a quick purification. The separation system was also applied to the rapid and effective separation of Nd, Am and Cm from spent nuclear fuel samples, for burn-up determination. (J.P.N.) 242 refs

  3. Synthesis of tin monosulfide (SnS) nanoparticles using surfactant free microemulsion (SFME) with the single microemulsion scheme

    Science.gov (United States)

    Tarkas, Hemant S.; Marathe, Deepak M.; Mahajan, Mrunal S.; Muntaser, Faisal; Patil, Mahendra B.; Tak, Swapnil R.; Sali, Jaydeep V.

    2017-02-01

    Synthesis of monomorphic, SnS nanoparticles without using a capping agent is a difficult task with chemical route of synthesis. This paper reports on synthesis of tin monosulfide (SnS) nanopartilces with dimension in the quantum-dot regime using surfactant free microemulsion with single microemulsion scheme. This has been achieved by reaction in microreactors in the CME (C: chlorobenzene, M: methanol and E: ethylene glycol) microemulsion system. This is an easy and controllable chemical route for synthesis of SnS nanoparticles. Nanoparticle diameter showed prominent dependence on microemulsion concentration and marginal dependence on microemulsion temperature in the temperature range studied. The SnS nanoparticles formed with this method form stable dispersion in Tolune.

  4. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Wang, Feng; Cao, Yiding; Wang, Guoqiang

    2015-01-01

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  5. Biodiesel from sunflower oil in supercritical methanol with calcium oxide

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    In this study, sunflower seed oil was subjected to the transesterification reaction with calcium oxide (CaO) in supercritical methanol for obtaining biodiesel. Methanol is used most frequently as the alcohol in the transesterification process. Calcium oxide (CaO) can considerably improve the transesterification reaction of sunflower seed oil in supercritical methanol. The variables affecting the methyl ester yield during the transesterification reaction, such as the catalyst content, reaction temperature and the molar ratio of soybean oil to alcohol, were investigated and compared with those of non-catalyst runs. The catalytic transesterification ability of CaO is quite weak under ambient temperature. At a temperature of 335 K, the yield of methyl ester is only about 5% in 3 h. When CaO was added from 1.0% to 3.0%, the transesterification speed increased evidently, while when the catalyst content was further enhanced to 5%, the yield of methyl ester slowly reached to a plateau. It was observed that increasing the reaction temperature had a favorable influence on the methyl ester yield. In addition, for molar ratios ranging from 1 to 41, as the higher molar ratios of methanol to oil were charged, the greater transesterification speed was obtained. When the temperature was increased to 525 K, the transesterification reaction was essentially completed within 6 min with 3 wt% CaO and 41:1 methanol/oil molar ratio

  6. Low-temperature graphene synthesis using microwave plasma CVD

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-01-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 10 5 Ω/sq.

  7. Low-temperature graphene synthesis using microwave plasma CVD

    Science.gov (United States)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  8. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  9. Performance characteristics of a methanol ejector refrigeration unit

    International Nuclear Information System (INIS)

    Alexis, G.K.; Katsanis, J.S.

    2004-01-01

    This paper discusses the behavior of methanol through an ejector operating in a refrigeration system with a medium temperature thermal source. For detailed calculation of the proposed system, a method has been developed, which employs analytical functions describing the thermodynamic properties of methanol. The proposed cycle has been compared with a Carnot cycle working at the same temperature levels. The influences of three major parameters, generator, condenser and evaporator temperatures, on ejector efficiency and coefficient of performance are discussed. Also, the maximum value of COP was estimated by correlation of the above three temperatures for constant superheated temperature 150 deg. C, and it was 0.139-0.467. The design conditions were generator temperature 117.7-132.5 deg. C, condenser temperature 42-50 deg. C and evaporator temperature -10-5 deg. C

  10. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  11. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    Science.gov (United States)

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  12. Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol.

    Science.gov (United States)

    Bandikari, Ramesh; Qian, Jiaxin; Baskaran, Ram; Liu, Ziduo; Wu, Gaobing

    2018-02-01

    To synthesis biodiesel from palm oil in one-time addition of methanol and solvent-free medium using CBD fused with C-terminal of lipase from G. stearothermophilus (GSlip-CBD) was immobilized onto magnetic cellulose nanosphere (MCNS). The immobilized matrix traits were preconceived by FT-IR, TEM and XRD. Perceptible biodiesel yield 98 and 73% was synthesized by GSlip-CBD-MCNS in 4 h and GSlip-MCNS in 6 h under the optimized conditions of oil:methanol ratio (1:3.5), temperature (55 and 50 °C) and enzyme loading (15 U). Intriguingly, the operational stability of GSlip-CBD-MCNS was an easily attainable owing to the magnetic properties and could be reused up to 8th and19th cycles with 94 and 45% of biodiesel yield respectively, compared to GSlip-MCNS. Thus GSlip-CBD-MCNS could be a potential biocatalyst for higher yield of biodiesel and reusability in one step addition of methanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Generation of gaseous methanol reference standards

    International Nuclear Information System (INIS)

    Geib, R.C.

    1991-01-01

    Methanol has been proposed as an automotive fuel component. Reliable, accurate methanol standards are essential to support widespread monitoring programs. The monitoring programs may include quantification of methanol from tailpipe emissions, evaporative emissions, plus ambient air methanol measurements. This paper will present approaches and results in the author's investigation to develop high accuracy methanol standards. The variables upon which the authors will report results are as follows: (1) stability of methanol gas standards, the studies will focus on preparation requirements and stability results from 10 to 1,000 ppmv; (2) cylinder to instrument delivery system components and purge technique, these studies have dealt with materials in contact with the sample stream plus static versus flow injection; (3) optimization of gas chromatographic analytical system will be discussed; (4) gas chromatography and process analyzer results and utility for methanol analysis will be presented; (5) the accuracy of the methanol standards will be qualified using data from multiple studies including: (a) gravimetric preparation; (b) linearity studies; (c) independent standards sources such as low pressure containers and diffusion tubes. The accuracy will be provided as a propagation of error from multiple sources. The methanol target concentrations will be 10 to 500 ppmv

  14. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  15. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    Directory of Open Access Journals (Sweden)

    Chien-Fu Fong

    2015-10-01

    Full Text Available A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS-microelectromechanical system (MEMS technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  16. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    Science.gov (United States)

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  17. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

  18. Catalytic synthesis of alcoholic fuels for transportation from syngas

    OpenAIRE

    Wu, Qiongxiao; Jensen, Anker Degn; Grunwaldt, Jan-Dierk; Temel, Burcin; Christensen, Jakob Munkholt

    2013-01-01

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenatio...

  19. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  20. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    , and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (similar to 90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 (sic)/GJ(exergy). The lowest cost is obtained by a plant using electrolysis......Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated...

  1. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  2. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    International Nuclear Information System (INIS)

    Pandey, Puneet Kumar; Pandey, Vrijesh Kumar; Awasthi, Anjali; Nain, Anil Kumar; Awasthi, Aashees

    2014-01-01

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, V m E and excess isentropic compressibilities, κ s E have been calculated. The excess partial molar volumes, V ¯ m,1 E and V ¯ m,2 E and excess partial molar isentropic compressions, K ¯ s,m,1 E and K ¯ s,m,2 E over the whole composition range; and partial molar volumes, V ¯ m,1 ° and V ¯ m,2 ° , partial molar isentropic compressions, K ¯ s,m,1 ° and K ¯ s,m,2 ° , excess partial molar volumes, V ¯ m,1 °E and V ¯ m,2 °E , and excess partial molar isentropic compressions, K ¯ s,m,1 °E and K ¯ s,m,2 °E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are

  3. Low temperature synthesis of Ba1–xSrxSnO3 (x = 0–1) from molten ...

    Indian Academy of Sciences (India)

    Administrator

    first time by molten salt synthesis (MSS) method using KOH as the flux at lower temperature (400°C) compared to other ... chemical methods have been adopted by many research- ers. .... financial support and Technology Business Incubator,.

  4. Facet-specific interaction between methanol and TiO2 probed by sum-frequency vibrational spectroscopy.

    Science.gov (United States)

    Yang, Deheng; Li, Yadong; Liu, Xinyi; Cao, Yue; Gao, Yi; Shen, Y Ron; Liu, Wei-Tao

    2018-04-24

    The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO 2 ), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO 2 , including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are ( i ) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and ( ii ) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.

  5. A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Hwang, Jinyeon; Ha, Heung Yong

    2016-01-01

    This study proposes a novel method for controlling the methanol concentration without using methanol sensors for DMFC (direct methanol fuel cell) systems that have a recycling methanol-feed loop. This method utilizes the amplitudes of output voltage fluctuations of DMFC as a feedback parameter to control the methanol concentration. The relationship between the methanol concentrations and the amplitudes of output voltage fluctuations is correlated under various operating conditions and, based on the experimental correlations, an algorithm to control the methanol concentration with no sensor is established. Feasibility tests of the algorithm have been conducted under various operating conditions including varying ambient temperature with a 200 W-class DMFC system. It is demonstrated that the sensor-less controller is able to control the methanol-feed concentration precisely and to run the DMFC systems more energy-efficiently as compared with other control systems. - Highlights: • A new sensor-less algorithm is proposed to control the methanol concentration without using a sensor. • The algorithm utilizes the voltage fluctuations of DMFC as a feedback parameter to control the methanol feed concentration. • A 200 W DMFC system is operated to evaluate the validity of the sensor-less algorithm. • The algorithm successfully controls the methanol feed concentration within a small error bound.

  6. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    Science.gov (United States)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-18

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  7. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  8. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  9. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  10. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  11. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  12. Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor

    International Nuclear Information System (INIS)

    Vakili, R.; Pourazadi, E.; Setoodeh, P.; Eslamloueyan, R.; Rahimpour, M.R.

    2011-01-01

    Compared to some of the alternative fuel candidates such as methane, methanol and Fischer-Tropsch fuels, dimethyl ether (DME) seems to be a superior candidate for high-quality diesel fuel in near future. The direct synthesis of DME from syngas would be more economical and beneficial in comparison with the indirect process via methanol synthesis. Multifunctional auto-thermal reactors are novel concepts in process intensification. A promising field of applications for these concepts could be the coupling of endothermic and exothermic reactions in heat exchanger reactors. Consequently, in this study, a double integrated reactor for DME synthesis (by direct synthesis from syngas) and hydrogen production (by the cyclohexane dehydrogenation) is modelled based on the heat exchanger reactors concept and a steady-state heterogeneous one-dimensional mathematical model is developed. The corresponding results are compared with the available data for a pipe-shell fixed bed reactor for direct DME synthesis which is operating at the same feed conditions. In this novel configuration, DME production increases about 600 Ton/year. Also, the effects of some operational parameters such as feed flow rates and the inlet temperatures of exothermic and endothermic sections on reactor behaviour are investigated. The performance of the reactor needs to be proven experimentally and tested over a range of parameters under practical operating conditions.

  13. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  14. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  15. Process and catalysts for the gasification of methanol. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.; Dennis, A.J.; Shevels, T.F.

    1975-02-13

    The invention concerns catalysts and catalytic processes for the gasification of methanol which is used to manufacture methane from methanol. Mixtures of iron and chromium oxide, phosphate, phosphoric acid, tungstate, tungstic acid, aluminium phosphate, aluminium oxide are suitable as dehydrating catalysts. Gasification takes place together with steam and dehydrogenating catalysts at high temperature. The molar ratios steam: methanol are described.

  16. Methanogenesis at low temperatures by microflora of tundra wetland soil.

    Science.gov (United States)

    Kotsyurbenko, O R; Nozhevnikova, A N; Soloviova, T I; Zavarzin, G A

    1996-01-01

    Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 degrees C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10 degrees C. The activity of different microbial groups of methanogenic community in the temperature range of 6-28 degrees C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 degrees C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

  17. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  18. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  19. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.

    Science.gov (United States)

    Tai, Siew Leng; Daran-Lapujade, Pascale; Walsh, Michael C; Pronk, Jack T; Daran, Jean-Marc

    2007-12-01

    Effects of suboptimal temperatures on transcriptional regulation in yeast have been extensively studied in batch cultures. To eliminate indirect effects of specific growth rates that are inherent to batch-cultivation studies, genome-wide transcriptional responses to low temperatures were analyzed in steady-state chemostats, grown at a fixed specific growth rate (0.03 h(-1)). Although in vivo metabolic fluxes were essentially the same in cultures grown at 12 and at 30 degrees C, concentrations of the growth-limiting nutrients (glucose or ammonia) were higher at 12 degrees C. This difference was reflected by transcript levels of genes that encode transporters for the growth-limiting nutrients. Several transcriptional responses to low temperature occurred under both nutrient-limitation regimes. Increased transcription of ribosome-biogenesis genes emphasized the importance of adapting protein-synthesis capacity to low temperature. In contrast to observations in cold-shock and batch-culture studies, transcript levels of environmental stress response genes were reduced at 12 degrees C. Transcription of trehalose-biosynthesis genes and intracellular trehalose levels indicated that, in contrast to its role in cold-shock adaptation, trehalose is not involved in steady-state low-temperature adaptation. Comparison of the chemostat-based transcriptome data with literature data revealed large differences between transcriptional reprogramming during long-term low-temperature acclimation and the transcriptional responses to a rapid transition to low temperature.

  20. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Science.gov (United States)

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  1. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of Synthesis pH on Textural Properties of Carbon Xerogels as Supports for Pt/CXs Catalysts for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    C. Alegre

    2012-01-01

    Full Text Available Carbon xerogels (CXs have been prepared by polycondensation of resorcinol and formaldehyde. Two synthesis pHs were studied in order to evaluate its influence on the electrochemical behaviour of Pt catalysts supported on previous carbon xerogels, synthesized by conventional impregnation method. Catalysts were also synthesized over a commercial carbon black (Vulcan-XC-72R for comparison purposes. Characterization techniques included nitrogen physisorption, scanning electron microscopy, and X-ray diffraction. Catalysts electrochemical activity towards the oxidation of carbon monoxide and methanol was studied by cyclic voltammetry and chronoamperometry to establish the effect of the carbon support on the catalysts performance. Commercial Pt/C catalyst (E-TEK was analyzed for comparison purposes. It was observed that the more developed and mesopore-enriched porous structure of the carbon xerogel synthesized at a higher initial pH resulted in an optimal utilization of the active phase and in an enhanced and promising catalytic activity in the electrooxidation of methanol, in comparison with commercial catalysts.

  3. Nonlinear parameter (B/A) measurements in methanol, 1-butanol and 1-octanol for different pressures and temperatures

    International Nuclear Information System (INIS)

    Plantier, F.; Daridon, J.L.; Lagourette, B.

    2002-01-01

    Experimental determinations versus pressure of the nonlinear acoustic parameter B/A have been conducted for methanol, 1-butanol and 1-octanol in the pressure range 0-50 MPa and temperature range 303.15-373.15 K. These measurements proceed from an experimental technique based on a phase comparison method allowing to measure the change in sound speed with the pressure for an isentropic process. The value of B/A is found to decrease with increasing pressure and seems to be an increasing function of temperature. A comparison with the data determined numerically by the classical thermodynamic method has also been performed. (author)

  4. Unravelling The Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed By Ru-PNP Pincer Complexes

    DEFF Research Database (Denmark)

    Alberico, Elisabetta; Lennox, Alastair J. J.; Vogt, Lydia K.

    2016-01-01

    Ruthenium PNP complex 1a (RuH(CO)Cl(HN(C2H4Pi-Pr2)2)) represents a state-of-the-art catalyst for low-temperature (methanol dehydrogenation to H2 and CO2. Herein, we describe an investigation that combines experiment, spectroscopy, and theory to provide a mechanistic rationale...

  5. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Production of FAME by palm oil transesterification via supercritical methanol technology

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    The present study employed non-catalytic supercritical methanol technology to produce biodiesel from palm oil. The research was carried out in a batch-type tube reactor and heated beyond supercritical temperature and pressure of methanol, which are at 239 o C and 8.1 MPa respectively. The effects of temperature, reaction time and molar ratio of methanol to palm oil on the yield of fatty acid methyl esters (FAME) or biodiesel were investigated. The results obtained showed that non-catalytic supercritical methanol technology only required a mere 20 min reaction time to produce more than 70% yield of FAME. Compared to conventional catalytic methods, which required at least 1 h reaction time to obtain similar yield, supercritical methanol technology has been shown to be superior in terms of time and energy consumption. Apart from the shorter reaction time, it was found that separation and purification of the products were simpler since no catalyst is involved in the process. Hence, formation of side products such as soap in catalytic reactions does not occur in the supercritical methanol method.

  7. Low-temperature sol-gel synthesis of NaZr2P3O12

    International Nuclear Information System (INIS)

    Agrawal, D.K.; Adair, J.H.

    1990-01-01

    The NZP family of new low-expansion materials has attracted wide interest for its potential in advanced technological applications. NaZr 2 P 3 O 12 , which is the parent composition of this family, has been synthesized by the solution sol-gel method using special precursor solutions, which led to its formation (although poorly crystalline) at temperatures as low as 120 degrees C. The lowest temperature of formation of a single phase of NaZr 2 P 3 O 12 with a high degree of crystallinity was found to be 600 degrees C

  8. Methanol and isoprene emissions from the fast growing tropical pioneer species Vismia guianensis (Aubl. Pers. (Hypericaceae in the central Amazon forest

    Directory of Open Access Journals (Sweden)

    K. J. Jardine

    2016-05-01

    Full Text Available Isoprene (Is emissions by plants represent a loss of carbon and energy resources leading to the initial hypothesis that fast growing pioneer species in secondary tropical forests allocate carbon primarily to growth at the expense of isoprenoid defenses. In this study, we quantified leaf isoprene and methanol emissions from the abundant pantropical pioneer tree species Vismia guianensis and ambient isoprene concentrations above a diverse secondary forest in the central Amazon. As photosynthetically active radiation (PAR was varied (0 to 3000 µmol m−2 s−1 under standard leaf temperature (30 °C, isoprene emissions from V. guianensis increased without saturation up to 80 nmol m−2 s−1. A nonlinear increase in isoprene emissions with respect to net photosynthesis (Pn resulted in the fraction of Pn dedicated to isoprene emissions increasing with light intensity (up to 2 % of Pn. Emission responses to temperature under standard light conditions (PAR of 1000 µmol m−2 s−1 resulted in the classic uncoupling of isoprene emissions (Topt, iso > 40 °C from net photosynthesis (Topt, Pn = 30.0–32.5 °C with up to 7 % of Pn emitted as isoprene at 40 °C. Under standard environmental conditions of PAR and leaf temperature, young V. guianensis leaves showed high methanol emissions, low Pn, and low isoprene emissions. In contrast, mature leaves showed high Pn, high isoprene emissions, and low methanol emissions, highlighting the differential control of leaf phenology over methanol and isoprene emissions. High daytime ambient isoprene concentrations (11 ppbv were observed above a secondary Amazon rainforest, suggesting that isoprene emissions are common among neotropical pioneer species. The results are not consistent with the initial hypothesis and support a functional role of methanol during leaf expansion and the establishment of photosynthetic machinery and a protective role of isoprene for

  9. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  10. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  11. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    Science.gov (United States)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  12. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation

    Science.gov (United States)

    Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander

    2018-02-01

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.

  13. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, Graciela C. [Centro de Procesos Superficiales, Instituto Nacional de Tecnologia Industrial (INTI), Av. Gral. Paz 5445, B1650KNA, San Martin, Buenos Aires (Argentina); Nonjola, Patrick; Mathe, Mkhulu K. [Council for Scientific and Industrial Research (CSIR), Material Science and Manufacturing, PO Box 395, Brumeria, Pretoria 0001 (South Africa); Franceschini, Esteban A.; Izraelevitch, Federico H.; Corti, Horacio R. [Departamento de Fisica de la Materia Condensada, Comision Nacional de Energia Atomica (CNEA), Av. Gral. Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina)

    2010-06-15

    Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric materials for application in alkaline fuel cells, due to their low cost and promising electrochemical properties. In this work, a quaternary ammonium polymer was synthesized by chloromethylation of a commercial polysulfone followed by amination process. Quaternized polysulfone membrane properties such us water and water-methanol uptake, electrical conductivity and Young's modulus were evaluated and compared to Nafion 117, commonly employed in direct methanol fuel cells. The anionic polysulfone membrane sorbs more water than Nafion all over the whole range of water activities, but it uptakes much less methanol as compared to Nafion. The specific conductivity of the fully hydrated polysulfone membrane equilibrated with KOH solutions at ambient temperature increases with the KOH concentration, reaching a maximum of 0.083 S cm{sup -1} for 2 M KOH, slightly less conductive than Nafion 117. The elastic modulus of the polysulfone membranes inmersed in water is similar to that reported for Nafion membranes under the same conditions. We concluded that quaternized polysulfone membrane are good candidates as electrolytes in alkaline direct methanol fuel cells. (author)

  14. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  15. Facile Low Temperature Hydrothermal Synthesis of BaTiO3 Nanoparticles Studied by In Situ X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Ola G. Grendal

    2018-06-01

    Full Text Available Ferroelectric materials are crucial for today’s technological society and nanostructured ferroelectric materials are important for the downscaling of devices. Controlled and reproducible synthesis of these materials are, therefore, of immense importance. Hydrothermal synthesis is a well-established synthesis route, with a large parameter space for optimization, but a better understanding of nucleation and growth mechanisms is needed for full utilization and control. Here we use in situ X-ray diffraction to follow the nucleation and growth of BaTiO3 formed by hydrothermal synthesis using two different titanium precursors, an amorphous titania precipitate slurry and a Ti-citric acid complex solution. Sequential Rietveld refinement was used to extract the time dependency of lattice parameters, crystallite size, strain, and atomic displacement parameters. Phase pure BaTiO3 nanoparticles, 10–15 nm in size, were successfully synthesized at different temperatures (100, 125, and 150 °C from both precursors after reaction times, ranging from a few seconds to several hours. The two precursors resulted in phase pure BaTiO3 with similar final crystallite size. Finally, two different growth mechanisms were revealed, where the effect of surfactants present during hydrothermal synthesis is discussed as one of the key parameters.

  16. Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM-gold nanoparticle

    International Nuclear Information System (INIS)

    Morones, J. Ruben; Frey, Wolfgang

    2010-01-01

    Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly-N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.

  17. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Wu, Jing; Xu, Zilong; Li, Meng

    2017-01-01

    Highlights: • Propose a fuel cell trigeneration system integrated with solar-assisted methanol reforming. • Optimize the reaction parameters of methanol steam reforming. • Present the energy and exergy analysis under design and off-design work conditions. • Analyze the contributions of solar energy to the trigeneration system. - Abstract: A solar-assisted trigeneration system for producing electricity, cooling, and heating simultaneously is an alternative scheme to improve energy efficiency and boost renewable energy. This paper proposes a phosphoric acid fuel cell trigeneration system integrated with methanol and steam reforming assisted by solar thermal energy. The trigeneration system consists of a solar heat collection subsystem, methanol steam reforming subsystem, fuel cell power generation subsystem, and recovered heat utilization subsystem. Their respective thermodynamic models are constructed to simulate the system input/output characteristics, and energy and exergy efficiencies are employed to evaluate the system thermodynamic performances. The contribution of solar energy to the system is analyzed using solar energy/exergy share. Through the simulation and analysis of methanol and steam reforming reactions, the optimal reaction pressure, temperature, and methanol to water ratio are obtained to improve the flow rate and content of produced hydrogen. The thermodynamic simulations of the trigeneration system show that the system energy efficiencies at the summer and winter design work conditions are 73.7% and 51.7%, while its exergy efficiencies are 18.8% and 26.1%, respectively. When the solar radiation intensity is different from the design work condition, the total energy and exergy efficiencies in winter decrease approximately by 4.7% and 2.2%, respectively, due to the decrease in solar heat collection efficiency. This proposed novel trigeneration system complemented by solar heat energy and methanol chemical energy is favorable for improving the

  18. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Li, Rongrong; Han, Shuo; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 4-nitrophthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 4-nitrophthalimide in binary (methanol + N,N-dimethylformamide (DMF), ethanol + DMF) and (acetone + DMF) solvent mixtures were investigated by the isothermal dissolution equilibrium method under atmosphere pressure. These studies were carried out at different mass fractions of methanol, ethanol or acetone ranging from 0.1 to 0.9 at temperature T = (273.15–323.15) K. For the nine groups of each solvent mixture studied, the solubility of 4-nitrophthalimide in mixed solutions increased with increasing temperature and mass fraction of methanol, ethanol or acetone for the three systems including (methanol + DMF), (ethanol + DMF) and (acetone + DMF). At the same temperature and mass fraction of methanol, ethanol or acetone, the mole fraction solubility of 4-nitrophthalimide in (acetone + DMF) was greater than that in the other two binary solvents. In addition, the experimental mole fraction solubility was correlated by four models (Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model and Sun model). The Jouyban–Acree model gave best representation for the experimental solubility values. Furthermore, the standard molar enthalpies of 4-nitrophthalimide during the dissolving process (Δ sol H o ) were also obtained in this work, and the results show that the dissolution process is endothermic. The experimental solubility and the models used in this work will be helpful in separating 4-nitrophthalimide from its isomeric mixtures.

  19. Biodiesel Production from Acidified Oils via Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Jianxin Li

    2011-12-01

    Full Text Available In biodiesel production, the vegetable oil used as raw material for transesterification should be free of water and free fatty acids (FFAs, which may consume catalyst and reduce catalyst efficiency. In this work biodiesel was prepared from acidified oils (AO through a supercritical methanol route, in which the esterification of FFAs and transesterification of glyceride with methanol occurred simultaneously. The effects of the mass ratio of methanol to AO, the operation temperature as well as the water content on the FFAs conversion and glycerol yield were investigated. The results indicated that the FFAs conversion for esterification under the condition of 1:1 methanol/oil ratio, 310 °C and 15 min reaction time reached 98.7%, and the glycerol yield for transesterification under 0.25:1 methanol/oil ratio, 290 °C and 20 min reaction time reached 63.5% respectively.

  20. Synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol using polymer-supported CuCl{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [Daicel Chemical Industries, Ltd., Hyogo (Japan). Research Center; Kobe University, Kobe (Japan); Kagotani, M. [Daicel Chemical Industries, Ltd., Hyogo (Japan). Research Center; Soma, Y. [Osaka National Research Institute, Osaka (Japan)

    2000-01-01

    Polymer, including 2,2'-bipyridine, poly(4-methyl-4'-vinyl-2,2'-bipyridine)(Pvbpy), was investigated for the synthesis of dimethyl carbonate (DMC) as a support for CuCl{sub 2}, by oxidative carbonylation of methanol in the liquid-phase. The CuCl{sub 2} complex (Pvbpy-CuCl{sub 2}) was insoluble in methanol, and the reaction system was heterogeneous. The Pvbpy-CuCl{sub 2} catalyst showed considerable catalytic activity (DMC yield: 44.4 % and DMC selectivity: 9206 %, at methanol conversion: 1.79 %), which is comparable to the previously reported data of poly (vinylpyridine) (PVP)-CuCl{sub 2} catalyst; the Pvbpy-CuCl{sub 2} catalyst could be recycled after filtration and washing thrice, provided, not having lost activity. The corrosion originating from Cl{sup -} was greatly improved by immobilizing the CuCl{sub 2} by Pvbpy. Elimination of CuCl{sub 2} from the Pvbpy support was observed during the reaction. In the first reaction, about 38 % of the initially supported Cl was released, and in the second and the third reactions, most of the Cl was retained. The rate of corrosion of stainless steels in the first use of the catalyst (0.6 mg h{sup -1} for HC276) was greater than that in the rate of the second and the third uses (<0.1 mg h{sup -1}). These results are closely related to the amount of Cl{sup -} released from the Pvbpy support, which demonstrates that the main cause of corrosion in the catalytic system is Cl{sup -} released from the Pvbpy-CuCl{sub 2} catalyst. From XPS study of the catalyst, it became obvious that Cu(2) was gradually reduced to Cu(1) during the reaction. (author)

  1. A QUANTUM BAND MODEL OF THE ν3 FUNDAMENTAL OF METHANOL (CH3OH) AND ITS APPLICATION TO FLUORESCENCE SPECTRA OF COMETS

    International Nuclear Information System (INIS)

    Villanueva, G. L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.

    2012-01-01

    Methanol (CH 3 OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the ν 3 fundamental band of methanol at 2844 cm –1 (3.52 μm) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K. We validated the model by comparing simulations of CH 3 OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the ν 3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths.

  2. A Quantum Band Model of the nu3 Fundamental of Methanol (CH3OH) and Its Application to Fluorcescence Spectra of Comets

    Science.gov (United States)

    Villanueva, Geronimo L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.

    2012-01-01

    Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the 3 fundamental band of methanol at 2844 / cm (3.52 micron) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K.We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths

  3. Effects of Na and K ions on the crystallization of low-silica X zeolite and its catalytic performance for alkylation of toluene with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Haitao; Gao, Junhua; Wang, Gencun; Liu, Ping; Zhang, Kan, E-mail: gaojunhua@sxicc.ac.cn, E-mail: zhangkan@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China)

    2014-01-15

    The crystallization of low-silica X zeolite (LSX) was studied in Na-K gel systems with different extents of replacement of Na by K while fixed content of other components. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, infrared spectra, and nuclear magnetic resonance were used to characterize liquid and solid phase. In the synthesis of LSX, the molar ratio of K/(Na + K) affects the crystallization and the composition of final products. A higher mole fraction of K corresponded to a lower crystallization rate, higher concentration of Si in the liquid phase, and lower Si/Al ratio of the obtained LSX. The average size of LSX products steadily increased with the progressive replacement of Na by K in the initial gels, and crystal morphology of the LSX products gradually changed from round to octahedral. For alkylation of toluene with methanol over obtained LSX, the selectivity of ring alkylation product xylene decreased while the side chain alkylation products styrene and ethylbenzene increased with the increased x values except x = 0, which was due to its low crystallinity. (author)

  4. Effects of Na and K ions on the crystallization of low-silica X zeolite and its catalytic performance for alkylation of toluene with methanol

    International Nuclear Information System (INIS)

    Hui, Haitao; Gao, Junhua; Wang, Gencun; Liu, Ping; Zhang, Kan

    2014-01-01

    The crystallization of low-silica X zeolite (LSX) was studied in Na-K gel systems with different extents of replacement of Na by K while fixed content of other components. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, infrared spectra, and nuclear magnetic resonance were used to characterize liquid and solid phase. In the synthesis of LSX, the molar ratio of K/(Na + K) affects the crystallization and the composition of final products. A higher mole fraction of K corresponded to a lower crystallization rate, higher concentration of Si in the liquid phase, and lower Si/Al ratio of the obtained LSX. The average size of LSX products steadily increased with the progressive replacement of Na by K in the initial gels, and crystal morphology of the LSX products gradually changed from round to octahedral. For alkylation of toluene with methanol over obtained LSX, the selectivity of ring alkylation product xylene decreased while the side chain alkylation products styrene and ethylbenzene increased with the increased x values except x = 0, which was due to its low crystallinity. (author)

  5. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

    KAUST Repository

    Liang, Hanfeng; Xia, Chuan; Jiang, Qiu; Gandi, Appala; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2017-01-01

    We report a versatile route for the preparation of metal phosphides using PH plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more

  6. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2016-12-15

    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  7. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  8. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  9. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  10. Hydration of ammonia, methylamine, and methanol in amorphous solid water

    Science.gov (United States)

    Souda, Ryutaro

    2016-02-01

    Interactions of polar protic molecules with amorphous solid water (ASW) have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. The ammonia and methylamine are incorporated into the interior of porous ASW films. They are caged by water molecules and are released during water crystallization. In contrast, the methanol-water interaction is not influenced by pores of ASW. The methanol additives tend to survive water crystallization and are released during ASW film evaporation. The hydration of n-hexane in ASW is influenced significantly by methanol additives because n-hexane is accommodated in a methanol-induced hydration shell.

  11. Carbon nanotubes based methanol sensor for fuel cells application.

    Science.gov (United States)

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  12. Low temperature synthesis of coiled carbon nanotubes and their magnetic properties

    Science.gov (United States)

    Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.

    2018-04-01

    In this paper, coiled like structure of carbon nanotubes (c-CNTs) have been effectively grown on bi-metal substituted α-alumina nanoparticles catalyst by chemical vapor deposition (CVD) system. Highly graphitized and dense bundles of carbon product were attained at a low temperature of 550 °C. The coiled carbon nanostructures in very longer lengths were noticed by field emission scanning electron microscope (FESEM) observation. Furthermore, high purity material was achieved, which correlates the energy dispersive x-ray spectroscopy (EDX) analysis. High resolution transmission electron microscope (HRTEM) revealed the diameter and graphitization of coiled structures. The superparamagnetic like behavior was observed at room temperature for the as-synthesized product, which was found by VSM investigation.

  13. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegân

    2013-12-12

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  15. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different curre...

  16. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  17. Formaldehyde formation in coupled oxidation of methane and methanol over V2O5 and MoO3 silica supported catalysts

    International Nuclear Information System (INIS)

    Lojewska, J.; Makowski, W.; Fajardo Farre, A.; Dziembaj, R.

    2003-01-01

    The effect of methanol on partial oxidation of methane has been studied on standard molybdena and vanadia catalysts supported on silica. Prior to catalytic tests the catalysts were characterized by BET, SEM/EDAX and TPR/O methods. Three types of catalytic tests were performed giving temperature and contact time dependence on the catalyst activity and selectivity: partial oxidations of methane, methanol and methane/methanol mixtures. The methanol showed an activating impact on the partial oxidation of methane over all used catalysts samples, but the strongest one over Mo 3 /SiO 2 . In the absence of CH 3 OH the only catalyst, which exhibited HCHO selectivity, was low loaded vanadia catalyst. It has been put forward that methanol may enhance formation of oxygen active species, prerequisites for activating methane molecules, through reducing vanadia cations and causing breakage of vanadium oxygen bonds. (author)

  18. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  19. Synthesis and regulation of α-LiZnPO4.H2O via a solid-state reaction at low-heating temperatures

    International Nuclear Information System (INIS)

    Liao Sen; Chen Zhipeng; Tian Xiaozhen; Wu Wenwei

    2009-01-01

    A simple and novel route for the synthesis of a lithium zinc phosphate hydrate, α-LiZnPO 4 .H 2 O, was studied, and the target product was obtained with LiH 2 PO 4 .H 2 O and ZnCO 3 as raw materials and polyethylene glycol-400 (PEG-400) as a surfactant via a one step solid-state reaction at room temperature (25 deg. C). The product was characterized with X-ray powder diffraction (XRD), thermogravimetric analysis and the 1st derivativative of thermogravimetric analysis (TG/DTG) and Fourier transform infrared spectroscopy (FTIR). The comparison experimental results suggested that aging temperature controlled the products of the synthesis, that is, the α-LiZnPO 4 .H 2 O was formed when the reaction mixture was aged at room temperature, and the α-LiZnPO 4 was obtained when the reaction mixture was aged at 80 deg. C.

  20. Synthesis of Li{sub 2}SiO{sub 3} at low temperature; Sintesis de Li{sub 2}SiO{sub 3} a baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon G, G. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The main objective of this work is to develop a new synthesis method to obtain one of the more studied ceramics in this field Li{sub 2}SiO{sub 3}) in a simple and economic way using different solutions (urea and ammonium hydroxide). The particular objectives are first to prepare the Li{sub 2}SiO{sub 3} ceramic, by means of the use of the reaction conventional technique in solid state at temperatures between 800 and 900 C to compare it with the one proposed in this work and this way to observe the advantages that it would gives us the new method. Later on, the same one was synthesized lithium ceramic (Li{sub 2}SiO{sub 3}) by means of the new method at low temperature (between 80 and 90 C), using silicic acid and lithium hydroxide like precursory reagents and different solutions (urea and ammonium hydroxide) for the optimization in their synthesis. Finally, it was carried out the characterization of these materials by means of X-ray diffraction (XRD), electronic microscopes (SEM and TEM), nitrogen physisorption (method BET) and thermal gravimetric analysis (TGA) to observe the differences that exist among the conventional method and the proposed method and by this way to determine the advantages of the last method. (Author)

  1. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  2. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    International Nuclear Information System (INIS)

    Zhang, C; Man, B Y; Yang, C; Jiang, S Z; Liu, M; Chen, C S; Xu, S C; Sun, Z C; Gao, X G; Chen, X J

    2013-01-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene. (paper)

  3. Synthesis of Polyimides in Molecular-Scale Confinement for Low-Density Hybrid Nanocomposites.

    Science.gov (United States)

    Isaacson, Scott G; Fostvedt, Jade I; Koerner, Hilmar; Baur, Jeffery W; Lionti, Krystelle; Volksen, Willi; Dubois, Geraud; Dauskardt, Reinhold H

    2017-11-08

    In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).

  4. Numerical investigation of liquid methanol evaporation and oxy-combustion inside a button-cell ITM reactor

    International Nuclear Information System (INIS)

    Nemitallah, Medhat A.; Habib, Mohamed A.

    2017-01-01

    Highlights: • Analysis of liquid methanol evaporation and oxy-combustion in an ITM reactor. • A semi-empirical model is applied after fitting with the available LNO membrane data. • Influences of inlet fuel fraction, inlet gas temperature and inlet sweep flux are studied. • High combustion efficiency is encountered at moderate inlet gas temperatures. • High fuel concentration at low inlet sweep flow resulted in high oxygen flux. - Abstract: A numerical study is conducted to investigate the performance of a button-cell LNO-ITM reactor utilizing the soot-free oxygenated liquid methanol under oxy-combustion condition. The Euler-Lagrange approach is utilized to solve discrete phase model. Taylor analogy breakup (TAB) model is used due to its convenience with the cases of low injection speed. A plain orifice atomizer is used for fuel atomization and CO_2 is used as sweep gas. A semi-empirical oxygen permeation model (ABn model) is validated with the available experimental data and is, then, applied in the present model. Over a wide range of inlet fuel concentrations, the results showed increase in oxygen permeation flux of about five times in cases of reacting conditions as compared to the cases of non-reacting cases. The results showed high oxygen permeation flux at low inlet fuel concentrations due to the improvement in the oxygen to fuel ratio toward the stoichiometric conditions. At inlet gas temperatures of 1223 K, 1123 K, 1023 K and 923 K, the combustion temperature approached 1423 K, 1347 K, 1284 K and 1231 K, respectively, indicating an average combustion efficiency of 43% at moderate inlet gas temperatures. High fuel concentration at low inlet sweep flow resulted in high oxygen flux and high combustion temperature.

  5. A small mono-polar direct methanol fuel cell stack with passive operation

    Science.gov (United States)

    Chan, Y. H.; Zhao, T. S.; Chen, R.; Xu, C.

    A passive direct methanol fuel cell (DMFC) stack that consists of six unit cells was designed, fabricated, and tested. The stack was tested with different methanol concentrations under ambient conditions. It was found that the stack performance increased when the methanol concentration inside the fuel tank was increased from 2.0 to 6.0 M. The improved performance is primarily due to the increased cell temperature as a result of the exothermic reaction between the permeated methanol and oxygen on the cathode. Moreover, the increased cell temperature enhanced the water evaporation rate on the air-breathing cathode, which significantly reduced water flooding on the cathode and further improved the stack performance. This passive DMFC stack, providing 350 mW at 1.8 V, was successfully applied to power a seagull display kit. The seagull display kit can continuously run for about 4 h on a single charge of 25 cm 3 4.0-M methanol solution.

  6. Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2015-03-01

    Full Text Available Platinum catalysts supported on carbon xerogel and carbon black (Vulcan were synthesized with the aim of investigating the influence of the characteristics of the support on the electrochemical performance of the catalysts. Three synthesis methods were compared: an impregnation method with two different reducing agents, sodium borohydride and formic acid, and a microemulsion method, in order to study the effect of the synthesis method on the physico-chemical properties of the catalysts. X-ray diffraction and transmission electron microscopy were applied. Cyclic voltammetry and chronoamperometry were used for studying carbon monoxide and methanol oxidation. Catalysts supported on carbon xerogel presented higher catalytic activities towards CO and CH3OH oxidation than catalysts supported on Vulcan. The higher mesoporosity of carbon xerogel was responsible for the favored diffusion of reagents towards catalytic centers.

  7. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan RD, Shanghai 200030 (China); Xu, Ye; Ju, Bing-Gang, E-mail: cggan@shao.ac.cn [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China)

    2013-01-20

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  8. Impact of methanol and CNG fuels on motor-vehicle toxic emissions

    International Nuclear Information System (INIS)

    Black, F.; Gabele, P.

    1991-01-01

    The 1990 Clean Air Act Amendments require that the Environmental Protection Agency investigate the need for reduction of motor vehicle toxic emissions such as formaldehyde, acetaldehyde, benzene, 1,3-butadiene, and polycyclic organic matter. Toxic organic emissions can be reduced by utilizing the control technologies employed for regulated THC (NMHC) and CO emissions, and by changing fuel composition. The paper examines emissions associated with the use of methanol and compressed natural gas fuels. Both tailpipe and evaporative emissions are examined at varied ambient temperatures ranging from 20 C to 105 F. Tailpipe emissions are also examined over a variety of driving cycles with average speeds ranging from 7 to 48 mph. Results suggest that an equivalent ambient temperatures and average speeds, motor vehicle toxic emissions are generally reduced with methanol and compressed natural gas fuels relative to those with gasoline, except for formaldehyde emissions, which may be elevated. As with gasoline, tailpipe toxic emissions with methanol and compressed natural gas fuels generally increase when ambient temperature or average speed decreases (the sensitivity to these variables is greater with methanol than with compressed natural gas). Evaporative emissions generally increase when fuel volatility or ambient temperature increases (however, the relative contribution of evaporative sources to the aggregate toxic compound emissions is small)

  9. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    Science.gov (United States)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  10. Methanol from coal without CO2 production via the modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Engler, D.; Labar, M.P.

    1992-01-01

    Displacement options for petroleum fuels include natural gas (compressed or liquified), synthetic gasoline, biomass fuels, electric vehicles, hydrogen, and methanol. This paper reports that although no alternative meets all the desired characteristics of economics, environmental impact, supply logistics, and vehicle technology, methanol has often been cited as a good compromise and is perhaps the best coal derived fuel. The main criticism leveled at methanol is whether it can be produced economically in sufficient quantities to significantly displace petroleum-derived fuels. Although methanol can be manufactured from biomass, natural gas or coal feedstocks, only coal offers the potential for a substantial long term indigenous U.S. feedstock

  11. Growth and Low Temperature Transport Measurements of Pure and Doped Bismuth Selenide

    DEFF Research Database (Denmark)

    Mlack, Jerome Thomas

    Se3, which is a strong spin orbit material and a topological insulator. I describe a synthesis technique and low-temperature transport measurements of nanostructures of Bi2Se3, that when annealed with palladium show evidence of superconductivity. The growth method is a catalyst-free atmospheric...... with palladium via annealing, the transport properties of the samples can be altered to exhibit superconductivity. Thin films of palladium are deposited on prefabricated Bi2Se3 nanodevices and annealed at temperatures in excess of 100 Celsius. We find that Bi2Se3 absorbs Pd under these conditions...... pressure vapor-solid growth. The growth method yields a variety of nanostructures, and materials analysis shows ordered structures of bismuth selenide in all cases. Low-temperature measurements of as-grown nanostructures indicate tunable carrier density in all samples. By doping the nanostructures...

  12. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    Science.gov (United States)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  13. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  14. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    Science.gov (United States)

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  15. Biodiesel production via injection of superheated methanol technology at atmospheric pressure

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2014-01-01

    Highlights: • Non-catalytic superheated methanol for biodiesel production is developed. • Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock. • High content of biodiesel can be produced. • Separation of FAME and glycerol from the sample product is easy. - Abstract: In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1 MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300 °C and at different methanol flow rate ranging from 1 ml/min to 3 ml/min for 4 h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290 °C and methanol flow rate at 2 ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME

  16. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  17. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  18. Glass transition and intermixing of amorphous water and methanol

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2004-01-01

    The diffusion of molecules in amorphous water and methanol films has been investigated on the basis of time-of-flight secondary ion mass spectrometry as a function of temperature. The glass-liquid transition of the amorphous water film occurs at 130-145 K as confirmed from the surface segregation of embedded methanol molecules. The morphology of the pure amorphous water film changes drastically at 160 K as a consequence of dewetting induced by the surface tension and the strongly decreased viscosity of the film. The morphology of the amorphous methanol film changes at 115 K following the self-diffusion onset at 80 K. The binary films of water and heavy methanol are intermixed completely at 136 K as evidenced by the occurrence of the H/D exchange

  19. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  20. Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature.

    Science.gov (United States)

    Jeevika, Alagan; Ravi Shankaran, Dhesingh

    2015-11-15

    Silver nanowires (AgNWs) have been demonstrated to be a promising next generation conducting material and an alternative to the traditional electrode (ITO) because of its high conductivity, transparency and stability. Generally, AgNWs are synthesized by chemical method (mainly polyol reduction method) at high temperature in the presence of exotic seeds. The present work aims at the green approach for preparation and characterization of 1D AgNWs ink using clove oil (Syzygium Aromaticum) at room temperature. AgNWs was prepared by green synthesis using clove oil as reducing as well as capping agent at room temperature. The obtained ink was purified, filtered and redissolved in methanol. The prepared AgNWs showed an absorption peaks at 350 and 387nm in the UV-vis spectrum due to transverse SPR mode of silver. From the HR-TEM analysis, it was observed that the AgNWs possess an average diameter and length of ∼39±0.01nm and ∼3μm, respectively. The obtained AgNWs are crystalline in nature and are arranged in a perfect crystal lattice orientation, which was confirmed from the selected area electron diffraction studies. Moreover, the X-ray diffraction analysis confirms the face centered cubic structure. The AgNWs coated glass substrate shows an electrical conductivity of ∼0.48×10(6)S/m. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts"

    DEFF Research Database (Denmark)

    Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian

    2017-01-01

    Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments...... conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized....

  2. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  3. Self-propagating high temperature synthesis and magnetic

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  4. Optimization of Firing Temperature of PbO-doped SnO2 Sensor for Detection of Acetone, Methanol, Propanol

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2009-08-01

    Full Text Available In the present work, the response of a set of three PbO (1 % wt doped thick film SnO2 sensors fired at different firing temperatures (6500 C, 7500 C, 8500 C have been studied. The selection of appropriate firing temperature is necessary for the sensor fabrication in order to achieve the highest sensitivity for a particular species of gas. To achieve this, thick film PbO-doped sensor were fabricated on a 1˝x1˝ alumina substrate. The sensitivity of these sensors has been studied at different operating temperatures (1500 C-3500 C upon exposure to acetone, methanol and propanol. The sensor fired at 8500 C besides having good adhesion yields maximum sensitivity at an operating temperature of 2500 C for all gases except acetone for which it gives maximum response at 2000 C.

  5. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  6. Segment-segment interactions of poly(N-isopropylacrylamide) in aqueous methanol solutions by using small-angle scattering

    International Nuclear Information System (INIS)

    Shimizu, S.; Kurita, K.; Furusaka, M.

    2002-01-01

    Small-angle neutron and X-ray scattering from semidilute solutions of poly(N-isopropylacrylamide) in D 2 O, methanol and methanol-water mixtures has been measured in the poor solvent regime. The binary and the ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at several temperatures just below the lower critical solution temperature. Then, contributions of segment-segment interactions to the entropy and the enthalpy have been calculated from the temperature dependence of interaction parameters and it has been found that both values are positive in the D 2 O and the methanol-water systems at a small content of methanol, while both values are negative in the other system. (orig.)

  7. Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris.

    Science.gov (United States)

    Ohsawa, Shin; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2017-04-01

    Wsc family proteins are plasma membrane spanning sensor proteins conserved from yeasts to mammalian cells. We studied the functional roles of Wsc family proteins in the methylotrophic yeast Pichia pastoris, and found that PpWsc1 and PpWsc3 function as methanol-sensors during growth on methanol. PpWsc1 responds to a lower range of methanol concentrations than PpWsc3. PpWsc1, but not PpWsc3, also functions during high temperature stress, but PpWsc1 senses methanol as a signal that is distinct from high-temperature stress. We also found that PpRom2, which is known to function downstream of the Wsc family proteins in the cell wall integrity pathway, was also involved in sensing methanol. Based on these results, these PpWsc family proteins were demonstrated to be involved in sensing methanol and transmitting the signal via their cytoplasmic tail to the nucleus via PpRom2, which plays a critical role in regulating expression of a subset of methanol-inducible genes to coordinate well-balanced methanol metabolism. © 2017 John Wiley & Sons Ltd.

  8. The Role of Low-Energy Electrons in Astrochemistry: A Tale of Two Molecules

    Science.gov (United States)

    Arumainayagam, Chris; Cambell, Jyoti; Leon Sanche, Michael Boyer, and Petra Swiderek.

    2016-06-01

    In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of “complex” molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (Emax ~ 1020 eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ~ 90 K under ultrahigh vacuum (1×10-9 Torr) conditions. We have identified fifteen low-energy (≤ 20 eV) electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N2H4), diazene (N2H2), cyclotriazane/triazene (N3H3) and triazane (N3H5). We have investigated the reaction yields’ dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.

  9. Study on the conditions of methanol use as a secondary refrigerant; Etude sur les conditions d'utilisation du methanol comme refrigerant secondaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    This study examined the advantages and safe use of a water and methanol solution for use in a piped cooling network in skating rinks. A methanol/water solution offers simple repair solutions for leaks under ice, because unlike brine, it does not leave spots or soften the ice. The solution is less corrosive than brine and offers efficient heat transfer in heat exchangers. The standards and regulations that apply to the methanol/water solution were outlined. The following preventive measures are recommended to minimize risk associated with methanol in skating rinks: solutions should be diluted to 25 per cent methanol to avoid storing and handling of more concentrated products; methanol vapour detectors should be installed in service rooms where spills may occur; respiratory and protective eye protection should be available in service rooms; and, protection should be provided against freezing when the product is circulated outside of the arena. This study also examined the negative effects on health, including toxicity. Risks related to the environment, flammability and the physicochemical compatibility of methanol with materials were examined. The properties of the methanol/water solution were listed with reference to flash point, autoignition temperature, and the lower and upper flammable or explosive limits. tabs., figs. appendices.

  10. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegâ n; Cheng, Jim C.; Doyle, Fiona M.; Pisano, Albert P.

    2013-01-01

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating

  11. Direct synthesis of iso-butane from synthesis gas or CO2 over CuZnZrAl/Pd-β hybrid catalyst

    Directory of Open Access Journals (Sweden)

    Congming Li

    2017-12-01

    Full Text Available The effect of various factors on the catalytic performance of iso-butane formation over CuZnZrAl/Pd-β hybrid catalyst via synthesis gas or CO2 hydrogenation has been deeply investigated in this work. It was interesting to note that the iso-butane/n-butane ratio value was much higher than that of thermodynamic equilibrium (about 1/1, whose value was directly related to the reaction condition using this hybrid catalyst. In order to further clearly clarify this finding, various experimental reaction factors were selected to investigate the formation of iso-butane. The results revealed that increasing temperature, H2/COx, CO2/COx, and/or Pd loading possessed an inhibiting effect on the iso-butane yield. High selectivity of iso-butane could be achieved by increasing the reaction pressure, W/F and the weight ratio of CuZnZrAl methanol catalyst to Pd-β catalyst. It is also noted that the addition of water seriously suppressed the reaction activity, resulting in the low ratio of iso-butane/n-butane. A possible reaction route was elucidated based on the latest results. This might shed light on the development of a high efficient catalyst for iso-butane production from synthesis gas or CO2 hydrogenation. Keywords: Iso-butane, Synthesis gas, CO2, CuZnZrAl/Pd-β hybrid catalyst

  12. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  13. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  14. France prefers methanol for long term use as gasoline substitute

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-02

    The French carburol programme, which plans to reduce its consumption of gasoline from imported crude oil, based on methanol and butanol-acetone mixtures was detailed recently at the ECMRA in Cannes. The programme envisages the production of methanol from synthesis gas generated by the gasification of materials such as wood, coal, lignite and heavy oil residues. Also planned is the production of mixtures of butanol and acetone from such biomass sources as straw, Jerusalem artichoke, sugar cane and beet and alfalfa by hydrolysis followed by fermentation. In the first phase of the programme, up to 1985, methanol and butanol-acetone may be added to all premium gasoline sold in France up to 10% so that engine modification is not required. A higher alcohol content mixture, 25-50% is planned for the second phase to run in modified cars. The substitution of 50% of French gasoline could be achieved by 1995 by the production of 8m. ton/year oil equivalent of carburol.

  15. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  16. Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts.

    Science.gov (United States)

    Liang, Ming-Hua; Liang, Ying-Jie; Chai, Jiang-Yan; Zhou, Shi-Shui; Jiang, Jian-Guo

    2014-11-01

    Methanol, often generated in brewed wine, is highly toxic for human health. To decrease the methanol content of the brewed wine, atmospheric and room-temperature plasma (ARTP) was used as a new mutagenesis tool to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Headspace gas chromatography was used to determine the identity and concentration of methanol with butyl acetate as internal standard in brewed wine. With 47.4% higher and 26.3% positive mutation rates were obtained, the ARTP jet exhibited a strong effect on mutation breeding of S. cerevisiae. The mutant S. cerevisiae S12 exhibited the lowest methanol content, which was decreased by 72.54% compared with that of the wild-type strain. Subsequently, the mutant S. cerevisiae S12 was used to ferment different combinations of malt and adjuncts for lower methanol content and higher alcoholic content. It was shown that the culture 6#, which was 60% malt, 20% wheat, and 20% corn, was the best combinations of malt and adjuncts, with the lowest methanol content (104.8 mg/L), and a relatively higher alcoholic content (15.3%, v/v). The optimal malt-adjunct culture 6#, treated with the glucoamylase dose of 0.04 U/mg of grain released the highest reducing sugars (201.6 mg/mL). It was indicated that the variation in reducing sugars among the combinations of malt and different adjuncts could be due to the dose of exogenous enzymes. © 2014 Institute of Food Technologists®

  17. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  18. Excitation temperature of a solution plasma during nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Nakasugi, Yuki; Akiyama, Tomohiro [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan)

    2014-08-28

    Excitation temperature of a solution plasma was investigated by spectroscopic measurements to control the nanoparticle synthesis. In the experiments, the effects of edge shielding, applied voltage, and electrode material on the plasma were investigated. When the edge of the Ni electrode wire was shielded by a quartz glass tube, the plasma was uniformly generated together with metallic Ni nanoparticles. The emission spectrum of this electrode contained OH, H{sub α}, H{sub β}, Na, O, and Ni lines. Without an edge-shielded electrode, the continuous infrared radiation emitted at the edge created a high temperature on the electrode surface, producing oxidized coarse particles as a result. The excitation temperature was estimated from the Boltzmann plot. When the voltages were varied at the edge-shielded electrode with low average surface temperature by using different electrolyte concentrations, the excitation temperature of current-concentration spots increased with an increase in the voltage. The size of the Ni nanoparticles decreased at high excitation temperatures. Although the formation of nanoparticles via melting and solidification of the electrode surface has been considered in the past, vaporization of the electrode surface could occur at a high excitation temperature to produce small particles. Moreover, we studied the effects of electrodes of Ti, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Pd, Ag, W, Pt, Au, and various alloys of stainless steel and Cu–Ni alloys. With the exception of Ti, the excitation temperatures ranged from 3500 to 5500 K and the particle size depended on both the excitation temperature and electrode-material properties.

  19. Synthesis of Acetylhomoagmatine

    Directory of Open Access Journals (Sweden)

    Carmenza Duque

    2006-08-01

    Full Text Available Abstract: The first total synthesis of acetylhomoagmatine, a natural product isolated form the methanolic extracts from the sponge Cliona celata, is performed in four steps in a very high yield.

  20. Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho

    2010-12-14

    Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.

  1. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    International Nuclear Information System (INIS)

    Rao, N.Hanumanta; Lakshmidevi, N.; Pammi, S.V.N.; Kollu, Pratap; Ganapaty, S.; Lakshmi, P.

    2016-01-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  2. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.Hanumanta [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Lakshmidevi, N. [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India); Pammi, S.V.N. [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon (Korea, Republic of); Kollu, Pratap [DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Ganapaty, S. [GITAM Institute of Pharmacy, GITAM University, Visakhapatnam (India); Lakshmi, P., E-mail: lmkandregula@gmail.com [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India)

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  3. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  4. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  5. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, Jacobus B.W.; van der Meer, Theodorus H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the

  6. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate.

    Science.gov (United States)

    Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H

    2002-10-01

    Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.

  7. Bubble point pressures of binary system of methanol and methyl propionate

    NARCIS (Netherlands)

    Shariati, A.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2016-01-01

    In this work, bubble point pressures of the system of methanol + methyl propionate were measured for several isopleths within temperature and pressure ranges of 382-444 K and 0.437-2.285 MPa, respectively. The vapor pressures of pure methanol and methyl propionate were also measured. The two-suffix

  8. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  9. General report of entrustment investigation for demonstration tests of turnover from oil to methanol in the thermal power plants in fiscal 1995. Total assessment of methanol using power generation technology; 1995 nendo sekiyu karyoku hatsudensho methanol tenkan nado jissho shiken itaku gyomu hokokusho sokatsu hokokusho. Methanol riyo hatsuden gijutsu sogo hyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To promote the introduction of methanol fuel into the thermal power plants, total assessment was provided. For calculating the methanol production cost, the plant was assumed to be constructed in the Southeast Asia or Middle East. Two methods, i.e., steam reforming and gaseous phase fluid methods, were investigated. Since the price of natural gas is low in the Middle East, the methanol production cost by the gaseous phase fluid method is estimated to be about 1.5 yen per thousand kcal. The transportation cost can be reduced into one-half to one-third of current cost using a large-scale tanker. Although the heating value of methanol per weight is lower than that of LNG, the volume flow of methanol is similar to that of LNG due to its low specific gravity. Conceptual designs were conducted for some power generation systems, such as gas turbine of combined cycle, diesel engine, and fuel cell. The power generation cost was estimated to be 8 to 9 yen per kWh, which depends on the receiving price of methanol. It is nearly equivalent to that of LNG combined cycle power generation. There are no problems of air pollution and ash disposal. When considering the long-term security of energy sources, the use of methanol would be one of the selections as utilization of natural gas. 6 refs., 33 figs., 25 tabs.

  10. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  11. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  12. Segment-segment interactions of poly(N-isopropylacrylamide) in aqueous methanol solutions by using small-angle scattering

    CERN Document Server

    Shimizu, S; Furusaka, M

    2002-01-01

    Small-angle neutron and X-ray scattering from semidilute solutions of poly(N-isopropylacrylamide) in D sub 2 O, methanol and methanol-water mixtures has been measured in the poor solvent regime. The binary and the ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at several temperatures just below the lower critical solution temperature. Then, contributions of segment-segment interactions to the entropy and the enthalpy have been calculated from the temperature dependence of interaction parameters and it has been found that both values are positive in the D sub 2 O and the methanol-water systems at a small content of methanol, while both values are negative in the other system. (orig.)

  13. Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs

    Directory of Open Access Journals (Sweden)

    D.S. Falcão

    2017-10-01

    Full Text Available The micro direct methanol fuel cell (MicroDMFC is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of 2.25 cm2. The MicroDMFC uses available commercial materials with low platinum content in order to reduce the overall fuel cell cost. The main goal of this work is to provide useful information to easily design an active MicroDMFC with a good performance recurring to cheaper commercial Membrane Electrode Assemblies MEAs. A performance/cost analysis for each MEA tested is provided. The maximum power output obtained was 18.1 mW/cm2 for a hot-pressed MEA with materials purchased from Quintech with very low catalyst loading (3 mg/cm2 Pt–Ru at anode side and 0.5 mg/cm2 PtB at the cathode side costing around 15 euros. Similar power values are reported in literature for the same type of micro fuel cells working at higher operating temperatures and substantially higher cathode catalyst loadings. Experimental studies using metallic active micro direct methanol fuel cells operating at room temperature are very scarce. The results presented in this work are, therefore, very useful for the scientific community.

  14. Influencing parameters of water and methanol transport in a big direct methanol fuel cell; Einflussgroessen auf den Wasser- und Methanoltransport einer groesseren Direkt-Methanol Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Schonert, Morten

    2008-07-01

    The author investigated the influencing parameters of water and methanol transport in a big direct methanol fuel cell (Pel > 1 kW) with the intention of making the direct methanol fuel cell system water-autonomous. As water is consumed during the electrochemical reaction on the anode while more water is produced on the cathode, the difference must be removed via the air. Any further water produced on the cathode must be condensed and recirculated to the anode. With increasing ambient temperature, the air volume flow must be reduced because otherwise more water would be removed than is acceptable. Low air volume flow on the cathode causes unstable cell voltage, which is also assumed to be caused by excess water production. For this reason, an attempt was made to prevent excess water production on the cathode by a system engineering approach. It was found that at the low air volume flow required for water autonomy, water permeation through the membrane-electrode aggregate (MEA) depends on the uptake capacity and on the time of residue of air over the cathode and less on the cathode material. Water permeation stops when the concentration gradient is balanced. Apart from the water permeation, there is also water transport through the Nafion {sup registered} membrane, i.e. so-called electroosmotic drag (ESD). This is an active transport mechanism that can also work against a concentration gradient. It could be shown that the EOD can be reduced by using water-impermeable materials for the gas diffusion layer on the anode. This will reduce the water volume that reaches the membrane, i.e. the water on the cathode. On the other hand, there was no measurable effect of the cathode design on water or methanol transport. The electrochemical performance of the membrane-electrode units under investigation was robust in case of many influencing parameters, e.g. dispersion, the conditions of MEA fabrication by hot pressing, themembrane thickness and the rate of methanol permeation

  15. Phase behaviour of heavy petroleum fractions in pure propane and n-butane and with methanol as co-solvent

    International Nuclear Information System (INIS)

    Canziani, D.; Ndiaye, P.M.; Franceschi, Elton; Corazza, Marcos L.; Vladimir Oliveira, J.

    2009-01-01

    This work reports phase equilibrium experimental results for heavy petroleum fractions in pure propane and n-butane as primary solvents and using methanol as co-solvent. Three kinds of oils were investigated from Marlim petroleum: a relatively light fraction coming from the first distillation of crude petroleum at atmospheric pressure (GOP - heavy gas oil of petroleum), the residue of such distillation (RAT) and the crude petroleum sample. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method, over the temperature range of 323 K to 393 K, pressures up to 10 MPa and overall compositions of heavy component varying from 1 wt% to 40 wt%. Transition pressures for low methanol and oil concentrations were very close for GOP, RAT, and crude Marlim when using propane as the primary solvent. Close to propane critical temperature, two and three-phase transitions were observed for GOP and Marlim when methanol was increased. When n-butane was used as primary solvent, all transitions observed were of (vapour + liquid) type with transition pressure values smaller than those obtained for propane.

  16. Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst

    OpenAIRE

    Jorge Ramírez-Ortiz; Merced Martínez Rosales; Horacio Flores Zúñiga

    2014-01-01

    Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to meth...

  17. An Electrochemical Investigation of Methanol Oxidation on Nickel ...

    African Journals Online (AJOL)

    NICO

    Cyclic voltammetry, electrooxidation, glassy carbon electrode, methanol, nickel hydroxide nanoparticles. 1. ... substrate at room temperature without templates. Recently, we ... placed in ethanol and sonicated to remove adsorbed particles.

  18. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    International Nuclear Information System (INIS)

    Martín, J C; Berdejo, V; Vallés, J A; Sánchez-Martín, J A; Díez, A; Andrés, M V

    2013-01-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C −1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C −1 for 90 mW pump power and a 1 m methanol-filled SCF. (paper)

  19. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  20. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Science.gov (United States)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...