WorldWideScience

Sample records for low-temperature heat capacities

  1. Low temperature heat capacity of scandium and alloys of scandium

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, T. W.E.

    1977-12-01

    The heat capacity of three electrotransport purified scandium samples has been measured from 1 to 20/sup 0/K. The resultant electronic specific heat constant and Debye temperature are 10.337 +- 0.015 mJ/gm-atom K/sup 2/ and 346.7 +- 0.8/sup 0/K respectively, and these values are believed to be truly representative of intrinsic scandium. Alloying studies have also been carried out to investigate the band structure of scandium based on the rigid band model, with zirconium to raise the electron concentration and magnesium to lower it. The results are then compared to the theoretical band structure calculations. Low temperature heat capacity measurements have also been made on some dilute Sc-Fe alloys. An anomaly is observed in the C/T vs. T/sup 2/ plot, but the C vs. T curve shows no evidence of magnetic ordering down to 1/sup 0/K, and electrical resistance measurement from 4 to 0.3/sup 0/K also indicates that no magnetic ordering took place.

  2. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  3. Low-temperature heat capacity and the standard molar enthalpy of formation of compound chromium(III) tri(pyrazine-2-carboxylate)

    International Nuclear Information System (INIS)

    Gao, Shengli; Zhang, Sheng; Chen, Sanping; Yang, Desuo

    2012-01-01

    Highlights: ► Low-temperature heat capacities of chromium(III) tri(pyrazine-2-carboxylate) were measured from 78 to 400 K. ► Thermodynamic functions of the compound at 298.15 K were calculated based on low-temperature heat capacity. ► The standard molar enthalpy of formation of the target was determined to be −1207.86 ± 3.39 kJ mol −1 through a designed thermochemical cycle. - Abstract: Low-temperature heat capacities of the coordination compound, chromium(III) tri(pyrazine-2-carboxylate), formulated as Cr(pyza) 3 (pyza = pyrazine-2-carboxylate), were measured by a precision automated adiabatic calorimeter over the temperature range of 78–400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial equation, the fitted heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated at the interval of 5 K. In accordance with a reasonable thermochemical cycle designed, the standard molar enthalpy of formation of the title complex was determined to be −1207.86 ± 3.39 kJ mol −1 by an isoperibol solution–reaction calorimeter.

  4. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    Science.gov (United States)

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  5. Low-temperature heat capacity and thermodynamic functions of vitamin B12

    International Nuclear Information System (INIS)

    Knyazev, A.V.; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-01-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B 12 has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B 12 have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B 12 (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B 12 , namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry

  6. Low-temperature heat capacity of molybdenum borides

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Klinder, A.V.; Novoseletskaya, L.M.; Turov, V.P.; Klochkov, L.A.; Lyashchenko, A.B.

    1988-01-01

    Heat capacity of molybdenum borides Mo 2 B, MoB, Mo 2 B 5 is studied for the first time in the 60-300 K range using the adiabatic method. Standard (at 298.15 K) thermodynamic functions (enthalpy, heat capacity, entropy, reduced Gibbs energy) of molybdenum borides are calculated

  7. The low-temperature heat capacities of Tb, Lu and Y

    International Nuclear Information System (INIS)

    Wells, P.; Lanchester, P.C.; Jones, D.W.; Jordan, R.G.

    1976-01-01

    The heat capacities of Tb, Lu and Y, refined by solid state electro-transport processing have been measured between 1.5 and 16 K. Below 4 K the results were fitted to the expression C = γT + AT 3 where for Tb the nuclear and magnetic contributions were first calculated and subtracted from the total heat capacity. The resultant values of γ(mJ mol -1 K -2 ) and limiting Debye temperatures thetasub(D) (T → 0) were as follows. Tb: γ = 4.4 +- 0.1, thetasub(D) = 178 +- 2 K; Lu: γ = 6.8 +- 0.1, thetasub(D) 205 +- 3 K; Y: γ = 8.2 +- 0.1, thetasub(D) = 248 +- 3 K. The Debye temperature was found in all instances to decrease by about 10% between 4 and 16 K. (author)

  8. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    Science.gov (United States)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  9. Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C211H17NO(s)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Wang Da-Qi; Shi Quan; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been mea- sured by a precision automated adiabatic calorimeter over the temperature range from T=78 K to T=400 K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342- 364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol preci- sion oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.

  10. Low-temperature heat-capacity study of the U6X (XequivalentMn, Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Yang, K.N.; Maple, M.B.; DeLong, L.E.; Huber, J.G.; Junod, A.

    1989-01-01

    Measurements of the superconducting- and normal-state heat capacity of U 6 X (XequivalentMn, Fe, Co, Ni) compounds have been performed over a temperature range 1 Kapprox. 6 X compounds have strong renormalizations of the free-carrier effective mass m/sup */ in the range 10m/sub e/approx. 6 X heat capacities suggest the presence of high densities of low-energy excitations of undetermined nature. The results are analyzed in terms of models appropriate to heavy-fermion liquids, and anisotropic or strong-coupled superconductors. The U 6 X compounds form a link between relatively low-m/sup */, high-transition-temperature A15 compounds and the more extreme examples of heavy-fermion superconductors such as UBe/sub 13/, UPt 3 , and CeCuSi 2 for which m/sup */∼10 2 m/sub e/. .AE

  11. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    International Nuclear Information System (INIS)

    Thome, D.K.

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20 0 K. Results for theta/sub D/ were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ from 8.2 to about 11.3 mJ/g-atom-K 2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5 0 K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in theta/sub D/ versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20 0 K and showed a large increase in theta/sub D/ and a large decrease in γ compared to pure lutetium

  12. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Science.gov (United States)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  13. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Directory of Open Access Journals (Sweden)

    Chernet Amente Geffe

    2018-03-01

    Full Text Available This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  14. Low-temperature heat capacity and thermodynamic functions of vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-04-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B{sub 12} has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B{sub 12} have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B{sub 12} (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B{sub 12}, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry.

  15. Low-temperature heat capacities and standard molar enthalpy of formation of 4-(2-aminoethyl)-phenol(C8H11NO)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Kong Yu-Xia; Yang Wei-Wei; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol(C8H11NO)are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K.A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method.Based on the fitted polynomial,the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at the interval of 5 K.The energy equivalent,gcalor,of the oxygen-bomb The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion and other thermodynamic principles.Finally,the standard molar enthalpy of formation of the compound

  16. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  17. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  18. Low-temperature heat capacity of Al(C11H19O2)3

    International Nuclear Information System (INIS)

    Bespyatov, Michael A.; Chernyaikin, Ivan S.; Naumov, Viktor N.; Stabnikov, Pavel A.; Gelfond, Nikolay V.

    2014-01-01

    Highlights: • The temperature dependence of heat capacity of Al(C 11 H 19 O 2 ) 3 has been measured. • The experimental data were used to calculate standard thermodynamic functions. • The thermodynamic functions at 298.15 K are presented. - Abstract: The heat capacity of Al(C 11 H 19 O 2 ) 3 was measured by adiabatic-shield calorimetry in the temperature range 6–320 K; no transition or thermal anomalies were found. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. The obtained standard values are as follows: C° p,m = (882.3 ± 1.3) J mol −1 K −1 , Δ 0 298.15 S° m = J(980 ± 2) mol −1 K −1 , Δ 0 298.15 H° m = (145.1 ± 0.2) kJ mol −1 , Φ° m = (493.4 ± 1.7) J mol −1 K −1

  19. Mössbauer spectroscopy, magnetization, magnetic susceptibility, and low temperature heat capacity of α-Na2NpO4

    International Nuclear Information System (INIS)

    Smith, Anna L; Hen, Amir; Magnani, Nicola; Colineau, Eric; Griveau, Jean-Christophe; Raison, Philippe E; Caciuffo, Roberto; Konings, Rudy J M; Sanchez, Jean-Pierre; Cheetham, Anthony K

    2016-01-01

    The physical and chemical properties at low temperatures of hexavalent disodium neptunate α-Na 2 NpO 4 are investigated for the first time in this work using Mössbauer spectroscopy, magnetization, magnetic susceptibility, and heat capacity measurements. The Np(VI) valence state is confirmed by the isomer shift value of the Mössbauer spectra, and the local structural environment around the neptunium cation is related to the fitted quadrupole coupling constant and asymmetry parameters. Moreover, magnetic hyperfine splitting is reported below 12.5 K, which could indicate magnetic ordering at this temperature. This interpretation is further substantiated by the existence of a λ-peak at 12.5 K in the heat capacity curve, which is shifted to lower temperatures with the application of a magnetic field, suggesting antiferromagnetic ordering. However, the absence of any anomaly in the magnetization and magnetic susceptibility data shows that the observed transition is more intricate. In addition, the heat capacity measurements suggest the existence of a Schottky-type anomaly above 15 K associated with a low-lying electronic doublet found about 60 cm −1 above the ground state doublet. The possibility of a quadrupolar transition associated with a ground state pseudoquartet is thereafter discussed. The present results finally bring new insights into the complex magnetic and electronic peculiarities of α-Na 2 NpO 4 . (paper)

  20. Comparative technical-economic analysis of the low temperature heating systems

    International Nuclear Information System (INIS)

    Sharevski, Vasko; Sharevski, Milan

    1994-01-01

    A method for comparative technical-economic analysis between low temperature heating systems and heating systems with fossil fuel boiler plant, heat pump heating system and electrical heating systems is presented. The single and combined heating systems are analyzed. The technical-economic priority application of the heating system is determined according to the prices of the low temperature heat energy, fossil fuel heat energy, electrical energy, as well as to the coefficient of the annual use of the installed heating capacity, investment expenses, structure of the combined heating system and coefficient of performances of the heat pump. The combined heating system, composed with a low temperature heating subsystem, which is used to cover the base heat demands, and a oil boiler plant heating subsystem, for the top heat demands, have technical-economic justification and wide range of priority application, in comparison with single heating systems. (author)

  1. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  2. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  3. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  4. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    Science.gov (United States)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  5. Temperature fluctuation and heat capacity in relativistic heavy-ion collisions

    CERN Document Server

    Ma, Guo Liang; Chen Jin Gen; He Ze-Jun; Long Jia-Li; Lu Zhao-Hui; Ma Yu-Gang; Sá Ben-Hao; Shen Wen-Qing; Wang Kun; Wei Yi-Bin; Zhang Hu-Yong; Zhong Chen

    2004-01-01

    We used LUCIAE3.0 model to simulate the Pb+Pb and C+C in SPS energy. The heat capacity was then extracted from event-by-event temperature fluctuation. It is found that the heat capacity per hadron multiplicity decreases with the increasing of beam energy and impact parameter for a given reaction system. While the hadron mass increases, the heat capacity per hadron multiplicity rises. In addition, we found that, for a given hadron, the heat capacity per hadron multiplicity is almost the same regardless of the reaction system. Some discussions were also given.

  6. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    transcritical power cycle is operating at lower pump efficiency, the effect of a decrease in pump efficiency is equivalent to a decrease in turbine efficiency. The thermodynamic analysis is coupled with a 1D mean line turbine design. Both axial and radial turbines are considered. The Ainely and Mathieson loss model is used in the 1D axial turbine designs. It is observed that the blade height is generally small; the reason being high operating pressure and low flow rate. A novel approach to enhance the performance of low-temperature CO{sub 2} transcritical power cycles is investigated. From the thermodynamic analysis, it is observed that the pump work is significant and reduction of pump work will be translated to a gain in net power output. The mechanical driven pump is suggested to be replaced by a thermally driven pump. The working principle of thermally driven pump is by exploiting the phenomena in which the pressure of a closed vessel filled full with saturated liquid will rise when heated. A cascade of vessels is used to make the pressurizing process continuous. The time taken to pressurize is an important parameter for the performance of thermally driven pump. Pressurizing time depends on isochoric specific heat capacity of the working fluid, heat transfer coefficient, inlet conditions of heat source, tube diameter, and initial mass of the working fluid. When the pressurizing time is longer, more vessels are required to make the process continuous. It is shown that it possible to increase power output using a thermal driven pump, but additional equipments are required. An example of a possible application is a low-temperature CO{sub 2} power cycle integrated with a post-combustion carbon dioxide capture plant. The heat rejected by low temperature streams in the capture plant is used as a heat sources for power generation. It is found that utilization of heat of the capture plant improves the performance of the overall process. It shows that low-temperature transcritical

  7. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2017-01-01

    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  8. Low temperature measurements of the heat capacity and thermodynamic functions of pseudo-malachite Cu5(PO4)2(OH)4

    International Nuclear Information System (INIS)

    Bissengaliyeva, M.R.; Gogol, D.B.; Bekturganov, N.S.

    2012-01-01

    The investigation of the heat capacity of a natural specimen of copper phosphate—pseudo-malachite Cu 5 (PO 4 ) 2 (OH) 4 in the temperature range between 4.2 K and 320 K has been carried out by the method of low-temperature adiabatic calorimetry. Tabulated values of the heat capacity and thermodynamic functions of the mineral including the changes of entropy and enthalpy and the Gibbs function of free energy have been calculated. The standard values of thermodynamic functions of pseudo-malachite at T = 298.15 K are C p,m ° =(385.43±0.41)J mole −1  K −1 , Δ 0 T S m ° =(412.16±0.61)J mole −1  K −1 , Δ 0 T H m ° =(63681.5±57.0)J mole −1 , F m ° =(198.57±0.47)J mole −1  K −1 . In the low-temperature area 0 tr = (5.772 ± 0.081) J mole −1 K −1 , ΔH tr = (29.94 ± 0.42) J mole −1 .

  9. Low-temperature heat capacity of small Nb3Sn polycrystals by ac calorimetry

    International Nuclear Information System (INIS)

    Viswanathan, R.; Johnston, D.C.

    1976-01-01

    It is shown by an ac calorimetry technique that the multiple heat capacity anomalies which occur below the superconducting transition temperature for small polycrystalline Nb 3 Sn samples are intrinsic to these samples. The recent suggestions that shear stresses can account for these results are analyzed for their validity. The dependence of the occurrence of these multiple anomalies upon the thermal history of the samples was investigated

  10. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O)

    International Nuclear Information System (INIS)

    Di, You-Ying; Tan, Zhi-Cheng.; Sun, Xiao-Hong; Wang, Mei-Han; Xu, Fen; Liu, Yuan-Fa; Sun, Li-Xian; Zhang, Hong-Tao

    2004-01-01

    Low-temperature heat capacities of the 9-fluorenemethanol (C 14 H 12 O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid-liquid phase transition of the compound has been observed to be T fus =(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Δ fus H m =(26.273±0.013) kJ · mol -1 and Δ fus S m =(69.770±0.035) J · K -1 · mol -1 . The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Δ c U(C 14 H 12 O, s)=-(7125.56 ± 4.62) kJ · mol -1 and Δ c H m compfn (C 14 H 12 O, s)=-(7131.76 ± 4.62) kJ · mol -1 , by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, Δ f H m compfn (C 14 H 12 O,s)=-(92.36 ± 0.97) kJ · mol -1 , from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle

  11. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  12. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  13. Low-temperature heat capacities and thermodynamic properties of ethylenediammonium tetrachlorozincate chloride (C2H10N2)2(ZnCl4)Cl2

    International Nuclear Information System (INIS)

    He, Dong-Hua; Di, You-Ying; Wang, Bin; Dan, Wen-Yan; Tan, Zhi-Cheng

    2010-01-01

    The ethylenediammonium tetrachlorozincate chloride (C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 was synthesized. Chemical analysis, elemental analysis, and X-ray crystallography were applied to characterize the composition and crystal structure of the complex. Low-temperature heat capacities of the compound were measured by a precision automatic adiabatic calorimeter over the temperature range from T = 77-377 K. A polynomial equation of heat capacities as a function of the reduced temperature was fitted by a least square method. Based on the polynomial equation, the smoothed heat capacities and thermodynamic functions of the title compound relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K. A thermochemical cycle was designed and the enthalpy change of the solid phase reaction of ethylenediamine dihydrochloride with zinc chloride was determined to be Δ r H m o =-(17.9±0.6)kJmol -1 by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound was derived to be Δ f H m o [(C 2 H 10 N 2 ) 2 (ZnCl 4 )Cl 2 ,s]=-(1514.4±2.7)kJmol -1 in accordance with Hess law.

  14. Low-energy vibrational excitations in carbon nanotubes studied by heat capacity

    Science.gov (United States)

    Lasjaunias, J. C.; Biljakovic, K.; Monceau, P.; Sauvajol, J. L.

    2003-09-01

    We present low-temperature heat capacity measurements performed on two different kinds of single-walled carbon nanotube bundles which essentially differ in their mean number of tubes (NT) per bundle. For temperatures below a few kelvin, the vibrational heat capacity can be analysed as the sum of two contributions. The first one is a regular T3 phononic one, characteristic of the three-dimensional (3D) elastic character of the bundle for long-wavelength phonons. A crossover to a lower effective dimensionality appears at a few kelvin. From the 3D contribution, we estimate a mean sound velocity, and hence a mean shear modulus of the bundle. The difference in amplitude of the acoustic term and in the crossover temperature between the two samples is ascribed to the different bundle topology (i.e. NT). The second contribution, of similar amplitude in both kinds of samples, shows a peculiar power law Talpha variation (alpha < 1) indicative of localized excitations, very probably due to intrinsic structural defects of the nanotubes.

  15. Heat capacity of iron, aluminum, and chromium vanadates at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cheshnitskii, S.M.; Fotiev, A.A.; Ignashin, V.P.; Kesler, Y.A.

    1985-09-01

    The thermodynamic characteristics of compounds participating in the processing of vanadium-containing raw materials have not been sufficiently investigated. In this paper the authors report on measurements of the heat capacities of the compounds FeVO/sub 4/, CrVO/sub 4/, AIVO/sub 4/, Fe/sub 2/V/sub 4/O/sub 13/ and FeCr(VO/sub 4/)/sub 2/ at high temperatures. The obtained experimental data on the high-temperature heat capacity of iron, aluminum, and chromium vanadates makes it possible to calculate the thermodynamic functions of these compounds at high temperatures.

  16. The potential to supply low temperature district heating to existing building area

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low-temperature district heating (LTDH) has the advantages as reduced network heat loss, improved quality match between energy supply and energy demand, and increased utilization of low-grade waste heat and renewable energy. The LTDH represents the next generation district heating (DH) system...... to supply existing building areas which are characterized with high heating demand needs to be examined. In this paper, the DH network deliverable capacity to supply LTDH to an existing building area is studied based on building thermal performance and DH network hydraulic performance simulation....

  17. Performance study on a low-temperature absorption–compression cascade refrigeration system driven by low-grade heat

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Guangming; Wang, Qin; Han, Xiaohong; Jiang, Ning; Deng, Shiming

    2016-01-01

    Highlights: • An absorption–compression system for low-temperature is developed and analyzed. • Cooling capacity, compression power, and discharge temperature are all improved. • At −170 °C, giving 200 W low-grade cooling capacity, COP increases by 28.6%. • Simulation results are verified experimentally, showing good agreement. - Abstract: This paper presents a performance study on a low-temperature absorption–compression cascade refrigeration system (LACRS), which consists of an absorption subsystem (AS) and a vapor compression auto-cascade subsystem (CS). In the system, low-grade heat of AS is used to subcool the CS, which can obtain cold energy at −170 °C. A simulation study is carried out to investigate the effects of evaporating temperature and low-grade cooling capacity on system performance. The study results show that as low-grade cooling capacity from the AS is provided to the CS, high-grade cooling capacity increases, compressor power consumption decreases, and the COP of the CS therefore increases. Comparing with compression auto-cascade cycle, the largest COP improvement of LACRS is about 38%. The model is verified by experimental data. An additional high-grade cooling capacity is obtained experimentally at −170 °C. The study results presented in this paper not only demonstrate the excellent performance of the LACRS, but also provide important guidance to further system design, and practical application.

  18. Heat capacity measurements on ThO2 by temperature modulated differential scanning calorimetry (TMDSC)

    International Nuclear Information System (INIS)

    Venkatakrishnan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2001-01-01

    Heat capacity measurements were carried out on ThO 2 in the temperature range 330-820 K by using temperature modulated DSC. An underlying heating rate of 5 K. min -1 , a temperature modulation with an amplitude of 0.398K and a period of 150s were used for these measurements. The heat capacity values are within ± 2-4% of the literature data. (author)

  19. Low temperature specific heat anomalies in melanins and tumor melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, U [Carnegie--Mellon Univ., Pittsburgh; Massalski, T B; McGinness, J E; Corry, P M

    1976-02-12

    Human malignant melanoma cells obtained at autopsy were used. Data indicate that melanins exhibit a large linear term (50-200 erg g/sup -1/K/sup -2/) and that they seem to undergo a phase transition as indicated by the heat capacity near 1.9/sup 0/K. A table is presented to show low temperature specific heat data for melanin samples. The measurements include two anomalies, a transition and an unusually high linear contribution. (HLW)

  20. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  1. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2014-08-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  2. Combined quantum-mechanical and Calphad approach to description of heat capacity of pure elements below room temperature

    Czech Academy of Sciences Publication Activity Database

    Pavlů, J.; Řehák, Petr; Vřešťál, Jan; Šob, Mojmír

    2015-01-01

    Roč. 51, č. 1 (2015), s. 161-171 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : Einstein temperature * Heat capacity * Low temperature * Pure elements * SGTE data * Zero Kelvin Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.129, year: 2015

  3. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    Findikakis, A.

    2004-01-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  4. Heat capacity of xenon adsorbed in nanobundle grooves

    International Nuclear Information System (INIS)

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  5. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  6. Challenges in Smart Low-Temperature District Heating Development

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2014-01-01

    Previous research and development shows that low temperature district heating (LTDH) system is economic feasible for low energy buildings and buildings at sparse areas. Coupling with reduced network temperature and well-designed district heating (DH) networks, LTDH can reduce network heat loss by...

  7. The heat capacity of polyethylene fibers measured by multi-frequency temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Pyda, M.; Nowak-Pyda, E.; Wunderlich, B.

    2006-01-01

    The apparent heat capacity of polyethylene fibers in the melting region was measured by quasi-isothermal, temperature-modulated differential scanning calorimetry (TMDSC) and compared with results from standard differential scanning calorimetry (DSC) and the solid and liquid thermodynamic heat capacity as references from the ATHAS Data Bank. Using a multi-frequency, complex sawtooth modulation in the quasi-isothermal mode disclosed for the first time that the uncorrected apparent heat capacity C p =A Φ /(A T s ω) of the liquid polyethylene fiber increases with increasing frequency (A Φ is the differential heat-flow rate and A T s is the sample temperature). The frequency-dependent heat capacity cannot be represented by the expression: C p =A Φ /(A T s νω)[1+(τνω) 2 ] 0.5 because of a negative τ 2 . The results were later confirmed by independent measurements on single sinusoidal quasi-isothermal TMDSC on the same material. The error is caused by shrinking of the fiber, which deforms the sample pan

  8. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  9. Heat capacity of solid parahydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bagatskij, M I; Minchina, I Ya; Manzhelij, V G [AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur

    1984-10-01

    A vacuum adiabatic calorimeter has been developed to investigate cryocrystals and their solutions in the range 0.4-300 K. Heat capacity of hydrogen with the orthomodification concentration 5 x 10/sup -3/ at.% between 0.5 and 8 K has been investigated. The limiting Debye temperature at T ..-->.. 0 has been obtained: (THETA/sub 0/=118.5 +- 0.5 K). It has been shown that heat capacity of solid parahydrogen, as that of other cryocrystals with the central interaction and closely packed lattices (/sup 4/He, Ne, Ar, Kr, Xe), low temperatures is given by the universal relation proposed by Barron and Morrison Csub(V) AT/sup 3/(1+..cap alpha../sub 1/(T/THETA/sub 0/)/sup 2/ + ..cap alpha../sub 2/(T/THETA/sub 0/)/sup 4/ ...). The effect of the sample time prehistory on the experimental heat capacity values of hydrogen with g.21 at.% orthomodification has been studied, and the times during which configurational equilibration in this solution is reached have been estimated.

  10. Computer calculation of heat capacity of natural gases over a wide range of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dranchuk, P.M. (Alberta Univ., Edmonton, AB (Canada)); Abou-Kassem, J.H. (Pennsylvania State Univ., University Park, PA (USA))

    1992-04-01

    A method is presented whereby specific heats or heat capacities of natural gases, both sweet and sour, at elevated pressures and temperatures may be made suitable to modern-day machine calculation. The method involves developing a correlation for ideal isobaric heat capacity as a function of gas gravity and pseudo reduced temperature over the temperature range of 300 to 1500 K, and a mathematical equation for the isobaric heat capacity departure based on accepted thermodynamic principles applied to an equation of state that adequately describes the behavior of gases to which the Standing and Katz Z factor correlation applies. The heat capacity departure equation is applicable over the range of 0.2 {le} Pr {le} 15 and 1.05 {le} Tr {le} 3, where Pr and Tr refer to the reduced pressure and temperature respectively. The significance of the method presented lies in its utility and adaptability to computer applications. 25 refs., 2 figs., 4 tabs.

  11. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  12. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    To improve energy efficiency and give more access to renewable energy sources, low-temperature district heating (LTDH) is a promising concept to be realized in the future. However, concern about Legionella proliferation restricts applying low-temperature district heating in conventional systems with domestic hot water (DHW) circulation. In this study, a system with decentralized substations was analysed as a solution to this problem. Furthermore, a modification for the decentralized substation system were proposed in order to reduce the average return temperature. Models of conventional system with medium-temperature district heating, decentralized substation system with LTDH, and innovative decentralized substation system with LTDH were built based on the information of a case building. The annual distribution heat loss and the operating costs of the three scenarios were calculated and compared. From the results, realizing LTDH by the decentralized substation unit, 30% of the annual distribution heat loss inside the building can be saved compared to a conventional system with medium-temperature district heating. Replacing the bypass pipe with an in-line supply pipe and a heat pump, the innovative decentralized substation system can reduce distribution heat loss by 39% compared to the conventional system and by 12% compared to the normal decentralized substation system with bypass. - Highlights: • The system of decentralized substations can realize low-temperature district heating without running the risk of Legionella. • Decentralized substations help reduce the distribution heat loss inside the building compared to conventional system. • A new concept that can reduce the return temperature for district heating is proposed and analysed.

  13. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  14. Apparent heat capacity measurements and thermodynamic functions of D(−)-fructose by standard and temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Magoń, A.; Pyda, M.

    2013-01-01

    Highlights: ► Experimental, apparent heat capacity of fructose was investigated by advanced thermal analysis. ► Equilibrium melting parameters of fructose were determined. ► Decomposition, superheating of crystalline fructose during melting process were presented. ► TGA, DSC, and TMDSC are useful tools for characterisation of fructose. - Abstract: The qualitative and quantitative thermal analyses of crystalline and amorphous D(−)-fructose were studied utilising methods of standard differential scanning calorimetry (DSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-isothermal TMDSC), and thermogravimetric analysis (TGA). Advanced thermal analysis of fructose was performed based on heat capacity. The apparent total and apparent reversing heat capacities, as well as phase transition parameters were examined on heating and cooling. The melting temperature, T m , of crystalline D(−)-fructose shows a heating rate dependency, which increases with raising the heating rate and leads to superheating. The equilibrium melting temperatures: T m ∘ (onset) = 370 K and T m ∘ (peak) = 372 K, and the equilibrium enthalpy of fusion Δ fus H ° = 30.30 kJ · mol −1 , of crystalline D(−)-fructose were estimated on heating for the results at zero heating rate. Anomalies in the heat capacity in the liquid state of D(−)-fructose, assigned as possible tautomerisation equilibrium, were analysed by DSC and quasi-isothermal TMDSC, both on heating and cooling. Thermal stability of crystals in the region of the melting temperature was examined by TGA and quasi-isothermal TMDSC. Melting, mutarotation, and degradation processes occur simultaneously and there are differences in values of the liquid heat capacity of D(−)-fructose with varied thermal history, measured by quasi-isothermal TMDSC. Annealing of amorphous D(−)-fructose between the glass transition temperature, T g , and the melting temperature, T m , also leads to

  15. Low-tmperature Heat Capacities and Standard Molar Enthalpy of Formation of 4-Nitrobenzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    MENG, Qingfen; TAN, Zhicheng; WANG, Xiaohuan; DONG, Yaping; LI, Wu; SHI, Quan

    2009-01-01

    Low-temperature heat capacities of 4-nitrobenzyl alcohol (4-NBA) have been measured by a high precision automated adiabatic calorimeter over the temperature range from 78 to 396 K. The melting temperature, the molar calculated in the range from 80 to 400 K at the interval of 5 K. The constant-volume energy and standard molar en- at T=298.15 K. The standard molar enthalpy of formation has been derived, ΔfHom(C7H7NO3, s)=-(206.49± namic quantities through a Hess thermochemical cycle.

  16. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  17. Low-temperature heating systems and public administration

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, H

    1981-06-01

    The even temperature distribution and comfortable climate in rooms heated by low-temperature heating systems is mostly due to one of the preconditions of this type of heating system namely, efficient thermal insulation of the rooms. Thermal insulation is already required as part of the pertinent legal regulations but it is also in the interest of the builder-owner as it will, in the long run, greatly reduce the heating cost.

  18. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  19. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  20. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  1. Reprint of “Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry”

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2015-03-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  2. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  3. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  4. Determination of magnetic characteristics of nanoparticles by low-temperature calorimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ugulava, A.; Toklikishvili, Z. [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Chkhaidze, S., E-mail: simon.chkhaidze@tsu.ge [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Kekutia, Sh. [V. Chavchanidze Institute of Cybernetics, at the Technical State University, S. Euli str. 5, 0186 Tbilisi, Georgia (United States)

    2017-05-15

    At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

  5. Transient heat transfer to laminar flow from a flat plate with heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1975-01-01

    As the most basic problem in transient heat transfer, a plate with heat capacity was studied, which is placed in uniform laminar flow in parallel with it, is initially at the same temperature as that of the fluid, and then abruptly is given a specific heating value. The equation of transient heat transfer in this case was solved by numerical calculation. The following matters were revealed. (1) The equation was able to be solved by the application of Laplace transformation and numerical inverse transformation. (2) Wall temperature when the heat capacity of a plate was zero initially agreed well with heat conduction solution. With increase of the heat capacity, the delay in wall temperature rise was increased. (3) Heat transfer rate in case of the heat capacity of zero initially agreed well with the heat-conduction solution. With increase of the heat capacity, the Nusselt number increased. (4) Temperature distribution in case of the heat capacity of zero initially agreed well with the heat-conduction solution. (Mori, K.)

  6. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator......Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  7. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...

  8. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  9. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations

    International Nuclear Information System (INIS)

    Lin Peiyin; Soriano, Allan N.; Leron, Rhoda B.; Li Menghui

    2010-01-01

    As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were ±1% and ±2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.

  10. Heat capacity and thermal expansion of the itinerant helimagnet MnSi

    International Nuclear Information System (INIS)

    Stishov, S M; Petrova, A E; Khasanov, S; Panova, G Kh; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-01-01

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi

  11. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  12. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  13. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  14. Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)

    International Nuclear Information System (INIS)

    Chen, Y.-R.; Caparanga, Alvin R.; Soriano, Allan N.; Li, M.-H.

    2010-01-01

    A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H 2 O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich-Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.

  15. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  16. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  17. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  18. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  19. Heat Transfer and Cooling Techniques at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B [Saclay (France)

    2014-07-01

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  20. Potential of low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  1. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.

    Science.gov (United States)

    Stishov, S M; Petrova, A E; Khasanov, S; Kh Panova, G; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-06-11

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi.

  2. Theoretical study of the magnetic heat capacity of praseodymium metal

    International Nuclear Information System (INIS)

    Glenn, R.L.

    1976-01-01

    The heat capacity of praseodymium metal at low temperatures is calculated using a valence change model. The effect of the presence of a small temperature-dependent and field-dependent percentage of 4+ ions is computed using crystalfield techniques. Good agreement with the experimentally determined values is obtained for polycrystalline and single-crystal praseodymium in zero field and various other fields up to 30 koe. In addition, the effects of selected exchange models on the heat capacity and susceptibility are computed. The model is shown to be compatible with both the parallel and perpendicular susceptibilities

  3. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  4. Low temperature heat capacity measurements of the spin-liquid states of hydrogenated and deuterated κ-(BEDT-TTF)2Cu2(CN)3

    International Nuclear Information System (INIS)

    Yamashita, S.; Yamamoto, T.; Nakazawa, Y.

    2010-01-01

    Heat capacity measurements of organic triangular lattice compound κ-(BEDT-TTF) 2 Cu 2 (CN) 3 were performed to discuss the low energy excitations from the spin-liquid ground states. Existence of the T-linear electronic coefficient with finite electronic heat capacity coefficient γ was confirmed in three different samples from different batches, although small sample dependence was observed in the absolute values of the heat capacities. Concerning the sample in which hydrogen atoms in ethylene group in BEDT-TTF molecule have been substituted by deuterons, we have observed almost similar thermodynamic behavior as the hydrogenated sample. The absence of drastic change of electronic properties of this compound is consistent with the electronic phase diagram given by Kurosaki et al. [11] (Phys. Rev. Lett. 95 (2005) 17001). The obtained data are well consistent with the previous heat capacity experiments. The existence of the γ term demonstrates that the excitations from the quantum spin-liquid states show a gapless behavior at least down to 0.7 K.

  5. Mapping of low temperature heat sources in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Holm, Fridolin Müller; Huang, Baijia

    2015-01-01

    heat. The total accessible waste heat potential is found to be approximately 266 PJ per year with 58 % of it below 100 °C. In the natural heat category, temperatures below 20 °C originate from ambient air, sea water and shallow geothermal energy, and temperatures up to 100 °C are found for solar...... and deep geothermal energy. The theoretical solar thermal potential alone would be above 500 PJ per year. For the development of advanced thermodynamic cycles for the integration of heat sources in the Danish energy system, several areas of interest are determined. In the maritime transport sector a high......Low temperature heat sources are available in many applications, ranging from waste heat from industrial processes and buildings to geothermal and solar heat sources. Technical advancements, such as heat pumps with novel cycle design and multi-component working fluids, make the utilisation of many...

  6. Lithium-ion battery structure that self-heats at low temperatures

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  7. Lithium-ion battery structure that self-heats at low temperatures.

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  8. Interpretation of heat capacity anomalies: low temperature antiferromagnetism in YbSnPd2

    Science.gov (United States)

    Giudicelli, P.; Bernhoeft, N.

    2004-07-01

    Since the early experiments on critical opalescence, heat capacity anomalies, which herald continuous transitions of phase, are frequently given microscopic interpretation through an appropriate space-time correlation function. Unfortunately, the global nature of the probe often results in an ill-defined spectral representation of the integrated modes and, as such, help is often sought in the general theoretical consensus of the temporal slowing down and spatial divergence of the critical modes. In this letter it is explicitly shown how a large and continuous anomaly in the heat capacity, which announces the antiferromagnetic phase transition in YbSnPd2 as established by independent neutron diffraction techniques, is not associated with a critical slowing down of spatially correlated modes but, surprisingly, with a stiffening of spatially local excitations. It appears that the results may be of relevance in the study of other strongly correlated electron systems.

  9. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  10. Desalination by very low temperature nuclear heat

    International Nuclear Information System (INIS)

    Saari, Risto

    1977-01-01

    A new sea water desalination method has been developed: Nord-Aqua Vacuum Evaporation, which utilizes waste heat at a very low temperature. The requisite vacuum is obtained by the aid of a barometric column and siphon, and the dissolved air is removed from the vacuum by means of water flows. According to test results from a pilot plant, the process is operable if the waste heat exists at a temperature 7degC higher than ambient. The pumping energy which is then required is 9 kcal/kg, or 1.5% of the heat of vaporization of water. Calculations reveal that the method is economically considerably superior to conventional distilling methods. (author)

  11. Anomalous thermal property behaviour of uranium at low temperatures

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1975-01-01

    Low temperature heat capacity curves are presented for polycrystalline 235 U and 238 U metals in different microstructural states and of different purities. Thermal conductivity versus temperature curves are shown for low-purity, polycrystalline 238 U in the temperature range between approximately 80 and 373 0 K for metal having undergone varied fabrication procedures. Published information suggests that there will be no structural modification in very pure uranium below room temperature. The influence of impurities on low temperature transitions may be through their effects on dislocation formation. Thermal conductivity and heat capacity runs started at approximately 80 0 K, after holding specimens at the temperature of boiling liquid nitrogen, do not give results which match up with runs started below 36 to 43 0 K. Result of measurements started at approximately 80 0 K indicate that an ordering mechanism is predominating, with microstructure rather than purity being the important factor. This can be explained if ordering at approximately 80 0 K is through lattice imperfections remaining from prior specimen processing. The drop off in heat capacity appearing above 36 0 K in the C/sub p/ versus T curves of 235 U and 238 U suggest the possibility of: (1) heat evolution from a developing antiphase structure or (2) heat evolution similar to that noted with a quenched martensite. Physical property changes in 238 U at 250 to 270 0 K and at 325 to 350 0 K seem to be related to the heat evolution which starts at 36 0 K during adiabatic heat capacity measurements. The data from heat capacity and thermal conductivity measurements are analyzed to help explain the significance of the sometimes very slight physical property changes observed at 36 to 43, approximately 80, 250 to 270 and 325 to 350 0 K in uranium metal. (U.S.)

  12. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  13. Heat capacity jumps induced by magnetic field in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, E.V. [Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Charnaya, E.V., E-mail: charnaya@live.com [Physics Department, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Lee, M.K. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); NSC Instrument Center at NCKU, Tainan, 70101 Taiwan (China); Chang, L.J. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Khazanov, E.N.; Taranov, A.V. [Kotel' nikov Institute of Radio Engineering and Electronics RAS, 125009 (Russian Federation); Bugaev, A.S. [Moscow Institute of Physics and Technology, Moscow, 141700 (Russian Federation)

    2017-01-30

    Measurements of the heat capacity were carried out for the mixed Er{sub 2}HoAl{sub 5}O{sub 12} garnet at magnetic fields up to 15 T. The heat capacity variations at low temperatures were dominated by the Schottky anomalies. In addition, anomalous sharp steps in the heat capacity were observed in magnetic fields stronger than 8 T upon cooling as well as upon warming. The temperatures of the steps increased with increasing magnetic field. Jumps found upon cooling and warming were shifted relative to each other showing the thermal hysteresis. The sharp decrease in the heat capacity at low temperatures suggested the blocking of magnetic flips induced by strong enough magnetic fields. - Highlights: • Anomalous steps of the heat capacity were observed in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet. • The steps are induced by magnetic field at low temperatures. • The temperatures of the steps increased with increasing magnetic field. • The steps show a pronounced thermal hysteresis. • The findings suggest the blocking of the magnetic moment flips at field.

  14. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  15. District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Grundahl, Lars

    2018-01-01

    District heating has the potential to play a key role in the transition towards a renewable energy system. However, the development towards reduced heat demands threatens the feasibility of district heating. Despite this challenge, opportunity exists in the form of fourth generation district...... heating, which operates at lower temperatures and enables better renewable integration. This article investigates this challenge by examining the district heating potential within three scenarios: The first is a reference scenario with current heat demand and temperatures, the second includes heat demand...... costs. The models are applied using an example case of The Northern Region of Denmark. The article concludes that the district heating potential is highest in the reference scenario. When heat savings are introduced, district heating expansions, in most cases, will not be feasible. Introducing low...

  16. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  17. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat

    International Nuclear Information System (INIS)

    Sun, Wenqiang; Yue, Xiaoyu; Wang, Yanhui

    2017-01-01

    Highlights: • ORC-ARC and ORC-ERC driven by low-temperature waste heat are investigated. • Thermodynamic models of basic ORC, ORC-ARC, and ORC-ERC are developed. • Exergy efficiencies of ORC, ORC-ARC, and ORC-ERC are parametrically simulated. • Suitable application conditions of ORC-ARC and ORC-ERC are reported. - Abstract: There is large amount of waste heat resources in industrial processes. However, most low-temperature waste heat is directly discharged into the environment. With the advantages of being energy-efficient, enabling investment-savings and being environmentally friendly, the Organic Rankine Cycle (ORC) plays an important role in recycling energy from low-temperature waste heat. In this study, the ORC system driven by industrial low-temperature waste heat was analyzed and optimized. The impacts of the operational parameters, including evaporation temperature, condensation temperature, and degree of superheat, on the thermodynamic performances of ORC system were conducted, with R113 used as the working fluid. In addition, the ORC-based cycles, combined with the Absorption Refrigeration Cycle (ARC) and the Ejector Refrigeration Cycle (ERC), were investigated to recover waste heat from low-temperature flue gas. The uncoupled ORC-ARC and ORC-ERC systems can generate both power and cooling for external uses. The exergy efficiency of both systems decreases with the increase of the evaporation temperature of the ORC. The net power output, the refrigerating capacity and the resultant exergy efficiency of the uncoupled ORC-ARC are all higher than those of the ORC-ERC for the evaporation temperature of the basic ORC >153 °C, in the investigated application. Finally, suitable application conditions over other temperature ranges are also given.

  18. Low-temperature heat capacity and thermodynamic properties of [Re2(Ile)4(H2O)8](ClO4)6 (Re=Nd, Er, Ile=isoleucine)

    International Nuclear Information System (INIS)

    Lan Xiaozheng; Tan Zhicheng; Liu Beiping; Nan Zhaodong; Sun Lixian; Xu Fen

    2003-01-01

    The heat capacities of two kinds of rare-earth element solid complexes with isoleucine [Re 2 (Ile) 4 (H 2 O) 8 ](ClO 4 ) 6 (where Re=Nd, Er, and Ile=isoleucine) have been measured by an automatic adiabatic calorimeter in the temperature range from 80 to 370 K. Two solid-solid phase transitions were found from the C p curve of Nd formed complex in the range of 165-175 K with a peak temperature of 167.88 K and in the range of 195-210 K with a peak temperature of 202.13 K. The corresponding molar enthalpies of these phase transitions were determined to be 404.61 J mol -1 and 2.955 kJ mol -1 , respectively. One solid-solid phase transition was found for the Er formed complex in the range of 190-205 K with a peak temperature of 193.42 K. The corresponding molar enthalpy of this transition was 14.11 kJ mol -1 . Smooth heat capacities and thermodynamic functions relative to the standard state (298.15 K), H T -H 298.15 , S T -S 298.15 and -[G T -G 298.15 ], of the two compounds, were calculated on basis of experimental heat capacity data. Possible mechanisms of thermal decompositions for the pair of compounds were suggested according to the thermogravimetric (TG) analysis

  19. Experimental study of energy performance in low-temperature hydronic heating systems

    DEFF Research Database (Denmark)

    Hesaraki, Arefeh; Bourdakis, Eleftherios; Ploskić, Adnan

    2015-01-01

    Energy consumption, thermal environment and environmental impacts were analytically and experimentally studied for different types of heat emitters. The heat emitters studied were conventional radiator, ventilation radiator, and floor heating with medium-, low-, and very-low-temperature supply....... The supply water temperature in all measurements for conventional radiator was significantly higher than ventilation radiator and floor heating; namely, 45°C. Experimental results indicated that the mean indoor temperature was close to the acceptable level of 22°C in all cases. For energy calculations......, it was assumed that all heat emitters were connected to a ground-source heat pump. Analytical calculations showed that using ventilation radiator and floor heating instead of conventional radiator resulted in a saving of 17% and 22% in heat pump's electricity consumption, respectively. This would reduce the CO2...

  20. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  1. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  2. Heat capacity of poly(lactic acid)

    International Nuclear Information System (INIS)

    Pyda, M.; Bopp, R.C.; Wunderlich, B.

    2004-01-01

    The heat capacity of poly(lactic acid) (PLA) is reported from T=(5 to 600) K as obtained by differential scanning calorimetry (d.s.c.) and adiabatic calorimetry. The heat capacity of solid PLA is linked to its group vibrational spectrum and the skeletal vibrations, the latter being described by a Tarasov equation with Θ 1 =574 K, Θ 2 =Θ 3 =52 K, and nine skeletal vibrations. The calculated and experimental heat capacities agree to ±3% between T=(5 and 300) K. The experimental heat capacity of liquid PLA can be expressed by C p (liquid)=(120.17+0.076T) J · K -1 · mol -1 and has been compared to the ATHAS Data Bank, using contributions of other polymers with the same constituent groups. The glass transition temperature of amorphous PLA occurs at T=332.5 K with a change in heat capacity of 43.8 J · K -1 · mol -1 . Depending on thermal history, semi-crystalline PLA has a melting endotherm between T=(418 and 432) K with variable heats of fusion. For 100% crystalline PLA, the heat of fusion is estimated to be (6.55 ± 0.02) kJ · mol -1 at T=480 K. With these results, the enthalpy, entropy, and Gibbs function of crystalline and amorphous PLA were obtained. For semi-crystalline samples, one can check changes of crystallinity with temperature and judge the presence of rigid-amorphous fractions

  3. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  4. The Heat Capacity of Ideal Gases

    Science.gov (United States)

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  5. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  6. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  7. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  8. Case study of low-temperature heating in an existing single-family house-A test of methods for simulation of heating system temperatures

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    and the calculated indoor temperatures and radiator return temperatures were compared to temperatures measured in the case house. The results showed that the detail of the simulation model has a large influence on the results obtained. The estimated return temperatures from the radiators varied by up to 16 degrees C...... depending on the assumptions made in the simulation model. The results indicated that a detailed building simulation model can provide a good estimate of the actual heating system operation, provided that actual radiators and realistic indoor temperatures are taken into account in the model. (C) 2016......Low-temperature heating provides an efficient way of heating our buildings. To obtain a high efficiency it is important that the heating systems in the buildings are operated with both low supply and return temperatures. This study set out to investigate how typical assumptions in the modelling...

  9. Experimental heat capacity of solid hydrogen as a function of molar volume

    International Nuclear Information System (INIS)

    Krause, J.K.

    1978-01-01

    Constant volume heat capacity measurements have been made on six solid hydrogen samples with low orthohydrogen concentrations. The measurements extend from approximately 1.5 K to the melting line, with molar volumes ranging from 22.787 cm 3 /mole to 16.193 cm 3 /mole. Although clustering of the ortho molecules was observed, the low temperature heat capacity anomaly due to the orthohydrogen pairs could be described quite well by the assumption of a fixed distribution. The data were corrected to obtain a lattice heat capacity which on extrapolation to T = 0 yielded Debye temperatures and a volume dependent Grueneisen parameter. A modified Mie-Grueneisen approximation was used to define a volume and temperature dependent Grueneisen parameter which was used to calculate the equation of state, P(V,T), and isothermal bulk modulus, B/sub T/(V,T), for the six isochores. An extrapolation of the equation of state to T = 0 and P = 0 by two different methods yields a molar volume which, when compared with other determinations, gives a recommended value of 23.20 +- 0.05 cm 3 /mole. A rapid increase in the conversion rate of orthohydrogen to parahydrogen was observed at approximately theta/sub o/12. The molar volumes along the melting curve also have been determined directly for the first time in this volume range. These results have been used to show that a low temperature Lindemann melting relation is only approximately valid for solid hydrogen to 50 K

  10. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  11. Expieriences On Low-Temperature District Heating In Lystrup – Denmark

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Christiansen, Christian Holm; Brand, Marek

    2011-01-01

    by implementing Low-temperature district heating systems. Demonstration cases in EnergyFlexHouse and Boligforeningen Ringgården” EUDP 2011. A key challenge for optimum and competitive district heating (DH) system operation is reducing heat loss in networks. Today building regulations in most countries demand...

  12. The capacity credit of micro-combined heat and power

    International Nuclear Information System (INIS)

    Hawkes, A.D.; Leach, M.A.

    2008-01-01

    This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units-Stirling engine, internal combustion engine, and fuel cell systems-operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims

  13. Heat capacity measurement of CeNbO4(s)

    International Nuclear Information System (INIS)

    Bhojane, S.M.; Kulkarni, Jayanthi; Kulkarni, S.G.

    2012-01-01

    Molar heat capacity of CeNbO 4 (s) was determined using differential scanning calorimeter in the temperature range of 550 to 900 K. The molar heat capacity values were least squares analysed and the dependence of molar heat capacity with temperature for CeNbO 4 (s) can be given as, J K -1 mol -1 = 94.7320 + 0.0852T-1.6073 x 10 6 T -2 (550≤T(K)≤900) Cerium is commonly used as an inactive analogue to plutonium; also it is an important fission product with moderate yield. Various Nb alloys are used as cladding material in nuclear industry. Hosts of thermodynamic data are needed to understand the various phenomena that occur in a nuclear reactor. In the present study, the molar heat capacity of CeNbO 4 (s) has been determined using high temperature differential scanning calorimeter in temperature range 550 to 900 K. This is one of the important compounds in the ternary system of Ce-Nb-O

  14. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  15. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  16. Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing

    International Nuclear Information System (INIS)

    Podgornykh, S. M.; Svyazhin, A. D.; Shreder, E. I.; Marchenkov, V. V.; Dyakina, V. P.

    2007-01-01

    We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe 2 VAl and Fe 2 CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe 2 VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties

  17. Experimental research on novel adsorption chiller driven by low grade heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Shi, Z.X.; Yang, Q.R.; Tian, X.L.; Zhang, J.C.; Wu, J.Y.

    2007-01-01

    A novel silica gel-water adsorption chiller is developed. This chiller consists of three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber. In this chiller, only one vacuum valve is installed between the two adsorption/desorption vacuum chambers to improve its performance when it is driven by a low temperature heat source. The operational reliability of the chiller is highly improved because of fewer moving parts. In this work, the performance of the chiller is experimentally tested under a low grade heat source, such as 55-67 o C. The test results show that the performance of this chiller is satisfying when it is driven by a low grade heat source, such as 65 o C, and the cooling capacity (or refrigeration capacity) will reach about 5 kW when the hot water temperature is 65 o C, the cooling water temperature is 30.5 o C and the chilled water inlet temperature is 15.1 o C. The test results confirm that this kind of adsorption chiller can be effectively driven by a low grade heat source

  18. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  19. Change in heat load profile for typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    ) supply. When end-use-savings are implemented in buildings concurrent with the application of low-temperature district heating (DH) (supply=55°C, return=25°C) the heat demand profiles for the individual buildings will change. The reduction in peak load is important since it is the dimensioning foundation...... for the future DH-systems and in order to avoid oversized RE-based capacity, a long-term perspective needs to be taken. The results show that it is possible to design the DH-plants based on an average value of the 5 days with highest daily average loads without compromising with indoor thermal comfort. Applying...

  20. The Effect of Moisture Content and Temperature on the Specific Heat Capacity of Nut and Kernel of Two Iranian Pistachio Varieties

    Directory of Open Access Journals (Sweden)

    A.R Salari Kia

    2014-04-01

    Full Text Available Pistachio has a special ranking among Iranian agricultural products. Iran is known as the largest producer and exporter of pistachio in the world. Agricultural products are imposed under different thermal treatments during storage and processing. Designing all these processes requires thermal parameters of the products such as specific heat capacity. Regarding the importance of pistachio processing as an exportable product, in this study the specific heat capacity of nut and kernel of two varieties of Iranian pistachio (Kalle-Ghochi and Badami were investigated at four levels of moisture content (initial moisture content (5%, 15%, 25% and 40% w.b. and three levels of temperature (40, 50 and 60°C. In both varieties, the differences between the data were significant at the 1% of probability; however, the effect of moisture content was greater than that of temperature. The results indicated that the specific heat capacity of both nuts and kernels increase logarithmically with increase of moisture content and also increase linearly with increase of temperature. This parameter has altered for nut and kernel of Kalle-Ghochi and Badami varieties within the range of 1.039-2.936 kJ kg-1 K-1, 1.236-3.320 kJ kg-1 K-1, 0.887-2.773 kJ kg-1 K-1 and 0.811-2.914 kJ kg-1 K-1, respectively. Moreover, for any given level of temperature, the specific heat capacity of kernels was higher than that of nuts. Finally, regression models with high R2 values were developed to predict the specific heat capacity of pistachio varieties as a function of moisture content and temperature

  1. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    Science.gov (United States)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  2. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  3. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  4. Analysis and research on promising solutions of low temperature district heating without risk of legionella

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Fog, Jette M.

    2014-01-01

    Most regulations of domestic hot water supply temperature is around 55-60 oC, which potentially requires higher district heating temperature. However, high supply temperature of district heating causes many problems, such as the high heating loss, and obstacles for applying renewable energy...... resources. The most crucial restriction for applying low temperature district heating is the worry about the breakout of legionella, which exists preferably in low temperature hot water systems. Several novel techniques such as electric tracing and flat station were investigated for such dilemma. The pros...... and cons were compared in this paper. Both the energy and economy saving ratios were analysed comparing with high temperature supply scenario. Furthermore, the viability of the applications in different types of buildings for low temperature district heating (LTDH) was also discussed by using dynamic...

  5. On the low-temperature specific heat of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, M.A.

    2005-01-01

    Calorimetric experiments on icosahedral (Al-Re-Pd, Al-Mn-Pd) and decagonal (Al-Cu-Co, Al-Ni-Co) quasicrystals are described. For quasicrystals of both classes, the coefficient γ of the linear term to the specific heat falls into the range of 0.1-0.6 mJ/g-atom K 2 indicating a low density of energy states at Fermi level. For icosahedral Al-Mn-Pd, the cubic-in-temperature term to the specific heat is distinctly larger than the estimated contribution of long-wave acoustic excitations. On the contrary, the magnitude of the cubic-in-temperature term to the specific heat of decagonal Al-Ni-Co is in agreement,within the experimental accuracy, with the Debye acoustic contribution from the results of low-temperature measurements of the elastic modules [ru

  6. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment

    DEFF Research Database (Denmark)

    Brand, Marek; Svendsen, Svend

    2013-01-01

    Denmark is aiming for a fossil-free heating sector for buildings by 2035. Judging by the national heating plan, this will be achieved mainly by a further spread of DH (district heating) based on the renewable heat sources. To make the most cost-effective use of these sources, the DH supply...... and, for 98% of the year, to below 60 °C. However for the temperatures below 60 °C a low-temperature DH substation is required for DHW (domestic hot water) heating. This research shows that renewable sources of heat can be integrated into the DH system without problems and contribute to the fossil...... temperature should be as low as possible. We used IDA–ICE software to simulate a typical Danish single-family house from the 1970s connected to DH at three different stages of envelope and space heating system refurbishment. We wanted to investigate how low the DH supply temperature can be without reducing...

  7. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  8. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  9. The development of low-temperature calorimeter on the Peltier elements

    Science.gov (United States)

    Baturevich, Tatyana; Tyagunin, Anatoly

    2017-09-01

    The article is devoted to the design of low-temperature calorimeter on the Peltier elements. This calorimeter can be used to study the temperature dependence of the specific heat capacity of different substances.

  10. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  11. The lumped heat capacity method applied to target heating

    OpenAIRE

    Rickards, J.

    2013-01-01

    The temperature of metal samples was measured while they were bombarded by the beam from the a particle accelerator. The evolution of the temperature with time can be explained using the lumped heat capacity method of heat transfer. A strong dependence on the type of mounting was found. Se midió la temperatura de muestras metálicas al ser bombardeadas por el haz de iones del Acelerador Pelletron del Instituto de Física. La evolución de la temperatura con el tiempo se puede explicar usando ...

  12. Prediction of nanofluids properties: the density and the heat capacity

    Science.gov (United States)

    Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.

    2017-11-01

    The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.

  13. Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney

    International Nuclear Information System (INIS)

    Chen, Kai; Wang, Jiangfeng; Dai, Yiping; Liu, Yuqi

    2014-01-01

    Highlights: • A low grade waste heat recovery system based on the concept of solar chimney is proposed. • The effects of three key factors on the system performance are examined. • Thermodynamics analysis is to find a better way to utilize low grade heat source efficiently. - Abstract: The utilization of low-temperature waste heat draws more and more attention due to serious energy crisis nowadays. This paper proposes a low-temperature waste heat recovery system based on the concept of solar chimney. In the system, low-temperature waste heat is used to heat air to produce an air updraft in the chimney tower. The air updraft propels a turbine fixed at the base of the chimney tower to convert waste heat into electricity. The mathematical model of the system is established based on first law and second law of thermodynamics. Hot water is selected as the representative of low-temperature waste heat sources for researching. The heat source temperature, ambient air temperature and area of heat transfer are examined to evaluate their effects on the system performance such as velocity of updraft, mass flow rate of air, power output, conversion efficiency, and exergy efficiency. The velocity of air demonstrates a better stability than the mass flow rate of air and the pressure difference when temperature of heat source, ambient air temperature or area of heat transfer changes

  14. Prediction of Liquid Specific Heat Capacity of Food Lipids.

    Science.gov (United States)

    Zhu, Xiaoyi; Phinney, David M; Paluri, Sravanti; Heldman, Dennis R

    2018-04-01

    Specific heat capacity (c p ) is a temperature dependent physical property of foods. Lipid-being a macromolecular component of food-provides some fraction of the food's overall heat capacity. Fats/oils are complex chemicals that are generally defined by carbon length and degree of unsaturation. The objective of this investigation was to use advanced specific heat capacity measurement to determine the effect of fatty acid chemical structure on specific heat capacity of food lipids. In this investigation, the specific heat capacity of a series of triacylglycerols were measured to quantify the influence of fatty acid composition on specific heat capacity based on two parameters; the -average carbon number (C) and the average number of double bonds (U). A prediction model for specific heat capacity of food lipids as a function of C, U and temperature (T) has been developed. A multiple linear regression to the three-parameter model (R 2 = 0.87) provided a good fit to the experimental data. The prediction model was evaluated by comparison with previously published specific heat capacity values of vegetable oils. It was found that the model provided a 0.53% error, while three other models from the literature predicted c p values with 0.85% to 1.83% average relative deviation from experimental data. The outcomes from this research confirm that the thermophysical properties of fat present in foods are directly related to the physical chemical properties. The specific heat capacity of food products is widely used in process design. Improvements of current models to predict specific heat capacity of food products will assist in the development of efficient processes and in the control of food quality and safety. Furthermore, the understanding of how changes in chemical structure of macromolecular components of foods effect thermophysical properties may begin to allude to models that are not just empirical, but represent portions of the differences in chemistry. © 2018

  15. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  16. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  17. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  18. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  19. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...... be supplied through upgrading the return water from the MTDH network with a small centralized heat pump. Alternatively, the supply and return water from the MTDH network can be mixed with a shunt at the junction point to supply the LTDH network. Comparing with the second approach, the heat pump system...

  20. Specific heat of superconducting metallic glasses at low temperatures; Spezifische Waerme von supraleitenden metallischen Glaesern bei tiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, Andreas

    2017-11-15

    In the framework of this thesis we performed, for the first time, an in-depth investigation of the thermodynamic properties of superconducting bulk metallic glasses (BMGs) by means of specific heat measurements in the temperature range between 25 mK and 300 K. To determine the specific heat we used a setup based on the well-established relaxation method. Furthermore we developed a novel micro-fabricated platform to measure superconducting, mg-sized samples down to T=5 mK. The platform temperature is measured by a metallic paramagnetic Ag:Er sensor that is inductively coupled to the input coil of a dc-SQUID by means of a micro-structured gradiometric meander coil. Thereby, we reached a temperature resolution of less than 30 nK/√(Hz) and a very low addenda heat capacity below 200 pJ/K at 50 mK. Connecting the obtained results with thermal conductivity data we were able to consistently model the various degrees of freedom in these BMGs and their interaction mechanisms: For temperatures T>2 K, we find pronounced low temperature anomalies in the phononic specific heat, which are attributed to localized harmonic vibration modes. In the superconducting state close to T{sub C}, where interactions of atomic tunneling systems with quasi-particles need to be taken into account, both measurements agree well with BCS-theory predictions. Far below T{sub C} we find good agreement between the data and the standard tunneling model predictions.

  1. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution...

  2. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid

    Science.gov (United States)

    Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew

    2008-10-01

    A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or

  3. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Bharathan, D.; Nix, G.

    2001-01-01

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  4. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  5. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  6. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  7. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  8. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  9. Design of a low temperature district heating network with supply recirculation

    DEFF Research Database (Denmark)

    Li, Hongwei; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    The focus on continuing improving building energy efficiency and reducing building energy consumption brings the key impetus for the development of the new generation district heating (DH) system. In the new generation DH network, the supply and return temperature are designed low in order to sig...... calculates the heat loss in the twin pipe as that in the single pipe. The influence of this simplification on the supply/return water temperature prediction was analyzed by solving the coupled differential energy equations.......-pass system starts to function. The aim of this paper is to investigate the influence of by-pass water on the network return temperature and introduce the concept of supply water recirculation into the network design so that the traditional by-pass system can be avoided. Instead of mixing the by-pass water......The focus on continuing improving building energy efficiency and reducing building energy consumption brings the key impetus for the development of the new generation district heating (DH) system. In the new generation DH network, the supply and return temperature are designed low in order...

  10. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  11. Conversion of medium and low temperature heat to power

    Science.gov (United States)

    Fischer, Johann; Wendland, Martin; Lai, Ngoc Anh

    2013-04-01

    Presently most electricity is produced in power plants which use high temperature heat supplied by coal, oil, gas or nuclear fission and Clausius-Rankine cycles (CRC) with water as working fluid (WF). On the other hand, geo-, solar-, ocean-, and biogenic-heat have medium and low temperatures. At these temperatures, however, the use of other WF and/or other cycles can yield higher efficiencies than those of the water-CRC. For an assessment of the efficiency we model systems which include the heat transfer to and from the WF and the cycle. Optimization criterion is the exergy efficiency defined as the ratio of the net power output to the incoming exergy flow of the heat carrier. First, for a better understanding we discuss some thermodynamic properties of the WFs: 1) the critical point parameters, 2) the shape of the vapour- liquid coexistence curve in the temperature vs entropy (T,s)-diagram which may be either bell-shaped or overhanging [1,2], and 3) the shape of sub- and supercritical isobars for pure fluids and fluid mixtures. Second, we show that the problems of a CRC with water at lower temperatures are 1) the shape of the T,s-diagram and 2) the exergy loss during heat transfer to the WF. The first problem can be overcome by using an organic working fluid in the CRC which then is called organic Rankine cycle (ORC). The second problem is reduced by supercritical organic Rankine cycles (sORC) [1,2], trilateral cycles (TLC) and the more general power-flash cycles (PFC) [2], and organic flash cycles (OFC) [3]. Next, selected results for systems with the above mentioned cycles will be presented. The heat carrier inlet temperatures THC range from 120°C to 350°C.The pure working fluids are water, refrigerants, alkanes, aromates and siloxanes and have to be selected to match with THC. It is found that TLC with water have the highest efficiencies but show very large volume flows at lower temperatures. Moreover, expansion machines for TLC and PFC are still under

  12. Space heating with ultra-low-temperature district heating - a case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2017-01-01

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low temperature district heating with a supply temperature as low as 45 degrees C for the main part...... of the year. The houses were heated by the existing hydraulic radiator systems, while domestic hot water was prepared by use of district heating and electric boosting. This paper evaluated the heating system temperatures that were necessary in order to maintain thermal comfort in four of the houses. First...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...

  13. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  14. ISOCHORIC HEAT CAPACITY OF 1% AQUEOUS SOLUTION OF MAGNESIUM CHLORIDE

    Directory of Open Access Journals (Sweden)

    V. I. Dvoryanchikov

    2016-01-01

    Full Text Available Aim. The aim is to conduct an experimental study of isochoric heat capacity of 1% aqueous solution of magnesium chloride along the phase boundary curve.Method. In order to determine the isochoric heat capacity at the phase boundary curve we used the adiabatic calorimeter of KH. I. Amirkhanov.Results. Results of the study of the isochoric heat capacity depending on the temperature are given in tables and figures; the findings are compared with those of other researchers. When evaluating a complex system, we ought not to evaluate its effectiveness on the basis of only one criterion, even a very important, in this case must take into account the requirements of the technical, economic, environmental and of other natures.Conclusions. When solving optimization problems of efficiency in geothermal energy it is necessary to take into account the fact of the temperature dependence of the heat and density. The temperature dependence of the density and heat capacity in the calculations significantly affect the value of the efficiency criterion to be taken into account, otherwise the calculation error can be up to 20%. The data obtained from the isochoric heat capacity of aqueous solutions of magnesium chloride is compared with the data for water and aqueous solutions of NaCl and NaOH, obtained previously, which may be represented as a model of geothermal and sea water.

  15. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  16. Standard molar volumes and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate at temperatures up to 573 K and pressures to 28 MPa

    International Nuclear Information System (INIS)

    Pourtier, Emilie; Ballerat-Busserolles, Karine; Majer, Vladimir; Šedlbauer, Josef

    2013-01-01

    Highlights: ► Original HT/HP data for NaTr(aq) obtained using non-commercial instruments. ► First heat capacity data for NaTr(aq) at conditions remote from ambient. ► Correction for association when calculating stand. therm. properties of Tr(aq) anion. - Abstract: Densities and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate (sodium triflate) of concentrations from 0.025 to 0.3 mol · kg −1 were measured with high temperature, high pressure custom-made instruments at temperatures up to 573 K and at pressures up to 28 MPa. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The results for volumetric properties are consistent with earlier literature data, but no previous measurements exist for heat capacities of sodium triflate at superambient conditions. The new data were used for calculating the standard molar volumes and heat capacities for the triflate anion and compared with the results for triflic acid that should be essentially identical within the expected error margins. At temperatures above 473 K an effort was made to refine the processing of literature data for HCl(aq), taking into account its partial association, and subsequently to modify the value for Na + ion calculated from the standard thermodynamic values of NaCl(aq) where its ion pairing was already considered. This approach yields reasonable agreement at high temperatures between the values for triflate ion calculated from its salt and those for triflic acid.

  17. Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid

    International Nuclear Information System (INIS)

    Zhao, Yingru; Chen, Jincan

    2007-01-01

    An irreversible cycle model of the Diesel heat engine is established in which the temperature dependent heat capacities of the working fluid, the irreversibilities resulting from non-isentropic compression and expansion processes and heat leak losses through the cylinder wall are taken into account. The adiabatic equation of ideal gases with temperature dependent heat capacity is strictly deduced without using the additional approximation condition in the relevant literature and is used to analyze the performance of the Diesel heat engine. Expressions for the work output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the Diesel heat engine are presented for a set of given parameters. The optimum criteria of some important parameters such as the work output, efficiency, pressure ratio and temperatures of the working fluid are obtained. Moreover, the influence of the compression and expansion efficiencies, variable heat capacities, heat leak and other parameters on the performance of the cycle is discussed in detail. The results obtained may provide a theoretical basis for both optimal design and operation of real Diesel heat engines

  18. Peculiar features of heat capacity for Cu and Ni nanoclusters

    International Nuclear Information System (INIS)

    Gafner, S. L.; Redel, L. V.; Gafner, Yu. Ya.; Samsonov, V. M.

    2011-01-01

    The heat capacity of copper and nickel clusters (from 2 to 6 nm in diameter) was investigated in the temperature range 200–800 K using molecular dynamics method and a modified tight-binding potential. The simulation results demonstrate a very good agreement with the available experimental data at T = 200 K and a fairy good agreement at higher temperatures. A number of regular trends are revealed in computer experiments which agree with the corresponding theoretical predictions. A conclusion is made that in the case of single free clusters the heat capacity may exceed the capacity of the corresponding bulk material. It is found that at 200 K, the copper nanocluster (D = 6 nm) heat capacity is higher by 10% and for nickel cluster by 13%. The difference diminishes with increasing the nanoparticles size proportionally to the relative number of surface atoms. A conclusion is made that very high values of the nanostructure heat capacity observed in laboratory experiments should not be attributed to free clusters, i.e., the effect in question is caused by other reasons.

  19. The future of the low temperature district heating reactor

    International Nuclear Information System (INIS)

    Lu Yingzhong; Wang Dazhong; Ma Changwen; Dong Duo; Tian Jiafu.

    1984-01-01

    In this paper, the role, development and situation of the low temperature district heating reactor (LTDHR) are briefly summarized. There are four types of LTDHR. They are PWR, reactor with boiling in the chimney, organic reactor and swimming pool reactor. The features of these reactors are introduced. The situation and role of the LTDHR in the future of the energy system are also discussed. The experiment on nuclear district heating with the swimming pool reactor in Qinghua Univ. is described briefly. (Author)

  20. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  1. Flue gas heat recovery operating below the dew point and its utilisation for low temperature heating installations

    Energy Technology Data Exchange (ETDEWEB)

    Wilsdorf, J.

    1986-11-01

    This paper deals at first with the characteristics of two principal systems for the flue gas heat recovery by reducing the temperature below the dew point. With test results on experimental plants are shown the typical differences between surface and direct contact heat exchange. A second part informs about experiences from the application for low temperature heating installations, especially about thermodynamics condensate quality and technical design. The possible increasing of the efficiency ranges between 10 to 20 per cent.

  2. Heat treatments and low temperature fracture toughness of a Ti-6A1-4V alloy

    International Nuclear Information System (INIS)

    Nagai, K.; Hiraga, K.; Ishikawa, K.; Ogata, T.

    1984-01-01

    Titanium alloy is one of the reliable structural materials for cryogenic use owing to its high strength, high specific strength and low thermal conductivity. Heat treatment is one method of controlling the normally poor fracture toughness of this alloy at ambient temperature. However, there have been few attempts to improve the low temperature fracture toughness by heat treatment. This study was conducted to elucidate the effects of heat treatments on the low temperature fracture toughness in a Ti-6A1-4V alloy. The effects of the heat treatments were as follows: the beta treatment was a very feasible method to improve the low temperature fracture properties; the alpha+beta treatment was favorable for the increment in the low temperature ductility but did not largely improve the fracture toughness; the double treatment yielded good ductility but was not useful for improving the fracture toughness

  3. Vibrational dynamics and heat capacity of polyglycine I.

    Science.gov (United States)

    Porwal, Vikas; Misra, Radha Mohan; Tandon, Poonam; Gupta, Vishwambhar Dayal

    2004-02-01

    Earlier works on polyglycine I suffer from several infirmities, such as the dynamic methylene group being replaced by a mass unit and the use of poorly resolved inelastic neutron spectra, which have resulted in wrong assignments and imprecise profile of dispersion curves. In addition, the density-of-states and heat capacity variation as a function of temperature are being reported for the first time. The heat capacity is in good agreement with the measurements reported earlier by Roles and Wunderlich within a certain range (230-350 K). Deviations set in beyond this could be due to the presence of two crystalline states (I and II) in the sample used for the heat capacity measurements.

  4. Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures

    Science.gov (United States)

    Khordad, R.; Sedehi, H. R. Rastegar

    2018-02-01

    In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for T<4 K. The transition temperature depends on the magnetic field.

  5. Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa

    International Nuclear Information System (INIS)

    Lourenco, M.J.V.; Santos, F.J.V.; Ramires, M.L.V.; Nieto de Castro, C.A.

    2006-01-01

    There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol . kg -1 , at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement

  6. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Energent Corporation, Santa Ana, CA (United States)

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  7. Small reactors for low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1988-06-01

    In accordance with the Member States' calls for information exchange in the field of nuclear heat application (NHA) two IAEA meetings were organized already in 1976 and 1977. After this ''promising period'', the development of relevant programmes in IAEA Member States was slowed down and therefore only after several years interruption a new Technical Committee Meeting with a Workshop was organized in late 1983, to review the status of NHA, after a few new specific plans appeared in some IAEA Member States in the early 1980's for the use of heat from existing or constructed NPPs and for developing nuclear heating plants (NHP). In June 1987 an Advisory Group Meeting was convened in Winnipeg, Canada, to discuss and formulate a state-of-the-art review on ''Small Reactors for Low Temperature Nuclear Heat Application''. Information on this subject gained up to 1987 in the Member States whose experts attended this meeting is embodied in the present Technical Report. Figs and tabs

  8. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  9. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  10. Experimental study on heat capacity of paraffin/water phase change emulsion

    International Nuclear Information System (INIS)

    Huang, L.; Noeres, P.; Petermann, M.; Doetsch, C.

    2010-01-01

    A paraffin/water phase change emulsion is a multifunctional fluid in which fine paraffin droplets are dispersed in water by a surfactant. This paper presents an experimental study on the heat capacity of an emulsion containing 30 wt.% paraffin in a test rig. The results show that the heat capacity of the emulsion consists of the sensible heat capacity of water and that of the paraffin as well as the latent heat capacity of the paraffin during the phase transition solid-liquid. The emulsion is an attractive alternative to chilled water for comfort cooling applications, because it has a heat capacity of 50 kJ/kg from 5 to 11 deg. C, which is two times as high as that of water in the same temperature range.

  11. Heat capacities of several Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip; Chen, Song

    2013-12-20

    Highlights: • Heat contents from 600 K to 1500 K of selected Co{sub 2}YZ were measured by drop calorimeters. • Heat capacities were obtained by taking derivatives of heats contents which were fitted with second order polynomial with respect to temperature. • Melting points determined by DSC were consistent with literature data. • Heats of fusion determined by DSC were comparable with those obtained by extrapolation of heat contents. - Abstract: Heat contents of several Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Mn, Ti; Z = Al, Ga, Si, Ge, Sn) were measured from 500 K to 1500 K using a Setaram MTHC 96 drop calorimeter. Second order polynomials were adopted to fit the data and heat capacities were obtained by taking the derivatives with respect to temperature. Melting points were determined by differential scanning calorimetry (DSC) and measured heats of fusion were compared with those obtained from extrapolation of heat contents.

  12. Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol

    Energy Technology Data Exchange (ETDEWEB)

    Tong Bo [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Tan Zhicheng [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China) and College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)]. E-mail: tzc@dicp.ac.cn; Shi Quan [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li Yansheng [College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Yue Danting [Thermochemistry Laboratory, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang Shaoxu [College of Environmental Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2007-06-15

    The low-temperature heat capacity C{sub p,m}{sup 0} of xylitol was precisely measured in the temperature range from 80 to 390K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found from the experimental C{sub p}-T curve in the temperature range 360-375K with the peak heat capacity at 369.04K. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80-360K, C{sub p,m}{sup 0}(JK{sup -1}mol{sup -1})=165.87+105.19x+1.8011x{sup 2}-41.445x{sup 3}-41.851x{sup 4}+65.152x{sup =} 5+66.744x{sup 6},x=[T(K)-220]/140. In the temperature range of 370-390K, C{sub p,m}{sup 0}(JK{sup -1}mol{sup -1})=426.19+5.6366x,x=[T(K)-380]/10. The molar enthalpy and entropy of this transition were determined to be 33.26+/-0.17kJmol{sup -1} and 90.12+/-0.45JK{sup -1}mol{sup -1}, respectively. The standard thermodynamic functions (H{sub T}{sup 0}-H{sub 298.15}{sup 0}) and (S{sub T}{sup 0}-S{sub 298.15}{sup 0}), were derived from the heat capacity data in the temperature range of 80 to 390K with an interval of 5K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined, {delta}{sub c}H{sub m}{sup 0} (C{sub 5}H{sub 12}O{sub 5}, cr)=(-2463.2+/-1.2)kJmol{sup -1}and {delta}{sub f}H{sub m}{sup 0} (C{sub 5}H{sub 12}O{sub 5}, cr)=(-1219.3+/-0.3)kJmol{sup -1}, by means of a precision oxygen bomb combustion calorimeter at T=298.15K. DSC and TG measurements were performed to study the thermal stability of the compound. The results were in agreement with those obtained from heat capacity measurements.

  13. Research of management information system of radiation protection for low temperature nuclear heating reactor

    International Nuclear Information System (INIS)

    Bai Hongtao; Wang Jiaying; Wu Manxue

    2001-01-01

    Management information system of radiation protection for low temperature reactor uses computer to manage the data of the low temperature nuclear heating reactor radiation monitoring, it saves the data from the front real-time radiation monitoring system, comparing these data with historical data to give the consequence. Also, the system provides some picture in order to show space information at need. The system, based on Microsoft Access 97, consists of nine parts, including radiation dose, environmental data, meteorological data and so on. The system will have value in safely operation of the low temperature nuclear heating reactor

  14. Debye’s temperature and heat capacity for Sr0.15Ba0.85Bi2Nb2O9 relaxor ferroelectric ceramic

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-03-01

    Full Text Available A lead-free relaxor ferroelectric, Sr0.15Ba0.85Bi2Nb2O9, was synthesized via solid-state reaction and the temperature-dependence of the heat capacity was measured in a wide temperature range. The dielectric permittivity was also measured between 500Hz and 5MHz in the same temperature range. No anomaly has been detected in the heat capacity curve for the whole temperature range covered in the present experiments, while broad peaks have been observed in the dielectric permittivity with high frequency dispersion. A typical relaxor behavior has been observed from the dielectric analysis. The Debye’s temperature has showed a minimum value near the freezing temperature. The results are discussed considering the spin-glass model and the high frequency dispersion, which has been observed for the studied relaxor system.

  15. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  16. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  17. A study of heat capacity temperature limit of BWR

    International Nuclear Information System (INIS)

    Wang, Shih-Jen; Chen, Jyh-Jun; Chien, Chun-Sheng; Teng, Jyh-Tong

    2012-01-01

    Highlights: ► The purpose of this study is to verify the HCTL. ► MAAP4 was used as code to generate a realistic and convenient HCTL. ► The current HCTL curve causes confusing in reading data. ► The revised HCTL curves developed in this study. ► Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners’ group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  18. A study of heat capacity temperature limit of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Jen, E-mail: sjenwang@iner.gov.tw [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Chen, Jyh-Jun [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China); Chien, Chun-Sheng [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Teng, Jyh-Tong [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The purpose of this study is to verify the HCTL. Black-Right-Pointing-Pointer MAAP4 was used as code to generate a realistic and convenient HCTL. Black-Right-Pointing-Pointer The current HCTL curve causes confusing in reading data. Black-Right-Pointing-Pointer The revised HCTL curves developed in this study. Black-Right-Pointing-Pointer Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners' group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  19. Low-temperature heat capacity and thermodynamic properties of [Re{sub 2}(Ile){sub 4}(H{sub 2}O){sub 8}](ClO{sub 4}){sub 6} (Re=Nd, Er, Ile=isoleucine)

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaozheng; Tan Zhicheng; Liu Beiping; Nan Zhaodong; Sun Lixian; Xu Fen

    2003-06-03

    The heat capacities of two kinds of rare-earth element solid complexes with isoleucine [Re{sub 2}(Ile){sub 4}(H{sub 2}O){sub 8}](ClO{sub 4}){sub 6} (where Re=Nd, Er, and Ile=isoleucine) have been measured by an automatic adiabatic calorimeter in the temperature range from 80 to 370 K. Two solid-solid phase transitions were found from the C{sub p} curve of Nd formed complex in the range of 165-175 K with a peak temperature of 167.88 K and in the range of 195-210 K with a peak temperature of 202.13 K. The corresponding molar enthalpies of these phase transitions were determined to be 404.61 J mol{sup -1} and 2.955 kJ mol{sup -1}, respectively. One solid-solid phase transition was found for the Er formed complex in the range of 190-205 K with a peak temperature of 193.42 K. The corresponding molar enthalpy of this transition was 14.11 kJ mol{sup -1}. Smooth heat capacities and thermodynamic functions relative to the standard state (298.15 K), H{sub T}-H{sub 298.15}, S{sub T}-S{sub 298.15} and -[G{sub T}-G{sub 298.15}], of the two compounds, were calculated on basis of experimental heat capacity data. Possible mechanisms of thermal decompositions for the pair of compounds were suggested according to the thermogravimetric (TG) analysis.

  20. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  1. Apparatus intended for measuring heat capacity and heat transfer down to mK range

    International Nuclear Information System (INIS)

    Hebral, B.; Frossati, G.; Godfrin, H.; Schumacher, G.; Thoulouze, D.

    1978-01-01

    A cryogenic apparatus to perform heat capacity and heat transfer measurements in the range 1.5 mK-50 mK is described. Measurements are performed in an adiabatic demagnetization cell attached to a dilution refrigerator. Heat capacity measurements were effected on CMN-helium systems; the CMN specific heat was deduced above 1.6 mK when using liquid 3 He or a mixture 1.1% 3 He - 98.9% 4 He. A specific heat anomaly was observed with 4 He below 10 mK. It does not seen possible to interprete it by simple thermal equilibrium considerations. The superfluid 3 He heat capacity was also deduced from the results obtained with liquid 3 He under pressure. In heat transfer measurements at the interface CMN-mixture 3 He- 4 He, the temperature dependence of the thermal boundary resistance is in rather good agreement with other powder results. The measured resistances are larger than those predicted by the classical phonon process [fr

  2. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    Science.gov (United States)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  3. Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gamil.com

    2016-11-01

    Using linear response theory, Heisenberg model Hamiltonian and Green's function technique, the influences of Dzyaloshinskii–Moriya interaction (DMI), external magnetic field and next-nearest-neighbor (NNN) coupling on the density of magnon modes (DMM), the magnetic susceptibility (MS) and the magnon heat capacity (MHC) of a spin Lieb lattice, a face-centered square lattice, are investigated. The results reveal a band gap in the DMM and we witness an extension in the bandwidth and an increase in the number of van-Hove singularities as well. As a notable point, besides the magnetic nature which includes ferromagnetism in spin Lieb-based nanosystems, MS is investigated. Further, we report a Schottky anomaly in the MHC. The results show that the effects of the magnetic field on the MHC and MS have different behaviors in two temperature regions. In the low temperature region, MHC and MS increase when the magnetic field strength increases. On the other hand, the MHC and MS reduce with increasing the magnetic field strength in the high temperature region. Also comprehensive numerical modelling of the DMM, the MS and the MHC of a spin Lieb lattice yields excellent qualitative agreement with the experimental data. - Highlights: • Theoretical calculation of density of states of the spin Lieb lattice. • The investigation of the effect of external magnetic field on the magnon heat capacity and magnetic susceptibility. • The investigation of the effect of NNN coupling and the DMI strength on the magnon heat capacity and magnetic susceptibility.

  4. Heat capacity and thermodynamic properties of N-(2-cyanoethyl) aniline (C9H10N2)

    International Nuclear Information System (INIS)

    Tian Qifeng; Tan Zhicheng; Shi Quan; Xu Fen; Sun Lixian; Zhang Tao

    2005-01-01

    The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 ± 0.13 K, 19.4 ± 0.1 kJ mol -1 and 60.1 ± 0.1 J K -1 mol -1 , respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 ± 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 ± 5 J mol -1 and 3.16 ± 0.02 J K -1 mol -1 , respectively. The thermodynamic functions of the compound [H T - H 298.15 ] and [S T - S 298.15 ] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K

  5. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . From the results, realizing LTDH by the decentralized substation unit, 30% of the annual distribution heat loss inside the building can be saved compared to a conventional system with medium-temperature district heating. Replacing the bypass pipe with an in-line supply pipe and a heat pump...... with domestic hot water (DHW) circulation. In this study, a system with decentralized substations was analysed as a solution to this problem. Furthermore, a modification for the decentralized substation system were proposed in order to reduce the average return temperature. Models of conventional system...... with medium-temperature district heating, decentralized substation system with LTDH, and innovative decentralized substation system with LTDH were built based on the information of a case building. The annual distribution heat loss and the operating costs of the three scenarios were calculated and compared...

  6. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    Abstract District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one c...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization...... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  7. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  8. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  9. Thermodynamic properties and low-temperature X-ray diffraction of vitamin B{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com; Smirnova, N.N.; Shipilova, A.S.; Shushunov, A.N.; Gusarova, E.V; Knyazeva, S.S.

    2015-03-20

    Highlights: • Temperature dependence of heat capacity of vitamin B{sub 3} has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B{sub 3} have been determined for the range from T → 0 to 346 K. • The thermodynamic analysis of reactions involving nicotinic acid was made. • The low-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion. - Abstract: In the present work temperature dependence of heat capacity of vitamin B{sub 3} (nicotinic acid) has been measured for the first time in the range from 5 to 346 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B{sub 3}, namely, the heat capacity, enthalpy H°(T) – H°(0), entropy S°(T) – S°(0) and Gibbs function G°(T) – H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye’s theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermodynamic parameters Δ{sub f}S°, Δ{sub f}G° at T = 298.15 K and p = 0.1 MPa have been calculated. The thermodynamic analysis of reactions involving nicotinic acid was made. The low-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion.

  10. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  11. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Eric Martin, Chuck Withers, Janet McIlvaine, Dave Chasar, and David Beal

    2018-03-29

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  12. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    Science.gov (United States)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  13. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  14. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  15. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  16. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    International Nuclear Information System (INIS)

    Bévillon, E.; Colombier, J.P.; Recoules, V.; Stoian, R.

    2015-01-01

    Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature

  17. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  18. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  19. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  20. Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1980-01-01

    Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)

  1. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  2. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Highlights: • Provided domestic hot water configurations for low-temperature district heating. • Various building typologies and district heating supply temperatures were included. • Different scenarios were evaluated from the energy, economy and exergy aspects. • The benefits of lower return temperature to district heating were investigated. - Abstract: District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50–55 °C/25 °C) systems in preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies. Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating and to reduce the return temperature to district heating. The benefits of lower return temperatures were also analysed compared with the current district heating situation. The evaluation results show that the decentralized substation system with instantaneous heat exchanger unit performed better under the 65 °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario.

  3. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  4. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment

    DEFF Research Database (Denmark)

    Duan, Zhi; Holst Hansen, Terese; Hansen, Tina Beck

    OBJECTIVE Sous-vide cooking and molecular gastronomy has started a wave of experimenting with Low Temperature Long Time (LTLT) heat treatments. Heat treatments, at temperatures as low as 50°C, have been suggested by celebrity chefs. LTLT treatments often take hours to reach to the final core...

  5. Performance analysis of low temperature heat source of organic Rankine cycle for geothermal application

    Science.gov (United States)

    Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.

    2018-02-01

    Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.

  6. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  7. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature

    Directory of Open Access Journals (Sweden)

    Lucas Cavalcante da Costa

    Full Text Available ABSTRACT: Normally, it is not recommended the conditioning of gladiolus stems in water during storage or transport. Hydration of petals may accelerate flower opening, even at a low temperature, which compromises quality at marketing moment. However, for this species, neither the effect of prolonged dry cold storage nor its behavior when transferred to water at room temperature has been evaluated. The present study aimed to evaluate the vase life and the rehydration capacity of gladiolus flowers ( Gladiolus grandiflora Hort. after dry storage at low temperature. Flower stems of cultivars Blue Frost, Gold Field, Traderhorn, and Jester were dry-stored at a temperature of 5 ± 1 ºC and relative humidity of 85% for 12, 24, 36, and 48h. Control stems remained always in deionized water. After storage, they were returned to the water at room temperature and evaluated for vase life (adopting the discard criterion when 50% of the basal flowers displayed loss of color and wilting, fresh weight change (%, water uptake rate and transpiration rate, as well as relative water content of the petals (%. In dry cold storage conditions, for up to 36h, the vase life was not affected although incomplete rehydration of the flowers. Rehydration capacity of the stem is linked to the staggered opening of flowers along the inflorescence.

  8. Utilization of low temperature heat for environmentally friendly electricity production

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Elmegaard, Brian; Haglind, Fredrik

    2014-01-01

    the benefits of using mixtures compared to pure fluids as working fluids in organic Rankine cycles. In order to do so, thermodynamic and economic analyses are carried out, first on an overall cycle level, and next on component level including detailed modelling of heat exchangers, pumps and expanders involving...... project collaborators with expertise in these areas. In addition to this, novel innovative cycle layouts are developed with the aim of increasing the economic feasibility of utilizing low temperature heat. As an example, this can be achieved by implementing separators in the power cycle to create optimal...

  9. Optimal Design of ORC Systems with a Low-Temperature Heat Source

    Directory of Open Access Journals (Sweden)

    Nicolas Galanis

    2012-02-01

    Full Text Available A numerical model of subcritical and trans-critical power cycles using a fixed-flowrate low-temperature heat source has been validated and used to calculate the combinations of the maximum cycle pressure (Pev and the difference between the source temperature and the maximum working fluid temperature (DT which maximize the thermal efficiency (ηth or minimize the non-dimensional exergy losses (β, the total thermal conductance of the heat exchangers (UAt and the turbine size (SP. Optimum combinations of Pev and DT were calculated for each one of these four objective functions for two working fluids (R134a, R141b, three source temperatures and three values of the non-dimensional power output. The ratio of UAt over the net power output (which is a first approximation of the initial cost per kW shows that R141b is the better working fluid for the conditions under study.

  10. Specific heat studies of pure Nb3Sn single crystals at low temperature

    International Nuclear Information System (INIS)

    Escudero, R; Morales, F; Bernes, S

    2009-01-01

    Specific heat measurements performed on high purity vapor-grown Nb 3 Sn crystals show clear features related to both the martensitic and superconducting transitions. Our measurements indicate that the martensitic anomaly does not display hysteresis, meaning that the martensitic transition could be a weak first-order or a second-order thermodynamic transition. Careful measurements of the two transition temperatures display an inverse correlation between them. At low temperature, specific heat measurements show the existence of a single superconducting energy gap feature.

  11. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  12. Influence of Fuel Meat Porosity on Heat Capacities of Fuel Element Plate U3Si2-Al

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Supardjo; Sutri Indaryati

    2007-01-01

    Analyze of heat capacities of Al powder, AIMg 2 cladding, U 3 Si 2 powder and PEB U 3 Si 2 -Al with the meat porosity of 4.9; 5.53 ; 6.25 ; 6.95 %; 7.90; 8.66% have been done. Analysis was conducted by using Differential Scanning Calorimeter (DSC) at temperature 30℃ to 450℃ with heating rate 1℃ /minute in Argon gas media. The purpose of analyze is to know the influence of increasing of fuel meat porosity on heat capacities because increasing of percentage of meat porosity will cause degradation the of heat capacities of PEB U 3 Si 2 -Al. Result of analysis showed that the heat capacities of Al powder, AIMg 2 cladding increase by temperature, while heat capacities of U 3 Si 2 powder was stable with increasing of temperature up to 450℃. Analysis of heat capacities toward PEB U 3 Si 2 -Al indicate that increasing of fuel meat porosity of caused degradation of the heat capacities of PEB U 3 Si 2 -Al. Data obtained were expected to serve the purpose of input to fabricator of research reactor fuel in for design of fuel element type silicide with high loading. (author)

  13. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-06-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  14. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...

  15. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

    International Nuclear Information System (INIS)

    Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Yang, Xiao-Guang; Tian, Hua; Wang, Chao-Yang

    2016-01-01

    Highlights: • Self-heating lithium-ion battery (SHLB) structure provided a practical solution to the poor performance at subzero temperatures. • We report an improved SHLB that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than previously reported. • The nickel foil heating element embedded inside a SHLB cell plays a dominant role in rapid self-heating. • The embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS). • 2-sheet design self-heats faster than 1-sheet design due to more uniform internal temperature distribution. - Abstract: The recently discovered self-heating lithium-ion battery structure provided a practical solution to the poor performance at subzero temperatures that has hampered battery technology for decades. Here we report an improved self-heating lithium-ion battery (SHLB) that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than that reported previously. We reveal that a nickel foil heating element embedded inside a SHLB cell plays a dominant role in self-heating and we experimentally demonstrate that a 2-sheet design can achieve dramatically accelerated self-heating due to more uniform internal temperature distribution. We also report, for the first time, that this embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS) due to the perfectly linear relationship between the foil’s electrical resistance and temperature.

  16. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    temperature of hot water during peak hot water demand and on that time between 06.00 and 10.00 hours, the hotel also experiences a low cooling demand. Subsequently, the temperature of hot water supplied drops down as low as 45 °C. The study was found that optimization on the TES can significantly minimize temperature variation of the hot water supplied to the hotel appliances. A TES of 30 m3 storage capacity is considered the optimum capacity which can reduce the temperature fluctuation from 17 K down to 3 K. The study also found that maintaining the storage temperature relatively lower than the condenser temperature could increase hot water production of the heat recovery system.

  17. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work ...

  18. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  19. Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2015-01-01

    This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55 °C in supply and 25°C in return regularly while the supply temperature levels are being boosted in cold...... winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization...

  20. Specific heat capacities of different clayey samples obtained by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2012-01-01

    Document available in extended abstract form only. The thermo-physical properties allow to calculate heat flows and to determine the thermal behaviour of the materials. Temperature influences the rates of the physical, chemical and biological reactions and processes in the soil or a material. Variations in temperature and water content in thermal, hydraulic, mechanical and geochemical processes affect the thermal properties such as density, specific heat, thermal conductivity and thermal diffusivity. Therefore, mathematical models that describe the dependence of the thermal properties on temperature and concentration are of interest to be used in computational programs applied to the modelling of coupled thermo-mechanical-hydraulic and chemical (THMC) processes. In this work, the specific heat capacity of different clayey international reference materials was determined. Differential Scanning Calorimetry (DSC) was used for such purpose. DSC is the main tool for determining the specific heat capacities of materials as a function of temperature. The specific heat capacity, c p (J/Kg.K), is a measurement of the amount of heat required to raise the temperature of a unit mass of a substance by one unit of temperature. A change in temperature, caused by a gain or a loss of heat from a material, depends on the specific heat capacity of the material. Thus, the specific heat capacity is a key and characteristic property of a material and/or substance, which should be determine accurately. The specific heat capacity is an intensive property and, unlike the thermal conductivity and thermal diffusivity, is independent of the dry density of the material. C p of the solid samples was determined by using a SETSYS Evolution 16 thermal analyser coupled to a differential scanning calorimeter (TG-DSC-DTA) from SETARAM Instrumentation. The thermal analyser system can use a heating rate from 0.01 to 100 C/min under a dynamic argon atmosphere and temperatures ranging from ambient to

  1. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  2. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt

  3. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  4. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    Science.gov (United States)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  5. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    end-use savings are implemented in buildings concurrent with the application of low-temperature district heating (LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is the dimensioning foundation for future district heating systems. To avoid oversized...

  6. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  8. Excess Molar Volume,Viscosity and Heat Capacity for the Mixture of 1,2—Propanediol—Water at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 靳凤民

    2003-01-01

    Experimental densities,viscosities and heat capacities at different emperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water,Density values were used in the determination of excess molar volumes,VE,At the same time,the excess viscosity was in vestigated,The values of VE and ηE were fitted to the Redlich-kister equation.Good agreement was observed,The excess volumes are negative over the entire range of composition.They show an U-shaped-concentration dependence and decrease in abolute values with increase of temperature,Values of ηE are negative over the entire range of the composition,and has a trend very similar to that of VE ,The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1>20%,All the extended lines intersect at one point.An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range.

  9. Evaluation of the quasi-isothermal method of modulated DSC for heat capacity measurement

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Nagarajan, K.

    2004-01-01

    Heat capacity measurements were carried out on ThO 2 by Modulated Differential Scanning Calorimetry (MDSC) using quasi-isothermal method in the temperature range 323-723 K. The highest accuracy of the heat capacity data obtained by this method was ± 2-3% which is much lower than that reported in the literature. (author)

  10. Low to moderate temperature nanolaminate heater

    Science.gov (United States)

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  11. Modelling and multi-scenario analysis for electric heat tracing system combined with low temperature district heating for domestic hot water supply

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Low temperature district heating (LTDH) is a cost-efficient way of supplying space heating and domestic hot water (DHW) for buildings in urban areas. However, there is concern that the potential hygiene problems (Legionella) might occur if LTDH is implemented, especially for large buildings...... performance on heat loss saving, and it also gave benefits to district heating network by sharing part of the heating load....

  12. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  13. Heat capacity of 1-pentylamine and 1-hexylamine: Experimental determination and modeling through a two-state association model (TSAM)

    International Nuclear Information System (INIS)

    Navia, P.; Bessières, D.; Plantier, F.

    2013-01-01

    Highlights: ► Experimental determination of heat capacity of two primary amines, over wide ranges of pressure and temperature. ► Comprehensive description of the association effect between amines molecules. ► Thermodynamics of complex fluids. ► Statistical thermodynamic approach. - Abstract: We report new experimental data of heat capacity of two primary amines, namely 1-pentylamine and 1-hexylamine over wide ranges of pressure [0.1–60 (MPa)] and temperature [303.15–403.15 (K)]. The experimental behaviour of the heat capacity versus temperature and pressure is analyzed. An attempt to rationalize this behaviour is performed through a two-state association model (TSAM), which allows expressing the specific effect due to association at molecular level. It appears that the heat capacity trend versus temperature is clearly governed by auto-association between amines molecules. The physical meaningful of the (TSAM) model parameters highlights the capability of this approach to capture the heat capacity behavior of the amines.

  14. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  15. Apparent and standard partial molar heat capacities and volumes of aqueous tartaric acid and its sodium salts at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Xie Wei; Trevani, Liliana; Tremaine, Peter R.

    2004-01-01

    Apparent molar heat capacities and volumes have been determined for aqueous solutions of tartaric acid (H 2 Tar, Tar=C 4 H 4 O 6 ), two buffer solutions of (H 2 Tar/NaHTar) and (NaHTar/Na 2 Tar), and solutions of disodium tartrate (Na 2 Tar) at four temperatures in the range 283.15≤T/K≤328.15 at p=1 MPa. Apparent molar volumes for H 2 Tar(aq) and Na 2 Tar(aq) have been measured at temperatures 377.15≤T/K≤529.15 and p=10.4 MPa. The experimental results have been represented with a model to describe the molality and temperature dependence. Extrapolations to infinite dilution yielded standard partial molar heat capacities C p 0 and volumes V 0 for the species H 2 Tar(aq), HTar - (aq) and Tar 2- (aq) over the range of experimental measurements. The temperature dependence of V 0 for Na 2 Tar(aq) is consistent with other aqueous electrolytes, while that of H 2 Tar(aq) may be anomalous, in that it does not show divergence towards increasingly positive values with increasing temperature

  16. Heat capacity and magnetocaloric effect in polycrystalline Gd 1-xSm xMn 2Si 2

    Science.gov (United States)

    Kumar, Pramod; Singh, Niraj K.; Suresh, K. G.; Nigam, A. K.; Malik, S. K.

    2007-12-01

    We report the magnetocaloric effect in terms of isothermal magnetic entropy change as well as adiabatic temperature change, calculated using the heat capacity data. Using the zero-field heat capacity data, the magnetic contribution to the heat capacity has been estimated. The variations in the magnetocaloric behavior have been explained on the basis of the magnetic structure of these compounds. The refrigerant capacities have also been calculated for these compounds.

  17. Applying the principles of thermoeconomics to the organic Rankine Cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Xiao, F.; Lilun, Q.; Changsun, S.

    1989-01-01

    In this paper, thermoeconomic principle is used to study the selection of working fluids and the option of the cycle parameters in the organic Rankine cycle of low temperature waste heat recovery. The parameter ξ, the product of the ratio of waste heat recovery and real cycle thermal efficiency, is suggested as a unified thermodynamic criterion for the selection of the working fluids. The mathematical expressions are developed to determine the optimal boiling temperature and the optimal pin point temperature difference in the heat recovery exchanger by way of thermoeconomic principle

  18. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    Science.gov (United States)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  19. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  20. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50-55 °C/25 °C) systems in,preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low......-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies....... Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...

  1. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    Science.gov (United States)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  2. Heat capacity of the neutron star inner crust within an extended nuclear statistical equilibrium model

    Science.gov (United States)

    Burrello, S.; Gulminelli, F.; Aymard, F.; Colonna, M.; Raduta, Ad. R.

    2015-11-01

    Background: Superfluidity in the crust is a key ingredient for the cooling properties of proto-neutron stars. Present theoretical calculations employ the quasiparticle mean-field Hartree-Fock-Bogoliubov theory with temperature-dependent occupation numbers for the quasiparticle states. Purpose: Finite temperature stellar matter is characterized by a whole distribution of different nuclear species. We want to assess the importance of this distribution on the calculation of heat capacity in the inner crust. Method: Following a recent work, the Wigner-Seitz cell is mapped into a model with cluster degrees of freedom. The finite temperature distribution is then given by a statistical collection of Wigner-Seitz cells. We additionally introduce pairing correlations in the local density BCS approximation both in the homogeneous unbound neutron component, and in the interface region between clusters and neutrons. Results: The heat capacity is calculated in the different baryonic density conditions corresponding to the inner crust, and in a temperature range varying from 100 KeV to 2 MeV. We show that accounting for the cluster distribution has a small effect at intermediate densities, but it considerably affects the heat capacity both close to the outer crust and close to the core. We additionally show that it is very important to consider the temperature evolution of the proton fraction for a quantitatively reliable estimation of the heat capacity. Conclusions: We present the first modelization of stellar matter containing at the same time a statistical distribution of clusters at finite temperature, and pairing correlations in the unbound neutron component. The effect of the nuclear distribution on the superfluid properties can be easily added in future calculations of the neutron star cooling curves. A strong influence of resonance population on the heat capacity at high temperature is observed, which deserves to be further studied within more microscopic calculations.

  3. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    OpenAIRE

    Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich

    2015-01-01

    The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...

  4. Low temperature industrial waste heat utilization in the area 'Speyer-Ludwigshafen-Frankenthal-Worms'

    International Nuclear Information System (INIS)

    Nunold, K.; Krebs, A.

    1982-01-01

    The aim of the study is the elaboration of reliable facts whether and under which conditions low temperature industrial waste heat systems can be economically utilized for heating purposes. The source of the waste heat are power- and industrial plants. In order to obtain reliable results, investigations have been carried out in the area Speyer-Ludwigshafen-Frankenthal and Worms. These investigations showed a number of application possibilities for heat pumps and it became moreover evident that there is a high variaiton of the heat requirement due to social components and the different type of building structures of the consumers. The economic results showed that the application of this heating system can under certain conditions supplement resp. replace other heating systems. (orig.) [de

  5. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Walraven, Daniël; Laenen, Ben; D’haeseleer, William

    2014-01-01

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  6. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  7. Studies on the low temperature infrared heat processing of soybeans and maize

    NARCIS (Netherlands)

    Kouzeh Kanani, M.

    1985-01-01

    A modified process for the infrared heat processing of oilseeds and cereal grains at relatively low temperatures is put forward. The process which involves an additional holding step and potentials for saving energy was investigated on a pilot plant on the basis of which a design is proposed for

  8. Magnetic-susceptibility and heat-capacity measurements on PrRhSb

    International Nuclear Information System (INIS)

    Malik, S.K.; Takeya, H.; Gschneidner, K.A. Jr.

    1994-01-01

    Magnetic-susceptibility (ac and dc) and heat-capacity measurements have been carried out on the compound PrRhSb. These measurements reveal two magnetic transitions in this compound---one at about 18 K and the other around 6 K. In the dc susceptibility the 18-K transition is evident as the temperature below which a magnetic correlation sets in and the susceptibility is found to be field dependent. The lower transition manifests as a peak in the susceptibility of zero-field-cooled samples which were measured in low applied fields. The electronic-specific-heat coefficient, γ, is found to be 33 mJ/mol K 2 between 40 and 70 K after correcting for the lattice contribution taken to be the same as in its La analog. The γ value is fairly large for a Pr compound and may be indicative of moderately heavy quasiparticles. A Kondo-type interaction of the Pr 4f electrons with the conduction electrons may be responsible for high-magnetic-ordering temperatures and the moderately large γ value in this compound

  9. Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC

    Science.gov (United States)

    Mikielewicz, Dariusz; Mikielewicz, Jarosław

    2011-12-01

    In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.

  10. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing buildings...... in Nordic countries for greater energy efficiency, this study focused on human subjects’ thermal sensation, thermal comfort, thermal acceptability, draft acceptability, and perceived air quality when three low-temperature heating systems were used: conventional radiator, ventilation radiator, or floor...... heating with exhaust ventilation. Human subject tests were carried out in the climate chamber at the Technical University of Denmark. In total, 24 human subjects, 12 females and 12 males, participated in the tests during the winter season. The results show that no significant differences in thermal...

  11. Heat pipes for temperature control

    International Nuclear Information System (INIS)

    Groll, M.

    1978-01-01

    Heat pipes have known for years as effective constructional elements for temperature control. With the aid of special techniques (gas, liquid, steam, and voltage control), special operating characteristics can be obtained, e.g. variable heat conduction or diode behaviour. Their main field of application is in spacecraft technology and in nuclear technology in the isothermalisation of irradiation capsules. The different control techniques are presented and critically evaluated on the basis of characteristic properties like heat transfer capacity, volume and mass requirements, complexity of structure and production, reliability, and temperature control characteristics. Advantages and shortcomings of the different concepts are derived and compared. The state of the art of these control techniques is established on the basis of four development levels. Finally, the necessity and direction of further R + D activities are discussed, and suggestions are made for further work. (orig./HP) [de

  12. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  13. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  14. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows.

    Science.gov (United States)

    Zhang, F J; Weng, X G; Wang, J F; Zhou, D; Zhang, W; Zhai, C C; Hou, Y X; Zhu, Y H

    2014-07-01

    Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.

  15. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  16. The effect of molybdenum content with changes in phase and heat capacity of UMo alloy

    International Nuclear Information System (INIS)

    Aslina Br Ginting; Supardjo; Agoeng Kadarjono; Dian Anggraini

    2011-01-01

    Has done the analysis of phase and heat capacity change of the UMo alloy by variation of 7% Mo, 8% and 9% Mo. Analysis performed using phase change Differential Thermal Analysis (DTA) at a temperature between 30°C until 1400°C with heating rate 10°C/minute and heat capacity analysis carried out using Differential Scanning Calorimetry (DSC) at a temperature between 30°C to 450°C with heating rate 5°C/minute. The purpose of this study was to determine the character of the UMo alloy include phase change and heat capacity variation with Mo content due to higher content of Mo is expected to change both the character U-7% Mo alloy, U-8% Mo and U-9% Mo. The analysis showed that of 7% Mo, 8% Mo and 9% Mo the combination experiencing α+ δ a phase change becomes α + β phase at temperatures of 578.63°C to 580.16°C. At the temperature 606.50°C to 627.58°C having a phase change of α+ β to β + γ be followed by the endothermic reaction in the content of 9% Mo with the enthalpy ΔH = 6.5989 J / g. At temperatures 1075.45°C up to 1160.51°C phase change β + γ into γ phase. The increase in Mo content to heating at a temperature 1100°C not cause a significant phase change. At temperatures above 1177.21°C, the increase in Mo content leads to changes in the γ phase of forming L + γ phase which followed the reaction of uranium with Mo to form γ phase - solid solution. The higher content of Mo, the reaction heat is needed and released the greater. The results of the analysis of the heat capacity is obtained that the increase in Mo content in the U-7% Mo, U-8% Mo, and U-9% Mo alloy does not give a significant difference in heat capacity. This is attested by doing different test (F test) at 95% degree of confidence. This data is expected to be as a first step to study the manufacture of UMo alloy as a fuel of high uranium density for research reactor. (author)

  17. Anomalous heat capacity of nanoparticles

    International Nuclear Information System (INIS)

    Likhachev, V.N.; Vinogradov, G.A.; Alymov, M.I.

    2006-01-01

    The heat capacity of nanosized particles exceeds (from few to tenth percents) the same values of the corresponding bulk materials, and this difference increases with the diminishing of the sizes. In the present Letter we give an explanation of this phenomenon on an example of a nanocrystal with simple cubic lattice and an arbitrary shape. The simplest harmonic interaction potential of the nearest neighbors is used. A qualitative agreement with experimental data is obtained. The decisive role is attributed to the choice of boundary conditions: free boundaries provide the 'softening' of vibrational spectrum thus giving larger contribution to the heat capacity. The increase in heat capacity depends on the particle size, shape and sample perfection

  18. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    Science.gov (United States)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  19. Exergetic evaluation of heat pump booster configurations in a low temperature district heating network

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In order to minimise losses in a district heating network, one approach is to lower the temperature difference between working media and soil. Considering only direct heat exchange, the minimum forward temperature level is determined by the demand side, as energy services are required at a certai...

  20. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  1. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  2. A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling

    International Nuclear Information System (INIS)

    Bradley, D.I.; Guenault, A.M.; Keith, V.; Miller, I.E.; Pickett, G.R.; Bradshaw, T.W.; Locke-Scobie, B.G.

    1982-01-01

    The design philosophy, design, construction and performance of a dilution refrigerator specifically intended for nuclear cooling experiments in the submillikelvin regime is described. Attention has been paid from the outset to minimizing sources of heat leaks, and to achieving a low base temperature and relatively high cooling power below 10 mK. The refrigerator uses sintered silver heat exchangers similar to those developed at Grenoble. The machine has a base temperature of 3 mK or lower and can precool a copper nuclear specimen in 6.8 T to 8 mK in 70 h. The heat leak to the innermost nuclear stage is < 30 pW after only a few days' running. (author)

  3. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  4. Experimental investigation on heating performance of heat pump for electric vehicles at −20 °C ambient temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Xue, Qingfeng; Albarracin Velez, Giovanny Marcelo; Zhang, Guiying; Zou, Huiming; Tian, Changqing

    2015-01-01

    Highlights: • An ASHP system with refrigerant injection for EVs is designed, for cold regions. • The heat performances of the system are tested at −20 °C ambient temperature. • The system cycle process with refrigerant injection are analyzed on lgP-H diagrams. • The effects of refrigerant injection, dryness, and in-car inlet state are discussed. • The new system can improve heating and own better application prospect. - Abstract: Since the performance of conventional air source heat pump (ASHP) for electric vehicles (EVs) is apt to decline sharply in low ambient temperature, it will consume more electricity of the cell, and affect driving mileage in cold regions. Aiming at developing high efficiency heating system for EVs in cold regions, an ASHP system applying refrigerant injection for EVs is designed, as well as the test bench is built to investigate its performance. According to the operation condition of EVs, heating performances are tested on different in-car inlet air temperature and various fresh air ratios under −20 °C ambient temperature. The system cycle process with refrigerant injection, as well as the influences of refrigerant injection and dryness are also analyzed and discussed. The results show that the heating capacity of the ASHP with refrigerant injection can be increased up to 31%, and in comparison with the conventional heat pump system its heating performance is better when in-car inlet temperature is above −10 °C. Therefore, ASHP with refrigerant injection has great potentiality to be applied for the EVs in cold regions

  5. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Snežana D Petković

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  6. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  7. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  8. Combined heat and power generation with exhaust-heated two-stage absorption refrigerator. Performance of a pilot installation with a refrigeration capacity of 350 kW; Kraft-Waerme-Kaelte-Kopplung mit Abgas-Beheizter zweistufiger Absorptionskaeltemaschine. Betriebserfahrungen einer Pilotinstallation mit 350 kW Kaelteleistung

    Energy Technology Data Exchange (ETDEWEB)

    Plura, S.; Baumeister, D.; Koeberle, T.; Radspieler, M.; Schweigler, C. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V. (ZAE Bayern), Garching (Germany)

    2007-07-01

    A new system concept for higher efficiency of cogeneration systems is developed in which a cogeneration unit is combined with a two-stage absorption refrigerator, and the waste heat of the cogeneration unit is directly passed on into the regenerator of the absorption refrigerator. The higher temperature level of the waste heat makes it possible to use a two-stage absorption cycle for higher energy efficiency. For simultaneous utilisation of low-temperature heat, the two-stage cycle is combined with a one-stage cycle for additional heat supply at a lower temperature level so that the exhaust of a typical cogeneration unit will be cooled to about 120 degC. At the same time, further waste heat of the cogeneration unit will be transferred to the heat pump via a hot water circuit. This concept with a combined single-stage and two-stage absorption circuit is referred to as a double-effect/single-effect circuit. The new system is used for energy supply in a spa, where the two-stage absorption refrigerator cools the water used for swimming pool cleaning with a refrigerating capacity of 350 kW and provides low-temperature heat for swimming pool heating with a capacity of 700 kW. (orig.)

  9. The Specific Heat of Matter at Low Temperatures

    CERN Document Server

    Tari, A

    2003-01-01

    Recent discoveries of new materials and improvements in calorimetric techniques have given new impetus to the subject of specific heat. Nevertheless, there is a serious lack of literature on the subject. This invaluable book, which goes some way towards remedying that, is concerned mainly with the specific heat of matter at ordinary temperatures. It discusses the principles that underlie the theory of specific heat and considers a number of theoretical models in some detail. The subject matter ranges from traditional materials to those recently discovered - heavy fermion compounds, high temper

  10. Non-Debye heat capacity formula refined and applied to GaP, GaAs, GaSb, InP, InAs, and InSb

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2013-08-01

    Full Text Available Characteristic non-Debye behaviors of low-temperature heat capacities of GaP, GaAs, GaSb, InP, InAs, and InSb, which are manifested above all in form of non-monotonic behaviors (local maxima of the respective Cp(T/T3 curves in the cryogenic region, are described by means of a refined version of a recently proposed low-to-high-temperature interpolation formula of non-Debye type. Least-mean-square fittings of representative Cp(T data sets available for these materials from several sources show excellent agreements, from the liquid-helium region up to room temperature. The results of detailed calculations of the respective material-specific Debye temperature curves, ΘD(T, are represented in graphical form. The strong, non-monotonic variations of ΘD(T values confirm that it is impossible to provide reasonable numerical simulations of measured Cp(T dependences in terms of fixed Debye temperatures. We show that it is possible to describe in good approximation the complete Debye temperature curves, from the cryogenic region up to their definitive disappearance (dropping to 0 in the high temperature region, by a couple of unprecedented algebraic formulas. The task of constructing physically adequate prolongations of the low-temperature Cp(T curves up to melting points was strongly impeded by partly rather large differences (up to an order of 10 J/(K·mol between the high-temperature data sets presented in different research papers and/or data reviews. Physically plausible criteria are invoked, which enabled an a priori rejection of a series of obviously unrealistic high-temperature data sets. Residual uncertainties for GaAs and InAs could be overcome by re-evaluations of former enthalpy data on the basis of a novel set of properly specified four-parameter polynomial expressions applying to large regions, from moderately low temperatures up to melting points. Detailed analytical and numerical descriptions are given for the anharmonicity

  11. Low temperature specific heat of Lu-Cu-Y metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, K.A.; Lanchester, P.C.

    1987-02-01

    The specific heat of a series of amorphous metallic alloys of the form Lu/sub x/Cu/sub 0.37/Y/sub 0.36/ (x=0, 0.1, 0.3 and 0.4) has been measured between 2 and 50 K, primarily in order to be able to determine the non-magnetic contributions to the specific heat in magnetic Re-Cu-Y amorphous alloys. The data at low temperature fit the simple form C/sub p/=..gamma..T+..beta..T/sup 3/ from which values of ..gamma.. and theta/sub D/(0) have been determined. Consideration is given to the error that arises if Y is used rather than Lu or La in forming non-magnetic rare earth intermetallics for purposes of determining the non-magnetic contributions to the specific heat of magnetic samples. A simple procedure is described that allows a useful improvement in accuracy in estimating non-magnetic contributions below 20 K if Y is used. The method may also be useful if only a restricted range of compositions using Lu is possible.

  12. Heat capacities of aqueous polar aromatic compounds over a wide range of conditions. Part I: phenol, cresols, aniline, and toluidines

    International Nuclear Information System (INIS)

    Censky, Miroslav; Hnedkovsky, Lubomir; Majer, Vladimir

    2005-01-01

    The heat capacities of dilute aqueous solutions of phenol (hydroxybenzene), three cresols (2-, 3- and 4-methylhydroxybenzene), aniline (aminobenzene) and three toluidines (2-, 3- and 4-methylaminobenzene) were determined using a modified flow Picker-type high temperature calorimeter. The measurements were performed at temperatures between (303 and 623) K or 573 K for compounds containing hydroxy or amino group, respectively, and at several pressures up to 30 MPa. Standard heat capacities (partial molar heat capacities at infinite dilution) obtained from the experimental data exhibit a strong increase with temperature above 500 K consistent with the evolution of the standard volumes reported earlier. The data for aqueous phenol were used for testing several semiempiric models proposed for description of the standard thermodynamic properties of aqueous solutes. Their ability to reproduce the temperature and pressure dependence of standard heat capacities and to extrapolate towards higher conditions were examined

  13. Properties of nonstationary modes of Joule heating of a low-temperature plasma

    International Nuclear Information System (INIS)

    Rutkevich, I.M.; Sinkevich, O.A.

    1980-01-01

    The qualitative properties are investigated of the one-dimensional temperature distributions and voltage-current characteristics of a low-temperature plasma under conditions of steady-state Joule heating. The analysis is carried out for arbitrary temperature dependences of the electric conductivity sigma(T) and thermal conductivity kappa(T) (for a planar geometry). Sufficient conditions are established for uniqueness of the solution of a nonlinear boundary-value problem. The effect is studied of the relative orientation of the electric current and heat flux vectors on the properties of the solutions. Examples are constructed of N-shaped, S-shaped, and more complex voltage-current characteristics for which the uniqueness conditions are violated. The relation is studied between the temperature dependences of the true and effective electric conductivities. A qualitative difference is observed in the behavior of these quantities for a function sigma (T) having a minimum. The inverse problem is considered of determining the functions sigma(T) and kappa(T) from data of electrical measurements. The role is discussed of the finite value of the thermal resistance of the walls in the generation of nonmonotone voltage-current characteristics

  14. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Meirelles, A.J.A.

    2009-01-01

    In the present work a group contribution method is proposed for the estimation of the heat capacity of organic liquids as a function of temperature for fatty compounds found in edible oil and biofuels industries. The data bank used for regression of the group contribution parameters (1395 values...

  15. Development of an innovative low temperature heat supply concept for a new housing area

    OpenAIRE

    Schmidt, Dietrich; Kallert, Anna; Orozaliev, Janybek; Best, Isabelle; Vajen, Klaus; Reul, Oliver; Bennewitz, Jochen; Gerhold, Petra

    2017-01-01

    The domestic energy demand of buildings is responsible for one third of the world's final energy consumption. To increase the sustainability of new housing areas, the identification of innovative heat supply concepts based on renewable energy sources (RES) is required. For the new housing area “Zum Feldlager” (Kassel, Germany), various supply concepts are studied. Main objective is the development of an innovative and efficient supply concept based on RES and low temperature district heating ...

  16. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  17. Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Young Jin; Kim, Min Sung; Chang, Ki Chang; Lee, Young Soo; Ra, Ho Sang [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-01-15

    In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

  18. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  19. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Shu, Gequn; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2015-01-01

    Highlights: • Three ORC-based combined systems for ICE exhaust waste heat recovery are studied. • A parametric investigation is conducted under several typical engine conditions. • Performance is evaluated considering six thermodynamic, techno-economic indexes. • DORC distinguishes among other solutions for its highest energy recovery capacity. • TEG–ORC system becomes attractive when exhaust temperature is relatively low. - Abstract: In this paper, various combined power systems which regard organic Rankine cycle (ORC) as bottoming cycle to recover engine’s high temperature exhaust heat are proposed. The topping recovery cycle includes steam Rankine cycle (RC), Brayton cycle (BC) and thermoelectric generator (TEG). Comprehensive evaluations are conducted under five typical engine conditions, ranging from high load to low load, and system performance is assessed in terms of many thermodynamic indexes, such as net output power, thermal efficiency, recovery efficiency and exergy efficiency. Besides that, the irreversibility of each component is also discussed in detail. R123, R245fa and R600a for ORC system are considered to analyze the influence of working fluids. Considering the system techno-economy, the turbine size parameter (SP) and heat transfer capacity (UA) are chosen as key indicators. The results show that compared with the other two investigated approaches, dual-loop ORC (DORC) possesses the highest energy exploitation capacity under the whole operating region, with a 5.57% increase of fuel economy under the rated condition, but its values of SP and UA are large as well. TEG–ORC becomes appealing while under the relatively low load

  20. Hybrid Heat Capacity - Moving Slab Laser Concept

    International Nuclear Information System (INIS)

    Stappaerts, E A

    2002-01-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module

  1. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  2. Heat and Mass Transfer in a High-Porous Low-Temperature Thermal Insulation in Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2015-01-01

    Full Text Available The results of numerical simulation of heat and mass transfer in a high-porous low-temperature insulation in conditions of insulation freezing, a moisture migration to the front of phase transition and a condensation forming on an outer contour of interaction were obtained. Values of heat leakage were established.

  3. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    International Nuclear Information System (INIS)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    Low-temperature district heating is a promising technology for providing homes with energy-efficient heating in the future. However, it is of great importance to maintain thermal comfort in existing buildings when district heating temperatures are lowered. This case study evaluated the actual radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two of the case-houses. If these radiators were replaced it would be possible to lower the average heating system temperatures to 50 °C/27 °C in all four houses. - Highlights: • Comparison of dynamically calculated heat demands and radiator sizes. • Method for identification and evaluation of critical radiators was tested. • Existing houses can be heated with low-temperature heating for most of the year. • Replacing critical radiators helps ensure comfort and low return temperatures.

  4. Low-temperature specific heat of YMn sub 2 in the paramagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.A.; Emerson, J.P.; Phillips, N.E. (Lawrence Berkeley Lab., CA (United States)); Ballou, R.; Lelievre-Berna, E. (Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. Louis Neel)

    1992-07-01

    The low-temperature specific heat of YMn{sub 2} has been measured at applied pressures of 0 to 7.7 kbar. A paramagnetic state is stabilized for moderate values of the applied pressure (of the order of 1.6 kbar). A large linear term in the specific heat, which decreases regularly with increasing pressure, is observed in this phase. It is ascribed to giant spin fluctuations associated with a magnetic-non magnetic instability and a strong geometrical spin frustration.

  5. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    Science.gov (United States)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  6. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    Science.gov (United States)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  7. Forecasting of heat capacity of molecular inorganic liquids

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Neganov, O.S.

    1992-01-01

    On the basis of analysis of experimental material on heat capacity of liquids, covering 350 molecular inorganic compounds, atomic parts of heat capacity for 58 elements of the Periodic system were obtained. Data on the accuracy of heat capacity calculation by the Neumann-Kopp rule using the recommended atomic parts C p are presented. For the Kelli rule it is assertained that the factor of proportiomality between heat capacity and the number of atoms in compound molecule in the general case depends on the type of anion and compound coordination. The Neumann-Kopp-Kelli rules provide a satisfactory accuracy of prediction

  8. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    Science.gov (United States)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  9. Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes

    International Nuclear Information System (INIS)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2012-01-01

    Traditional district heating (DH) systems are becoming uneconomic as the number of new and renovated buildings with reduced heating requirements increases. To keep DH competitive in the future, heat losses in DH networks need to be reduced. One option is to reduce the supply temperature of DH as much as possible. This requires a review and improvement of a DH network, in-house substations, and the whole domestic hot water (DHW) supply system, with the focus on user comfort, hygiene, overall cost and energy efficiency. This paper describes some practical approaches to the implementation of low-temperature district heating (LTDH) with an entry-to-substation temperature around 50 °C. To this end we developed a numerical model for an instantaneous LTDH substation that takes into consideration the effect of service pipes. The model has been verified and can be used for the further optimization of the whole concept as well for individual components. The results show that the way that the service pipe is operated has a significant effect on waiting time for DHW, heat loss, and overall cost. Furthermore, the service pipe should be kept warm by using a bypass in order to fulfil the comfort requirements for DHW instantaneously prepared. -- Highlights: ► Describes and justifies concept of low-temperature district heating with supply temperature of 50 °C. ► Focuses on DHW preparation in low-temperature district heating in-house substations, considering comfort and Legionella. ► Verified numerical model reports on dynamic performance of an in-house substation, considering operation of service pipes. ► Bypass is needed for instantaneous type of district heating substations to fulfil comfort requirements of users. ► The model developed can be used for future optimization of low-temperature substations and whole district heating networks.

  10. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  11. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V. [Ulyanovsk State Technical University (Russian Federation)

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  12. Parametric sensitivity analysis of a SOLRGT system with the indirect upgrading of low/mid-temperature solar heat

    International Nuclear Information System (INIS)

    Li, Yuan Yuan; Zhang, Na; Cai, Rui Xian

    2012-01-01

    Highlights: ► A solar-assisted methane chemically recuperated gas turbine cycle has been proposed. ► The parametric sensitivity analysis of a SOLRGT system has been carried out. ► The concept of indirect upgrading of solar heat proves to be feasible. -- Abstract: Development of novel solar–fossil fuel hybrid system is important for the efficient utilization of low temperature solar heat. A solar-assisted methane chemically recuperated gas turbine (SOLRGT) system was proposed by Zhang and co-worker, which integrated solar heat into a high efficiency power system. The low temperature solar heat is first converted into vapor latent heat provided for a reformer, and then indirectly upgraded to high-grade generated syngas chemical energy by the reformation reaction. In this paper, based on the above mentioned cycle, a parametric analysis is performed using ASPEN PLUS code to further evaluate the effect of key thermodynamics parameters on the SOLRGT performance. It can be shown that solar collector temperature, steam/air mass ratio, turbine inlet pressure, and turbine inlet temperature have significant effects on system efficiency, solar-to-electricity efficiency, fossil fuel saving ratio, specific CO 2 emission and so on. The solar collector temperature is varied between 140 and 240 °C and the maximum net solar-to-electricity efficiency and system efficiency for a given turbine inlet condition (turbine inlet temperature of 1308 °C and pressure ratio of 15) is 30.2% and 52.9%, respectively. The fossil fuel saving ratio can reach up to 21.8% and the reduction of specific CO 2 emission is also 21.8% compared to the reference system. The system performance is promising for an optimum pressure ratio at a given turbine inlet temperature.

  13. Theoretical predictions for latent heats and phase-change temperatures of polycrystalline PCMs

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2017-07-01

    We had previously developed a microscopic approach from which it is possible to fit enthalpy jumps and heat capacity peaks of polycrystalline phase-change materials that consists of a large number of grains. It is also possible to determine the corresponding latent heat and phase-change temperature. These results are given in a form of sums over grain diameters that can be evaluated numerically. Therefore, their behavior and dependence on physical parameters are not susceptible to straightforward interpretations. Here we use the results to derive simple formulas for the maximum position (Tmax), height (H), and an asymmetry factor (α) of those heat capacity peaks that are very asymmetric. In addition, we express the phase-change temperature as a simple combination of Tmax, H, α, and the peak's area. We apply our formulas to Rhubitherm 27 as an example PCM for which the heat capacity peak is so asymmetric that it has about 80 % of its total area below its maximum position.

  14. Low temperature distillation

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, J N; Postel, C

    1929-04-09

    To recover gas, oil tars, and coked residues by low temperature distillation from bituminous coals, lignites, oil shales, and the like, the raw material is fed from a hopper into a rotary retort which is zonally heated, the temperature being greatest at the discharge end. The material is heated first to a relatively low temperature, thereby removing the moisture and lighter volatiles which are withdrawn through a pipe by the suction of a pump, while the higher boiling point volatiles and fixed gases are withdrawn by suction through an outlet from the higher temperature zone. The vapors withdrawn from the opposite ends of the retort pass through separate vapor lines and condensers, and the suction in each end of the retort, caused by the pumps, is controlled by valves, which also control the location of the neutral point in the retort formed by said suction. Air and inert gas may be introduced into the retort from pipe and stack respectively through a pipe, and steam may be admitted into the high temperature zone through a pipe.

  15. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  16. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...... small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach...

  17. Improved Low Temperature Performance of Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  18. Miscellaneous investigations. Subreport 3; CO{sub 2}-reductions in low-energy buildings and communities by implementation of low-temperature district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Brand, M. (DTU-BYG, Kgs. Lyngby (Denmark)); Kaarup Olsen, P. (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    The report focuses on possibilities of how to further decrease CO{sub 2} emissions by implementation of low-temperature district heating (LTDH) in areas with new low-energy buildings as well as in areas with existing buildings. In the first chapter, three different sites where LTDH is considered are reported. The first site is in Solbjerg near Aarhus, where 104 low-energy single-family houses are planned to be built. Calculations for a LTDH network (60/30 deg. C) have been made in the program TERMIS. The results show that depending on the houses being built as low-energy class 1 or 2, a cost saving potential of 6-13% can be achieved compared to traditional district heating (DH). The CO{sub 2}-reduction potential is 4.4-7.5 tonnes per year. The second reported site is an area with single-family houses built in the 1970s in Skjoldhoejparken in Tilst near Aarhus. Eight single-family houses have been investigated. Refurbishment can reduce the heat demand and make the houses more suitable for LTDH, but even with subsidy it is difficult to motivate the building owners to make energy saving initiatives. Analyses show that if the DH supply temperature is lowered gradually from 80 deg. C to 60 deg. C, depending on the outdoor temperature, the heat loss in the existing pipe network for the eight houses can be reduced by 20%. An even larger potential can be achieved with replacement of the existing pipe system. The third site is neighbourhood in Soenderby in Hoeje Taastrup with 75 single-family houses from the 1990s. The existing DH network is poor and has a heat loss of more than 40%. With LTDH it will be possible to reduce the network heat loss to 15% or lower. The CO{sub 2}-emission could be reduced by about 66 tonnes per year. In the second chapter are described existing district heating systems in Aarhus and Hoeje Taastrup. The average DH temperature is currently 80-77/47-42 deg. C, so there is a potential for LTDH. The network heat loss in the DH systems is 15

  19. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  20. Can high temperature steam electrolysis function with geothermal heat?

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Werkoff, F.; Lovera, P.

    2007-01-01

    It is possible to improve the performance of electrolysis processes by operating at a high temperature. This leads to a reduction in electricity consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. Iceland produces low cost electricity and very low cost geothermal heat. However, the temperature of geothermal heat is considerably lower than the temperature required at the electrolyser's inlet, making heat exchangers necessary to recuperate part of the heat contained in the gases at the electrolyser's outlet. A techno-economic optimisation model devoted to a high-temperature electrolysis (HTE) process which includes electrolysers as well as a high temperature heat exchanger network was created. Concerning the heat exchangers, the unit costs used in the model are based on industrial data. For the electrolyser cells, the unit cost scaling law and the physical sub-model we used were formulated using analogies with solid oxide fuel cells. The method was implemented in a software tool, which performs the optimisation using genetic algorithms. The first application of the method is done by taking into account the prices of electricity and geothermal heat in the Icelandic context. It appears that even with a geothermal temperature as low as 230 degrees C, the HTE could compete with alkaline electrolysis. (authors)

  1. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  2. Low-temperature tar and oil: properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, R

    1942-01-01

    In Germany the value of low-temperature tar is largely dependent on its fuel fractions; these vary with the coal and the method of carbonization (external heating or recirculated gases). Brown-coal tars can be processed by distillation, cracking under pressure, hydrogenation under pressure (largest volume of tar is processed by this method) and by solvent extraction, with EtOH, SO/sub 2/, or phenol. Each of these processes is discussed in detail. In the pressure-hydrogenation process, 1.25 kilogram of brown-coal tar yields approximately 1 kilogram of gasoline with an octane number of 60 to 70. Low-temperature tars from bituminous coals can be hydrogenated readily but are not well adapted to solvent extraction. Attempts should be made to produce tar approximating the desired characteristics for fuel directly from the carbonizing apparatus. For laboratory carbonization tests, an approximation to results secured by externally heated retorts is secured by using an insert consisting of a series of perforated trays in the 200-gram Fischer aluminum retort; this reduces the capacity to 100 gram. Fractional condensation is used to separate heavy oil, middle oil, and liquor; low-boiling products are condensed at -20/sup 0/ by solid CO/sub 2/.

  3. The low temperature specific heat of Lu-Cu-Y metallic glasses

    International Nuclear Information System (INIS)

    Mohammed, K.A.; Lanchester, P.C.

    1987-01-01

    The specific heat of a series of amorphous metallic alloys of the form Lu x Cu 0.37 Y 0.36 (x=0, 0.1, 0.3 and 0.4) has been measured between 2 and 50 K, primarily in order to be able to determine the non-magnetic contributions to the specific heat in magnetic Re-Cu-Y amorphous alloys. The data at low temperature fit the simple form C p =γT+βT 3 from which values of γ and θ D (0) have been determined. Consideration is given to the error that arises if Y is used rather than Lu or La in forming non-magnetic rare earth intermetallics for purposes of determining the non-magnetic contributions to the specific heat of magnetic samples. A simple procedure is described that allows a useful improvement in accuracy in estimating non-magnetic contributions below 20 K if Y is used. The method may also be useful if only a restricted range of compositions using Lu is possible. (orig.)

  4. Enthalpy measurement of lithium meta-titanate by drop calorimetry and its derived heat capacity

    International Nuclear Information System (INIS)

    Ishioka, Rika; Mukai, Keisuke; Terai, Takayuki; Suzuki, Akihiro

    2013-01-01

    Highlights: • Li 2 TiO 3 was synthesized by a neutralizing method. • Enthalpy of Li 2 TiO 3 was measured by a drop calorimeter. • Heat capacity of Li 2 TiO 3 was derived as a function of temperature. -- Abstract: Enthalpy of Li 2 TiO 3 , which was synthesized by a neutralizing method and its Li/Ti ratio was determined to be Li/Ti ratio (mol/mol) = 1.97, was measured by a drop calorimeter, and its heat capacity was derived as a function of temperature. XRD (X-ray diffraction) analysis of the sample before and after the enthalpy measurement indicated no phase change during the measurement and a single phase of Li 2 TiO 3 was observed. The enthalpy data were expressed as H(T) − H(323.17) (J/g) = 2.2 × 10 −5 ·T 2 + 1.4·T + 2.7 × 10 4 /T − 5.6 × 10 2 (373–1273 K), where T is temperature in K. The heat capacity was calculated as C p (J/g K) = 2.2 × 2 × 10 −5 ·T + 1.4–2.7 × 10 4 /T 2 by differentiating the equation by temperature. These equations have accuracy of 3%

  5. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    International Nuclear Information System (INIS)

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-01-01

    Complex heat capacity, C p * = C p ' - iC p '', of lithium borate glasses Li2O·(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C p * by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena

  6. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Matsui, Chihiro; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2006-05-01

    Complex heat capacity, Cp* = Cp' - iCp″, of lithium borate glasses Li2Oṡ(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent Cp* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  7. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  8. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  9. Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures

    International Nuclear Information System (INIS)

    Jorge, Guillermo A; Bekeris, V; Acha, C; Escobar, M M; Goyanes, S; Zilli, D; Cukierman, A L; Candal, R J

    2009-01-01

    We have measured the specific heat at constant pressure, C p , of three different samples of multiwall carbon nanotubes (MWNT). For all samples, C p departs from a graphitic behavior at T p measurements show a temperature threshold from a linear regime for intermediate temperature to a higher-order power law for low temperatures. Moreover, it was found that this crossover only depends on the internal structure of the individual MWNT and not on the spatial order of the MWNT within a bundle.

  10. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  11. P, ρ, T and heat capacity measurements of (α-pinene + β-pinene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modelling

    International Nuclear Information System (INIS)

    Langa, Elisa; Palavra, Antonio M.F.; Lourenço, Maria J.V.; Nieto de Castro, Carlos A.; Mainar, Ana M.

    2013-01-01

    Highlights: ► Density as a function of P, T and composition was measured for pinene mixtures. ► Isothermal compressibility and coefficients of cubic expansion were also calculated. ► Isobaric heat capacity was also determined as function of temperature and composition. ► Usual behaviour of these properties was found. ► SAFT and PC-SAFT were used as predictive models, showing PC-SAFT the best predictions. - Abstract: The density and isobaric heat capacity of the binary system {α-pinene (4,7,7-trimethylbicyclo[3.1.1]hept-3-ene (1), CAS Number 7785-26-4) + β-pinene (6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane (2), CAS Number 127-91-3)} has been measured for eleven different compositions. The density was determined at five pressures from (20 MPa to 40 MPa) and temperatures from (283.15 K to 358.15 K) and the isobaric heat capacity at atmospheric pressure and temperatures from (313.15 K to 418.15 K). Density was measured with an experimental uncertainty estimated to be ± 0.5 kg·m −3 . The isothermal compressibility and isobaric thermal expansion were derived from the experimental density data. The isobaric heat capacity was determined with a DSC calorimeter being the experimental uncertainty lower than 1.5%. Isobaric heat capacity behaviour was as expected for both pure compounds and for mixtures. Two different equations of state, conventional SAFT and PC-SAFT, were applied to calculate the densities of the mixture, being the best predictions achieved with PC-SAFT equation.

  12. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  13. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  14. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  15. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    International Nuclear Information System (INIS)

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.

    2014-01-01

    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  16. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  17. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  18. Predictive model for the heat capacity of ionic liquids using the mass connectivity index

    International Nuclear Information System (INIS)

    Valderrama, Jose O.; Martinez, Gwendolyn; Rojas, Roberto E.

    2011-01-01

    A simple and accurate model to predict the heat capacity of ionic liquids is presented. The proposed model considers variables readily available for ionic liquids and that have important effect on heat capacity, according to the literature information. Additionally a recently defined structural parameter known as mass connectivity index is incorporated into the model. A set of 602 heat capacity data for 146 ionic liquids have been used in the study. The results were compared with experimental data and with values reported by other available estimation methods. Results show that the new simple correlation gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

  19. Heat capacity and phonon mean free path in the biocarbon matrix of beech

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Wlosewicz, D.; Jezowski, A.

    2011-08-01

    The heat capacity at constant pressure C p of the biocarbon matrix prepared at a beech wood carbonization temperature of 1000°C has been measured in the temperature range 80-300 K. It has been shown that, in the temperature range 90-180 K, the heat capacity is C ˜ T 0.8 and, at T = 190-300 K, it is C p ˜ T 1.2. The phonon mean free path l( T) in the biocarbon matrix has been calculated using the obtained dependences C p ( T), our previous results on the phonon thermal conductivity of the carbon framework of this biocarbon matrix, and data available in the literature on the sound velocity in the matrix. It has been demonstrated that, in the temperature range 200-300 K, the mean value of l is ˜ 15 Å, which is close to the sizes of nanocrystallites ("carbon fragments") of ˜ 12Å, obtained earlier from X-ray diffraction data for the carbon matrix under consideration. These nanocrystallites participate in the formation of the carbon framework of the beech wood biocarbon matrix.

  20. Phonon Density of States and Heat Capacity of La3-xTe4

    International Nuclear Information System (INIS)

    Delaire, Olivier A.; May, Andrew F.; McGuire, Michael A.; Porter, Wallace D.; Lucas, Matthew S.; Stone, Matthew B.; Abernathy, Douglas L.; Snyder, G.J.

    2009-01-01

    The phonon density of states (DOS) of La 3-x Te 4 compounds (x=0.0, 0.18, 0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS, and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat capacity measurements were performed at temperatures ∼1.85 ≤ T ≤ 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La 3-x Te 4 strongly scatter phonons, and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation.

  1. The low temperature specific heat and electrical transport, magnetic properties of Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhiyong, E-mail: zyhan@cauc.edu.cn

    2017-02-01

    The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3} have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3}. - Highlights: • There exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. • With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state. • Low temperature electron specific heat in zero magnetic field is larger than that of ordinary rare-earth manganites oxide.

  2. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

    Science.gov (United States)

    Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.

    2014-02-01

    Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.

  3. Aqueous partial molar heat capacities and volumes for NaReO4 and NaTcO4

    International Nuclear Information System (INIS)

    Lemire, R.J.; Saluja, P.P.S.; Campbell, A.B.

    1989-01-01

    As part of the Canadian Nuclear Fuel Waste Management Program, data are required to model the equilibrium thermodynamic behavior of key radionuclides at temperatures above 25 degree C. A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species. Measurements for solutions of aqueous NaReO 4 (a common analogue for NaTcO 4 ) were made at seven temperatures (15 to 100 degree C) over the concentration range 0.05 to 0.2 mol·kg -1 . Subsequently, measurements were made for NaTcO 4 solutions under similar conditions. The heat capacity and density data are analyzed using Pitzer's ion-interaction model, and values of the NaReO 4 partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO 4 data is good below 75 degree C, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. The uncertainties introduced by using thermodynamic data for ReO 4 - , in the absence of data for TcO 4 - , are discussed

  4. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  5. Experimental studies in solid state and low temperature physics. Progress report, 1975

    International Nuclear Information System (INIS)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1975-09-01

    Experimental investigations are being carried out in a broad area of low-temperature and solid-state physics which includes superconductivity, magnetism in metals and liquid and solid helium. The pair-field susceptibility of superconductors is being studied. A propagating mode in the phase of the superconducting order parameter has been found. Heat capacities of superconducting films in the vicinity of T/sub c/ are also being investigated. An investigation in the time-dependent high conductivity of dilute solid solutions of sodium in ammonia has been initiated. Nuclear orientation studies of the dilute magnetic impurity problem in metals in the 1 mK temperature region are being carried out. Refrigeration requirements for this work are being met using enhanced hyperfine nuclear cooling. Measurements of the differential osmotic pressure of 3 He/ 4 He liquid mixtures near the tricritical point have shown a peak in the ''concentration susceptibility'' at the lambda line. Data obey a simple tricritical scaling relation. The dynamics of superfluid flow through submicron pores are being studied in both pure 4 He and in 3 He/ 4 He mixtures in an apparatus provided with a 3 He refrigerator. The quantization of circulation in superfluid liquid 4 He is being investigated using the Vinen method. The low temperature heat capacity of bcc solid 3 He is being studied

  6. Does low-protein diet improve broiler performance under heat stress conditions?

    Directory of Open Access Journals (Sweden)

    RL Furlan

    2004-06-01

    Full Text Available Nutrition for broilers under high temperatures is extremely important for brazilian broiler chicken industry because the amounts of consumed nutrients and environmental temperature have great effects on bird performance and carcass quality. Among diet nutrients, protein has the highest heat increment; thus, during many years, diets with low protein level were recommended in order to reduce heat production in broiler chickens under heat stress. However, reports have shown that low-protein diets have negative effects on broiler performance when environmental temperature is high, because during heat stress, low food intake associated to a low diet protein induce amino acid deficiencies. Other studies have shown that broilers fed low-protein diets increase their energy requirement for maintenance with higher heat production. Thus, with the growth of broiler industry in tropical areas more challenges need to be faced by the farmers. So, both the ambient and nutritional conditions ought to be well managed to avoid negative effects on poultry production once they can affect the metabolism (body heat production under low temperature and body heat dissipation under high temperature with consequence on poultry performance (meat and eggs.

  7. An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources

    International Nuclear Information System (INIS)

    Fiaschi, Daniele; Lifshitz, Adi; Manfrida, Giampaolo; Tempesti, Duccio

    2014-01-01

    Highlights: • Explotation of medium temperature geothermal resource with ORC–CHP is investigated. • A new CHP configuration to provide higher temperature to thermal user is proposed. • Several organic fluids and wide range of heat demand are studied. • The system produces higher power (almost 55%) in comparison to typical layouts. • Optimal working fluids vary with the characteristics of the heat demand. - Abstract: Medium temperature (up to 170 °C), water dominated geothermal resources are the most widespread in the world. The binary geothermal-ORC power plants are the most suitable energy conversion systems for this kind of resource. Specifically, combined heat and power (CHP) systems have the potential to improve the efficiency in exploiting the geothermal resources by cascading the geothermal fluid heat carrier to successively lower temperature users, thus increasing first and second law efficiency of the entire power plant. However, geothermal CHPs usually extract heat from the geofluid either in parallel or in series to the ORC, and usually provide only low temperature heat, which is seldom suitable for industrial use. In this paper, a new CHP configuration, called Cross Parallel CHP, has been proposed and analyzed. It aims to provide higher temperature heat suitable for industrial use, allowing the exploitation of geothermal resources even in areas where district heating is not needed. The proposed CHP allows the reduction of the irreversibilities in the heat exchangers and the loss to the environment related to the re-injection of geofluid, thus producing higher electric power output while satisfying, at the same time, the heat demand of the thermal utility for a wide range of temperatures and mass flow rates (80–140 °C; 3–13 kg/s). Several organic fluids are investigated and the related optimizing working conditions are found by a built in procedure making use of genetic algorithms. The results show that the optimal working fluids and

  8. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  9. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  10. Heat capacity of ThO2

    International Nuclear Information System (INIS)

    Peng Shian

    1996-01-01

    The heat capacity C p of ThO 2 can be calculated as the phonon part of C p for other actinide dioxides used as fuel in nuclear reactors. Precise determination of the phonon part of C p of actinide dioxides is helpful to find out the contributions of other factors to C p . In this paper we have, through studying the heat capacity of ThO 2 , developed a general method applicable to the study of C p of other solids. In the developed method the three type -- different experimental measurements made on a solid-heat capacity, thermal expansion and Debye Waller factor -- can be brought together for comparison. The application of this method to the study of C p of ThO 2 has enabled us to propose a better description of C p of ThO 2 than the generally accepted expression

  11. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. [Southampton Univ., (United Kingdom). Faculty of Mathematical Studies; Woodard, R.P. [Florida Univ., Gainesville, FL (United States). Dept. of Physics

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent_to} T({partial_derivative}S/{partial_derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial_derivative}U/{partial_derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  12. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. (Southampton Univ., (United Kingdom). Faculty of Mathematical Studies); Woodard, R.P. (Florida Univ., Gainesville, FL (United States). Dept. of Physics)

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent to} T({partial derivative}S/{partial derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial derivative}U/{partial derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  13. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    Dalla Rosa, A.; Christensen, J.E.

    2011-01-01

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  14. Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing; Chen, Zheng [Jingdezhen Ceramic Institute, Jingdezhen (China). Key Lab. of Inorganic Membrane; Yu, Yun [Shanghai Institute of Ceramics, Shanghai (China). Key Lab. of Inorganic Coating Materials; Zhang, Xiaozhen; Wang, Yongqing; Zhou, Jianer [Jingdezhen Ceramic Institute, Jingdezhen (China). Dept. of Materials Engineering

    2018-03-01

    Graphene-based conductive films have already attracted great attention due to their unique and outstanding physical properties. In this work, in order to develop a novel, effective method to produce these films with good electrical conductivity, a simple and green method is reported to rapidly and effectively reduce graphene oxide film using a low temperature heat treatment. The reduction of graphene oxide film is verified by XRD, FT-IR and Raman spectroscopy. Compared with graphene oxide film, the obtained reduced graphene oxide film has better electrical conductivity and its sheet resistance decreases from 25.3 kΩ x sq{sup -1} to 3.3 kΩ x sq{sup -1} after the heat treatment from 160 to 230 C. The mechanism of thermal reduction of the graphene oxide film mainly results from the removal of the oxygen-containing functional groups and the structural changes. All these results indicate that the low temperature heat treatment is a suitable and effective method for the reduction of graphene oxide film.

  15. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  16. Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Guillermo A; Bekeris, V; Acha, C [Laboratorio de Bajas Temperaturas, Departamento de Fisica, FCEyN-UBA, Pab. 1, Ciudad Universitaria (1428), Buenos Aires (Argentina); Escobar, M M; Goyanes, S [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, FCEyN-UBA, Pab. 1, Ciudad Universitaria (1428), Buenos Aires (Argentina); Zilli, D; Cukierman, A L [PINMATE, Departamento de Industrias, FCEyN-UBA, Pab. Industrias, Ciudad Universitaria (1428), Buenos Aires (Argentina); Candal, R J, E-mail: gjorge@df.uba.a [Instituto de Fisicoquimica de Materiales, Ambiente y EnergIa, CONICET-UBA, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2009-05-01

    We have measured the specific heat at constant pressure, C{sub p}, of three different samples of multiwall carbon nanotubes (MWNT). For all samples, C{sub p} departs from a graphitic behavior at T < 120 K. C{sub p} measurements show a temperature threshold from a linear regime for intermediate temperature to a higher-order power law for low temperatures. Moreover, it was found that this crossover only depends on the internal structure of the individual MWNT and not on the spatial order of the MWNT within a bundle.

  17. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  18. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  19. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  20. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  1. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  2. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  3. Low temperature waste heat brought into the greenhouse. Scientific investigations of favourable experience in Austria. Niedertemperatur-Abwaerme ins Gewaechshaus gebracht. Wissenschaftliche Untersuchung positiver Erfahrungen in Oesterreich

    Energy Technology Data Exchange (ETDEWEB)

    Schrottmaier; Nadlinger, M. (Bundesanstalt fuer Landtechnik, Wieselburg (Austria))

    1986-01-01

    In the Indinger garden centre at Brunn, the low temperature ground and rack heating (heating the soil by hoses laid 2-5 cm deep in the ballast bed) is compared with conventional heating. Loss of heat of ground heating downwards was prevented by insulating under the hoses with styropor. At low outside temperatures, vegetation heating in the ground and on the table for decorative plants is not sufficient by itself, a thermal insulation umbrella must be used or the peak demand must be met by the old heating system. The lower the air temperature, compared to the pot temperature, the greater is the energy saving. The air and pot temperature must be controlled independently of one another. For the same energy consumption, the pot temperature was 2 K higher. The success in growing things was excellent. (orig.).

  4. Interplay between the energy gap and heat capacity in S-wave superconductor

    International Nuclear Information System (INIS)

    Gonczarek, R.; Mulak, M.

    1998-01-01

    Starting from the postulated, generalized form of the BCS gap equation, suitable for a wide class of microscopic models, the thermodynamic properties of S-wave superconductors are studied. The precise analytical formulas for the main thermodynamic quantities are given and discussed in the characteristic temperature limits. In particular the inversion of the equations defining the specific heat as a function of Δ(T), i.e. the temperature dependence of the energy gap in S-wave superconductor is presented. It makes possible a reconstruction of the energy gap as a function of temperature from the heat capacity data. As predicted, in the frame of the model, the other thermodynamic quantities from the Δ(T) function seem also to be interesting. (orig.)

  5. Electrical resistivity, heat capacity and magnetic susceptibility anomalies in Ce{sub 1-x}La{sub x}Ir{sub 2}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R; Sampathkumaran, E V; Paulose, P L [Tata Inst. of Fundamental Research, Bombay (India)

    1997-02-01

    The results of electrical resistivity {rho} (1.4-300 K), heat capacity C and magnetic susceptibility {chi} measurements on the alloys, Ce{sub 1-x}La{sub x}Ir{sub 2}Ge{sub 2}, are reported. The results establish that CeIr{sub 2}Ge{sub 2} is one of the rare Ce compounds with a Kondo coherence temperature as large as 80 K in the trivalent limit of Ce. Apparently, {rho} exhibits non-Fermi liquid behaviour in the low-temperature {rho} data, though there is no corresponding anomaly in the C data. There is a low-temperature tail in {chi} which appears to be intrinsic. (orig.).

  6. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low......-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two...

  7. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...... °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario....

  8. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  9. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  10. Heat capacity of amorphous and disordered Nb3Ge thin films

    International Nuclear Information System (INIS)

    Rao, N.A.H.K.

    1979-06-01

    Heat capacity measurements on 1000 to 1500A thick amorphous Nb 3 Ge and granular Al films have been carried out using an ac technique. The major goal of the experiment was to study the effect of thermal fluctuations, both above and below the superconducting transition temperature T/sub c/, in dirty, short meanfree path materials

  11. Temperature dependence of the heat capacities in the solid state of 18 mono-, di-, and poly-saccharides

    International Nuclear Information System (INIS)

    Hernandez-Segura, Gerardo O.; Campos, Myriam; Costas, Miguel; Torres, Luis A.

    2009-01-01

    The temperature dependence of the heat capacities in solid state C p (T) of 18 mono-, di-, and poly-saccharides has been determined using a power-compensation differential scanning calorimeter. The saccharides were α-D-xylose, D-ribose, 2-deoxy-D-ribose, methyl-β-D-ribose, α-D-glucose, 2-deoxy-D-glucose, α-D-mannose, β-D-fructose, α-D-galactose, methyl-α-D-glucose, sucrose, maltose monohydrate, α-lactose monohydrate, cellobiose, maltotriose, N-acetyl-D-glucosamine, α-cyclodextrin, and β-cyclodextrin. The measurements were carried out at atmospheric pressure and from T = (288.15 to 358.15) K for 15 saccharides and from T = (288.15 to 328.15) K for D-ribose, 2-deoxy-D-ribose, and methyl-β-D-ribose. The present results are compared against literature values both at single temperatures, where most of the data are available, and throughout a range of temperatures, i.e., for C p (T). The predictions of a recently published correlation for organic solids are briefly discussed. By grouping saccharides in subsets, our present results can be used to compare amongst saccharide isomers and to assess the effect of different chemical groups and molecular size

  12. Temperature Oscillations in Loop Heat Pipes - A Revisit

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.

  13. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  14. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  15. Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  16. Numerical research of heat and mass transfer during low-temperature ignition of a coal particle

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Numerical researches have been carried out to study the influence of air flow temperature and a fossil fuel particle rate on sufficient conditions of ignition in a “coal particle - air” system. Developed mathematical model takes into account interconnected processes of heat transfer in a coal particle and gas area, thermal decomposition of organic material, diffusion and gas-phase oxidation of volatiles, heating of a coke (carbon and its heterogeneous ignition. The effect of low-temperature (about 600 K ignition for a single coal particle is impossible even at variation of its rate (radius from 0.05 mm to 0.5 mm. Nevertheless this process is possible for group of particles (two, three, et al. situated at close-range from each other. The physical aspects of the problem are discussed.

  17. Low-temperature thermal properties of yttrium and lutetium dodecaborides

    International Nuclear Information System (INIS)

    Czopnik, A; Shitsevalova, N; Pluzhnikov, V; Krivchikov, A; Paderno, Yu; Onuki, Y

    2005-01-01

    The heat capacity (C p ) and dilatation (α) of YB 12 and LuB 12 are studied. C p of the zone-melted YB 12 tricrystal is measured in the range 2.5-70 K, of the zone-melted LuB 12 single crystal in the range 0.6-70 K, and of the LuB 12 powder sample in the range 4.3-300 K; α of the zone-melted YB 12 tricrystal and LuB 12 single crystals is measured in the range 5-200 K. At low temperatures a negative thermal expansion (NTE) is revealed for both compounds: for YB 12 at 50-70 K, for LuB 12 at 10-20 K and 60-130 K. Their high-temperature NTE is a consequence of nearly non-interacting freely oscillating metal ions (Einstein oscillators) in cavities of a simple cubic rigid Debye lattice formed by B 12 cage units. The Einstein temperatures are ∼254 and ∼164 K, and the Debye temperatures are ∼1040 K and ∼1190 K for YB 12 and LuB 12 respectively. The LuB 12 low-temperature NTE is connected with an induced low-energy defect mode. The YB 12 superconducting transition has not been detected up to 2.5 K

  18. High-Temperature Heat Capacity of Germanates Pr2Ge2O7 and Nd2Ge2O7 within 350-1000 K

    Science.gov (United States)

    Denisova, L. T.; Irtyugo, L. A.; Beletskii, V. V.; Belousova, N. V.; Denisov, V. M.

    2018-03-01

    Pr2Ge2O7 and Nd2Ge2O7 were obtained via solid-phase synthesis from Pr2O3 ( Nd2O3) and GeO2 with multistage firing in air within 1273-1473 K. A temperature effect on molar heat capacity of the oxide compounds was measured with a differential scanning calorimetry. Their thermodynamic properties were calculated from the C P = f( T) dependences.

  19. Measurement of the molar heat capacities of MoO2 and MoO3 from 350 to 950 K

    International Nuclear Information System (INIS)

    Inaba, H.; Miyahara, K.; Naito, K.

    1984-01-01

    Molar heat capacities of MoO 2 and MoO 3 were measured in the range between 350 and 950 K by means of adiabatic scanning calorimetry. For MoO 2 , a sharp heat-capacity anomaly with a molar enthalpy change of (178 +- 24) J.mol -1 and a molar entropy change of (0.207 +- 0.028) J.K -1 .mol -1 was observed at 865 K, which had not been detected by drop calorimetry. For MoO 3 , two heat-capacity anomalies with molar enthalpy changes of (88 +- 21) and (60 +- 36) J.mol -1 were found at 808 K and 857 K, respectively; neither anomaly had been detected by the drop method. The lattice molar heat capacities of MoO 2 and MoO 3 are estimated as Csub(l,m)(MoO 2 ) = D(469 K/T) + E(578 K/T) + E(876 K/T) and Csub(l,m)(MoO 3 ) = D(208 K/T) + 2E(488 K/T) + E(1170 K/T), where D(x) and E(x) are the Debye and Einstein functions, respectively. The temperature coefficient of the electronic molar heat capacity of MoO 2 is estimated as (6.0 +- 0.5) mJ.K -2 .mol -1 . The excess heat capacity in MoO 3 found at higher temperatures is interpreted as being due to vacancy formation with a molar activation energy of (98 +-5) kJ.mol -1 . The origin of the heat-capacity anomalies is inferred as arising from the slight movement of distorted MoO 6 octahedra in the MoO 2 and MoO 3 structures. (author)

  20. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  1. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis

    DEFF Research Database (Denmark)

    Cai, Hanmin; You, Shi; Wang, Jiawei

    2018-01-01

    This paper provides a technical assessment of electric heat boosters (EHBs) in low-energy districts. The analysis is based on a hypothetical district with 23 terraced single-family houses supplied by both a lowtemperature district heating (LTDH) network and a low-voltage network (LVN). Two case...

  2. Low-Temperature Baseboard Heaters in Built Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan

    2010-10-15

    The European Union has adopted a plan to decrease 20 % of total energy consumption through improved energy efficiency by 2020. One way of achieving this challenging goal may be to use efficient water-based heating systems supplied by heat pumps or other sustainable systems. The goal of this research was to analyze and improve the thermal performance of water-based baseboard heaters at low-temperature water supply. Both numerical (CFD) and analytical simulations were used to investigate the heat efficiency of the system. An additional objective of this work was to ensure that the indoor thermal comfort was satisfied in spaces served by such a low-temperature heating system. Analyses showed that it was fully possible to cover both transmission and ventilation heat losses using baseboard heaters supplied by 45 deg C water flow. The conventional baseboards, however, showed problems in suppressing the cold air down-flow created by 2.0 m high glazing and an outdoor temperature of -12 deg C. The draught discomfort at ankle level was slightly above the upper limit recommended by international and national standards. On the other hand, thermal baseboards with integrated ventilation air supply showed better ability to neutralize cold downdraught at the same height and conditions. Calculations also showed that the heat output from the integrated system with one ventilation inlet was approximately twice as high as that of the conventional one. The general conclusion from this work was that low temperature baseboards, especially with integrated ventilation air supply, are an efficient heating system and able to be combined with devices that utilize the low-quality sustainable energy sources such as heat pumps

  3. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...

  4. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Origlia-Luster, M.L.; Woolley, E.M.

    2003-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg -1 to 1.0 mol·kg -1 . We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (V phi ,T,m) and (C p,phi ,T,m). Infinite dilution partial molar volumes V 2 0 and heat capacities C 0 p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg -1

  5. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  6. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  7. The Nd-Mn exchange interaction, low temperature specific heat and magnetism of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beznosov, Anatoly [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Fertman, Elena, E-mail: fertman@ilt.kharkov.ua [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Desnenko, Vladimir [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Kajnakova, Marcela; Feher, Alexander [Centre of Low Temperature Physics of the Faculty of Science UPJS and IEP SAS, Park Angelinum 9, 04154 Kosice (Slovakia)

    2011-10-15

    The low temperature specific heat and magnetic characteristics of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite are studied in a wide range of magnetic fields (up to 9 T). Temperature dependent specific heat data show a broadened Schottky-like anomaly below 20 K caused by splitting of the Nd{sup 3+} ions ground-state doublet in the effective molecular field H{sub ex}, determined by exchange interaction between Nd and Mn spin systems supplemented by an applied external magnetic field. Existence of the splitting at zero magnetic field and expressed field dependence is the evidence of a strong exchange coupling between Nd and Mn magnetic subsystems. The Nd-ions magnetic ordering leads to an additional contribution to the magnetic moment of the system below 30 K, producing anomalies of the magnetic loss and field-cooled and zero-field-cooled magnetizations. The observed broadened Schottky-like anomalies are fitted for each applied magnetic field by the sum of three Schottky functions. Applied magnetic field extends the anomaly region and shifts it to higher temperatures. Splitting of the higher crystal field Kramers doublets gives an additional contribution to the heat capacity in magnetic fields. The ground state doublet g-factors g{sub ||} and g{sub perpendicular} were estimated to be 3.4 and 2.2, respectively, and H{sub ex} was estimated to be 9 T. The Nd{sup 3+} ions magnetic moment estimated from the magnetization data agrees with the value obtained from the specific heat data. - Highlights: > Low temperature specific heat of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} has been measured in magnetic fields up to 9 T. > Schottky-like anomalies are fitted for each magnetic field by a sum of three Schottky functions. > An effective magnetic field of the Mn spin system on Nd ion has been estimated as H{sub ex}=9 T. > Nd{sup 3+} ground-state g-factors have been estimated as g{sub ||}=3.4 and g{sub perpendicular} =2.2. > Magnetic ordering of the Nd subsystem has been revealed below

  8. New experimental heat capacity and enthalpy of formation of lithium cobalt oxide

    International Nuclear Information System (INIS)

    Gotcu-Freis, Petronela; Cupid, Damian M.; Rohde, Magnus; Seifert, Hans J.

    2015-01-01

    Highlights: • LiCoO 2 heat capacity was measured in the temperature range (160 to 953) K using DSC. • Continuous/discontinuous methods were applied on different types of calorimeters. • Enthalpy increment of LiCoO 2 was determined using drop calorimetry at T = 974 K. • Enthalpies of formation were evaluated from oxide melt drop solution calorimetry. - Abstract: The heat capacity of LiCoO 2 (O3-phase), constituent material in cathodes for lithium-ion batteries, was measured using two differential scanning calorimeters over the temperature range from (160 to 953) K (continuous method). As an alternative, the discontinuous method was employed over the temperature range from (493 to 693) K using a third calorimeter. Based on the results obtained, the enthalpy increment of LiCoO 2 was derived from T = 298.15 K up to 974.15 K. Very good agreement was obtained between the derived enthalpy increment and our independent measurements of enthalpy increment using transposed temperature drop calorimetry at 974.15 K. In addition, values of the enthalpy of formation of LiCoO 2 from the constituent oxides and elements were assessed based on measurements of enthalpy of dissolution using high temperature oxide melt drop solution calorimetry. The high temperature values obtained by these measurements are key input data in safety analysis and optimisation of the battery management systems which accounts for possible thermal runaway events

  9. Investigations of the trend followed in heat capacity of Re_6UO_1_2 (s) along lanthanide series

    International Nuclear Information System (INIS)

    Sahu, Manjulata; Saxena, M.K.; Rawat, Deepak; Dash, Smruti

    2017-01-01

    The compound RE_6UO_1_2 (s) (RE = Ho, Er, Tm, Yb and Lu) was synthesized by complex polymerisation method and characterised using X-ray diffraction (XRD). Heat capacity measurements of RE_6UO_1_2 (s) were performed with heat flux-type differential scanning calorimeter in the temperature range of 300-870 K. The trend in heat capacity along the rare earth series was proposed for RE_6UO_1_2 (s) and thermodynamic functions were generated. (author)

  10. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  11. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  12. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  13. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  14. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  15. Optimal dimensioning of low-energy district heating networks with operational planning

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    in design stage resulted in satisfaction of heat demand of the house in low temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to reduce the dimensions of the distribution network with consideration given both to current high-heat and future low......-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy DH systems were investigated based on the dynamic response of in-house heating systems...... of operational planning in comparison to DH network dimensioned according to high heat demand situation....

  16. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  17. Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Jena, Hrudananda; Govindan Kutty, K.V.; Nagarajan, K.

    2008-01-01

    Strontium and calcium chloroapatites were synthesized by wet chemical method, characterized by X-ray diffraction and are found to be phase pure materials. The measured room temperature lattice parameter of Ca 10 (PO 4 ) 6 Cl 2 is a = 9.523 A, c = 6.855 A and for Sr 10 (PO 4 ) 6 Cl 2 is a = 9.876 A, c = 7.188 A. Heat capacity measurements were carried out on Ca 10 (PO 4 ) 6 Cl 2 and Sr 10 (PO 4 ) 6 Cl 2 by DSC in the temperature range 298-800 K. The heat capacity values of Sr 10 (PO 4 ) 6 Cl 2 is higher at all temperatures than Ca 10 (PO 4 ) 6 Cl 2 . Enthalpy and entropy increments were computed. Heat capacity values of Ca 10 (PO 4 ) 6 Cl 2 and Sr 10 (PO 4 ) 6 Cl 2 at 298 K are 758 and 868 J K -1 mol -1 , respectively

  18. Parametric Analysis of the feasibility of low-temperature geothermal heat recovery in sedimentary basins

    Science.gov (United States)

    Tomac, I.; Caulk, R.

    2016-12-01

    The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.

  19. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  20. Apparent molar volumes and apparent molar heat capacities of aqueous D-lactose · H2O at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sargent, J.D.; Niederhauser, T.L.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of D-lactose · H 2 O at molalities (0.01 to 0.34) mol · kg -1 at temperatures (278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results for D-lactose(aq) and for D-lactcose · H 2 O were fitted to functions of m and T and compared with the literature results for aqueous D-glucose and D-galactose solutions. Infinite dilution partial molar volumes V 2 compfn and heat capacities C p,2 compfn are given over the range of temperatures

  1. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Zacarias, A.; Venegas, M.

    2010-01-01

    Single-effect absorption refrigeration hybridized with mechanical vapor compression in a vapor circuit is known as the absorption cycle with an integrated booster compressor. In this study, the compressor is located between the evaporator and the absorber. This paper presents a numerical model of this cycle with ammonia-lithium nitrate solution as the working pair. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers. The results are offered as a function of external circuit flow parameters. Different pressure ratios of the compressor were tested for a wide range of hot water driving temperatures (55-95 deg. C), showing that low values are more beneficial. This cycle allows for working at lower driving temperatures than the single-effect cycle, with low electricity consumption. At the same driving temperature, the capacity is augmented with an increased compressor pressure ratio, thus allowing for demand matching of the cooling. This cycle, operating with hot water at 67 deg. C with a pressure ratio of 2.0, has the capacity of a single-effect absorption cycle at 94 deg. C. The electrical COP was found to be higher than that in an ammonia vapor compression cycle for comprehensive working conditions.

  2. Radiation intensification of the reactor pressure vessels recovery by low temperature heat treatment (wet annealing)

    Science.gov (United States)

    Krasikov, E.

    2015-04-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called «dry» high temperature (∼475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible.

  3. Radiation intensification of the reactor pressure vessels recovery by low temperature heat treatment (wet annealing)

    International Nuclear Information System (INIS)

    Krasikov, E

    2015-01-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation.There are two approaches to annealing. The first one is so-called «dry» high temperature (∼475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment.The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. (paper)

  4. Novel specific heat and magnetoresistance behavior of Tb0.5Ho0.5Mn2Si2

    Science.gov (United States)

    Pandey, Swati; Siruguri, V.; Rawat, R.

    2018-04-01

    In this report, we study temperature dependent heat capacity and electrical resistance of Tb1-xHoxMn2Si2 (x = 0.5). Two successive low temperature magnetic transitions T1 (˜15 K) and T2 (˜25 K) are observed from both measurements. Anomalous rise in heat capacity at low temperatures is ascribed to the nuclear Schottky effect. Sommerfeld coefficient (γ), Debye temperature (θD) and density of states at Fermi level N(EF) is calculated from the zero field specific heat data. We observe 4f contribution to heat capacity from T1 to 100K, which is attributed to crystal field effect. In the electrical transport study, application of the magnetic field shows a substantial change around the ordering temperature of rare earth moment resulting in large positive magnetoresistance of about 20% with field change of 6T.

  5. Book of presentations of the International Workshop on High Temperature Heat Pumps

    DEFF Research Database (Denmark)

    Modern society moves towards an electrifed energy system based on wind, solarand other renewable sources. Utilizing these sources effciently by heat pumps ishighly attractive and a significant potential for improving the energy system byextensive adaptation of heat pumping technology in all fields...... exists. However, challenges are present for heat pump technology. In particular for high temperature applications like industrial processes and to some extent district heating, heat pumps are not yet commercially available. In some countries the expansion already occurs, but other places the development...... is much more limited. Some obstacles relate to regulations and boundary conditions which may not be favorablefor heat pumps and electrification. But, the level of the technology willprobably also improve with regards to temperature limits, efficiency, capacity, and economy, and hence inherently become...

  6. Thermodynamics of micellization from heat-capacity measurements.

    Science.gov (United States)

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heat-capacity measurement on (Zr1-ySny)Ox from 325 to 905 K

    International Nuclear Information System (INIS)

    Tsuji, Toshihide; Amaya, Masaki; Naito, Keiji

    1993-01-01

    Heat capacities of (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 (y=0-0.07) having α''-ZrO ∼1/6 and α''-ZrO x type crystal structures, respectively, were measured from 325 to 905 K by using an adiabatic scanning calorimeter. Two kinds of heat capacity anomalies were observed for all samples. The anomaly at lower temperatures is attributed to a nonequilibrium phenomenon. Another anomaly at higher temperatures is assigned to an order-disorder rearrangement of oxygen atoms. The transition temperature, transition enthalpy and entropy changes due to the order-disorder transition decreased with increasing tin content, indicating that arrangement of oxygen atoms in the lower temperature phase may be partially disordered by substituting tin for zirconium. The entropy change due to the order-disorder transition for (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 solid solutions is compared with the theoretical value. The solubility limits of (Zr 1-y Sn y )O 0.17 and (Zr 1-y Sn y )O 0.28 were determined from the variation of lattice constants, transition temperature, transition enthalpy and entropy changes against tin content. (orig.)

  8. Heat capacity and solid solubility of iron in scandium

    International Nuclear Information System (INIS)

    Tsang, T.-W.E.

    1981-01-01

    The maximum solid solubility of iron in scandium was determined to be between 50 and 85 at.ppm in the as-cast condition. As the concentration of iron increases, it segregates along the grain boundary, as is evident from optical metallography and electron microprobe examinations. Annealing also causes the iron dissolved in scandium to separate out and cluster along the grain boundary. Heat capacity measurements show an anomaly in the C/T versus T 2 plots for iron concentrations of 19 at.ppm or greater. For iron dissolved in solid scandium the excess entropy due to the iron impurity is in agreement with the theoretical prediction of ck ln(2S + 1) for an impurity-conduction electron (Kondo) interaction, but is 4 - 8 times larger than the theoretical prediction when iron segregates along the grain boundary. Furthermore, our results suggest that most of the previously reported low temperature physical properties of scandium are probably in error because of either iron impurity-conduction electron interactions or Fe-Fe interactions in the precipitated second-phase Sc-Fe compound. (Auth.)

  9. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  10. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    International Nuclear Information System (INIS)

    Mohd Ghazali, F.A.; Ab Rahim, M.F.; Jaafar, A.A.; Ahmad, M.N.

    2016-01-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method. (paper)

  11. Long distance transmission of low grade heat

    International Nuclear Information System (INIS)

    Arnott, P.T.W.

    1977-01-01

    This paper is concerned with low and medium temperature water carried by pipeline as a heat transfer medium for the purpose of utilising the waste heat arising from the nuclear power generation process. Different pipelines, single and double, and alternative pipe materials to steel are presented. Later in the paper the effect of the sending-end temperature on the viability of a water pipeline transmission system is discussed and the consequences of using small quantities of steam in order to boost the water temperature are explained. (M.S.)

  12. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    . The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...... the buildings. Since the existing buildings were considered to be renovated to low-energy class, the operational planning was simultaneously modelled for both present high-demand and future low-demand situations of the same case area.......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low...

  13. Low temperature calorimetry and transmission electron microscopy of helium bubbles in Cu

    International Nuclear Information System (INIS)

    Syskakis, E.

    1985-08-01

    Helium has been introduced into 100 μm thick pure Cu specimens by implantation of α-particles at T = 300 K. Post-implantation annealing of the specimens at high temperatures caused helium to precipitate into bubbles. We have measured the low-temperature heat capacity of helium confined in bubbles of average radius of less than 100 A. The size of the bubbles was obtained by transmission electron microscope investigations. We have observed that helium liquifies at low temperatures and undergoes the transition to the superfluid state in bubbles of average radius larger than 35 A. The confining geometry of bubbles is new and possesses unique features for investigations of confined helium. It provides the possibility to study properties of extremely small, spherical, completely isolated Bose ''particles'' consisting of 10 4 helium atoms each. Furthermore, as we show, it can be known with better accuracy than formerly investigated confining geometries. (orig./BHO)

  14. A thermoacoustic engine capable of utilizing multi-temperature heat sources

    International Nuclear Information System (INIS)

    Qiu Limin; Wang Bo; Sun Daming; Liu Yu; Steiner, Ted

    2009-01-01

    Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.

  15. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.

    Science.gov (United States)

    Talbot, William A; McWhorter, Todd J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-10-01

    Birds in the order Caprimulgiformes (nightjars and allies) have a remarkable capacity for thermoregulation over a wide range of environmental temperatures, exhibiting pronounced heterothermy in cool conditions and extreme heat tolerance at high environmental temperatures. We measured thermoregulatory responses to acute heat stress in three species of Caprimulgiformes that nest in areas of extreme heat and aridity, the common poorwill ( Phalaenoptilus nuttallii : Caprimulgidae) and lesser nighthawk ( Chordeiles acutipennis : Caprimulgidae) in the Sonoran Desert of Arizona, and the Australian owlet-nightjar ( Aegotheles cristatus : Aegothelidae) in the mallee woodlands of South Australia. We exposed wild-caught birds to progressively increasing air temperatures ( T a ) and measured resting metabolic rate (RMR), evaporative water loss (EWL), body temperature ( T b ) and heat tolerance limit (HTL; the maximum T a reached). Comparatively low RMR values were observed in all species (0.35, 0.36 and 0.40 W for the poorwill, nighthawk and owlet-nightjar, respectively), with T b approximating T a at 40°C and mild hyperthermia occurring as T a reached the HTL. Nighthawks and poorwills reached HTLs of 60 and 62°C, respectively, whereas the owlet-nightjar had a HTL of 52°C. RMR increased gradually above minima at T a of 42, 42 and 35°C, and reached 1.7, 1.9 and 2.0 times minimum resting values at HTLs in the poorwill, nighthawk and owlet-nightjar, respectively. EWL increased rapidly and linearly as T a exceeded T b and resulted in maximum rates of evaporative heat dissipation equivalent to 237-424% of metabolic heat production. Bouts of gular flutter resulted in large transient increases in evaporative heat loss (50-123%) accompanied by only small increments in RMR (<5%). The cavity-nesting/roosting owlet-nightjar had a lower HTL and less efficient evaporative cooling compared with the species that nest and/or roost on open desert surfaces. The high efficiency of gular

  16. The influence of river water temperature annual variation to the moderator heat exchangers heat flux

    International Nuclear Information System (INIS)

    Nita, I. P.

    2015-01-01

    The Main Moderator heat exchangers are the most important consumers supplied by Recirculated Cooling Water (RCW) System. In order to determine an appropriate operating configuration of the RCW system it is needed to determine the flowrate required by the Main Moderator consumers, in real time. From operating experience, the required RCW flowrate necessary to be supplied to the main moderator heat exchangers is much lower than design flowrate. In installation, there are no flow elements that could measure especially that flow. However, there are two control valves which regulate the flow to the main moderator heaters; they control the outlet temperature of the moderator to 69"oC. That leads to the requirement of calculating the flowrate function of the outside temperature for all possible temperatures during a calendar year. One considered all possible temperatures during an operating year, and more, going beyond design point, up to 36"oC, temperature that can occur during quick transients after forth RCW pump starting. The calculation was made to verify the capacity of heat exchanger to remove the designed 100 MW(t) in the new condition of reducing moderator temperature outlet from 77 to 69°C. The obtained model was validated using field temperatures and flow measurements and the conclusion was the model can accurately predict how the RCW system operates in all year operation conditions. (authors)

  17. Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17

    Science.gov (United States)

    Wang, Junfeng; Xiong, Rui; Yin, Di; Li, Changzhen; Tang, Zheng; Wang, Ququan; Shi, Jing; Wang, Yue; Wen, Haihu

    2006-05-01

    Low temperature specific heat (Cp) of quasi-two-dimensional charge-density wave (CDW) compound KMo6O17 has been studied by a relaxation method from 2to48K under zero and 12T magnetic fields. The results show that no specific heat anomaly is found at 16K under both zero and 12T magnetic fields, although an anomaly is clearly observed in the resistivity and magnetoresistance measurements. From the data between 2 and 4K , the density of states at Fermi level is estimated as 0.2eV-1permolecule and the Debye temperature is extracted to be 418K . A bump appearing in Cp/T3 is found between 4 and 48K centered around 12.5-15K , indicating that the phason excitations contribute to the total specific heat similarly as in quasi-one-dimensional CDW conductors. Using a modified Debye model, a pinning frequency of 0.73THz for KMo6O17 is estimated from the phason contribution.

  18. Heat capacity measurement of Ba3SrNb2O9

    International Nuclear Information System (INIS)

    Singh, B.M.; Samui, Pradeep; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Barium, Strontium and Niobium are important fission products in nuclear reactor with reasonable fission yields. During irradiation of oxide fuels, they can combine to form compounds of Ba-Sr-Nb-O system. Therefore, thermodynamic properties of Ba 3 SrNb 2 O 9 are required for modelling fuel behaviour however thermodynamic data of this compound is not available in literature. Ba 3 SrNb 2 O 9 was prepared by solid state route, by mixing stoichiometric amounts of finely grounded SrCO 3 , BaCO 3 and Nb 2 O 5 . Finally mixed powder was pressed into a pellet at 5 ton pressure for 2 minutes in a hydraulic press and the pellet was heated at 1123 K for 60 h in air. The pellet was cooled, finely grounded, re-pelletised and heated at 1473 K for 120 h. The formation of compound was confirmed by X-ray diffraction pattern, collected at room temperature using Cu-K α radiation (λ = 1.54 nm), scanned over the angular range 20-80° (2θ) with steps of 0.02°. Heat capacity of the compound was measured by the classical three-step method, in continuous mode, using LABSYS EVO, in temperature range of 370 and 950 K. No transition was observed in the investigated temperature range

  19. Low-temperature specific heat and thermal conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Sleator, T.; Bernasconi, A.; Posselt, D.

    1991-01-01

    Specific-heat and thermal-conductivity measurements were made on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Evidence for a crossover between regimes of characteristically different excitations was observed. The data analysis indicates a "bump" in the density...

  20. Heat capacity and thermal diffusivity of ScD/sub x/ and ErD/sub x/

    International Nuclear Information System (INIS)

    Moss, M.

    1979-04-01

    The heat capacity, C/sub p/ (T = 298-1000 K), and the thermal diffusivity, α(T = 623-773 K), of ScD/sub x/ and ErD/sub x/ (x = 0-1.83) have been measured. C/sub p/ of ScD/sub x/ increases with x for x = 0-1.59 over the entire temperature range, but then declines for x = 1.83. ErD/sub x/ shows a monotonic increase of C/sub p/ with x, and exhibits a sharp positive anomaly at 910 K for x = 1.82. Both materials display an excess heat capacity which is attributed to disorder in the deuterium sublattice. A minimum in α is observed for ScD/sub x/ and ErD/sub x/ at mid-range values of x where disorder is greatest; α for all samples is fairly constant with T in this limited temperature range

  1. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  2. Use of Low-Temperature Geothermal Energy for Desalination in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cath, Tzahi [Colorado School of Mines, Golden, CO (United States); Vanneste, Johan [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States)

    2015-11-01

    This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C with hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.

  3. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  5. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  6. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  7. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl-) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities

    International Nuclear Information System (INIS)

    Hawrylak, B.; Palepu, R.; Tremaine, Peter R.

    2006-01-01

    Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system

  8. The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O

    Science.gov (United States)

    Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F.; Wall, V.J.; Burriel, R.; Bohlen, S.R.

    1985-01-01

    Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.

  9. Research results from a prototype for power generation from low temperature heat sources in small and medium sized sawmills

    Energy Technology Data Exchange (ETDEWEB)

    Tveit, Tor-Martin; Hoeeg, Arne; Asphjell, Trond-Atle; Horn, Henning

    2010-07-01

    In this paper we present research results from a low temperature power generation unit prototype, SPP 2-67A, installed at the timber company Moelven Eidsvold Vaerk in Norway. The power generation unit is a Stirling cycle reciprocating engine connected to a generator, which is designed to combine the mature technology for high temperature Stirling engines (as seen for instance as air independent propulsion (AIP) units in submarines) and recent academic work on low temperature Stirling engines. The power generation unit is installed in a boiler room at the Moelven Eidsvold Vaerk plant and uses steam at approximately 1.5 bar pressure as a heat source. The steam is generated in the 5.5 MW biomass-fuelled boiler, where bark of Norway spruce (Picea abies) is the main biofuel. The installation has been intended both to use hot water as a heat sink to demonstrate CHP operation, and cold water from the grid to demonstrate maximum power generation from surplus steam. The installation is part of a research project partly financed by the Research Council of Norway, with the goal of testing new technology to improve the use of bioenergy resources and conversion of heat from biofuels to power. (Author)

  10. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  11. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  12. Low temperature thermal conductivity of amorphous (Fe, Ni, Co) (P, B, Si) alloys and their change by heat treatment

    International Nuclear Information System (INIS)

    Pompe, G.; Gaafar, M.; Buettner, P.; Francke, T.

    1983-01-01

    The thermal conductivity of amorphous metallic alloys (Fe, Ni, Co)/sub 1-x/ (B, P, Si)/sub x/ is measured in the temperature range 2 to 100 K in the as-produced and heat-treated states. By taking into account the results of Matey and Anderson the influence of the nature of the metalloid and the number of metallic components can be discussed. The change of the thermal conductivity due to a structural relaxation caused by a heat treatment is very different. In the whole range of temperature a rise of the phonon thermal conductivity of the Fe-Co-B alloy is obtained, whereas no change is observed for the Fe-B alloy. At low temperature ( 80 B 20 is investigated. (author)

  13. Specific heat characteristics of Ce70Ga8.5Cu18.5Ni3 metallic glass at low temperatures

    Science.gov (United States)

    Liu, Rentao; Zhong, Langxiang; Zhang, Bo

    2018-03-01

    Specific heat behaviors have been studied in Ce70Ga8.5Cu18.5Ni3 bulk metallic glass (BMG) from 2 K to 50 K. The low-temperature specific heat of the Ce-based metallic glass is a combined action of the Fermi liquids term, Debye oscillator term, and Einstein oscillator term as well as excess term. We also observed an intense boson peak around 15 K and attributed it to a harmonic localized Einstein mode influenced by the dense-packed atomic cluster structure. It is also demonstrated that Ce70Ga8.5Cu18.5Ni3 BMG belongs to the strongly correlated heavy-fermion system with a great electron specific heat coefficient and a high Wilson ratio. It exhibits a typical Fermi-Liquid feature when the temperature is above 10 K, while it exhibits a Non-Fermi-Liquid feature when the temperature is below 3.5 K.

  14. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment

    DEFF Research Database (Denmark)

    Duan, Zhi; Hansen, Terese Holst; Hansen, Tina Beck

    2016-01-01

    With low temperature long time (LTLT) cooking it can take hours for meat to reach a final core temperature above 53 °C and germination followed by growth of Clostridium perfringens is a concern. Available and new growth data in meats including 154 lag times (tlag), 224 maximum specific growth rates...... (μmax) and 25 maximum population densities (Nmax) were used to developed a model to predict growth of C. perfringens during the coming-up time of LTLT cooking. New data were generate in 26 challenge tests with chicken (pH 6.8) and pork (pH 5.6) at two different slowly increasing temperature (SIT...... the SIT profiles. Similar results were found for non-heated and heated spores in chicken, whereas in pork C. perfringens 790-94 increased less than 1 log CFU/g. At 53 °C C. perfringens 790-94 was log-linearly inactivated. Observed and predicted concentrations of C. perfringens, at the time when 53 °C (log...

  15. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...

  16. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  17. Temperature distribution in spouted bed and heat transfer

    International Nuclear Information System (INIS)

    Takeda, Hiroshi; Yamamoto, Yutaka

    1976-01-01

    Temperature distribution in spouted bed was measured by using brass and graphite spouted beds so as to investigate heat transfer characteristic of spouted bed applied to an apparatus of PyC coating. These spouted beds are batch type and are spouted by air or nitrogen gas of room temperature, and the outer wall of beds are heated by nichrome or graphite heater. Particles used for experiments are alumina spherical particles and the diameter is 0.80 -- 1.12 mm. Temperature condition is in the range of 400 -- 1,400 0 C. In the neighborhood of 400 0 C, the spouting condition is stable, while the spouting condition becomes unstable in the case of above 1,000 0 C. This is caused by abrupt temperature increase of spouting gas. It was found that heat transfer coefficient h sub(w) of our low temperature experiments was closer to the calculated from Malek et al.'s equation, h sub(p) of our experiments was several times greater than the calculated from Uemaki et al.'s equation. On the other hand, h sub(p) of high temperature experiments was compared with an experimental relation for convective heat transfer of fluidized bed, it was found that Nu sub(p) of our experiments was nearly equal to or greater than the calculated from the relation, this would be caused by radiant heat transfer. (auth.)

  18. The evaluation of a small capacity shell and tube ammonia evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Hernandez, J.I.; Best y Brown, R. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico); Gonzalez, J.C. [Universidad Autonoma de Campeche (Mexico). Programa CADETRAA

    2003-12-01

    The use of ammonia as refrigerant is widespread in vapour compression and ammonia/water absorption systems. Ammonia is not actually used in low capacity applications mainly because of the lack of economical available equipment. For this reason, the objective of this study is the numerical and experimental evaluation of a small capacity ammonia shell and tube evaporator with enhanced heat transfer surfaces. An experimental system to evaluate small capacity heat exchangers was developed. A shell and tube evaporator with external low fin tubes was successfully tested. The experimental uncertainty for the evaporator capacity has been estimated within {+-}5.5%. The experimental results were used to validate a heat exchanger numerical tool that predicts reasonably well the cooling capacity and load outlet temperatures. The methodology presented in this work can be applied to evaluate other refrigerants in similar shell and tube evaporators and to optimize the design of an evaporator for a specific application. (author)

  19. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  20. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Willa, K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Diao, Z. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Mathematics, Physics and Electrical Engineering, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden; Campanini, D. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Welp, U. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Divan, R. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Hudl, M. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Islam, Z. [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Kwok, W. -K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Rydh, A. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  1. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  2. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  3. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  4. Low-temperature specific heat measurements on the NdCoxFe1-xO3 system

    International Nuclear Information System (INIS)

    Bartolome, F.; Kuz'min, M.D.; Bartolome, J.; Blasco, J.; Garcia, J.

    1995-01-01

    Low-temperature specific heat measurements have been carried out on the NdCo x Fe 1-x O 3 perovskite system (x=0, 0.25, 0.5, 0.9, 1). Magnetic ordering of Nd 3+ ions have been observed in NdCoO 3 (at 1.20 K) and NdFeO 3 (at 1.05 K). The studied dilutions, unlike the pure Fe or Co compounds, do not show a magnetic order of the Nd ions due to the stronger molecular field caused by decompensation of the internal field upon the introduction of the (Co 3+ ) magnetic vacancies in the antiferromagnetically ordered Fe subsystem. The specific heat curve of the system at x=0.9 resembles spin-glass behaviour. ((orig.))

  5. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    International Nuclear Information System (INIS)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-01-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, ΔC, is found to have a maximum in ΔC/T vs T at 10 K, below which ΔC/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient γ in the gapped state increases by ∼4mJ/molK 2 . The maximum in ΔC/T vs T is observed in all fields, which shifts to lower temperatures ∼1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, ΔC/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6%) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in ΔC/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than ∼3.5T which suggests reduction in the gap. copyright 1997 The American Physical Society

  6. Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles

    International Nuclear Information System (INIS)

    Chen Jincan; Lin Bihong

    2003-01-01

    Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > T c to that of T c , where T c is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature T c of Bose-Einstein condensation of an ideal Bose gas

  7. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  8. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  9. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Alan D. [GreenFire Energy, Emeryville, CA (United States)

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  10. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  11. Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change.

    Science.gov (United States)

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-11-11

    Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38 degrees C. Using this proportion a 'work capacity' estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26-30 degrees C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change.

  12. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle

    International Nuclear Information System (INIS)

    Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A. Jr.; Moorman, J.O.

    1994-01-01

    The low-temperature, high magnetic field heat capacity (1.5 to 70 K and 0 to 9.85 T), dc and ac magnetic behaviors of the compound (Gd 0.54 Er 0.46 )AlNi show that field-induced magnetic entropy change is significant and almost constant over the temperature region of ∼15 to ∼45 K. The resulting temperature dependence of the magnetocaloric effect, nearly constant over a 30+ K temperature range, is unprecedented (most magnetic materials have a caretlike shape temperature dependence). These data show that (Gd 0.54 Er 0.46 )AlNi can be used as an effective active magnetic regenerator material for an Ericsson-cycle magnetic refrigerator, and could substitute for complex composite layered materials suggested earlier

  13. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  14. Basics of Low-temperature Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A [Linde AG, Munich (Germany)

    2014-07-01

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  15. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  16. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  17. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  18. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.

    Science.gov (United States)

    Chen, Chi-Chien; Fu, Shih-Feng; Norikazu, Monma; Yang, Yau-Wen; Liu, Yu-Ju; Ikeo, Kazuho; Gojobori, Takashi; Huang, Hao-Jen

    2015-12-01

    MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.

  19. A novel absorption refrigeration cycle for heat sources with large temperature change

    International Nuclear Information System (INIS)

    Yan, Xiaona; Chen, Guangming; Hong, Daliang; Lin, Shunrong; Tang, Liming

    2013-01-01

    To increase the use efficiency of available thermal energy in the waste gas/water, a novel high-efficient absorption refrigeration cycle regarded as an improved single-effect/double-lift configuration is proposed. The improved cycle using an evaporator/absorber (E/A) promotes the coefficient of performance and reduces the irreversible loss. Water–lithium bromide is used as the working pair and a simulation study under the steady working conditions is conducted. The results show that the temperature of waste gas discharged is about 20 °C lower than that of the conventional single-effect cycle and the novel cycle we proposed can achieve more cooling capacity per unit mass of waste gas/water at the simulated working conditions. -- Graphical abstract: Pressure – temperature diagram for water – lithium bromide. Highlights: ► A novel waste heat-driven absorption refrigeration cycle is presented. ► The novel cycle can reject heat at much lower temperature. ► The available temperature range of heat source of the proposed cycle is wider. ► Multiple heat sources with different temperatures can be used in the novel cycle

  20. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    Science.gov (United States)

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  1. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    -energy houses involved, together with the idea of utilizing booster pumps in the district heating network and (ii) use of network layouts of either a branched (tree-like) or a looped type. The methods developed were applied in a case study, the data of which was provided by the municipality of Roskilde...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered......This PhD thesis presents a summary of a three-year PhD project involving three case studies, each pertaining to a typical regional Danish energy planning scheme with regard to the extensive use of low-energy district heating systems, operating at temperatures as low as 55°C for supply and 25°C...

  2. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    Science.gov (United States)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  3. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  4. Modeling Transient Heat Transfer in Small-Size Twin Pipes for End-User Connections to Low-Energy District Heating Networks

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2013-01-01

    The low-energy district heating concept has the potential of increasing the energy and exergy efficiencies of heat supply systems and of exploiting renewable energy, provided technical solutions for its wide application can be developed and implemented. This paper investigates the dynamic behaviour...... of district heating branch pipes in low-temperature operation (supply temperature 50-55°C and return temperature 20-25°C). We looked at state-of-the-art district heating branch pipes, suitable for the connection of a typical single-family house to a substation equipped with a heat exchanger for domestic hot...... water preparation. Experimental measurements of the supply temperature profiles at the outlet of the pipe, i.e. at the inlet to the substation, were compared with detailed simulations based on the finite volume (FV) method. A programming code was developed to model these profiles, and this was validated...

  5. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  6. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2016-10-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  7. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  8. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China); Chen, Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system. (author)

  9. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China)], E-mail: huajunwang@126.com; Chen Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system.

  10. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    International Nuclear Information System (INIS)

    Wang Huajun; Chen Zhihao

    2009-01-01

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system

  11. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  12. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  13. Low temperature ultrasonic study of hydrogen in niobium

    International Nuclear Information System (INIS)

    Poker, D.B.

    1979-01-01

    Measurements were made of the velocity and attenuation of ultrasonic waves in niobium containing 1000 ppM oxygen with additional concentrations of hydrogen, to determine the properties of a relaxation of the hydrogen which appears below 10 K. Measurements were made as a function of temperature, frequency, polarization of the ultrasonic wave, hydrogen isotope, and concentration of hydrogen and oxygen. The Birnbaum--Flynn model of hydrogen tunnelling is modified to take into account the trapping of hydrogen by interstitial impurities. An Orbach process is proposed for a relaxation between the degenerate first excited states. Three parameters which are determined by the hydrogen ultrasonic attenuation data are sufficient to describe the properties of this model. The model correctly predicts the presence of unusual features of the relaxation which are not contained in a classical model of hydrogen motion over a potential barrrier; the decrease of the hydrogen relaxation strength at low temperatures, the decrease in velocity below the relaxation temperature without a corresponding effect in the attenuation, and the broadness of the deuterium decrement peak compared to that for hydrogen. A reasonable fit to the velocity data for low concentration of hydrogen is made by the model with no adjustable parameters. A fit to the heat capacity can be made with the addition of parameters representing the strain effects of the oxygen trapping

  14. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  15. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  16. Design and engineering of a gas-engine driven heat pump heating station including heat distribution system and utilization of waste heat from an ice rink for the residential area Dorsten - Maria Lindenhof. Planung eines Gasmotor-Waermepumpenheizwerkes mit angeschlossenem Waermeverteilungsnetz und Abwaermenutzung einer Eisenbahn fuer das zentralstaedtische Gebiet 'Maria-Lindenhof' in Dorsten

    Energy Technology Data Exchange (ETDEWEB)

    Huelsemann, R.

    1984-05-01

    A gas-engine driven heat pump heating station including the required heat destribution system and utilization of waste heat from an ice rink to be realized in the residential area Dorsten - Maria Lindenhof. The total heat capacity was to be reached in two stages, corresponding to the progress of the building and housing structure in this specific area: First stage of construction 5,6 MW, final stage of construction 7,6 MW. With regard to the final stage of construction only a relatively small part of the buildings is provided with heating systems designed for supply and return temperatures of 90/70/sup 0/C respectively. The old people's home built in 1980 was already equipped with low temperature heating systems and all buildings still to be built shall be provided with low-temperature systems. As far as old heating systems are concerned, the required measures must be taken to reduce the temperature in the return lines.

  17. Heats of immersion in the thorium oxide-water system at elevated temperatures

    International Nuclear Information System (INIS)

    Holmes, H.F.

    1976-01-01

    The surface properties of ThO 2 were studied by heat of immersion calorimetry at 25 to 200 0 C. Results show that the integral heat of immersion of thorium oxide contains contributions which reflect considerable interaction with several layers of water adjacent to the oxide surface. It would be desirable to know the heat capacity changes which occur in the multilayer adsorption of water on an oxide surface. However, such data are not available and their acquisition would be an extremely difficult task. Structuring (a negative ΔCp) of several layers of water (by increased hydrogen bonding) adjacent to an oxide surface could explain an increase in the heat of immersion as the immersion temperature is increased. The more energetic, heterogeneous, high-surface-area samples are expected to induce more order in the adjacent water layers than the less energetic samples. This interpretation is similar to that offered for the temperature dependence of the heat of solution of the alkali halides

  18. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  19. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  20. Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor

    International Nuclear Information System (INIS)

    Shuxue, Xu; Guoyuan, Ma

    2014-01-01

    A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C. -- Highlights: • The volume ratio of the compressor is between 0.65 and 0.78 and the relative vapor injection mass ranges from 15% to 20%. • The cooling capacity and COP of the two-stage compression system can improve 5%–15% and 10%–12%. • The heating capacity can also be improved under low temperature condition

  1. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    The sensitivity analysis for low temperature ORCs (organic Rankine cycles), as well as the thermoeconomic comparison between the basic ORC and regenerative ORC using Non-dominated sorting genetic algorithm-II (NSGA-II), are conducted in this paper. The derivatives of five system parameters on system performance are used to evaluate the parametric sensitiveness. The exergy efficiency and the APR (heat exchanger area per unit net power output) are selected as the objective functions for multi-objective optimization using R123 under the low temperature heat source of 423 K. The Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing APR is obtained and compared with the corresponding single-objective solutions. The results indicate that the prior consideration of improving thermal efficiency and exergy efficiency is to increase the evaporator outlet temperature. A fitting curve can be yielded from the Pareto frontier between the thermodynamic performance and economic factor. The optimum exergy efficiency and APR of the regenerative ORC obtained from the Pareto-optimal solution are 59.93% and 3.07 m 2 /kW, which are 8.10% higher and 15.89% lower than that of the basic ORC, respectively. The Pareto optimization compromises the thermodynamic performance and economic factor, therefore being more suitable for decision making. - Highlights: • The sensitivity analysis of the basic ORC is conducted. • The Pareto-optimal solution is compared with the single-objective solutions. • Evaporator outlet temperature should be preferentially considered. • 8.10% higher exergy efficiency and 15.89% lower APR for the regenerative ORC

  2. Superfluid density and heat capacity measurements of 4He in porous gold

    International Nuclear Information System (INIS)

    Yoon, J.; Chan, M.

    1995-01-01

    Superfluid density of full pore 4 He as well as thin film 4 He confined in porous gold were measured as a function of temperature. The superfluid transition temperature of full pore was found to be 2.156 K. In both cases power law dependence on reduced temperature was found and the exponent was found to be the same as that of bulk 4 He. Porous gold is made by electrochemically leaching out silver from silver-gold alloy. The porous gold sample the authors fabricated has porosity of 55 with a diameter of 250 angstrom. Electron microscope picture shows that the structure of porous gold is exceedingly similar to that of Vycor. Heat capacity measurement of full pore 4 He in porous gold is in progress

  3. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  4. Heat capacity of the white pine biocarbon preform and the related biocarbon/copper composite

    Science.gov (United States)

    Smirnov, I. A.; Orlova, T. S.; Smirnov, B. I.; Wlosewicz, D. W.; Misiorek, H.; Jezowski, A.; Wilkes, T. E.; Faber, K. T.

    2009-11-01

    This paper reports on measurements in the 80-300-K temperature interval of the heat capacity at constant pressure C p ( T) of high-porosity amorphous white pine carbon preforms (biocarbon) prepared by pyrolysis (carbonization) at T carb = 1000 and 2400°C in an argon flow. The dependences C p ( T) for biocarbon/copper composites based on the carbon preforms obtained have also been determined. It is shown that the mixture rule holds for the composites, i.e., that C p ( T) of the composite is a sum of the heat capacities of the constituent materials taken in the corresponding ratios. Phonon mean free paths for the white pine carbon preforms prepared at T carb = 1000 and 2400°C have been calculated and used to estimate the size of the nanocrystallites contributing to formation of the carbon frameworks of these preforms.

  5. Analysis of optimal design of low temperature economizer

    Science.gov (United States)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  6. Development of low temperature solid state joining technology of dissimilar for nuclear heat exchanger tube components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    By conventional fusion welding process (TIG), a realization of reliable and sound joints for the nuclear heat exchanger components is very difficult, especially for the parts comprising of the dissimilar metal couples (Ti-STS, Ti-Cu alloy etc.). This is mainly attributed to the formation of brittle intermetallics (Ti{sub x}Cu{sub y}, Ti{sub x}Fe{sub y}, Ti{sub x}Ni{sub y} etc.) and wide difference in physical properties. Moreover, it usually employs very high thermal input, so making it difficult to obtain sound joints due to generations of high residual stresses and degradation of the adjacent base metals, even for similar metal combinations. In this project, the low temperature solid-state joining technology was established by developing new alloy fillers, e.g. the multi-component eutectic based alloys or amorphous alloys, and thereby lowering the joining temperature down to {approx}800 .deg. C without affecting the structural properties of base metals. Based on a low temperature joining, the interlayer engineering technology was then developed to be able to eliminate the brittleness of the joints for strong Ti-STS dissimilar joints, and the diffusion brazing technology of Ti-Ti with a superior joining strength and corrosion-resistance comparable to those of base metal were developed. By using those developed technologies, the joining procedures feasible for the heat exchanger components were finally established for the dissimilar metal joints including Ti tube sheet to super STS tube, Ti tube sheet to super STS tube sheet, and the joints of the Ti tube to Ti tube sheet

  7. Negative heat capacities in central Xe+Sn reactions

    International Nuclear Information System (INIS)

    Le Neindre, N.; Bougault, R.; Gulminelli, F.

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  8. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  9. New device architecture of a thermoelectric energy conversion for recovering low-quality heat

    Science.gov (United States)

    Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul

    2014-03-01

    Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.

  10. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Qiu, Limin

    2017-01-01

    Highlights: • Four-stage looped thermoacoustic power generator for waste heat is studied. • Coupling position is found to have remarkable effects on performance. • Better efficiency is available when coupled near the cold ends of the cores. • The influence of the regenerator position on the efficiency is weak. • Matching between the acoustic impedances of engine and alternator is important. - Abstract: Recent developments in thermoacoustic technologies have demonstrated that multi-stage looped thermoacoustic Stirling engine would be a promising option for harvesting waste heat. Previous studies on multi-stage looped thermoacoustic systems were mainly focused on heat-driven refrigeration or heat pumping, while much fewer work were done on power generations, especially those for recovering low temperature heat. In this work, a four-stage looped thermoacoustic Stirling power generator for generating electricity from low temperature waste heat at 300 °C is systematically studied. A numerical model is built and then validated on an experimental four-stage looped thermoacoustic Stirling engine. On the basis of the validated model, the effects of the coupling position for the linear alternators and the regenerator position on the acoustic characteristics and performances of the power generation system are numerically investigated. The distributions of the acoustic fields along the loop, including the pressure amplitude, volume flow rate, phase angle, specific acoustic impedance and acoustic power, are presented and analysed for three representative coupling modes. Superior efficiency is achieved when the linear alternators are coupled near the cold ends of the thermoacoustic cores on the resonators, while more electric power is generated at the hot ends. The worst performance is expected when the linear alternators are connected at the middle of the resonators. The underling mechanisms are further explained detailedly by analysing the characteristics of the

  11. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  12. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  13. Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2018-01-01

    Full Text Available The Enhanced Geothermal System (EGS constructs an artificial thermal reservoir by hydraulic fracturing to extract heat economically from hot dry rock. As the core element of the EGS heat recovery process, mass and heat transfer of working fluid mainly occurs in fractures. Since the direction of the natural and induced fractures are generally perpendicular to the minimum principal stress in the formation, as an effective stimulation approach, horizontal well production could increase the contact area with the thermal reservoir significantly. In this paper, the thermal reservoir is developed by a dual horizontal well system and treated as a fractured porous medium composed of matrix rock and discrete fracture network. Using the local thermal non-equilibrium theory, a coupled THM mathematical model and an ideal 3D numerical model are established for the EGS heat extraction process. EGS heat extraction capacity is evaluated in the light of thermal recovery lifespan, average outlet temperature, heat production, electricity generation, energy efficiency and thermal recovery rate. The results show that with certain reservoir and production parameters, the heat production, electricity generation and thermal recovery lifespan can achieve the commercial goal of the dual horizontal well system, but the energy efficiency and overall thermal recovery rate are still at low levels. At last, this paper puts forward a series of optimizations to improve the heat extraction capacity, including production conditions and thermal reservoir construction design.

  14. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  15. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  16. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    Science.gov (United States)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-06-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  17. An Innovative Use of Renewable Ground Heat for Insulation in Low Exergy Building Systems

    Directory of Open Access Journals (Sweden)

    Hansjürg Leibundgut

    2012-08-01

    Full Text Available Ground heat is a renewable resource that is readily available for buildings in cool climates, but its relatively low temperature requires the use of a heat pump to extract it for heating. We developed a system that uses low temperature ground heat directly in a building wall to reduce transmission heat losses. The Active Low Exergy Geothermal Insulation Systems (ALEGIS minimizes exergy demand and maximizes the use of renewable geothermal heat from the ground. A fluid is pumped into a small pipe network in an external layer of a wall construction that is linked to a ground heat source. This decouples the building from the outside temperature, therefore eliminating large peak demands and reducing the primary energy demand. Our steady-state analysis shows that at a design temperature of −10 °C the 6 cm thick active insulation system has equivalent performance to 11 cm of passive insulation. Our comparison of heating performance of a building with our active insulation system versus a building with static insulation of the same thickness shows a 15% reduction in annual electricity demand, and thus exergy input. We present an overview of the operation and analysis of our low exergy concept and its modeled performance.

  18. Apparent molar volumes and apparent molar heat capacities of aqueous magnesium nitrate, strontium nitrate, and manganese nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Jones, J.S.; Ziemer, S.P.; Brown, B.R.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ and apparent molar heat capacities C p,φ were determined at the pressure 0.35 MPa for aqueous solutions of magnesium nitrate Mg(NO 3 ) 2 at molalities m = (0.02 to 1.0) mol . kg -1 , strontium nitrate Sr(NO 3 ) 2 at m = (0.05 to 3.0) mol . kg -1 , and manganese nitrate Mn(NO 3 ) 2 at m = (0.01 to 0.5) mol . kg -1 . Our V φ values were calculated from solution densities obtained at T = (278.15 to 368.15) K using a vibrating-tube densimeter, and our C p,φ values were calculated from solution heat capacities obtained at T = (278.15 to 393.15) K using a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results, and standard state partial molar volumes and heat capacities were obtained over the ranges of T investigated

  19. The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure

    International Nuclear Information System (INIS)

    Xie, Dong; Cai, Guanglan; Liu, Zhichao; Guo, Ruisong; Sun, Dandan; Zhang, Chao; Wan, Yizao; Peng, Jianhong; Jiang, Hong

    2016-01-01

    Highlights: • Highly conductive graphene nanofibers were introduced into the LiFePO 4 /C matrix. • Graphene nanofiber modification improved the discharge capacity at low temperatures. • Graphene nanofiber reduced the polarization of the electrodes at low temperatures. • Modified electrodes exhibited decreased charge-transfer resistance. • Graphene nanofiber modified samples exhibited higher diffusion coefficient of lithium ions. - Abstract: Three-dimensionally assembled LiFePO 4 /C/graphene nanofiber composites were successfully prepared via a suspension mixing method followed by heat-treatment at 400 °C. A faster electron transfer, lower electrochemical polarization as well as higher diffusion coefficient of Li + are obtained with the assistance of graphene nanofibers. The 5 wt% graphene nanofibers modified electrode (G-5) delivers the best electrochemical kinetics including the lowest charge transfer resistance and highest diffusion coefficient of Li + at 0 °C and −20 °C, respectively. Likewise, the G-5 exhibits the highest charge-discharge capability and the most stable cycling performance at low operation temperatures compared with those of LiFePO 4 /C, 3 wt% and 7 wt% graphene nanofibers modified LiFePO 4 /C (G-3 and G-7) composites. The G-5 electrode shows a capacity of 92.8 mAh g −1 with 92.0% capacity retention after 200 cycles at 1C at −20 °C. The reasons for the significant improvement of the low operation temperatures electrochemical performances can be ascribed to the enhanced conductivity and reduced agglomeration of pristine particles due to the introduction of graphene nanofibers. These excellent low temperature performances show that graphene nanofibers modified LiFePO 4 /C electrodes are promising cathode candidates for lithium-ion batteries applications at low temperatures.

  20. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  1. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  2. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  3. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  4. Low-temperature carbonization plant for lignite

    Energy Technology Data Exchange (ETDEWEB)

    Shiotsuki, Y

    1949-01-01

    The design and operational data of a low-temperature carbonization plant for Japanese lignite are described. The retort had a vertical cylinder with a capacity of about 10 tons per day. By continuous operation, in which a part of the gas produced was circulated and burned in the lignite zone, about 40 percent semicoke and 3 to 4 percent tar were obtained. From the tar the following products were separated: Low-temperature carbonization cresol, 18.3; motor fuel, 1.00; solvent, 9.97; cresol for medical uses, 11.85; and creosote oil, 32 percent.

  5. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  6. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  7. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  8. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  10. Zoning of the Territory of Russia According to the Efficiency of the Use of Low-Grade Ground Heat for Heating

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2015-01-01

    Full Text Available This paper reports the results of study on the effectiveness of using low-grade ground heat in heat pump systems under the climatic conditions of Russia. The study was performed using the software package “INSOLAR.GSHP.12”, which simulates the non-stationary thermal conditions of ground source heat pumps (GSHPs over several years of operation. The paper presents the results of the zoning of the territory of Russia according to the effectiveness of using low-grade ground heat in heat pump systems. The zoning was performed with consideration of the decrease of the soil temperatures over several years of heat collection system operation. The soil temperatures expected on the fifth year of operation were considered to be the design temperatures. The described study was performed with the financial support of the Ministry of Education and Science of Russia. Contract ID RFMEFI57914X0026.

  11. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-12-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  12. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  13. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea

    DEFF Research Database (Denmark)

    Park, Byung Sik; Imran, Muhammad; Hoon, Im-Yong

    2017-01-01

    . The corresponding heat loss from secondary network, pumping power and area of domestic hot water heat exchanger unit for each supply temperature and temperature difference for required heating load of the apartment complex are calculated. Results indicate that when supply temperature is decreased from 65 °C to 45...... apartment. The Apartment complex has 15 floors, 4 apartments on each floor and each apartment has heating surface area of 85 m2. The supply temperature of the hot water is reduced from 65 °C to 45 °C and the temperature difference between supply and return line is varied from 18 °C to 27 °C...... °C, area of heat exchanger is increased by 68.2%, pumping power is also increased by 9.8% and heat loss is reduced by 15.6%. These results correspond to a temperature difference of 20 °C, the standard temperature difference in South Korea residential heating system. Economic assessment...

  14. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  15. Low-altitude ion heating with downflowing and upflowing ions

    Science.gov (United States)

    Shen, Y.; Knudsen, D. J.; Burchill, J. K.; Howarth, A. D.; Yau, A. W.; James, G.; Miles, D.; Cogger, L. L.; Perry, G. W.

    2017-12-01

    Mechanisms that energize ions at the initial stage of ion upflow are still not well understood. We statistically investigate ionospheric ion energization and field-aligned motion at very low altitudes (330-730 km) using simultaneous plasma, magnetic field, wave electric field and optical data from the e-POP satellite. The high-time-resolution (10 ms) dataset enables us to study the micro-structures of ion heating and field-aligned ion motion. The ion temperature and field-aligned bulk flow velocity are derived from 2-D ion distribution functions measured by the SEI instrument. From March 2015 to March 2016, we've found 17 orbits (in total 24 ion heating periods) with clear ion heating signatures passing across the dayside cleft or the nightside auroral regions. Most of these events have consistent ion heating and flow velocity characteristics observed from both the SEI and IRM instruments. The perpendicular ion temperature goes up to 4.5 eV within a 2 km-wide region in some cases, in which the Radio Receiver Instrument (RRI) sees broadband extremely low frequency (BBELF) waves, demonstrating significant wave-ion heating down to as low as 350 km. The e-POP Fast Auroral Imager (FAI) and Magnetic Field (MGF) instruments show that many events are associated with active aurora and are within downward current regions. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with the core ion downflow rather than upflow. These statistical results provide us with new sights into ion heating and field-aligned flow processes at very low altitudes.

  16. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    Science.gov (United States)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  17. Specific Heat Capacity of Alloy 690 for Simulating Neutron Irradiation

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Joo, Young Sun; Ahn, Sang Bok; Park, Jin Seok; Lee, Won Jae; Ryu, Woo Seok

    2011-01-01

    The KAERI(Korea Atomic Energy Research Institute) is developing new type of nuclear reactor, so called 'SMART'(System Integrated Modular Advanced Reactor) which has many features of small power and system integrated modular type. Alloy 690 was selected as the candidate material for the heat exchanger tube of the steam generator of SMART. The SMART R and D is now facing the stage of engineering verification and approval of standard design to apply to DEMO reactors. Therefore, the material performance under the relevant environment is required to be evaluated. The important material performance issues are mechanical properties i.e. (fracture toughness, tensile and hardness) and thermal properties i.e. (thermal diffusivity, specific heat capacity and thermal conductivity) for which the engineering database is necessary to design a steam generator. However, the neutron post irradiation characteristics of the alloy 690 are barely known. As a result, PIE(Post Irradiation Examination) of thermal properties are planed and performed successfully. But specific heat capacity measurement is not performed because of not having proper test system for irradiated materials. Therefore in order to verify the effect of neutron irradiation for alloy 690, simulation method is adopted. In general, high energy neutron bombardment in material bring about lattice defects i.e. void, pore and dislocation. Dominant factor to impact to heat capacity is mainly dislocation in material. Therefore, simulation of neutron irradiation is devised by material rolling method in order to make artificial dislocation in alloy 690 as same effect of neutron irradiation. After preparing test specimens, heat capacity measurements are performed and results are compared with rolled materials and un-rolled materials to verify the effect of neutron irradiation simulation. Main interest of simulation is that heat capacity value is changed by neutron irradiation

  18. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic...

  19. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  20. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore, a hol...