WorldWideScience

Sample records for low-pressure urinary reservoir

  1. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  2. Indiana pouch continent urinary reservoir in patients with previous pelvic irradiation

    International Nuclear Information System (INIS)

    Mannel, R.S.; Braly, P.S.; Buller, R.E.

    1990-01-01

    Little information exists on the use of continent urinary reservoirs in patients with previous pelvic irradiation. We report the use of the Indiana pouch urinary reservoir in ten women with a history of pelvic irradiation for cervical cancer, of whom eight underwent a total pelvic exenteration for recurrent pelvic tumor and two had diversion for radiation-induced vesicovaginal fistula. All ten women achieved daytime continence, with a median time between catheterizations of 4.5 hours and a median pouch capacity of 500 mL. There was no evidence of leakage from the reservoir or significant ureteral reflux or obstruction on postoperative radiographic evaluation. No patient has required reoperation or had significant postoperative complications with the technique described

  3. [The Kock continent urinary diversion].

    Science.gov (United States)

    Boyd, S D; Skinner, D G; Lieskovsky, G

    1989-07-01

    The continent ileal reservoir as conceived by Kock produces a low-pressure, high-capacity reservoir with continent and nonrefluxing valves constructed from ileum. From August 1982 through March 1988, 531 patients underwent continent urinary diversion via a Kock reservoir at our institution. Of these, 39 males had a Kock bladder substitution, while the rest underwent cutaneous Kock diversion. Early complications occurred in 16% of all patients, and there was an operative mortality rate of 1.9%. Surgical modifications of nipple fixation, which are discussed in detail in this paper, help to reduce late complications to less than 10%. Patient satisfaction with both procedures remains excellent.

  4. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  5. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    Science.gov (United States)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  6. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  7. INVERSION OF ORTHOTOPIC INTESTINAL URINARY RESERVOIR TO PREVENT TENSION IN URETHRA-RESERVOIR ANASTOMOSIS AFTER RADICAL CYSTECTOMY

    Directory of Open Access Journals (Sweden)

    V. A. Perepechay

    2013-01-01

    Full Text Available From 1995 to 2012 radical cystectomy were performed to 326 patients. Orthotopic intestinocistoplastika performed by Studer 69 (18.7% patients, including short mesostenium was in 48 (69.6%, which are combined into two groups. Group I - 15 (31.3% patients with orthotopic intestinocistoplasticy by Studer, II group - 33 (68.7% patients who made modification techniques Studer - inverts orthotopic ileocistoplastics. Cases of leak of the tank or anastomosis were not observed. Medium capacity of neobladder after removal of urethral catheter – 110 ml., in 3 months – 350 ml, in 12 months – 490.0 ml. Maximum pressure in the tank does not exceed 40 cm water column (average 30 cm H2O. Day retention – 94,7%, night confinement at a forced night miction – 79.0%. The proposed method of inverting orthotopic ileal neobladder can be recommended when overlapping of orthotopic urinary reservoir is impossible or associated with leaks of the anastomosis due to the insuf-ficient length of the mesentery using known techniques of orthotopic ileal bladder reconstruction.

  8. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  9. Influence of Adsorption and Capillary Pressure on Phase Equilibria Inside Shale Reservoirs

    DEFF Research Database (Denmark)

    Sandoval, Diego R.; Yan, Wei; Michelsen, Michael L.

    2018-01-01

    is moderate in comparison to the that at low pressure and high temperature. The adsorption effects are stronger for the gas bulk phase region, leading to bigger changes in the gas phase composition and the shift of the dew point curve. PVT simulations of two model reservoir fluid systems show significant...... envelope is different. In general, a much shrunk phase envelope with a shifted critical point is observed. The heavier components are preferentially adsorbed in the whole pressure and temperature range studied here. At high pressure and low temperature, the selectivity towards heavier components...

  10. Comparison of pressure transient response in intensely and sparsely fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johns, R.T.

    1989-04-01

    A comprehensive analytical model is presented to study the pressure transient behavior of a naturally fractured reservoir with a continuous matrix block size distribution. Geologically realistic probability density functions of matrix block size are used to represent reservoirs of varying fracture intensity and uniformity. Transient interporosity flow is assumed and interporosity skin is incorporated. Drawdown and interference pressure transient tests are investigated. The results show distinctions in the pressure response from intensely and sparsely fractured reservoirs in the absence of interporosity skin. Also, uniformly and nonuniformly fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture intensity. The pressure response in a nonuniformly fractured reservoir with large block size variability, approaches a nonfractured (homogeneous) reservoir response. Type curves are developed to estimate matrix block size variability and the degree of fracture intensity from drawdown and interference well tests.

  11. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  12. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts

    International Nuclear Information System (INIS)

    Du, J.; Olson, J.E.

    2001-01-01

    A forward model was constructed to numerically predict surface subsidence and reservoir compaction following the approach of Segall [Pure Appl. Phys. 139 (1992) 536]. A nucleus of poroelastic strain is numerically integrated over a rectangular prism assuming constant pressure change. This fundamental geometry allows a reservoir to be divided into many small cubic blocks in a manner similar to reservoir simulation. The subsidence and compaction effects of the pressure change throughout the reservoir are calculated by the superposition of results from each individual block. Using forward modeling, pressure boundary conditions can be acquired from pressure test data or reservoir simulation predictions. An inversion model also was developed that can track pressure fronts in a subsurface reservoir using surface displacements. The capability of the inversion model was demonstrated using synthetic examples of one-well and four-well cases with different layouts of surface observation locations. The impact of noise on the inversion result is also included

  13. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.

    Science.gov (United States)

    Guessous, Idris; Pruijm, Menno; Ponte, Belén; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Vuistiner, Philippe; Staessen, Jan; Gu, Yumei; Paccaud, Fred; Mohaupt, Markus; Vogt, Bruno; Pechère-Bertschi, Antoinette; Pechère-Berstchi, Antoinette; Martin, Pierre-Yves; Burnier, Michel; Eap, Chin B; Bochud, Murielle

    2015-03-01

    Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure. © 2014 American Heart Association, Inc.

  14. Case report of deep vein thrombosis caused by artificial urinary sphincter reservoir compressing right external iliac vein

    Directory of Open Access Journals (Sweden)

    Marcus J Yip

    2015-01-01

    Full Text Available Artificial urinary sphincters (AUSs are commonly used after radical prostatectomy for those who are incontinent of urine. However, they are associated with complications, the most common being reservoir uprising or migration. We present a unique case of occlusive external iliac and femoral vein obstruction by the AUS reservoir causing thrombosis. Deflation of the reservoir and anticoagulation has, thus far, not been successful at decreasing thrombus burden. We present this case as a rare, but significant surgical complication; explore the risk factors that may have contributed, and other potential endovascular therapies to address this previously unreported AUS complication.

  15. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  16. Study of pressure maintenance in the lower Gassi Touil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ribuot, M.

    1969-11-01

    The Gassi Touil reservoir in the Sahara is a faulted anticline; the reservoir rock consists of a series of shales and sandstones. It has a primary gas cap in equilibrium with the oil. The oil-gas interface is at 1,642 m; the oil-water interface at 1,970 m. Initial pressure was substantially above hydrostatic. The reservoir contains about 97 million tons STO. A 3-phase, 3-dimensional computer model was used to study the recovery by primary depletion, and by pressure maintenance by gas or water injection. Water injection yields the maximum recovery, but its full efficiency is limited by the fact that only one row of wells can be drilled to the annulus where the wells penetrate only the oil zone. This operation must be supplemented with gas injection into the expanding gas cap in order to efficiently maintain in the reservoir pressure.

  17. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  18. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  19. [Urinary incontinence as a risk factor for pressure sores does not withstand a critical examination].

    Science.gov (United States)

    Krause, Tom; Anders, Jennifer; von Renteln-Kruse, Wolfgang

    2005-10-01

    The association between urinary incontinence and pressure sores is put down to various causes. Most frequently urinary wet and following maceration of the skin are mentioned. However, it is possible that urinary incontinence is only an indicator for other risk factors or a measure of the need for care without any causal relation to pressure sores. There are hardly any controlled or randomised studies; this lack of scientific evidence is problematic. Based on a case-control-study including data of 200 patients as well as on the existing models of explanation, the following study tries to examine critically the connections between pressure sores and urinary incontinence. Out of the patients in our study population 97.5 percent were incontinent. Different categories of the risk factor urinary incontinence and different dichotomisations have led to different statistical results. Statements concerning the connection between urinary incontinence and pressure sores have to be interpreted critically. The dependence of urinary incontinence on other risk factors such as patients' need for care or compliance suggests that the causal connection to pressure sores be not reduced to the influence of wetness. We advise to research connections between urinary incontinence and pressure sores in a methodologically appropriate setting.

  20. Reservoirs talk to pressure recorders

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1968-02-01

    Keeping pace with increased demand for efficiency in secondary recovery schemes is the widening use of downhole tools charged with supplying data before and during the operation of the projects. One of the most important of these is the pressure recorder. This highly sensitive instrument, housed in a tough, slim steel case and lowered by drill pipe or cable, accurately measures the pressure of its downhole environment. This information is instantly available at the surface whenever a pressure reading is required. Typical applications of surface recorders often contribute are: (1) production practices such as checking surface and subsurface equipment, and special lifting problems; (2) well conditions including regular productivity indices, data observations and for interference studies; (3) secondary recovery projects, in both producing and injection wells; and (4) reservoir conditions where oil-water contacts and damaged zones need close attention.

  1. The History of Nontraditional or Ectopic Placement of Reservoirs in Prosthetic Urology.

    Science.gov (United States)

    Perito, Paul; Wilson, Steven

    2016-04-01

    Reservoir placement during implantation of prosthetic urology devices has been problematic throughout the history of the surgical treatment of erectile dysfunction and urinary incontinence. We thought it would be interesting to review the history of reservoir placement leading up to current surgical techniques. To provide an overview of the past and present techniques for reservoir placement and discuss the evolutionary process leading to safe and effective placement of prosthetic reservoirs. We reviewed data pertaining to inflatable penile prosthesis (IPP) reservoirs and pressure-regulating balloons (PRB) in a chronological fashion, spanning 25 years. Main outcomes included a historical review of techniques for IPP reservoir and PRB placement leading to the subsequent incremental improvements in safety and efficacy when performing penile implants and artificial urinary sphincters. Prosthetic urologic reservoirs have traditionally been placed in the retropubic space. Over the years, urologists have attempted use of alternative spaces including peritoneal, epigastric, "ectopic," posterior to transversalis, and high submuscular. Current advances in prosthetic urologic reservoir placement allow safe and effective abdominal wall placement of reservoirs. These novel approaches appear to be so effective that urologists may now be able to cease using the traditional retropubic space for reservoir placement, even in the case of virgin pelves. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  2. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  3. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  4. Boundary element analysis of earthquake induced hydrodynamic pressures in a water reservoir

    International Nuclear Information System (INIS)

    Jablonski, A.M.

    1988-11-01

    The seismic analysis of concrete gravity and arch dams is affected by the hydrodynamic pressures in the water reservoir. Boundary element method (BEM) formulations are derived for the hydrodynamic pressures arising in a gravity dam-reservoir-foundation system, treating both 2- and 3-dimensional cases. The formulations are based on the respective mathematical models which are governed by two- and three-dimensional Helmholtz equations with appropriate boundary conditions. For infinite reservoirs, loss of energy due to pressure waves moving away toward infinity strongly influence response. Since it is not possible to discretize an infinite extent, the radiation damping due to outgoing waves is accounted for by incorporating special boundary conditions at the far end, and in a similar manner the loss of energy due to absorption of waves by a flexible bottom of reservoir and banks can be accounted for by a special condition along the boundaries. Numerical results are obtained and compared with available classical solutions and convergence of numerical results with the size and number of boundary elements is studied. It is concluded that the direct boundary element method is an effective tool for the evaluation of the hydrodynamic pressures in finite and infinite dam-reservoir-foundation systems subjected to harmonic-type motion, and can easily be extended to any type of random motion with fast Fourier transform techniques. 82 refs., 65 figs., 25 tabs

  5. pressure distribution in a layered reservoir with gas-cap and bottom

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... Finally, only fluid ratios is recommended as adequate to reveal which ... pressure derivatives, interlayer cross flow, heterogeneity, reservoir characterization, pressure ... sure derivatives to thoroughly understand movement.

  6. pressure analysis and fluid contact prediction for alpha reservoir

    African Journals Online (AJOL)

    HOD

    a pressure gradient profile such that the oil gradient line will intersect the hydrostatic line above the Water-Up-To. (WUT) line to define the OWC if present. The model was also calibrated with data from reservoirs with established contacts in the field. 3. RESULTS AND DISCUSSION. In the field, pressure typically increases ...

  7. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2016-11-01

    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.

  8. Relationship Between Urinary Nitrate Excretion and Blood Pressure in the InChianti Cohort.

    Science.gov (United States)

    Smallwood, Miranda J; Ble, Alessandro; Melzer, David; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark

    2017-07-01

    Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  10. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    Science.gov (United States)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  11. Urinary albumin excretion and 24-hour blood pressure as predictors of pre-eclampsia in Type I diabetes

    DEFF Research Database (Denmark)

    Ekbom, P; Damm, P; Nøgaard, K

    2000-01-01

    To evaluate the value of 24-h blood pressure monitoring compared to office blood pressure and urinary albumin excretion in predicting pre-eclampsia in Type I (insulin-dependent) diabetes mellitus.......To evaluate the value of 24-h blood pressure monitoring compared to office blood pressure and urinary albumin excretion in predicting pre-eclampsia in Type I (insulin-dependent) diabetes mellitus....

  12. Association between blood pressure and urinary electrolytes in a ...

    African Journals Online (AJOL)

    Background: Little is known about the association between blood pressure and urinary electrolytes in young adult, nonurban-dwelling, sub-Saharan Africans. This study attempts to provide such data in a Nigerian population. Patients and Methods: Four hundred Nigerians (50% female) aged 19-40 years were studied.

  13. Transient pressure and productivity analysis in carbonate geothermal reservoirs with changing external boundary flux

    Directory of Open Access Journals (Sweden)

    Wang Dongying

    2017-01-01

    Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary flux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary flux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary flux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.

  14. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  15. Capacity expansion analysis of UGSs rebuilt from low-permeability fractured gas reservoirs with CO2 as cushion gas

    Directory of Open Access Journals (Sweden)

    Yufei Tan

    2016-11-01

    Full Text Available The techniques of pressurized mining and hydraulic fracturing are often used to improve gas well productivity at the later development stage of low-permeability carbonate gas reservoirs, but reservoirs are watered out and a great number of micro fractures are produced. Therefore, one of the key factors for underground gas storages (UGS rebuilt from low-permeability fractured gas reservoirs with CO2 as the cushion gas is how to expand storage capacity effectively by injecting CO2 to displace water and to develop control strategies for the stable migration of gas–water interface. In this paper, a mathematical model was established to simulate the gas–water flow when CO2 was injected into dual porosity reservoirs to displace water. Then, the gas–water interface migration rules while CO2 was injected in the peripheral gas wells for water displacement were analyzed with one domestic UGS rebuilt from fractured gas reservoirs as the research object. And finally, discussion was made on how CO2 dissolution, bottom hole flowing pressure (BHFP, CO2 injection rate and micro fracture parameters affect the stability of gas–water interface in the process of storage capacity expansion. It is shown that the speed of capacity expansion reaches the maximum value at the fifth cycle and then decreases gradually when UGS capacity is expanded in the pattern of more injection and less withdrawal. Gas–water interface during UGS capacity expansion is made stable due to that the solubility of CO2 in water varies with the reservoir pressure. When the UGS capacity is expanded at constant BHFP and the flow rate, the expansion speed can be increased effectively by increasing the BHFP and the injection flow rate of gas wells in the central areas appropriately. In the reservoir areas with high permeability and fracture-matrix permeability ratio, the injection flow rate should be reduced properly to prevent gas–water interface fingering caused by a high-speed flow

  16. Can low urinary tract symptoms influence postprostatectomy urinary incontinence?

    Science.gov (United States)

    Tienza, Antonio; Hevia, Mateo; Merino, Imanol; Diez-Caballero, Fernando; Rosell, David; Pascual, Juan I; Zudaire, Juan J; Robles, José E

    2016-08-01

    The aim of this study was to analyze what kind of urinary symptoms patients have before receiving treatment by radical prostatectomy (RP), and to evaluate their influence on urinary incontinence (UI). Between 2002 and 2012, 758 consecutive patients underwent RP for clinically localized prostate cancer (PCa). Surgery was carried out by open retropubic RP in 545 (73.1%) of patients and laparoscopic RP in 201 (27%) by 5 surgeons who were excluded from data collection and analysis. The following symptoms were collected from the last urological check-ups or pre-operative consultation and classified as: storage symptoms, voiding symptoms, post micturition symptoms, history of acute urinary retention, benign prostatic hyperplasia treatment, history of transurethral resection of the prostate (TURP). A total of 661 patients were included on analysis: 136 (20.6%) patients reported low urinary tract symptoms (LUTS), 162 (24.5%) were considered incontinent after RP, and 45 (33.1%) of them reported LUTS before surgery. Postprostatectomy urinary incontinence (PPUI) was significantly different in patients with LUTS (117 [22.3%] vs. 45 [33.1%], P=0.009). The presence of any LUTS influence significantly in the appearance of PPUI (OR=1.72 [95% CI: 1.14-2.6), P=0.01). TURP is independently influential in PPUI (OR=6.13 [95% CI: 1.86-20.18], P=0.003). A patient with LUTS before surgery has an increased risk of 70% or even 200% to suffer PPUI and a patient who received treatment by TURP is 6 times at higher risk of PPUI. In conclusion, patients with LUTS are likely to present PPUI. History of TURP is influential by itself over PPUI. A good preoperative consultation is important to assess continence status and to create realistic expectations to patients before RP.

  17. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  18. Fuzzy logic prediction of dew point pressure of selected Iranian gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed [Shahid Bahonar Univ. of Kerman (Iran); Iranian Offshore Oil Company (I.O.O.C.) (Iran); Ranjbar, Mohammad; Hashemipour, Hassan; Schaffie, Mahin [Shahid Bahonar Univ. of Kerman (Iran)

    2009-12-15

    The experimental determination of dew point pressure in a window PVT cell is often difficult especially in the case of lean retrograde gas condensate. Besides all statistical, graphical and experimental methods, the fuzzy logic method can be useful and more reliable for estimation of reservoir properties. Fuzzy logic can overcome uncertainty existent in many reservoir properties. Complexity, non-linearity and vagueness are some reservoir parameter characteristics, which can be propagated simply by fuzzy logic. The fuzzy logic dew point pressure modeling system used in this study is a multi input single output (MISO) Mamdani system. The model was developed using experimentally constant volume depletion (CVD) measured samples of some Iranian fields. The performance of the model is compared against the performance of some of the most accurate and general correlations for dew point pressure calculation. Results show that this novel method is more accurate and reliable with an average absolute deviation of 1.33% and 2.68% for developing and checking, respectively. (orig.)

  19. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  20. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  1. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  2. Effect of boundary conditions on pressure behavior of finite-conductivity fractures in bounded stratified reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    In this study, a mathematical model was developed to model the pressure behavior of a well located in a bounded multilayer reservoir and crossed by a finite-conductivity vertical fracture. It was found that the dimensionless pressure function and its derivative strongly depend on fracture conductivity and fracture extension during early times. The effect of reservoir heterogeneity on the pressure function is negligible compared to that on the pressure derivative. Both functions exhibit four flow periods: bilinear, formation linear, pseudoradial and pseudosteady-state which are separated by transition periods. One or more of these flow periods may be missing. Data obtained from a long test and which are characterized by a unit slope line indicate that the well is intercepted by deeply extended fractures. It has been found that the fractional production rates of different layers are a good measure of reservoir and fracture characteristics. Flowmeter survey data can be used to eliminate the non-uniqueness problem when using the type curves presented in this study

  3. A comparison between the pressure-lag model and the rate-type model for the prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; De Waal, J.A.

    1988-06-01

    A theoretical study has been carried out to investigate whether the nonlinear compaction behavior of sandstone reservoirs, which has been reported for most well-documented field cases, can be explained by pressure lags in interbedding and/or neighboring low-permeability (shale) layers. On the basis of the results obtained, it is concluded that pressure-lag effects in normally encountered production scenarios cannot account for these nonlinearities, even under worst-case conditions. Therefore, the nonlinear field-compaction behavior must be caused by rate effects in the sandstone reservoir rock itself. This is supported by the fact that a rate-type compaction model recently introduced does indeed give a good description of the observed field behavior.

  4. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  5. The Role of Horizontal Wells when Developing Low-Permeable, Heterogeneous Reservoirs

    Directory of Open Access Journals (Sweden)

    M.P. Yurova

    2017-09-01

    Full Text Available The widespread use of horizontal drilling in recent years has shown that horizontal wells can be successfully used both at the initial and late stages of development. This is due to the fact that horizontal wells, in contrast to vertical wells, contact a larger area of ​​the productive formation, while the surface of drainage of the oil-saturated layer, productivity of the wells due to the formation of cracks, and also the influence on thin layers increases. One of the methods of impact on the reservoir is the steam-thermal method. The main advantage of the use of the heat wave method in horizontal wells is a significant increase in the well production rate, a decrease in the water cut of the reservoir, a decrease in the oil viscosity, an increase in the injectivity of the injection well, and an increase in the inflow in producing wells. As a result of the total effect, a significant increase in production is obtained throughout the entire deposit. Enhanced oil recovery from the injection of steam is achieved by reducing the viscosity of oil, covering the reservoir with steam, distilling oil and extracting with a solvent. All this increases the displacement coefficient. One of the most effective ways to increase oil recovery at a late stage of field operation is sidetracking in emergency, highly watered and low-productive wells. This leads to the development of residual reserves in weakly drained zones of reservoirs with a substantial increase in well productivity in low-permeable reservoirs. This approach assumes that the initial drilling of wells is a ‘pilot’ stage, which precedes the development of oil reserves in the late stages of deposit development. In the fields of Western Siberia, multiple hydraulic fracturing of the reservoir has been improved due to a special stinger in the liner hanger of multi-packer installation, which excludes the influence of high pressures on the production column under the multiple hydraulic fracturing

  6. Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed; Hashemipour, Hasan; Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University of Kerman (Iran); ERC, Shahid Bahonar University of Kerman (Iran)

    2009-03-15

    Dew point pressure is one of the most critical quantities for characterizing a gas condensate reservoir. So, accurate determination of this property has been the main challenge in reservoir development and management. The experimental determination of dew point pressure in PVT cell is often difficult especially in case of lean retrograde gas condensate. Empirical correlations and some equations of state can be used to calculate reservoir fluid properties. Empirical correlations do not have ability to reliable duplicate the temperature behavior of constant composition fluids. Equations of state have convergence problem and need to be tuned against some experimental data. Complexity, non-linearity and vagueness are some reservoir parameter characteristic which can be propagated simply by intelligent system. With the advantage of fuzzy sets in knowledge representation and the high capacity of neural nets (NNs) in learning knowledge expressed in data, in this paper a neural fuzzy system(NFS) is proposed to predict dew point pressure of gas condensate reservoir. The model was developed using 110 measurements of dew point pressure. The performance of the model is compared against performance of some of the most accurate and general correlations for dew point pressure calculation. From the results of this study, it can be pointed out that this novel method is more accurate and reliable with the mean square error of 0.058%, 0.074% and 0.044% for training, validation and test processes, respectively. (author)

  7. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  8. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1998-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  9. A new method for pressure test analysis of a vertically fractured well producing commingled zones in bounded square reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1997-07-15

    Although hydraulically or naturally fractured wells located in stratified bounded reservoirs are common, reliable techniques available to analyze the pressure test data for such reservoirs are lacking. This paper presents a mathematical model that describes the pressure behavior of a vertically fractured well located in a stratified, bounded, square reservoir. The fracture can be either a uniform flux or an infinite conductivity fracture. It was found that the dimensionless pressure function and its derivative and the fractional production rate from the different layers are mainly controlled by the fracture penetration into the formation, and that transmissibility and storativity affect the fractional production rate and the pressure derivative but have little effect on the dimensionless pressure function. Type curves of dimensionless pressure and dimensionless pressure derivative can be used to evaluate the reservoir characteristics. The selection of the appropriate type curve is guided by the behavior of the layer fractional production rate obtained from flow rate survey carried out during well testing. Type curves for uniform flux and infinite conductivity fractures exhibit similar features. Two examples are presented to demonstrate the application of the new method of analysis presented in this paper

  10. Effect of fesoterodine on urethral closure function in women with stress urinary incontinence assessed by urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Klarskov, Niels; Darekar, Amanda; Scholfield, David

    2014-01-01

    INTRODUCTION AND HYPOTHESIS: The aim was to evaluate, using urethral pressure reflectometry (UPR), the effect of fesoterodine on urethral function in women with stress urinary incontinence (SUI). METHODS: Women aged 18 to 65 years were eligible for this randomised, double-blind, placebo...... significant differences were seen between fesoterodine 4 mg or fesoterodine 8 mg and placebo in opening urethral pressure (primary endpoint) or other UPR endpoints. No statistically significant differences were seen between either fesoterodine dose and placebo in the change from baseline in the bladder diary...... variables (total urinary incontinence, SUI, or urgency urinary incontinence episodes per 24 h). Adverse events were reported by 8 participants taking fesoterodine 4 mg, 17 taking fesoterodine 8 mg, and 8 taking placebo. CONCLUSIONS: Fesoterodine did not affect urethral pressure or significantly decrease...

  11. Tailored ramp-loading via shock release of stepped-density reservoirs

    International Nuclear Information System (INIS)

    Prisbrey, Shon T.; Park, Hye-Sook; Remington, Bruce A.; Cavallo, Robert; May, Mark; Pollaine, Stephen M.; Rudd, Robert; Maddox, Brian; Comley, Andrew; Fried, Larry; Blobaum, Kerri; Wallace, Russ; Wilson, Mike; Swift, David; Satcher, Joe; Kalantar, Dan; Perry, Ted; Giraldez, Emilio; Farrell, Michael; Nikroo, Abbas

    2012-01-01

    The concept of a gradient piston drive has been extended from that of a single component reservoir, such as a high explosive, to that of a multi-component reservoir that utilizes low density foams and large shocks to achieve high pressures (∼3.5 mbar) and controlled pressure vs. time profiles on a driven sample. Simulated and experimental drives shaped through the use of multiple component (including carbonized resorcinol formaldehyde and SiO 2 foam) reservoirs are compared. Individual density layers in a multiple component reservoir are shown to correlate with velocity features in the measured drive which enables the ability to tune a pressure drive by adjusting the components of the reservoir. Pre-shot simulations are shown to be in rough agreement with the data, but post-shot simulations involving the use of simulated plasma drives were needed to achieve an exact match. Results from a multiple component reservoir shot (∼3.5 mbar) at the National Ignition Facility are shown.

  12. [Low urinary tract symptoms after Thierry's spatula delivery at first pregnancy].

    Science.gov (United States)

    Provansal, M; Bretelle, F; Bannier, M; Gamerre, M; Mazouni, C

    2007-11-01

    This study was undertaken to evaluate prevalence of low urinary tract symptoms (LUTS) after Thierry's spatula delivery at first pregnancy. A retrospective study of 236 primiparous with instrumental delivery or spontaneous delivery who had delivered from January 2001 to December 2002. Low urinary tract symptoms (LUTS) were evaluated one year after delivery with a questionnaire. Incidence of LUTS was compared depending on mode of delivery. Of the 236 patients included, 88.1% replied to the questionnaire, 106 who delivered spontaneously and 102 who underwent Thierry's spatula delivery. The incidence of urinary incontinence was similar after instrumental deliveries and after spontaneous vaginal deliveries (34.9 versus 24.5%, p=0.10). In univariate analysis, symptoms of urinary urgency and urinary frequency were higher after instrumental delivery than after spontaneous delivery, respectively, 34.9 versus 22.5%, p=0.049 and 19.8 versus 8.8%, p=0.03. After controlling for confounding factors, no difference in LUTS was observed between the two groups; the respective adjusted odds-ratios (95% IC) were 1,5 (0.8-3) for urinary incontinence, 1.7 (0.9-3.5) for urgency and 2.5 (0.9-6.3) for urinary frequency. One year after delivery, one third of patients will present urinary incontinence and more than 50% will complain of bladder instability symptoms. Compared to spontaneous vaginal delivery, the use of Thierry's spatulas at first pregnancy does not induce higher risk of LUTS.

  13. Asphaltene laboratory assessment of a heavy onshore reservoir during pressure, temperature and composition variations to predict asphaltene onset pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Peyman; Ahmadi, Yaser [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kharrat, Riyaz [Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Mahdavi, Sedigheh; James, Lesley [Memorial University of Newfoundland, Saint John' s (Canada)

    2015-02-15

    An Iranian heavy oil reservoir recently encountered challenges in oil production rate, and further investigation has proven that asphaltene precipitation was the root cause of this problem. In addition, CO{sub 2} gas injection could be an appropriate remedy to enhance the production of heavy crudes. In this study, high pressure-high temperature asphaltene precipitation experiments were performed at different temperatures and pressures to investigate the asphaltene phase behavior during the natural depletion process and CO{sub 2} gas injection. Compositional modeling of experimental data predicted onset points at different temperatures which determine the zone of maximum probability of asphaltene precipitation for the studied heavy oil reservoir. Also, the effect of CO{sub 2} gas injection was investigated as a function of CO{sub 2} concentration and pressure. It was found that a CO{sub 2}-oil ratio of 40% is the optimum for limiting precipitation to have the least formation damage and surface instrument contamination.

  14. Urinary retention in women.

    Science.gov (United States)

    Juma, Saad

    2014-07-01

    This review is a summary of the most pertinent published studies in the literature in the last 18 months that address cause, diagnosis, and management of urinary retention in women. Symptoms, uroflow, and pressure-flow studies have a low predictive value for and do not correlate with elevated postvoid residual urine (PVR). Anterior and posterior colporrhaphy do not cause de-novo bladder outlet obstruction in the majority of patients with elevated PVR, and the cause of elevated PVR may be other factors such as pain or anxiety causing abnormal relaxation of the pelvic floor and contributing to voiding difficulty. The risk of urinary retention in a future pregnancy after mid-urethral sling (MUS) is small. The risk of urinary tract infection and urinary retention after chemodenervation of the bladder with onabotulinumtoxin-A (100 IU) in patients with non-neurogenic urge incontinence is 33 and 5%, respectively. There is a lack of consensus among experts on the timing of sling takedown in the management of acute urinary retention following MUS procedures. There has been a significant progress in the understanding of the causation of urinary retention. Important areas that need further research (basic and clinical) are post-MUS and pelvic organ prolapse repair urinary retention and obstruction, and urinary retention owing to detrusor underactivity.

  15. Laboratory Investigation to Assess the Impact of Pore Pressure Decline and Confining Stress on Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    khalil Rehman Memon

    2018-01-01

    Full Text Available Four core samples of outcrop type shale from Mancos, Marcellus, Eagle Ford, and Barnett shale formations were studied to evaluate the productivity performance and reservoir connectivity at elevated temperature and pressure. These laboratory experiments were conducted using hydrostatic permeability system with helium as test gas primarily to avoid potential significant effects of adsorption and/or associated swelling that might affect permeability. It was found that the permeability reduction was observed due to increasing confining stress and permeability improvement was observed related to Knudsen flow and molecular slippage related to Klinkenberg effect. Through the effective permeability of rock is improved at lower pore pressures, as 1000 psi. The effective stress with relatively high flow path was identified, as 100-200 nm, in Eagle Ford core sample. However other three samples showed low marginal flow paths in low connectivity.

  16. Low Blood Pressure

    Science.gov (United States)

    ... a problem. Sometimes blood pressure that is too low can also cause problems. Blood pressure is the ... reading is 90/60 or lower, you have low blood pressure. Some people have low blood pressure ...

  17. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  18. 12 min/week of high-intensity interval training reduces aortic reservoir pressure in individuals with metabolic syndrome: a randomized trial.

    Science.gov (United States)

    Ramos, Joyce S; Dalleck, Lance C; Ramos, Maximiano V; Borrani, Fabio; Roberts, Llion; Gomersall, Sjaan; Beetham, Kassia S; Dias, Katrin A; Keating, Shelley E; Fassett, Robert G; Sharman, James E; Coombes, Jeff S

    2016-10-01

    Decreased aortic reservoir function leads to a rise in aortic reservoir pressure that is an independent predictor of cardiovascular events. Although there is evidence that high-intensity interval training (HIIT) would be useful to improve aortic reservoir pressure, the optimal dose of high-intensity exercise to improve aortic reservoir function has yet to be investigated. Therefore, this study compared the effect of different volumes of HIIT and moderate-intensity continuous training (MICT) on aortic reservoir pressure in participants with the metabolic syndrome (MetS). Fifty individuals with MetS were randomized into one of the following 16-week training programs: MICT [n = 17, 30 min at 60-70% peak heart rate (HRpeak), five times/week]; 4 × 4-min high-intensity interval training (4HIIT) (n = 15, 4 × 4 min bouts at 85-95% HRpeak, interspersed with 3 min of active recovery at 50-70% HRpeak, three times/week); and 1 × 4-min high-intensity interval training (1HIIT) (n = 18, 1 × 4 min bout at 85-95% HRpeak, three times/week). Aortic reservoir pressure was calculated from radial applanation tonometry. Although not statistically significant, there was a trend for a small-to-medium group × time interaction effect on aortic reservoir pressure, indicating a positive adaptation following 1HIIT compared with 4HIIT and MICT [F (2,46) = 2.9, P = 0.07, η = 0.06]. This is supported by our within-group analysis wherein only 1HIIT significantly decreased aortic reservoir pressure from pre to postintervention (pre-post: 1HIIT 33 ± 16 to 31 ± 13, P = 0.03; MICT 29 ± 9-28 ± 8, P = 0.78; 4HIIT 28 ± 10-30 ± 9 mmHg, P = 0.10). Three sessions of 4 min of high-intensity exercise per week (12 min/week) was sufficient to improve aortic reservoir pressure, and thus may be a time-efficient exercise modality for reducing cardiovascular risk in individuals with MetS.

  19. Relation of urinary calcium and magnesium excretion to blood pressure

    DEFF Research Database (Denmark)

    Kesteloot, Hugo; Tzoulaki, Ioanna; Brown, Ian J

    2011-01-01

    Data indicate an inverse association between dietary calcium and magnesium intakes and blood pressure (BP); however, much less is known about associations between urinary calcium and magnesium excretion and BP in general populations. The authors assessed the relation of BP to 24-hour excretion...... of calcium and magnesium in 2 cross-sectional studies. The International Study of Macro- and Micro-Nutrients and Blood Pressure (INTERMAP) comprised 4,679 persons aged 40-59 years from 17 population samples in China, Japan, the United Kingdom, and the United States, and the International Cooperative Study...... on Salt, Other Factors, and Blood Pressure (INTERSALT) comprised 10,067 persons aged 20-59 years from 52 samples around the world. Timed 24-hour urine collections, BP measurements, and nutrient data from four 24-hour dietary recalls (INTERMAP) were collected. In multiple linear regression analyses...

  20. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  1. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  2. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  3. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  4. Urinary albumin excretion is associated with nocturnal systolic blood pressure in resistant hypertensives.

    Science.gov (United States)

    Oliveras, Anna; Armario, Pedro; Martell-Clarós, Nieves; Ruilope, Luis M; de la Sierra, Alejandro

    2011-03-01

    Microalbuminuria is a known marker of subclinical organ damage. Its prevalence is higher in patients with resistant hypertension than in subjects with blood pressure at goal. On the other hand, some patients with apparently well-controlled hypertension still have microalbuminuria. The current study aimed to determine the relationship between microalbuminuria and both office and 24-hour ambulatory blood pressure. A cohort of 356 patients (mean age 64 ± 11 years; 40.2% females) with resistant hypertension (blood pressure ≥ 140 and/or 90 mm Hg despite treatment with ≥ 3 drugs, diuretic included) were selected from Spanish hypertension units. Patients with estimated glomerular filtration rate <30 mL/min/1.73 m(2) were excluded. All patients underwent clinical and demographic evaluation, complete laboratory analyses, and good technical-quality 24-hour ambulatory blood pressure monitoring. Urinary albumin/creatinine ratio was averaged from 3 first-morning void urine samples. Microalbuminuria (urinary albumin/creatinine ratio ≥ 2.5 mg/mmol in males or ≥ 3.5 mg/mmol in females) was detected in 46.6%, and impaired renal function (estimated glomerular filtration rate <60 mL/min/1.73 m(2)) was detected in 26.8%. Bivariate analyses showed significant associations of microalbuminuria with older age, reduced estimated glomerular filtration rate, increased nighttime systolic blood pressure, and elevated daytime, nighttime, and 24-hour diastolic blood pressure. In a logistic regression analysis, after age and sex adjustment, elevated nighttime systolic blood pressure (multivariate odds ratio, 1.014 [95% CI, 1.001 to 1.026]; P=0.029) and reduced estimated glomerular filtration rate (multivariate odds ratio, 2.79 [95% CI, 1.57 to 4.96]; P=0.0005) were independently associated with the presence of microalbuminuria. We conclude that microalbuminuria is better associated with increased nighttime systolic blood pressure than with any other office and 24-hour ambulatory blood

  5. Outcome of the use of tension-free vaginal tape in women with mixed urinary incontinence, previous failed surgery, or low valsalva pressure.

    Science.gov (United States)

    Abdel-Hady, El-Said; Constantine, Glyn

    2005-02-01

    To assess the safety and efficacy of the use of tension-free vaginal tape (TVT) for the treatment of stress urinary incontinence (SUI) in women with mixed incontinence, previous failed incontinence surgery or low valsalva leak point pressure (VLPP). Six hundred and fifty-eight women with SUI underwent the TVT procedure. These included women with mixed stress and urge incontinence (n=128), previous surgery for SUI (n=118), low VLPP (n=80), and those over 70 years old (n=68). The procedure was carried out under spinal anesthetic and operative and immediate postoperative data was collected for all women. Six-month follow-up data was available on 454 women, with the first 300 women completing a quality of life (QOL) questionnaire before and after surgery. The overall subjective cure rate at 6 months was 91%, with 8% of women reporting significant (>50%) improvement in their symptoms. Subgroups with a body mass index > 30, age > 70 years, coexisting instability, previous failed surgery, and low VLPP showed cure rates of 81-89%. QOL improvements for all groups were highly significant. Significant complications included voiding difficulties in 29 women (4.4%), retropubic hematomas in four (0.6%), and thromboembolic episodes in three (0.5%). The simplicity and high efficacy of the TVT makes it the first choice for the treatment of women with SUI, including those with more complex problems or coexisting risk factors.

  6. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  7. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  8. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    International Nuclear Information System (INIS)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual

  9. Low Blood Pressure (Hypotension)

    Science.gov (United States)

    ... lowest at night and rises sharply on waking. Blood pressure: How low can you go? What's considered low ... low blood pressure. Medications that can cause low blood pressure Some medications can cause low blood pressure, including: ...

  10. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Science.gov (United States)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  11. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  12. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    Science.gov (United States)

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  13. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  14. Cecal rupture after continent ileocecal urinary diversion during total pelvic exenteration

    International Nuclear Information System (INIS)

    Brand, E.

    1991-01-01

    Continent ureteral diversion at the time of pelvic exenteration avoids an external appliance and allows patients to retain bladder reservoir function. The technical difficulty of this procedure requires meticulous attention to operative and perioperative care, particularly after pelvic irradiation. A patient with recurrent stage IIIB carcinoma of the cervix underwent total pelvic exenteration with reconstructive procedures including low rectal anastomosis, neovagina formation, and ileocecal (Indiana) continent diversion. Early catheterization of the reservoir began 2 weeks postoperatively. One week later cecal rupture occurred, not related to suture line (technical) failure. Because of the high wall tension and reduced compliance in the irradiated cecum, the authors do not recommend catheterization of the urinary reservoir before 4-6 weeks. In order for continent diversion to become the standard diversion in exenteration patients, the major complication rate must remain comparable to that of noncontinent diversion

  15. The impact of pressure-dependent interfacial tension and buoyancy forces upon pressure depletion in virgin hydrocarbon reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Mackay, E.J. [Heriot-Watt University, Edinburgh (United Kingdom). Dept. of Petroleum Engineering

    1998-07-01

    This paper describes a combined experimental and theoretical study of the microscopic pore-scale physics characterizing gas and liquid production from hydrocarbon reservoirs during pressure depletion. The primary focus of the study was to examine the complex interactions between interfacial tension and buoyancy forces during gas evolution within a porous medium containing oil, water and gas. A specialized 2-dimensional glass micromodel, capable of operating at pressure in excess of 35 MPa was used to visualize the physical mechanisms governing such microscopic processes. In addition, a 3-dimensional, 3-phase numerical pore-scale simulator was developed that can be used to examine gas evolution over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates all of the important physics observed in associated laboratory micromodel experiments, including: embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth-migration-fragmentation, and three-phase spreading coefficients. The precise pore-scale mechanisms governing gas evolution were found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension with pressure. This has a profound effect upon the migration of gas structures during depletion and, in models pertaining to reservoir rock, the process of gas migration is consequently much slower than previously thought. This is the first time that such a phenomena has been modelled at the pore-scale and the implications for production forecasting are thought to be significant. (author)

  16. Sodium-blood pressure interrelationship in pregnancy.

    Science.gov (United States)

    Franx, A; Steegers, E A; de Boo, T; Thien, T; Merkus, J M

    1999-03-01

    In non-pregnant individuals, a strong positive association of sodium intake with blood pressure has been established, but the relationship between sodium intake and blood pressure in human pregnancy remains obscure up to date. The aim of this prospective observational cohort study was to assess the relationship between urinary sodium excretion (as a measure for intake) and blood pressure from the early second trimester onwards throughout pregnancy. The study group consisted of 667 low-risk women with singleton pregnancies, of whom 350 were nulliparous and 317 parous. Blood pressure was measured in a standardised fashion at predetermined intervals from the first antenatal visit prior to 16 weeks gestation until delivery. Urinary sodium excretion was measured in 24-h urine collections on at least four occasions between 16 and 38 weeks gestation. Main outcome measures were the coefficients of correlation between changes in urinary sodium output and changes in blood pressure during six different gestational epochs. No significant correlations were found between changes in urinary sodium output and changes in blood pressure. Correlation coefficients were alike for nulliparous and parous women and for different gestational intervals. Prior to 32 weeks gestation, no differences were observed in sodium excretion between women who remained normotensive and those who developed gestational hypertension. These results suggest that changes in sodium intake are not associated with blood pressure changes in low-risk pregnant women. Blood pressure increases as observed in the second half of normotensive and hypertensive pregnancies are unlikely to be caused by changes in renal sodium handling.

  17. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.

    2015-01-01

    the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...... pressures in the whole phase envelope except at the critical point. The bubble point curve shows a negative change while the dew point curve shows positive and negative changes in the upper dew point branch and the lower dew point branch, respectively. In particular, the cricondentherm is also shifted...

  18. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  19. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  20. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  1. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  2. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  3. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  4. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  5. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  6. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  7. A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks

    Science.gov (United States)

    Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.

    2017-12-01

    We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.

  8. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  9. A low molecular weight urinary proteome profile of human kidney aging

    OpenAIRE

    Zürbig, Petra; Decramer, Stéphane; Dakna, Mohammed; Jantos, Justyna; Good, David M.; Coon, Joshua J.; Bandin, Flavio; Mischak, Harald; Bascands, Jean-Loup; Schanstra, Joost P

    2009-01-01

    Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on renal aging in humans. We observed age-related modification of secretion of 325 out of 5000 urinary peptides. The majority of these changes was associated with renal development before and during puberty, while 49 peptides were related to aging in adults. Of these 49 peptides, the majority were ...

  10. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  11. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  12. Intracranial Pressure-Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir.

    Science.gov (United States)

    Antes, Sebastian; Stadie, Axel; Müller, Simon; Linsler, Stefan; Breuskin, David; Oertel, Joachim

    2018-01-01

    Telemetric intracranial pressure (ICP) monitoring seems to be a promising therapy-supporting option in shunt-treated patients. Benefits become obvious when headaches are unspecific and clinical symptoms cannot be related to possible overdrainage or underdrainage. In this study, we evaluated a new telemetric device to individually adjust shunt valves according to ICP measurements. Between December 2015 and November 2016, 25 patients with suspected suboptimal shunt valve settings underwent insertion of a telemetric ICP sensor (Sensor Reservoir; Christoph Miethke, Potsdam, Germany). Over a 1-year period, a total of 183 telemetric ICP measurements and 85 shunt valve adjustments were carried out. Retrospective statistic analyses focused on valve adjustments, ICP values, and clinical outcomes. ICP-guided valve adjustments positively changed the clinical state in 18 out of 25 patients. Clinical improvement over time was associated with significant changes of the valve settings and ICP values. Interestingly, a therapeutically normalized ICP profile was not automatically associated with clinical improvement. The Sensor Reservoir is an important and valuable tool for shunt-treated patients suffering from drainage-related problems. The possibility to simultaneously recognize and solve shunt problems represents the decisive advantage. Nevertheless, measurements with the Sensor Reservoir did not allow for the determination of default valve settings or universal target ICP values. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The impact of hormonal contraceptives on blood pressure, urinary albumin excretion and glomerular filtration rate

    NARCIS (Netherlands)

    Atthobari, Jarir; Gansevoort, Ron T.; Visser, Sipke T.; de Jong, Paul E.; de Jong-van den Berg, Lolkje T. W.

    Aim In short-term studies, hormonal contraceptives (HC) have been suggested to induce a rise in blood pressure (BP) and urinary albumin excretion (UAE), while the effect of HC in renal function (GFR) is still under debate. Data on long-term and withdrawal effects of HC use on these outcomes are,

  14. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  15. Analysis of an accident of local zone control system of 'pressure loss in the compartment water supply reservoir'

    International Nuclear Information System (INIS)

    Catana, A.

    2001-01-01

    This work presents the aftermath of a failure in the Zonal Control System caused by an accident of 'pressure loss in the compartment water supply reservoir' leading to an operational function fault of the liquid zonal control system. Causes for pressure drop may be several, as for instance: simultaneous mechanical fault of the three pumps, class IV total loss of power, a crack of reservoir, etc. Should this accident happens the reactor is shut down automatically by the digital control computer, on the 'ZONE CONTROL SYSTEM FAILURE' setback condition. The analyses were done hypothesizing that the covering gas system is functioning at design parameters and that the only possible accident is the one of pressure loss in supply reservoir. By making use of the software system developed at INR Pitesti, we could make the analysis of the phenomena which take place and thus we could obtain the evolution of the main parameters, namely, neutron and thermohydraulic parameters, as well as the actuating mode of the control and safety systems. Thus, by assuming a pressure drop under 8. 27 bar the 'SETBACK' system is triggered with a final value of the neutron power of 2% FP which can be reached with a power variation rate of 0.00086 decade/sec (- 0.1%/sec). In conclusion, the main parameters evolve as follows: 1. the water level in compartments is 'frozen' at a level at which the pressure in the supply reservoir is 7.3 bar; 2. the mechanical rods are gradually inserted, one bank first and a second one if necessary; 3. the shim rods are fully inserted; 4. the systems of SDS1 and SDS2 scram systems remain unactuated; 5. after 10 minutes from the 'SETBACK' triggering, the neutron power is reduced under 4%; 6. the thermohydraulic parameters of the primary circuit are maintained at normal values; 7. the thermohydraulic parameters of the secondary circuit are maintained at normal values

  16. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substantial...... additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...

  17. Urethrotonography - a radiological and manometrical combination technique to diagnose urinary stress incontinance in comparison with urethral pressure profile recording

    International Nuclear Information System (INIS)

    Wess, H.

    1982-01-01

    The study described here was carried out in order to gain more insight into the pathogenesis of urinary stress incontinance and the related urethrovesical functions. The pathophysiological changes in the urogenital tract that are associated with urinary stress incontinance are described just as well as the clinical symptoms and signs differentiating the individual forms of incontinance from each other. Account is further taken of the various manometrical and radiological techniques used in the diagnosis of urinary stress incontinance. In this study, which included a total of 100 patients, comparative evaluations were made of the pressure behaviour of the bladder during the filling-up phase and the closing mechanism of the urethra both at rest and under stress using the following procedures: - Method developed by Brown and Wickham for urethral pressure profile recording; visualisation of the bladder and urethra with the aid of X-rays and a balloon catheter especially developed by us. The latter technique may help to solve the problems usually arising when given morphological factors are to be connected with certain medical views or theories concerning the vesical and urethral functions as well as the pathogenesis of urinary stress incontinance. It may thus enable more straightforward diagnosis to be made. (TRV) [de

  18. A strategy for low cost development of incremental oil in legacy reservoirs

    Science.gov (United States)

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  19. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area

    International Nuclear Information System (INIS)

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.; Su, C.-T.; Huang, Y.-K.; Chen, Y.-T.; Hsueh, Y.-M.

    2008-01-01

    Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 ± 2.98 μg/g creatinine, for UC patients than for healthy controls of 21.10 ± 0.79 μg/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 ± 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 ± 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 ± 0.75 than those of males at 5.76 ± 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic

  20. Thermoporoelastic effects during heat extraction from low-permeability reservoirs

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Nick, Hamidreza M.; Zimmerman, R. W.

    2018-01-01

    Thermoporoelastic effects during heat extraction from low permeability geothermal reservoirs are investigated numerically, based on the model of a horizontal penny-shaped fracture intersected by an injection well and a production well. A coupled formulation for thermo-hydraulic (TH) processes...... in EGS projects. Therefore, using the undrained thermal expansion coefficient for the matrix may overestimate the volumetric strain of the rock in low-permeability enhanced geothermal systems, whereas using a drained thermal expansion coefficient for the matrix may underestimate the volumetric strain...

  1. A New Way to Calculate Flow Pressure for Low Permeability Oil Well with Partially Penetrating Fracture

    Directory of Open Access Journals (Sweden)

    Xiong Ping

    2018-01-01

    Full Text Available In order to improve the validity of the previous models on calculating flow pressure for oil well with partially perforating fracture, a new physical model that obeys the actual heterogeneous reservoir characteristics was built. Different conditions, including reservoir with impermeable top and bottom borders or the reservoir top which has constant pressure, were considered. Through dimensionless transformation, Laplace transformation, Fourier cosine transformation, separation of variables, and other mathematical methods, the analytical solution of Laplace domain was obtained. By using Stephenson numerical methods, the numerical solution pressure in a real domain was obtained. The results of this method agree with the numerical simulations, suggesting that this new method is reliable. The following sensitivity analysis showed that the pressure dynamic linear flow curve can be divided into four flow streams of early linear flow, midradial flow, advanced spherical flow, and border controlling flow. Fracture length controls the early linear flow. Permeability anisotropy significantly affects the midradial flow. The degree of penetration and fracture orientation dominantly affect the late spherical flow. The boundary conditions and reservoir boundary width mainly affect the border controlling flow. The method can be used to determine the optimal degree of opening shot, vertical permeability, and other useful parameters, providing theoretical guidance for reservoir engineering analysis.

  2. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  3. Carcinoma of Urinary Bladder in a Region of Low Schistosomiasis ...

    African Journals Online (AJOL)

    Aim: To study the geographical pathology of carcinoma of the urinary bladder as regards both its association with endemic schistosomiasis and the variable proportions of its histological types. Methods: A 30-year retrospective analysis was carried out with regard to Igbo patients who inhabit a region of low incidence of ...

  4. Tanker for the transport of very low temperature liquids at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Messer, E S

    1968-02-08

    This tanker for the transport of very low temperature liquids, especially liquefied methane or natural gas, has a large capacity reservoir insulated on the outside. A second reservoir in the bottom of the hull, below the main reservoir, collects liquid leaking out from the main reservoir and is equipped with a drain pipe. The pipe serving to fill and to empty the main reservoir passes through this second reservoir. (4 claims)

  5. Transients in low pressure pumping circuits: a language oriented for the problem

    International Nuclear Information System (INIS)

    De Bernardinis, B.; Siccardi, F.

    1977-01-01

    Following a previous work (Vallombrosa 1974) a specialized language was developed for transients in low pressure pumping circuits, when the liquid column separation phenomenon may happen or is to be avoided. The first generation of the programming code is given. Numerical schemes go beyond the usual characteristic integration techniques now available and make it possible to atrack the solution of problems in which on the one hand, the differential equations are nonlinear on account of the variations of the celerity with pressure, and on the other, the pressure of a dispersed gaseous phase in the liquid influences the energetic dissipation mechanisms. The oriented language allows the simulation of the main constituents of the circuits, pumping stations, reservoirs, air tanks, piezometric wells, condensers, variable resistances, conduit junctions, both during normal functioning and in cavitation conditions. Special control instructions on the programming code allow such a simulation language to be easily employed even by people not specifically competent in computer progr

  6. Low-pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Richard [Membrane Technology And Research, Inc., Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Inc., Newark, CA (United States); Hao, Pingjiao [Membrane Technology And Research, Inc., Newark, CA (United States); Chan, Chi Cheng [Membrane Technology And Research, Inc., Newark, CA (United States); Nguyen, Vincent [Membrane Technology And Research, Inc., Newark, CA (United States); Huang, Ivy [Membrane Technology And Research, Inc., Newark, CA (United States); Amo, Karl [Membrane Technology And Research, Inc., Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Inc., Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Inc., Newark, CA (United States); Ly, Jennifer [Membrane Technology And Research, Inc., Newark, CA (United States); Lipscomb, Glenn [Membrane Technology And Research, Inc., Newark, CA (United States); Lou, Yuecun [Membrane Technology And Research, Inc., Newark, CA (United States); Gogar, Ravikumar [Membrane Technology And Research, Inc., Newark, CA (United States)

    2015-01-29

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  7. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  8. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  9. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  10. Association Between Urinary Sodium and Potassium Excretion and Blood Pressure Among Adults in the United States: National Health and Nutrition Examination Survey, 2014.

    Science.gov (United States)

    Jackson, Sandra L; Cogswell, Mary E; Zhao, Lixia; Terry, Ana L; Wang, Chia-Yih; Wright, Jacqueline; Coleman King, Sallyann M; Bowman, Barbara; Chen, Te-Ching; Merritt, Robert; Loria, Catherine M

    2018-01-16

    Higher levels of sodium and lower levels of potassium intake are associated with higher blood pressure. However, the shape and magnitude of these associations can vary by study participant characteristics or intake assessment method. Twenty-four-hour urinary excretion of sodium and potassium are unaffected by recall errors and represent all sources of intake, and were collected for the first time in a nationally representative US survey. Our objective was to assess the associations of blood pressure and hypertension with 24-hour urinary excretion of sodium and potassium among US adults. Cross-sectional data were obtained from 766 participants age 20 to 69 years with complete blood pressure and 24-hour urine collections in the 2014 National Health and Nutrition Examination Survey, a nationally representative survey of the US noninstitutionalized population. Usual 24-hour urinary electrolyte excretion (sodium, potassium, and their ratio) was estimated from ≤2 collections on nonconsecutive days, adjusting for day-to-day variability in excretion. Outcomes included systolic and diastolic blood pressure from the average of 3 measures and hypertension status, based on average blood pressure ≥140/90 and antihypertensive medication use. After multivariable adjustment, each 1000-mg difference in usual 24-hour sodium excretion was directly associated with systolic (4.58 mm Hg; 95% confidence interval [CI], 2.64-6.51) and diastolic (2.25 mm Hg; 95% CI, 0.83-3.67) blood pressures. Each 1000-mg difference in potassium excretion was inversely associated with systolic blood pressure (-3.72 mm Hg; 95% CI, -6.01 to -1.42). Each 0.5 U difference in sodium-to-potassium ratio was directly associated with systolic blood pressure (1.72 mm Hg; 95% CI, 0.76-2.68). Hypertension was linearly associated with progressively higher sodium and lower potassium excretion; in comparison with the lowest quartile of excretion, the adjusted odds of hypertension for the highest quartile was

  11. Vapor pressure lowering effects due to salinity and suction pressure in the depletion of vapor-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A. [Aquater S.p.A., Pisa (Italy); Calore, C. [Istituto Internazionale per le Ricerche Geotermiche-CNR, Pisa (Italy); Pruess, K. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-03-01

    The equation-of-state module able to handle saline brines with non-condensible gas, developed for the TOUGH2 simulator, has been improved to include vapor pressure lowering (VPL) due to suction pressure as represented by Kelvin`s equation. In this equation the effects of salt are considered whereas those of non-condensible gas have currently been neglected. Numerical simulations of fluid production from tight matrix blocks have been performed to evaluate the impact of VPL effects due to salinity and suction pressure on the depletion behaviour of vapor-dominated geothermal reservoirs. Previous studies performed neglected VPL due to suction pressure showed that for initial NaCl mass fractions above threshold values, {open_quotes}sealing{close_quotes} of the block occurs and large amounts of liquid fluid may not be recovered. On the other hand, below the threshold value the matrix block dries out due to fluid production. The inclusion of VPL due to suction pressure does not allow complete vaporization of the liquid phase. As a result, the threshold NaCl concentration above which sealing of the matrix block occurs is increased. Above the {open_quotes}critical{close_quotes} NaCl concentration, block depletion behaviour with and without the VPL due to suction pressure is almost identical, as liquid phase saturation remains high even after long production times. As the VPL due to suction pressure depends mainly on capillary pressure, the shape of capillary pressure functions used in numerical simulations is important in determining VPL effects on block depletion.

  12. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  13. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  14. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  15. Estimation of critical gas saturation during pressure depletion in virgin and waterflooded reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Sorbie, K.S. [Heriot-Watt Univ., Dept. of Petroleum Engineering, Edinburgh (United Kingdom)

    1999-08-01

    An important issue in petroleum engineering is the prediction of gas production during reservoir depletion - either following conventional waterflooding operations or in the early stages of hydrocarbon production. The estimation of critical gas saturation for use in corresponding simulation studies is clearly a primary concern. To this end, a 3D, three-phase numerical pore-scale simulator has been developed that can be used to estimate critical gas saturations over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates a great deal of the known physics observed in associated laboratory micromodel experiments, including embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth/migration/fragmentation, oil shrinkage, and three-phase spreading coefficients. These precise pore-scale mechanisms governing gas evolution have been found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension (IFT) with pressure. This has a profound effect upon the migration of gas structures during depletion. In models pertaining to reservoir rock, the process of gas migration is consequently much slower than predictions from more simplistic models would imply. This is the first time that bubble fragmentation and IFT variations have been included in a model of gas evolution at the pore-scale and the implications for production forecasting are expected to be significant. In addition, novel scaling groups have been derived for a number of different facies under both virgin and waterflooded conditions. One future application of these groups would be to scale S{sub gc} values obtained from high rate depressurization experiments to the low rate conditions more characteristic of field operations. (Author)

  16. Dietary Sodium Restriction and Association with Urinary Marinobufagenin, Blood Pressure, and Aortic Stiffness

    Science.gov (United States)

    Fedorova, Olga V.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; Fleenor, Bradley S.; Lakatta, Edward G.; Bagrov, Alexei Y.; Seals, Douglas R.

    2013-01-01

    Summary Background and objectives Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous α1 Na+,K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading. Design, setting, participants, & measurements The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 60±2 years) with moderately elevated systolic BP (139±2/83±2 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulse-wave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (77±9 mmol/d) and 5 weeks of a normal-sodium (144±7 mmol/d) diet. Results Urinary marinobufagenin excretion (weekly measurements; 25.4±1.8 versus 30.7±2.1 pmol/kg per day), systolic BP (127±3 versus 138±5 mmHg), and aortic pulse-wave velocity (700±40 versus 843±36 cm/s) were lower during the low- versus normal-sodium condition (all Psodium excretion (slope=0.46, Psodium condition (both Psodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant enzyme NAD(P)H oxidase. Importantly, marinobufagenin excretion is positively related to systolic BP over ranges of sodium intake typical of an American diet, extending previous observations in rodents and humans fed experimentally high-sodium diets. PMID:23929930

  17. Urinary Exertion Of Calcium By Urinary Stone Disease Patients And ...

    African Journals Online (AJOL)

    To compare the urinary excretion of calcium by subjects in a known area of high incidence of urinary stone disease, and a known area of low incidence, 12 adult male patients with idiopathic calcigerous urinary stone disease in south-East Nigeria and 55 similar patients from Scotland, United Kingdom were analyzed ...

  18. Urinary tract infections in patients with spinal cord injuries.

    Science.gov (United States)

    D'Hondt, Frederiek; Everaert, Karel

    2011-12-01

    Spinal cord injuries (SCI) result in different lower urinary tract dysfunctions. Because of both the disease and the bladder drainage method, urinary tract infections (UTIs) are one of the most frequent conditions seen in SCI patients. Diagnosis is not always easy due to lack of symptoms. Asymptomatic bacteriuria needs no treatment. If symptoms occur, antibiotherapy is indicated. Duration depends mainly on severity of illness and upper urinary tract or prostatic involvement. Choice of antibiotherapy should be based on local resistance profiles, but fluoroquinolones seems to be an adequate empirical treatment. Prevention of UTI is important, as lots of complications can be foreseen. Catheter care, permanent low bladder pressure and clean intermittent catheterization (CIC) with hydrophilic catheters are interventions that can prevent UTI. Probiotics might be useful, but data are limited.

  19. A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs

    Directory of Open Access Journals (Sweden)

    Heidari Sureshjani M.

    2013-02-01

    Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production

  20. Using reservoir engineering data to solve geological ambiguities : a case study of one of the Iranian carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kord, S. [National Iranian South Oil Co. (Iran, Islamic Republic of)

    2006-07-01

    A fractured carbonate reservoir in southwest Iran was studied with reference to reserve estimation, risk analysis, material balance and recovery factor. The 40 km long and 4 km wide reservoir consists of 2 parts with crest depths of 3780 and 3749 mss respectively. The eastern part is smaller and more productive than the western part which has high water saturation and absolutely no production. Economic production from the reservoir began in 1977. By 2004, the cumulative production had reached 12.064 MMSTB. Of the 6 wells drilled, only 2 wells in the eastern part are productive. This study addressed the main uncertainty of whether the 2 parts of the reservoir are sealed or not. The reservoir is under-saturated but the current pressure is near saturation pressure. The reservoir is divided into the following 4 zones: zones 1 and 2 are productive and consist mainly of carbonate rocks; zone 3 has thin beds of sand and shale; and, zone 4 consists of layers of carbonate, shale, marn, and dolomite. Although there are no faults, mud loss suggests that the reservoir has hairline fractures. Oil in place and reserves were estimated for both parts based on calculated reservoir engineering parameters. Material balance calculations were then performed to analyze and simulate the reservoir. The communication between the 2 parts of the reservoir were examined according to core analysis, rock type, fluid characterization, pressure analysis, water-oil contacts, production history and petrophysical evaluations. The porosity was found to be the same in both parts, but the water saturation and net to gross ratios were different between the eastern and western parts. The petrophysical evaluation revealed that there is no communication between the two parts of the reservoir. 4 refs., 2 figs., 2 appendices.

  1. Urinary incontinence and vaginal squeeze pressure two years post-cesarean delivery in primiparous women with previous gestational diabetes mellitus

    OpenAIRE

    Barbosa, Angélica Mércia Pascon; Dias, Adriano; Marini, Gabriela; Calderon, Iracema Mattos Paranhos; Witkin, Steven; Rudge, Marilza Vieira Cunha

    2011-01-01

    OBJECTIVE: To assess the prevalence of urinary incontinence and associated vaginal squeeze pressure in primiparous women with and without previous gestational diabetes mellitus two years post-cesarean delivery. METHODS: Primiparous women who delivered by cesarean two years previously were interviewed about the delivery and the occurrence of incontinence. Incontinence was reported by the women and vaginal pressure evaluated by a Perina perineometer. Sixty-three women with gestational diabetes ...

  2. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    Science.gov (United States)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  3. Endoluminal pharmacologic stimulation of the upper urinary tract.

    Science.gov (United States)

    Jakobsen, Jørn Skibsted

    2013-05-01

    The experiments performed in this PhD thesis were conducted at the Institute of Experimental Surgery, Skejby Hospital, Aarhus, Denmark and at the Laboratory of Animal Science, Odense University Hospital, Denmark. The thesis is based on 3 peer review articles published in international journals and a review. Diagnostic or therapeutic endoscopic upper urinary tract procedures are usually characterised as minimal invasive procedures and associated with a low complication rate. Most often fever or pain are seen and sometimes septicaemia. However, mucosa lesion or even ureteric ruptures are known complications. Research has suggested that high renal pelvic pressures generated during these procedures, might contribute to per-/postoperative complications seen, and even possible renal parenchymal damage. Nevertheless, local administration (endoluminal) of a relaxant drug has not previously been tried in order to lower renal pelvic pressure. The purposes of this thesis were to examine the effect of local administration (endoluminal) of the nonspecific β-adrenergic agonist ISOproterenol (ISO) on: 1) The normal pressure flow relation in porcine ureter, 2) The effect of endoluminal ISO perfusion during flexible ureterorenoscopy, 3) The pressure flow relation during semirigid ureterorenoscopy and 4) The cardiovascular system. Among other receptor-types β-adrenergic receptor are located in the upper urinary tract and the activation thereof mediates smooth muscle relaxation. We have shown - in an animal experimental model - that ISO added to the irrigation fluid had significant impact on the renal pelvic pressures generated during upper urinary tract endoscopy. ISO significantly and dose dependently reduced the normal pressure flow relations by approximately 80% without concomitant cardiovascular side effects or measurable plasma levels of ISO. During flexible ureterorenoscopy 0.1 µg/ml ISO added to the irrigation fluid significantly reduced renal pelvic pressure during

  4. Measurement of urethral closure function in women with stress urinary incontinence

    DEFF Research Database (Denmark)

    Klarskov, N; Scholfield, D; Soma, K

    2009-01-01

    , double-blind, placebo controlled, crossover study 17 women with stress urinary incontinence or mixed urinary incontinence received 4 mg esreboxetine or placebo for 7 to 9 days followed by a washout period before crossing over treatments. Urethral pressure reflectometry and urethral pressure profilometry......, and had a positive and clinically relevant effect on urethral closure function and symptoms of stress urinary incontinence....... esreboxetine patients had significantly fewer incontinence episodes and reported a treatment benefit (global impression of change) compared to placebo. CONCLUSIONS: The opening pressure measured with urethral pressure reflectometry was less variable compared to the parameters measured with urethral pressure...

  5. Detublarized Sigmoid Colon for Total Urinary Bladder Replacement: Clinical Outcome in 51 Patients

    International Nuclear Information System (INIS)

    Bassiouny, M.; El-Sherbiny, M. M.

    2003-01-01

    The technique and results of a detublarized sigmoid neo bladder for total urinary bladder substitution after radical cystectomy is described. Methods: Fifty one patients (44 men and 7 women) having a mean age of 46 (range, 32-61 years). Radical cysto prostatectomy was performed for the male patients and anterior pelvic exenteration for the female patients. This was followed by total replacement of the bladder with a detubularized sigmoid colon. They were selected to have invasive bladder cancer away from the bladder neck. The mean follow-up period was 38.8 months (range 8-96). Blood chemistry was analyzed periodically every month during the follow-up period. Early and late complications, continence and voiding pattern were recorded. Urodynamic studies were performed every 6 months. Early postoperative complications included, urinary leakage in 7 patients (14%); wound infection in II patients (22%), deep venous thrombosis of the lower extremities in one patient (2%). Late complications included stenosis of the ureterointestinal anastomosis in one patient (2%), stenosis of urethral anastomosis in one patient (2%). A reservoir stone occurred in one patient (2%). No metabolic acidosis nor vitamin B 12 deficiency was reported. The upper urinary tract function was either improved or stable in 96% of cases. However, deterioration occurred in only 4% of cases. All patients could void voluntery without catheterization. Patient satisfaction for continence, by daytime and nighttime (nocturnal continence), was 86% and 72%, respectively. The mean neo bladder capacity and mean residual urine volume was 463.8 ml (range, 275-603) and 93.7 ml (range 50-189), respectively. Pressure flow analysis showed that the mean basal pressure was 5.1 cm H 2 O (range, 1-18) and the mean pressure at maximal capacity was 37.4 cm H 2 O (range, 1-73). The mean maximal flow rate was 17.8 ml/sec (range 3.1-24.5), the mean average flow rate was 11.4 ml/sec. (range 1.9-14.6). The mean first sensation

  6. Epidemiology of urinary tract infections in Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, L R; Phair, J P; Seki, Masafumi; Hamilton, H B; Nefzger, M D

    1964-08-19

    The present study was conducted at ABCC on a sample of Hiroshima residents systematically seleced for determining the influence on general health status of exposure to the atomic bomb of 1945. A survey for urinary infections was taken on persons in the sample examined in the ABCC clinic over a 1-year period: approximately 3000 women and 2000 men. The purpose of the study was to determine the prevalence of urinary infection and to study the relation between bacteriuria and various aspects of the general examination, particularly blood pressure. In addition, the rates of urinary tract infection in the clinic were compared with the rates of chronic pyelonephritis at autopsy. Results showed that infections were much more common in women than in men and rose with age in both sexes. The greatest increase in the prevalence was found in women age 60 years and over was due to coliform bacteria in all but a few instances. There was no difference in hematuria, glycosuria, diabetes, serum cholesterol, blood groups, electrocardiograms, audiometry, vibrometry, hemoglobin levels or height-weight ratios. Blood pressure is higher in infected women as compared with noninfected women and the finding of higher rates for cardiac enlargement suggests that this small difference in blood pressures may have biological significance. However, the data do not permit a conclusion as to whether the urinary infections were responsible for the higher blood pressure levels, or whether the higher blood pressure levels increased the frequency of detectable infection. The difference between the clinical rates of urinary infection in men and women, and the pathological diagnosis of pyelonephritis in the same population, supports a previous suggestion that much of what is called pyelonephritis at autopsy is not due to urinary tract infection. 27 references, 2 figures, 10 tables.

  7. A new method for calculating gas saturation of low-resistivity shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinyan Zhang

    2017-09-01

    Full Text Available The Jiaoshiba shale gas field is located in the Fuling area of the Sichuan Basin, with the Upper Ordovician Wufeng–Lower Silurian Longmaxi Fm as the pay zone. At the bottom of the pay zone, a high-quality shale gas reservoir about 20 m thick is generally developed with high organic contents and gas abundance, but its resistivity is relatively low. Accordingly, the gas saturation calculated by formulas (e.g. Archie using electric logging data is often much lower than the experiment-derived value. In this paper, a new method was presented for calculating gas saturation more accurately based on non-electric logging data. Firstly, the causes for the low resistivity of shale gas reservoirs in this area were analyzed. Then, the limitation of traditional methods for calculating gas saturation based on electric logging data was diagnosed, and the feasibility of the neutron–density porosity overlay method was illustrated. According to the response characteristics of neutron, density and other porosity logging in shale gas reservoirs, a model for calculating gas saturation of shale gas was established by core experimental calibration based on the density logging value, the density porosity and the difference between density porosity and neutron porosity, by means of multiple methods (e.g. the dual-porosity overlay method by optimizing the best overlay coefficient. This new method avoids the effect of low resistivity, and thus can provide normal calculated gas saturation of high-quality shale gas reservoirs. It works well in practical application. This new method provides a technical support for the calculation of shale gas reserves in this area. Keywords: Shale gas, Gas saturation, Low resistivity, Non-electric logging, Volume density, Compensated neutron, Overlay method, Reserves calculation, Sichuan Basin, Jiaoshiba shale gas field

  8. Urinary excretion of 15N during intraportal infusion of 15N-ammonia in chickens fed low or high protein diet

    International Nuclear Information System (INIS)

    Karasawa, Yutaka; Koh, Katsuki; Takahashi, Akira; Sumiya, Ryuta

    1985-01-01

    The purpose of this study is to examine time courses of 15 N in urinary ammonia and total N when 15 N-labeled ammonium acetate was continuously infused for 1 hour into chickens fed a 5 or 20 % protein diet. 15 N-enrichment of urinary nitrogen in the two dietary groups increased sharply in ammonia for the first 20 minutes and to a less extent linearly in total N for the first 30 minutes, and then gradually in both ammonia and total N. Through the ammonia infusion, the 15 N-enrichment of urinary ammonia was higher in the chickens fed the low protein diet than in those fed the high protein diet; both of them were higher than 15 N-enrichments of urinary N, which were almost the same in the two dietary groups. The urinary total N from the infused ammonia rose linearly for the first 40 minutes but thereafter did not rise further in the two dietary groups, whereas the endogenous urinary total N tended to decrease a little in the chichens fed the high protein diet but unchanged in those fed the low protein diet. The urinary ammonia from the infused ammonia increased sharply for the first 20 minutes, then linearly but at a lower rate in the chickens fed the high protein diet, whereas that in the chickens fed the low protein diet rose linearly throughout ammonia infusion. In contrast, the endogenous urinary ammonia showed no change in the chickens fed the high protein diet while it showed a tendency to increase a little in these fed the low protein diet. These results indicate that the increased urinary ammonia and total N during ammonia infusion are derived mostly from the infused ammonia in chickens fed 5 and 20% protein diets. (author)

  9. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  10. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    Science.gov (United States)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  11. Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination.

    Science.gov (United States)

    Seol, Geun Hee; Lee, Yun Hee; Kang, Purum; You, Ji Hye; Park, Mira; Min, Sun Seek

    2013-07-01

    The aim of this study was to investigate the effect of inhalation of Salvia sclarea (clary sage; clary) or Lavandula angustifolia (lavender) essential oil vapors on autonomic nervous system activity in female patients with urinary incontinence undergoing urodynamic assessment. STUDY DESIGN, LOCATION, AND SUBJECTS: This study was a double-blind, randomized, controlled trial carried out in 34 female patients with urinary incontinence. The subjects were randomized to inhale lavender, clary, or almond (control) oil at concentrations of 5% (vol/vol) each. Systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, and salivary cortisol were measured before and after inhalation of these odors for 60 minutes. The clary oil group experienced a significant decrease in systolic blood pressure compared with the control (p=0.048) and lavender oil (p=0.026) groups, a significant decrease in diastolic blood pressure compared with the lavender oil group (p=0.034) and a significant decrease in respiratory rate compared with the control group (p<0.001). In contrast, the lavender oil group tended to increase systolic and diastolic blood pressure compared with the control group. Compared with the control group, inhalation of lavender oil (p=0.045) and clary oil (p<0.001) resulted in statistically significant reductions in respiratory rate. These results suggest that lavender oil inhalation may be inappropriate in lowering stress during urodynamic examinations, despite its antistress effects, while clary oil inhalation may be useful in inducing relaxation in female urinary incontinence patients undergoing urodynamic assessments.

  12. Prevalence and knowledge of urinary incontinence and possibilities of treatment among low-income working women

    Directory of Open Access Journals (Sweden)

    Amabily Carolline Zago

    Full Text Available Abstract Introduction: Urinary incontinence (UI can affect women's lives in all areas, including in the occupational context, due to an uncomfortable workplace, incorrect positions for long periods of time and the handling of heavy items. Another worrying aspect is that the knowledge about urinary incontinence, in the health area, and its forms of treatment is still small among the low-income population. Objective: To verify the prevalence and knowledge about urinary incontinence and treatment possibilities among low-income working women. Methods: A cross-sectional study carried out on working women of a poultry processing plant. Results: The study included 136 women with an average age of 33.7 ± 9.7 years; body mass index of 26.6 ± 5.6 kg/m2; parity of 2.1 ± 1.1 children; monthly income of 2.3 ± 1 minimum wages. Of those interviewed, 63.9% were white; 44.8% had incomplete primary education; 52.9% were single; 53.6% underwent cesarean section delivery; and of those who underwent normal labor delivery, 86.6% underwent episiotomy. The prevalence of urinary incontinence was found to be 2.9%, and among the women affected, two reported that UI led to sexual, social, water and occupational restriction, and one of them believes that UI interferes with her concentration and productivity in the workplace. Regarding health knowledge, 46.3% had never heard of urinary incontinence before, and more than half (66.1% did not know about the existence of medical treatment. All women interviewed (100% were unaware of the existence of physiotherapeutic treatment. Conclusion: The prevalence of urinary incontinence was among those interviewed was small, however, the knowledge about the symptoms and possibilities of medical, and mainly physiotherapeutic treatment. is scarce among these women. This study allows to alert and to guide the health professionals and the society about the importance of actions that promote health education in the low income population

  13. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  14. Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition.

    Science.gov (United States)

    Nizar, Jonathan M; Bouby, Nadine; Bankir, Lise; Bhalla, Vivek

    2018-06-01

    Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.

  15. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    Science.gov (United States)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  16. Could Urinary Tract Infection Cause Female Stress Urinary Incontinence? A Clinical Study.

    Science.gov (United States)

    Heydari, Fatemeh; Motaghed, Zahra; Abbaszadeh, Fatemeh

    2016-01-01

    Stress urinary incontinence (SUI), the most common type of urinary incontinence (UI), is usually defined as leakage of urine during movement or activity which puts pressure on the bladder, such as coughing, sneezing, running or heavy lifting. It is reported in most countries that 15% to 40% of women struggle with SUI and its severe implications for daily life, including social interactions, sexuality, and psychological wellbeing. The aim of our study was to assess the relationship between urinary tract infection and the severity of stress urinary incontinence (SUI). This research was a cross-sectional study conducted in a public urology clinic in Tehran. The study population was all females with complaints of SUI who visited the clinic during 2014. We compared Valsalva leak point pressure (VLPP) in two groups of patients, with and without history of urinary tract infection (UTI). According to the findings of our study, the mean VLPP was 83.10 cm H2O in the group with UTI history, and 81.29 cm H2O in those without history of UTI. The difference in VLPP between the two groups was not significant (P < 0.05), even after controlling for confounding variables including age, body mass index, history of hysterectomy and number of deliveries. Our study did not confirm a significant relationship between UTI and severity of SUI as measured by VLPP. A decisive opinion would require extensive future studies by prospective methods.

  17. Specific and practicable assessment of urinary free cortisol by combination of automatic high-pressure liquid chromatography and radioimmunoassay

    International Nuclear Information System (INIS)

    Schoeneshoefer, M.; Fenner, A.; Altinok, G.; Dulce, H.J.

    1980-01-01

    An assay for the specific measurement of urinary free cortisol excretion is described. The method involves a simple solid-phase extraction, automatic high pressure liquid chromatography (HPLC) and radioimmunological quantification. The concurrent study on antigenically interfering compounds in the organic extract of urine revealed that non-specific immunoreactivities with a chromatographic behaviour very similar to cortisol are present in urine, which are not attributable to the steroids commonly studied for cross-reactivity. Non-chromatographed values are about twice as high as those chromatographed by HPLC. Correlation between them was significant (r=0.98). Precision and accuracy of the present method are within the range commonly achieved by radioimmunoassay methods. The normal range of urinary free cortisol excretion was found to be 28-117 nmol/24h (n=128). The present method, suitable for routine purposes, provides a basis for external quality control of urinary cortisol estimations, which is inadequate with the non-specific methods usually applied. (Auth.)

  18. Urinary incontinence: the role of menopause.

    Science.gov (United States)

    Trutnovsky, Gerda; Rojas, Rodrigo Guzman; Mann, Kristy Pamela; Dietz, Hans P

    2014-04-01

    This study aims to explore the effects of menopause and hormone therapy on the symptoms and signs of stress urinary incontinence and urge urinary incontinence. Records of women who attended a tertiary urogynecological unit were reviewed retrospectively. A standardized interview included evaluations of symptoms, menopause age (ie, time since last menstrual period or onset of menopausal symptoms), current or previous hormone use, and visual analogue scales for bother. Multichannel urodynamics, including urethral pressure profilometry and determination of abdominal leak point pressure, was performed. Of 382 women seen during the inclusion period, 62% were postmenopausal. Current systemic or local hormone use was reported by 7% and 6%, respectively. Two hundred eighty-eight women (76%) reported symptoms of stress urinary incontinence, with a mean bother of 5.7, and 273 women (72%) reported symptoms of urge urinary incontinence, with a mean bother of 6.4. On univariate analysis, symptoms and bother of urge incontinence were significantly related to menopause age, whereas this relationship was not found for stress incontinence. After calendar age was controlled for, length of menopause showed no significant relationship with any symptom or sign of urinary incontinence. Hormone deficiency after menopause is unlikely to play a major role in urinary incontinence.

  19. Long-term, low-dose prophylaxis against urinary tract infections in young children.

    Science.gov (United States)

    Brandström, Per; Hansson, Sverker

    2015-03-01

    Urinary tract infection (UTI) affects about 2 % of boys and 8 % of girls during the first 6 years of life with Escherichia coli as the predominant pathogen. Symptomatic UTI causes discomfort and distress, and carries a risk of inducing renal damage. The strong correlation between febrile UTI, dilating vesicoureteral reflux (VUR), and renal scarring led to the introduction of antibiotic prophylaxis for children with VUR to reduce the rate of UTI recurrence. It became common practice to use prophylaxis for children with VUR and other urinary tract abnormalities. This policy has been challenged because of a lack of scientific support. Now, randomized controlled studies are available that compare prophylaxis to no treatment or placebo. They show that children with normal urinary tracts or non-dilating VUR do not benefit from prophylaxis. Dilating VUR may still be an indication for prophylaxis in young children. After the first year of life, boys have very few recurrences and do not benefit from prophylaxis. Girls with dilating VUR, on the other hand, are more prone to recurrences and benefit from prophylaxis. There has been a decline in the use of prophylaxis due to questioning of its efficacy, increasing bacterial resistance, and a propensity to low adherence to medication. Alternative measures to reduce UTI recurrences should be emphasized. However, in selected patients carefully followed, prophylaxis can protect from recurrent UTI and long-term sequelae. 1. There is a strong correlation between UTI, VUR, and renal scarring. 2. Children with normal urinary tracts or non-dilating VUR do not benefit from prophylaxis. 3. Young children, mainly girls, with dilating VUR are at risk of recurrent UTI and acquired renal scarring and seem to gain from antibiotic prophylaxis. 4. Increasing bacterial resistance and low adherence with prescribed medication is a major obstacle to successful antibiotic prophylaxis.

  20. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  1. Appearance of infused 15N-ammonia in urinary nitrogenous compounds in chickens fed low and high protein diets

    International Nuclear Information System (INIS)

    Karasawa, Yutaka

    1984-01-01

    The chickens fed a high protein diet responded to the intraportal administration of ammonia with a remarkable increase in urinary uric acid as well as an appreciable increase in urinary ammonia, while in those fed a low protein diet, the increase was appreciable in tissue glutamine and in urinary ammonia, but a little amount in urinary uric acid in response to the ammonia load. It was demonstrated by the present study that the increases in urinary ammonia and uric acid excretion in response to intraportal ammonia load were the adaptive response to remove the exogenous ammonia from the body. The mode of disposal of the intraportally loaded ammonia was changeable depending on protein intake. (Mori, K.)

  2. Low-Q structure related to partially saturated pores within the reservoir beneath The Geysers area in the northern California

    Science.gov (United States)

    Matsubara, M.

    2011-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) owing to withdrawal of steam from the reservoir. I perform attenuation tomography in this region to investigate the state of vapor and liquid within the reservoir. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismograms of 1,231 events whose focal mechanism are determined among 65,810 events recorded by the Northern California Earthquake Data Center from 2002 to 2008 in the target region. The band-pass filtered seismograms are analyzed for collecting the maximum amplitude data. There are 26 stations that have a three-component seismometer among 47 seismic stations. I use the P- and S-wave maximum amplitudes during the two seconds after the arrival of those waves in order to avoid coda effects. A total of 8,545 P- and 1,168 S-wave amplitude data for 949 earthquakes recorded at 47 stations are available for the analysis using the attenuation tomographic method derived from the velocity tomographic method (Matsubara et al., 2005, 2008) in which spatial velocity correlation and station corrections are introduced to the original code of Zhao et al. (1992). I use 3-D velocity structure obtained by Thurber et al. (2009). The initial Q value is set to 150, corresponding to the average Q of the northern California (Ford et al., 2010). At sea level, low-Q zones are found extending from the middle of the steam reservoir within the main greywacke to the south part of the reservoir. At a depth of 1 km below sea level, a low-Q zone is located solely in the southern part of the reservoir. However, at a depth of 2 km a low-Q zone is located beneath the northern part of the reservoir. At depths of 1 to 3 km a felsite batholith in the deeper portions of the reservoir, and it corresponds

  3. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  4. The Ileal W-Shaped Neo bladder Following Radical Cystectomy for Carcinoma of the Urinary Bladder: Experience and Results of 50 Cases

    International Nuclear Information System (INIS)

    Bassiouny, M.; Helmy, A.; Amin, A.; Aboul Kassem, H.

    2003-01-01

    The optimal urinary bladder substitute for patients undergoing radical cystectomy is still controversial. The ideal reservoir should provide a large storage capacity at low pressure achieving effective continence with less frequency and minimal renal reflux. In this study we present our experience with W-shaped ileal neo bladder following radical cystectomy. Material and Methods: Between April 1995 and September 1999, a total of 50 male patients underwent lower urinary tract reconstruction following radical cysto prostatectomy by means of ileal W-shaped neo bladder. All patients had invasive bladder cancer proved by preoperative cystoscopy. Their mean age was 45.5 years. The median neo bladder pouch capacity was 420 ml; daytime continence rate was 89.4%, while nighttime continence was noticed in 53.3% of cases. The uretero intestinal anastomoses were performed employing Le Duc technique in all patients. Renal units remained normal in 25 out of 30 evaluated patients. Dilatation of the pelvicalyceal system and the ureter, either unilateral or bilateral occurred in 5/30 of patients (16.6%). These were due to stricture at the urethro or uretero-pouch anastomosis that needed transurethral urethrotomy or revision of the anastomosis; however, renal functions were maintained in all patients. There were three postoperative mortalities (6%) and the early postoperative complications included urinary leakage (6%), prolonged ileus (10%) and deep venous thrombosis (4%). Late complications related to the neo bladder were acceptable including metabolic acidosis (2%). The ileal W-shaped neo bladder is a good choice for male patients after radical cystectomy, provided that there is no evidence of prostatic or urethral tumor invasion

  5. Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls

    DEFF Research Database (Denmark)

    Nielsen, Karen Leth; Stegger, Marc; Kiil, Kristoffer

    2017-01-01

    The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy...... controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal......-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged...

  6. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  7. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    Science.gov (United States)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  8. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  9. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  10. Functional Evaluation of Modified T Pouch as Ileal Neo bladder Ortho topic Reservoir

    International Nuclear Information System (INIS)

    Hammouda, H.M.

    2004-01-01

    We report on the functional results of ortho topic modified T pouch ileal neo bladder, incorporating serous- lined extra mural ileal anti reflux technique for urinary diversion after radical cystectomy. Material and Methods: From September 1998 through November 2001,42 patients of mean age 49 years (range 45-54) having invasive bladder carcinoma underwent radical cystectomy and ortho topic ileal neo bladder urinary diversion, the modified T pouch. Thirty-three patients were males while the remaining 9 were females. The mean follow up was 24 months (range 18-42). Preoperative unior bilateral ureteral dilatation was noted in 13/42 (30.9%) patients). Follow up included clinical examination, laboratory, radiological and uro dynamic investigations. Early postoperative complications were recorded in 3 cases, that were managed conservatively. Day and night continence were achieved in 34/42 (81 %) and 29/42 (69%) patients, night enuresis in 2 (4.8%),while satisfactory day and night continence were noted, respectively. Upper urinary tract (UUT) remained unchanged or improved in all cases. No need for clean intermittent catherization (CIC). No evidence of reflux was detected. Pressure at maximum capacity (average 17 cm H 2 O at 600 ml). Mean flow rate was 17.6 ml/sec (range 15-24). Pelvic cancer recurrence was recorded in 5 patients at mean 24 months, respectively. Modified T pouch has an excellent functional criteria as an ortho topic ileal neo bladder reservoir. It is absolutely indicated in short and/or massively dilated ureter

  11. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure

    International Nuclear Information System (INIS)

    Pu, Y.-S.; Yang, S.-M.; Huang, Y.-K.; Chung, C.-J.; Huang, Steven K.; Chiu, Allen Wen-Hsiang; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As III + As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA V and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA V and MMA V . Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA V , lower percent DMA V , higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels

  12. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  13. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    Science.gov (United States)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and

  14. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  15. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  16. Effects of different block size distributions in pressure transient response of naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, G.H. [Islamic Azad University, Mahshahr (Iran, Islamic Republic of). Dept. of Chemical and Petroleum Engineering], E-mail: montazeri_gh@yahoo.com; Tahami, S.A. [Mad Daneshgostar Tabnak Co. (MDT),Tehran (Iran, Islamic Republic of); Moradi, B.; Safari, E. [Iranian Central Oil Fields Co, Tehran (Iran, Islamic Republic of)], E-mail: morady.babak@gmail.com

    2011-07-15

    This paper presents a model for pressure transient and derivative analysis for naturally fractured reservoirs by a formulation of inter porosity flow incorporating variations in matrix block size, which is inversely related to fracture intensity. Geologically realistic Probability Density Functions (PDFs) of matrix block size, such as uniform, bimodal, linear and exponential distributions, are examined and pseudo-steady-state and transient models for inter porosity flow are assumed. The results have been physically interpreted, and, despite results obtained by other authors, it was found that the shape of pressure derivative curves for different PDFs are basically identical within some ranges of block size variability, inter porosity skin, PDFs parameters and matrix storage capacity. This tool can give an insight on the distribution of block sizes and shapes, together with other sources of information such as Logs and geological observations. (author)

  17. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  18. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  19. Veins in Paleo-reservoir as a Natural Indication of Coupled Changes in Pore Pressure and Stress, Salt Wash Graben of SE Utah, USA

    Science.gov (United States)

    Gwon, S.; Edwards, P.; Kim, Y. S.

    2015-12-01

    Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are

  20. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  1. The effect of pressure on the phase behavior of surfactant systems: An experimental study

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow; Stenby, Erling Halfdan; von Solms, Nicolas

    2012-01-01

    Enhanced oil recovery is employed in many mature oil reservoirs to maintain or increase the reservoir recovery factor. In this context, surfactant flooding has recently gained interest again. Surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, in order...... to create microemulsions at the interface between crude oil and water, thus obtaining very low interfacial tension, which consequently helps mobilize the trapped oil.In this work a surfactant system, which has been thoroughly described at atmospheric pressure, is examined at elevated pressure. The effect...

  2. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  3. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  4. Urethral Closure Pressure at Stress: A Predictive Measure for the Diagnosis and Severity of Urinary Incontinence in Women

    Directory of Open Access Journals (Sweden)

    Anne-Cécile Pizzoferrato

    2017-06-01

    Full Text Available Purpose Maintaining urinary continence at stress requires a competent urethral sphincter and good suburethral support. Sphincter competence is estimated by measuring the maximal urethral closure pressure at rest. We aimed to study the value of a new urodynamic measure, the urethral closure pressure at stress (s-UCP, in the diagnosis and severity of female stress urinary incontinence (SUI. Methods A total of 400 women without neurological disorders were included in this observational study. SUI was diagnosed using the International Continence Society definition, and severity was assessed using a validated French questionnaire, the Mesure du Handicap Urinaire. The perineal examination consisted of rating the strength of the levator ani muscle (0–5 and an assessment of bladder neck mobility using point Aa (cm. The urodynamic parameters were maximal urethral closure pressure at rest, s-UCP, Valsalva leak point pressure (cm H2O, and pressure transmission ratio (%. Results Of the women, 358 (89.5% were diagnosed with SUI. The risk of SUI significantly increased as s-UCP decreased (odds ratio [OR], 0.92; 95% confidence interval, 0.88–0.98. The discriminative value of the measure was good for the diagnosis of SUI (area under curve>0.80. s-UCP values less than or equal to 20 cm H2O had a sensitivity of 73.1% and a specificity of 93.0% for predicting SUI. The association between s-UCP and SUI severity was also significant. Conclusions s-UCP is the most discriminative measure that has been identified for the diagnosis of SUI. It is strongly inversely correlated with the severity of SUI. It appears to be a specific SUI biomarker reflecting both urethral sphincter competence and urethral support.

  5. Modeling Permeability Alteration in Diatomite Reservoirs During Steam Drive, SUPRI TR-113

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Suniti Kumar; Kovscek, Anthony R.

    1999-08-09

    There is an estimated 10 billion barrels of original oil in place (OOIP) in diatomaceous reservoirs in Kern County, California. These reservoirs have low permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has been found to be an effective way to recover oil from these reservoir. However, steam drive in these reservoirs has its own complications. The rock matrix is primarily silica (SiO2). It is a known fact that silica is soluble in hot water and its solubility varies with temperature and pH. Due to this fact, the rock matrix in diatomite may dissolve into the aqueous phase as the temperature at a location increases or it may precipitate from the aqueous phase onto the rock grains as the temperature decreases. Thus, during steam drive silica redistribution will occur in the reservoir along with oil recovery. This silica redistribution causes the permeability and porosity of the reservoir to change. Understanding and quantifying these silica redistribution effects on the reservoir permeability might prove to be a key aspect of designing a steam drive project in these formations.

  6. Outcome of TVT operations in women with low maximum urethral closure pressure.

    Science.gov (United States)

    Moe, Kjartan; Schiøtz, Hjalmar A; Kulseng-Hanssen, Sigurd

    2017-06-01

    (i) To establish whether low maximal urethral closure pressure (MUCP) is associated with a poorer prognosis after TVT-surgery, and if so to establish an MUCP cut-off value for poor outcome. (ii) To characterize the population with a low MUCP. Retrospective analysis of data from 6,646 women with stress/mixed urinary incontinence included in the Norwegian Female Incontinence Registry. Postoperative subjective (degree of satisfaction), objective (leakage on stress test) and composite cure according to preoperative MUCP were analyzed in unadjusted and adjusted analysis. Preoperative variables were compared between women having a low or normal MUCP. Non-parametric tests were used on continuous variables and χ 2 tests on categorical variables. Logistic regression was used for the adjusted analysis. Level of significance: P 20 cm H 2 O. In adjusted analysis MUCP ≤20 cm H 2 O was associated with neither objective, subjective, nor composite failure. Women with MUCP TVT-surgery compared to women with MUCP >20 cm H 2 O after adjusting for preoperative variables. Neurourol. Urodynam. 36:1320-1324, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Detection of urinary biomarkers in reservoir hosts of Leptospirosis by capillary electrophoresis mass spectrometry

    Science.gov (United States)

    Pathogenic leptospires colonize the renal tubules of reservoir hosts of infection and are excreted via urine into the environment. Reservoir hosts include a wide range of domestic and wild animal species and include cattle, dogs and rats which can persistently excrete large numbers of pathogenic lep...

  8. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO_2 nanofluids

    International Nuclear Information System (INIS)

    Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong

    2017-01-01

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  9. Hydrocarbon Potential in Sandstone Reservoir Isolated inside Low Permeability Shale Rock (Case Study: Beruk Field, Central Sumatra Basin)

    Science.gov (United States)

    Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli

    2018-03-01

    Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.

  10. Tidal phenomena in reservoirs; Fenomeno de mare em reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla Cortes, John Freddy

    1997-06-01

    This work models the oceanic tidal effect on reservoirs by coupling geomechanic principles with equations for fluid in a deformable porous media. The coupling revealed the importance of establishing properly the system compressibility under the various possible configurations of the loading system. The basic models for infinite reservoir, constant outer-pressure reservoir and closed reservoir were considered. It was verified that it was possible to apply the superposition of effects on the solution for the basic models by carrying a simple transformation on the solution variable. The problem was treated by in the context of test analysis, concerning dimensionless form of variables and the inclusion of well effects. The solution for the infinite reservoir including tidal effects. The solution for the infinite reservoir including tidal effects was obtained in the Laplace space and was inverted numerically by using Crump's routine. The results were incorporated to conventional type curves, and were validated by comparison with real and simulated pressure test data. Finally, alternate practices were suggested to integrate the well test analysis in reservoirs affected by the tidal effect. (author)

  11. Urinary and dietary sodium and potassium associated with blood pressure control in treated hypertensive kidney transplant recipients: an observational study

    Directory of Open Access Journals (Sweden)

    Saint-Remy Annie

    2012-09-01

    Full Text Available Abstract Background In kidney transplant (Kt recipients , hypertension is a major risk for cardiovascular complications but also for graft failure. Blood pressure (BP control is therefore mandatory. Office BP (OBP remains frequently used for clinical decisions, however home BP (HBP have brought a significant improvement in the BP control. Sodium is a modifiable risk factor, many studies accounted for a decrease of BP with a sodium restricted diet. Increased potassium intake has been also recommended in hypertension management. Using an agreement between office and home BP, the present study investigated the relations between the BP control in Kt recipients and their urinary excretion and dietary consumption of sodium and potassium. Methods The BP control defined by OBP 30. Results Using an agreement between OBP and HBP, we identified controlled (21% and uncontrolled recipients (49%. Major confounding effects susceptible to interfere with the BP regulation did not differ between groups, the amounts of sodium excretion were similar (154 ± 93 vs 162 ± 88 mmol/24 h but uncontrolled patients excreted less potassium (68 ± 14 vs 54 ± 20 mmol/24 h; P = 0.029 and had significantly lower potassium intakes (3279 ± 753 vs 2208 ± 720 mg/24 h; P = 0.009, associated with a higher urinary Na+/K + ratio. Systolic HBP was inversely and significantly correlated to urinary potassium (r = −0.48; P = 0.002, a positive but non significant relation was observed with urinary sodium (r = 0,30;P = 0.074. Conclusions Half of the treated hypertensive Kt recipients remained uncontrolled in office and at home. Restoring a well-balanced sodium/potassium ratio intakes could be a non pharmacological opportunity to improve blood pressure control.

  12. The model coupling fluid flow in reservoir with flow in horizontal wellbore

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangping; Jiang, Zhixiang [RIPED-TEXACO Horizontal Well Technology Laboratory (United States)

    1998-12-31

    Three-dimensional pressure distributions of oil flow in a reservoir with horizontal well were derived, and a new formula to calculate pressure drop along the horizontal wellbore was developed based on the principle of conservation of matter and momentum. The formula considers the effect of influx into the horizontal wellbore from the reservoir on pressure drop in the wellbore. A mathematical model to couple fluid flow in the reservoir with flow in the horizontal wellbore is presented. Model results and experimental data showed good correspondence. Results showed the influence of pressure drop on well performance. 13 refs., 2 tabs., 7 figs.

  13. 49 CFR 229.31 - Main reservoir tests.

    Science.gov (United States)

    2010-10-01

    ... appropriately safe environment. (d) Each aluminum main reservoir before being placed in use and at intervals... working pressure fixed by the chief mechanical officer. The test date, place, and pressure shall be... be subjected to a hydrostatic pressure of at least 25 percent more than the maximum working pressure...

  14. Determination of Pore Pressure from Sonic Log: a Case Study on One of Iran Carbonate Reservoir Rocks

    Directory of Open Access Journals (Sweden)

    Morteza Azadpour

    2015-07-01

    Full Text Available Pore pressureis defined as the pressure of the fluid inside the pore space of the formation, which is also known as the formation pressure. When the pore pressure is higher than hydrostatic pressure, it is referred to as overpressure. Knowledge of this pressure is essential for cost-effective drilling, safe well planning, and efficient reservoir modeling. The main objective of this study is to estimate the formation pore pressure as a reliable mud weight pressure using well log data at one of oil fields in the south of Iran. To obtain this goal, the formation pore pressure is estimated from well logging data by applying Eaton’s prediction method with some modifications. In this way, sonic transient time trend line is separated by lithology changes and recalibrated by Weakley’s approach. The created sonic transient time is used to create an overlay pore pressure based on Eaton’s method and is led to pore pressure determination. The results are compared with the pore pressure estimated from commonly used methods such as Eaton’s and Bowers’s methods. The determined pore pressure from Weakley’s approach shows some improvements in comparison with Eaton’s method. However, the results of Bowers’s method, in comparison with the other two methods, show relatively better agreement with the mud weight pressure values.

  15. Role of static fluid MR urography in detecting post urinary diversion complications

    Directory of Open Access Journals (Sweden)

    Amr Farouk Ibrahim Moustafa

    2018-06-01

    Full Text Available Aim of work: The aim of the study was to assess the diagnostic performance of static MR urography in detection of post cystectomy complications & the ability of static fluid MR urography in visualization of urinary tract segments. Material & methods: We prospectively reviewed 21 MR urograms with urinary diversion. The most common surgical procedures included Ileal conduit & Ileocecal neobladder diversion.Magnetic resonance urography examinations were performed with 1.5-T MR scanners. T2 weighted (static fluid MR urography techniques were done, in addition to conventional T1- and T2-weighted axial and coronal sequences. Urinary tract was divided in different parts: pelvicalyceal systems, upper, mid and lower ureteric segments & the reservoir or conduit Imaging features of the urinary collecting systems were evaluated for their visualization and complications detection. Results: T2-weighted MR urography could demonstrate 95% of urinary tract segments & together with conventional MR sequences all urinary tract segments can be visualized. Urinary diversion related complications were encountered included in 15 patients (71.4% & no urological complications were seen in 6 patients (28.6%. Conclusion: Comprehensive T2-weighted MR urography is an effective imaging method for the visualization of the urinary system and detection of early and late postoperative complications in patients with urinary diversion. Keywords: MR urography, Urinary diversion, Cancer bladder

  16. Reservoir characterization using production data and time-lapse seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Dadashpour, Mohsen

    2009-12-15

    horizontal direction, and give a significant image of fluid and pressure changes from the entire reservoir. However, the results are associated with errors and uncertainties that are related to the repeatability of data acquisition, data processing sequences, low resolution in vertical direction, lack of rock physics understanding, and an error in up-scaling and cross-scaling seismic and simulation data. This project uses exact amplitudes related to the seismic images after processing them in two different forms: Zero offset amplitudes and Amplitude versus offset (AVO) gradients. The effect of adding AVO gradients in the objective function (the misfit between responses of model and real reservoir) is discussed. One of the key issues in parameter estimation is to develop an efficient and reliable non-linear regression procedure. This procedure is based on three concepts: mathematical model, objective function and optimization algorithm. The mathematical model (Forward model) in this project consists of two parts: a Reservoir simulator and a Forward seismic model. A three phase black oil commercial simulator (ECLIPSE 100) is used to simulate fluid and pressure changes within the reservoir due to depletion and water injection. Forward seismic modeling software, based on rock physic formulations (Gassmann equation and Hertz-Mindlin model) and matrix propagating techniques developed at NTNU, is used to provide 4D seismic amplitudes from saturation and pressure changes. A new objective function which is defined as the difference between observation data and simulated data contains 4D seismic and production parts. Because these data are from different natures, integrating them still present a challenge. A key issue is the type of 4D seismic data and the weighting factor between these terms. Different scenarios and weighting factors are tested and discussed. Different optimization techniques are tested to choose the easiest, fastest and most efficient and robust optimization

  17. Analysis and application of classification methods of complex carbonate reservoirs

    Science.gov (United States)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  18. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  19. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  20. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  1. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults.This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence.We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years.We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence.For patients living in long-term care homes who are eligible for the technology, we

  2. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  3. Smart waterflooding in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, A.

    2012-02-15

    additional recovery from Stevens Klint chalk even under completely water wet conditions. Therefore, increment in oil recovery with sulfate ions cannot be explained just by the rock wettability alteration. 2) Experimental results show that sulfate ions may help decreasing the crude oil viscosity when brine is contacted with oil under high temperature and pressure. We have also observed formation of an emulsion-like phase between oil and brine with increased sulfate ion concentration under high temperature and pressure. The viscosity decrease and formation of an emulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs, besides the mechanism of the rock wettability alteration. 3) Crude oil/brine interaction study suggests that viscosity reduction for crude oil in contact with brine is connected to the presence of heavy components in the crude oil, while formation of emulsions with brine is a phenomenon related to the presence of lighter components in the crude oil. 4) The reservoir chalk rocks showed relatively less effect of temperature and sulfate ions concentration on oil recovery as compared to Stevens Klint outcrop chalk. This indicates that the rock may also determine whether the effect of temperature and high salinity brine on the recovery is observed. 5) Migration of fines and dissolution of rock particles are possible mechanisms of oil recovery increment with low salinity brines from carbonate core plugs at 90 ?C. (Author)

  4. Drug-induced urinary incontinence

    NARCIS (Netherlands)

    Tsakiris, Peter; Oelke, Matthias; Michel, Martin C.

    2008-01-01

    Physiological urinary continence depends on many factors that are potentially vulnerable to adverse drug effects, which may lead to incontinence. In principle, drugs could cause incontinence by lowering bladder outlet resistance and/or by increasing intravesical pressure, which disrupts the normal

  5. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yong-Li, E-mail: yylhill@163.com [College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong [Langfang Branch of Research Institute of Petroleum Exploration & Development, Langfang 065007 (China)

    2017-02-28

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  6. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  7. Downhole pressure sensor

    Science.gov (United States)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  8. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    , simulations used development from 5 surface locations with a wagon-wheel pattern of multilateral injectors and producers. There is no active aquifer support due to small peizometric head in the area and no existing gas cap, so an alternative method of pressure support is needed. Cold gas injection was used in the simulations as it is considered the most viable means of providing pressure maintenance while maintaining wellbore stability and reducing impact on the permafrost. Saline water injection may be a viable alternative, though this may have a detrimental effect on permafrost. In the short term, the results of this work are being incorporated into Linc Energy’s drilling and development plan. This project has also provided valuable information on the rock and fluid properties of low temperature reservoirs as well as the efficacy of potential production techniques for Umiat or similar shallow frozen reservoirs in the circum-Arctic.

  9. Novel Approaches to Preventing Urinary Tract Infection in Women

    Science.gov (United States)

    2001-09-01

    vaccines . In: Mobley HLT. 54. Johnson JR. Steil A. Delavari P. Canine feces as a reservoir ofextraintestinal Warren 1W, eds. Urinary tract infections...the material was subjected to analysis by Triple quadrupole ESI-MS/CID-MS experiments were electrospray ionization mass spectrometry in the positive ion...prophylaxis. Characteristic of prophylactic regimens development of vaccines against these infections, containing nitrofurantoin is the frequency of side

  10. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  11. The Effect of Pelvic Muscle Exercises on Urinary Incontinency and Self-Esteem of Elderly Females With Stress Urinary Incontinency, 2013

    Science.gov (United States)

    Jahromi, Marzieh Kargar; Talebizadeh, Malihe; Mirzaei, Maryam

    2015-01-01

    Introduction: Millions of women are afflicted with stress urinary incontinence. Urinary incontinence is mentioned as one of the geriatric syndromes, together with pressure ulcers, functional decline, falls, and low self-esteem. The aim of the present study was to determine the effect of pelvic muscle exercises on urinary incontinency and self- esteem of elderly females with stress urinary incontinency in Shiraz, Iran, 2013. Material and Method: In this interventional study, 50 old females aged 60-74 years were chosen among the members of Jahandidegan center, and they were asked to sign the informed consent form and complete the demographic questionnaire. Then, Quid questionnaire was used for choosing the type of incontinence in the elderly females. Next, the participants completed the ICIQ and self-esteem questionnaires. Then, they were randomly assigned to case and control groups. Each participant took part in 8 training classes. Finally, the subjects filled the ICIQ and self-esteem questionnaires before and 2 months after the intervention. Result: The results is shown that after the intervention, ICIQ score has a significant difference between the two groups (P=0.001). Also, after the treatment, self-esteem average scores of studied unit indicated a significant statistical difference in experimental group. In other words, the training sessions improved the score of self-esteem in the experimental group (Pself-esteem, so recommended that such these exercising programs be used in elderly health care centers as a factor to improve health promotion of elderlies ’that are suffering from urinary incontinence. PMID:25716389

  12. The effect of pelvic muscle exercises on urinary incontinency and self-esteem of elderly females with stress urinary incontinency, 2013.

    Science.gov (United States)

    Kargar Jahromi, Marzieh; Talebizadeh, Malihe; Mirzaei, Maryam

    2014-09-28

    Millions of women are afflicted with stress urinary incontinence. Urinary incontinence is mentioned as one of the geriatric syndromes, together with pressure ulcers, functional decline, falls, and low self-esteem. The aim of the present study was to determine the effect of pelvic muscle exercises on urinary incontinency and self- esteem of elderly females with stress urinary incontinency in Shiraz, Iran, 2013. In this interventional study, 50 old females aged 60-74 years were chosen among the members of Jahandidegan center, and they were asked to sign the informed consent form and complete the demographic questionnaire. Then, Quid questionnaire was used for choosing the type of incontinence in the elderly females. Next, the participants completed the ICIQ and self-esteem questionnaires. Then, they were randomly assigned to case and control groups. Each participant took part in 8 training classes. Finally, the subjects filled the ICIQ and self-esteem questionnaires before and 2 months after the intervention. The results is shown that after the intervention, ICIQ score has a significant difference between the two groups (P=0.001). Also, after the treatment, self-esteem average scores of studied unit indicated a significant statistical difference in experimental group. In other words, the training sessions improved the score of self-esteem in the experimental group (Pexercises were an empowerment mechanism for incontinent women in improving their quality of life and self-esteem, so recommended that such these exercising programs be used in elderly health care centers as a factor to improve health promotion of elderlies 'that are suffering from urinary incontinence.

  13. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2017-05-01

    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  14. Renal and blood pressure effects from environmental cadmium exposure in Thai children

    International Nuclear Information System (INIS)

    Swaddiwudhipong, Witaya; Mahasakpan, Pranee; Jeekeeree, Wanpen; Funkhiew, Thippawan; Sanjum, Rungaroon; Apiwatpaiboon, Thitikarn; Phopueng, Ittipol

    2015-01-01

    Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β 2 -microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming rice grown in cadmium-contaminated areas. The geometric mean levels of urinary β 2 -microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β 2 -microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β 2 -microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children

  15. Obesity and stress urinary incontinence in women: compromised continence mechanism or excess bladder pressure during cough?

    Science.gov (United States)

    Swenson, Carolyn W; Kolenic, Giselle E; Trowbridge, Elisa R; Berger, Mitchell B; Lewicky-Gaupp, Christina; Margulies, Rebecca U; Morgan, Daniel M; Fenner, Dee E; DeLancey, John O

    2017-09-01

    We compared two hypotheses as to why obesity is associated with stress urinary incontinence (SUI): (1) obesity increases demand on the continence system (e.g. higher cough pressure) and (2) obesity compromises urethral function and urethrovaginal support. A secondary analysis was performed using data from a case-control study of SUI in women. Measurements of urethrovaginal support (POP-Q point Aa, urethral axis), urethral function (maximal urethral closure pressure, MUCP), and measures of continence system demand (intravesical pressures at rest and during maximal cough) were analyzed. Cases and controls were divided into three body mass index (BMI) groups: normal (18.5-24.9 kg/m 2 ); overweight (25.0-29.9 kg/m 2 ); and obese (≥30 kg/m 2 ). Logistic regression models where created to investigate variables related to SUI for each BMI group. Structural equation modeling was used to test the direct and indirect relationships among BMI, SUI, maximal cough pressure, MUCP, and POP-Q point Aa. The study included 108 continent controls and 103 women with SUI. MUCP was the factor most strongly associated with SUI in all BMI groups. Maximal cough pressure was significantly associated with SUI in obese women (OR 3.191, 95% CI 1.326, 7.683; p continence mechanism.

  16. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    Science.gov (United States)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  17. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  18. Failure of the inflatable penile prosthesis due to abnormal folding of a low-profile reservoir – A selected case from an overall series and systematic review

    Directory of Open Access Journals (Sweden)

    Roberto Alejandro Navarrete

    2017-09-01

    Full Text Available We present a case from a running series of inflatable penile prosthesis failure due to improper folding of the Conceal™ reservoir. The Conceal™ Low-Profile reservoir gained popularity due to claims of improved cosmesis and ease of implantation. As the number of patients receiving this and other low-profile reservoirs increases, it is imperative to review and document any novel complications. While the Conceal™ reservoir may be preferred in ectopic placement, it may be more prone to fluid lockout facilitated by conformational change. Our review did not identify prior reports of improper folding, which we believe is unique to these low-profile reservoirs.

  19. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...

  20. Brownfield management opportunities to reduce the back pressure effects on the gas wells

    Directory of Open Access Journals (Sweden)

    Stefanescu Dan-Paul

    2017-01-01

    Full Text Available Gas mature fields are associated with challenges to optimize the hydrocarbon flow from reservoir to the sales point in a cost effective manner due to declining well productivity. Laslau Mare field is a mature gas field in Transylvanian basin (Mures County developed in 1970s and is producing∼99% methane with low water-gas ratio. As any brown field, the state of depleted reservoir will generate several constraints for gas flow from formation to surface facilities and further to delivery point. During the exploitation has been observed that the operation conditions are facing with unstable pressure in the system due to low demand. Therefore, the back pressure effect will affect the wells in terms of inability to unload the bottomhole accumulated liquids and the reservoir will suffer a higher pressure drawdown. The best fit-for-purpose solution to overcome the above challenges is represented by installation of group compressor. Laslau Mare field has 3 group compressors running and shows positive results, especially when external pressure fluctuates continuously. This paper explain the challenges seen in 2016 in Laslau Mare field with back pressure effects and how the compression overcome them, and also other solutions that should be considered to optimize the well production.

  1. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  2. Investigation of low pressure ES-SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, J.; Zheng, R.; Nasr, T.; Deng, X.; Beaulieu, G.; Heck, G. [Alberta Research Council, Edmonton, AB (Canada)

    2008-10-15

    This paper described a scaled model experiment conducted to investigate the effectiveness of expanding solvent steam assisted gravity drainage (ES-SAGD) processes at low pressures. Lower SAGD pressures typically result in reduced oil production as a result of correspondingly lower steam temperatures. However, lower pressures may also result in a reduced steam to oil ratio (SOR) and a higher vaporization heat. Steam was injected into an injection well at 33 cm{sup 3} per minute and in a production well at 31 cm{sup 3} per minute. Steam and solvents were then co-injected into the injection well at a temperature of 206 degrees C. The experiment was history-matched and a parametric analysis was conducted using a simulation tool. The 2-D and 3-D field-scale simulations investigated the impact of operating pressures, injection rates; sub-cool; oil and gas phase diffusion and dispersion; live oil versus dead oil performance; and the use of drawdown when oil rates declined. Low pressure ES-SAGD was then compared with low-pressure SAGD. Results of the study suggested that production pressures, sub-cool and solvent concentrations are important parameters in ES-SAGD processes. At 1500 kPa production pressure and 10 degrees C sub-cool, the co-injection of solvent with steam increased average oil rates by 15 per cent more than the SAGD process. SOR was also reduced. 6 refs., 8 tabs., 20 figs.

  3. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    Science.gov (United States)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  4. Renal and blood pressure effects from environmental cadmium exposure in Thai children

    Energy Technology Data Exchange (ETDEWEB)

    Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Mahasakpan, Pranee [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Jeekeeree, Wanpen [Department of Medical Technology, Mae Sot General Hospital, Tak 63110 (Thailand); Funkhiew, Thippawan [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Sanjum, Rungaroon; Apiwatpaiboon, Thitikarn [Department of Medical Technology, Mae Sot General Hospital, Tak 63110 (Thailand); Phopueng, Ittipol [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand)

    2015-01-15

    Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β{sub 2}-microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming rice grown in cadmium-contaminated areas. The geometric mean levels of urinary β{sub 2}-microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β{sub 2}-microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β{sub 2}-microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children.

  5. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  6. Bursting Events in Pressure Flushing with Expanding Bottom Outlet Channel within Dam Reservoir

    Directory of Open Access Journals (Sweden)

    soheila Tofighi

    2017-01-01

    Full Text Available Introduction: Currently, large dams in the world, due to the high amount of sediments in the reservoir, especially around the intake, have operational problems. One of the solutions for this problem is pressure flushing. In this type of flushing, a mixture of water and sediment is removed from bottom outlets form dam reservoir and a funnel shaped crater is created in the vicinity of the outlet opening. In laboratory experiments carried out in this study, pressure flushing with the expansion of bottom outlet within the reservoir and its statistical analysis of bursting events were investigated. The structure of the turbulent flow is not fully understood due to their complexity and random nature. Klein et al. Introduced the turbulence bursting in this kind of flow and Nezo and Nakagora suggested that the events resulting from turbulence bursting has a significant effect of transferring the sediment particles. Materials and Methods: For the purposes of this study, the experiments were conducted with a physical model with 7m length, 1.4m width, and 1.5m height, consisting of three parts namely the inlet of the model, the main reservoir, and settling basin. The main reservoir of the model was 5m long and the sediments were placed within this part of the model. The sediment particles were non-cohesive silica with uniform size and with median diameter (d50 1.15mm and geometrics standard deviation (σg 1.37. Experiments carried out with different discharges and water depths above the bottom outlet in different expansion size of outlet channel in constant sediment level of 20cm above the center of the outlet channel. The model was slowly filled with water until the water surface elevation reached to a desired level. The bottom outlet was manually opened, after a while sedimentwere discharged with the water flow in very high concentrations through the outlet channel (sudden discharge and a funnel shaped crater was formed in front of it. After the run of

  7. Association between urinary albumin excretion and intraocular pressure in type 2 diabetic patients without renal impairment.

    Directory of Open Access Journals (Sweden)

    Jin A Choi

    Full Text Available BACKGROUND: To assess the relationship between urinary albumin excretion and intraocular pressure (IOP in type 2 diabetes patients without renal impairment. METHODS: We explored the effects of albuminuria on high IOP in 402 non-glaucomatous type 2 diabetes without renal impairment who participated in the 2011 Korean National Health and Nutrition Examination Survey (KNHANES. Multiple logistic regression analysis was used to assess the relationship between log-transformed albumin/creatinine ratio (ACR tertiles and an IOP of ≥ 18 mmHg after adjusting for age, gender, hypertension, body mass index, triglycerides, area of residence, and education level. RESULTS: Subjects with a high IOP ≥ 18 mmHg were more likely to be current smokers (P = 0.038, heavy drinkers (P = 0.006, and to have high systolic blood pressure (P = 0.016, triglycerides (P = 0.008, and a higher log-transformed ACR (P = 0.022.In multivariate regression analysis, ACR tertile was associated with the prevalence of high IOP significantly (P = 0.022. The associations between ACR tertiles and high IOP were significant in overweight patients and those with abdominal obesity (P = 0.003 and 0.003, respectively. In contrast, there were no associations in the subgroup of patients who were not overweight and those without abdominal obesity (P = 0.291 and 0.561, respectively. CONCLUSIONS: Urinary albumin excretion is associated with high IOP in the type 2 diabetes population without renal insufficiency. The effect of the albuminuria on IOP was evident in a subgroup of patients with components of metabolic syndrome.

  8. Modeling low pressure baroreceptors and their contribution to blood pressure control

    Directory of Open Access Journals (Sweden)

    Sánchez de Zambrano, Betsy Mirley

    2016-10-01

    Full Text Available The main mechanism for blood pressure (BP control is coordinated by the central nervous system through the sympathetic and parasympathetic systems. In order to simulate this mechanism, different mathematical models are available, but they take into account only the high pressure receptors as sensing systems for BP. However, other receptors located in low pressure areas have not, as far as we know, been considered in the models described in the literature, despite their important role in the nervous BP control. This paper presents a mathematical model for the representation of low pressure receptors by means of the detection of atrial volume changes, and their contribution to immediate BP control through nervous stimulation of the heart rate. The proposed model was coupled to the sensor mechanism of a larger model. With this model it is possible to analyze the contribution and behavior of low pressure receptors, thus allowing a better understanding of this complex system under normal and pathological conditions, since it includes important variables in the immediate BP control, not included in previous models.

  9. Investigating the mechanism underlying urinary continence recovery after radical prostatectomy: effectiveness of a longer urethral stump to prevent urinary incontinence.

    Science.gov (United States)

    Kadono, Yoshifumi; Nohara, Takahiro; Kawaguchi, Shohei; Naito, Renato; Urata, Satoko; Nakashima, Kazufumi; Iijima, Masashi; Shigehara, Kazuyoshi; Izumi, Kouji; Gabata, Toshifumi; Mizokami, Atsushi

    2018-02-28

    To assess the chronological changes in urinary incontinence and urethral function before and after radical prostatectomy (RP), and to compare the findings of pelvic magnetic resonance imaging (MRI) before and after RP to evaluate the anatomical changes. In total, 185 patients were evaluated with regard to the position of the distal end of the membranous urethra (DMU) on a mid-sagittal MRI slice and urethral sphincter function using the urethral pressure profilometry. The patients also underwent an abdominal leak point pressure test before RP and at 10 days and 12 months after RP. The results were then compared with the chronological changes in urinary incontinence. The MRI results showed that the DMU shifted proximally to an average distance of 4 mm at 10 days after RP and returned to the preoperative position at 12 months after RP. Urethral sphincter function also worsened 10 days after RP, with recovery after 12 months. The residual length of the urethral stump and urinary incontinence were significantly associated with the migration length of the DMU at 10 days after RP. The residual length of the urethral stump was a significant predictor of urinary incontinence after RP. This is the first study to elucidate that the slight vertical repositioning of the membranous urethra after RP causes chronological changes in urinary incontinence. A long urethral residual stump reduces urinary incontinence after RP. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  10. Well test mathematical model for fractures network in tight oil reservoirs

    Science.gov (United States)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  11. The normal mouse urinary bladder reservoir function evaluated by repeated cystometries. Early and late changes after irradiation alone and irradiation combined with cis-diamine-dichloroplatinium (II) and cyclophosphamide

    International Nuclear Information System (INIS)

    Lundbeck, F.

    1994-01-01

    The main aim of the present thesis was 1) to develop and investigate the feasibility of an in vivo assay in mice using repeated cystometries in a long term study, 2) to demonstrate changes in the bladder reservoir function after radiation alone or combined with cyclophosphamide (CTX) or cis-diamine-dichloroplatinium (II) (cis-DDP), and 3) to investigate the radiation sensitivity of the bladder for changes in dose per fraction, and also to investigate whether there is an association between early and late radiation-induced change in bladder reservoir function. From the results presented the following can be concluded: Bladder fillings in anesthetized mice can be performed repeatedly in long term studies. The procedure is easy to perform and well tolerated by the animals. The level of radiation dose determines the degree of early response and the time of onset of the late response. Combinations with CTX or cis-DDP increase the early radiation response, and the late response is expressed at an earlier time compared with radiation alone. The mouse urinary bladder appears to be one of the least sensitive late responding tissues to changes in dose per fraction. 93 refs., 7 figs., 1 tab

  12. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    OpenAIRE

    Shams Bilal; Yao Jun; Zhang Kai; Zhang Lei

    2017-01-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large...

  13. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  14. Mixed Finite Element Simulation with Stability Analysis for Gas Transport in Low-Permeability Reservoirs

    Directory of Open Access Journals (Sweden)

    Mohamed F. El-Amin

    2018-01-01

    Full Text Available Natural gas exists in considerable quantities in tight reservoirs. Tight formations are rocks with very tiny or poorly connected pors that make flow through them very difficult, i.e., the permeability is very low. The mixed finite element method (MFEM, which is locally conservative, is suitable to simulate the flow in porous media. This paper is devoted to developing a mixed finite element (MFE technique to simulate the gas transport in low permeability reservoirs. The mathematical model, which describes gas transport in low permeability formations, contains slippage effect, as well as adsorption and diffusion mechanisms. The apparent permeability is employed to represent the slippage effect in low-permeability formations. The gas adsorption on the pore surface has been described by Langmuir isotherm model, while the Peng-Robinson equation of state is used in the thermodynamic calculations. Important compatibility conditions must hold to guarantee the stability of the mixed method by adding additional constraints to the numerical discretization. The stability conditions of the MFE scheme has been provided. A theorem and three lemmas on the stability analysis of the mixed finite element method (MFEM have been established and proven. A semi-implicit scheme is developed to solve the governing equations. Numerical experiments are carried out under various values of the physical parameters.

  15. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.

  16. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  17. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu; Elgassier, Mokhtar; Wu, Yu-Shu

    2015-01-01

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  18. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    International Nuclear Information System (INIS)

    Thomas, C.; Patschan, O.; Nagele, U.; Stenzl, A.; Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P.; Buchgeister, M.

    2009-01-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  19. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol.

    Science.gov (United States)

    Thomas, C; Patschan, O; Ketelsen, D; Tsiflikas, I; Reimann, A; Brodoefel, H; Buchgeister, M; Nagele, U; Stenzl, A; Claussen, C; Kopp, A; Heuschmid, M; Schlemmer, H-P

    2009-06-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo.

  20. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Patschan, O.; Nagele, U.; Stenzl, A. [University of Tuebingen, Department of Urology, Tuebingen (Germany); Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Buchgeister, M. [University of Tuebingen, Medical Physics, Department of Radiation Oncology, Tuebingen (Germany)

    2009-06-15

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  1. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2018-01-01

    Full Text Available Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT-elastomer composite and a Quantum Tunneling Composite (QTC, have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics.

  2. Urinary magnesium excretion and risk of cardiovascular disease in the general population

    Directory of Open Access Journals (Sweden)

    Michel Joosten

    2012-06-01

    We prospectively followed 7747 adults free of diagnosed cardiovascular diseases or cancer at baseline (1997-1998 from the community-based, observational PREVEND (Prevention of Renal and Vascular End-Stage Disease Study. Urinary magnesium excretion was estimated from two 24-h urine collections and was measured by a xylidyl blue method on a Modular analyzer (Roche. During a median follow-up of 10.5 year, 638 CVD events occurred. After adjustment for age, BMI, sex, smoking status, alcohol consumption and educational attainment, urinary magnesium excretion showed a nonlinear relationship with CVD risk. The hazard ratios (HR for CVD were significantly lower (PIn conclusion, low urinary magnesium excretion was associated with a higher risk of CVD, even after controlling for possible intermediates in the causal pathway such as blood pressure, diabetes and markers of inflammation and atherosclerosis. These results highlight the need to evaluate whether increasing the uptake of dietary magnesium could be effective for primary prevention of CVD.

  3. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  4. Sling surgery for stress urinary incontinence; the perfect solution?

    NARCIS (Netherlands)

    Hogewoning, C.R.C.

    2017-01-01

    Stress urinary incontinence (SUI) is the most observed type of urinary incontinence and is defined as the loss of urine following a rise in abdominal pressure. The TVT (Tension-free Vaginal Tape), a mid-urethral sling (MUS), was introduced in 1996 and soon became the gold standard in the surgical

  5. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  6. Urinary glicosaminoglycans levels in women with urinary tract infection and non urinary tract infection

    Science.gov (United States)

    Pasaribu, H. P.; Hanifa, A.; Tala, R. Z.; Ardiansyah, E.; Simanjuntak, R. Y.; Effendy, I. H.

    2018-03-01

    UTI is an infection that occurs in the urinary tract due to the proliferation of a microorganism. Female is fourteen times more vulnerable to UTI than male, because their urethra is shorter. Bladder epithelium is coated with a thin layer of glycosaminoglycans which act as a non-specific anti-adherence factor and nonspecific defense mechanisms against infection and can be found in the urine. An analytic study with cross sectional approach was conducted in 46 patients (23 with UTI and 23 non UTI) from June 2016 to determine differences in levels of urinary glycosaminoglycans between two groups. Urine samples were taken and tested for UTI and non UTI strips test. Laboratory examination of urine GAGs levels using ELISA kit for Human Glycosaminoglycans, then tabulated and analyzed using SPSS. The result showed no significant differences in the characteristics of women between two groups. There are significant differences in the mean levels of urinary GAGs in women with UTI compared with Non-UTI (69.74 ± 21.34; 21.39 ± 2.61 mg/l; p UTI incidence, with low odds ratio values and no significant difference in the mean of urinary glicosaminoglycans level based on sexual status.

  7. Low Impact of Urinary Cortisol in the Assessment of Hydrocortisone Replacement Therapy.

    Science.gov (United States)

    Haas, C S; Rahvar, A-H; Danneberg, S; Lehnert, H; Moenig, H; Harbeck, B

    2016-09-01

    Hydrocortisone replacement therapy is a cornerstone in the treatment of adrenal insufficiency (AI). While urinary cortisol has been used as a diagnostic tool for AI, it remains unclear whether it is a useful parameter to monitor hydrocortisone replacement therapy. Aim of this study was to evaluate possible differences in cortisol metabolism between adrenal insufficient patients and healthy subjects and to assess the value of urinary cortisol in AI management. In a case-control study, urinary cortisol excretion was determined in 14 patients with primary and secondary AI receiving hydrocortisone infusions from midnight to 8:00 AM. Results were correlated with serum cortisol levels and compared to urinary values obtained from 53 healthy volunteers. Urinary cortisol excretion in healthy subjects was 14.0±7.8 μg/8 h (range: 0.24-35.4), levels did not differ between 3 groups aged 20-34 years, 35-49 years, and ≥50 years. Patients with AI receiving hydrocortisone infusions demonstrated significantly higher rates of urinary cortisol excretion (51.6±37.8 μg/8 h; range 17.1-120.0, p<0.001); the values correlated with serum cortisol levels (r(2)=0.98). Of interest, patients with secondary AI showed significantly higher serum cortisol levels after hydrocortisone infusion than those with primary AI, conceivably due to residual adrenal function. In conclusion, we showed that: (i) there is a wide inter-individual variability in urinary cortisol excretion rates; (ii) cortisol metabolism in adrenal insufficient patients differs when compared to controls; (iii) there is a strong correlation between urinary and serum cortisol levels; and (iv) urinary cortisol levels despite their variability may help to discriminate between secondary and primary adrenal insufficiency. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  9. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    destabilisation is highly dependent on the ratio of the rock mass volume affected by buoyancy forces to the total volume of the rock slide. If a large rock mass volume ratio is submerged, huge buoyancy forces evolve and destabilize the slope significantly. Additionally, the influence of impoundment velocity on the rock slide behaviour and the impact of material properties of the rock masses are analysed. Reservoir water rapidly infiltrates into high-permeable rock slide masses evolving high pore pressures at the basal shear zone which leads to destabilisation. Conversely, reservoir water infiltrates slowly into low-permeable rock masses and the destabilizing effect of the pore water pressure might be compensated by a buttressing reservoir load over the low-permeable rock masses. Preliminary steady state calculations show that the factor of safety decreases constantly with increasing reservoir level until a certain threshold reservoir level and minimum factor of safety is reached. After exceeding this threshold level a further increase in reservoir impoundment leads to an increase of the factor of safety. This threshold reservoir level is reliant on the rock slide geometry and rock mass volume affected by buoyancy. Upcoming research is expected to provide new fundamentals for a comprehensive understanding of deformation and failure processes of deep-seated rock slides in order to perform reliable forecasts.

  10. Urinary protein as a marker for systolic blood pressure reduction in patients with type 2 diabetes mellitus participating in an in-hospital diabetes education program.

    Science.gov (United States)

    Okada, Kenta; Miyamoto, Michiaki; Kotani, Kazuhiko; Yagyu, Hiroaki; Osuga, Junichi; Nagasaka, Shoichiro; Ishibashi, Shun

    2011-10-01

    Increased blood pressure (BP) and urinary protein (UP)/microalbuminuria are risk factors for cardiovascular disease in patients with diabetes. Although the management of BP in patients with diabetes should involve a multidisciplinary therapy, there are no reports in which modulators have been identified in an in-hospital diabetes education program. The aim of the present study was to investigate the change in BP levels in patients with type 2 diabetes mellitus (T2DM) during a short-term (2-week) in-hospital education program on lifestyle modifications. A total of 167 patients with T2DM (101 men, 66 women; mean age, 61.1 years; glycated hemoglobin, 9.2%) were divided into 2 groups on the basis of their urinary albumin levels: 1 group without UP (urinary albumin level patients with T2DM.

  11. Simulation of low pressure water hammer

    Science.gov (United States)

    Himr, D.; Habán, V.

    2010-08-01

    Numerical solution of water hammer is presented in this paper. The contribution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement.

  12. Paragenetic evolution of reservoir facies, Middle Triassic Halfway Formation, PeeJay Field, northeastern British Columbia: controls on reservoir quality

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. L. [Alberta Univ., Dept. of Earth and Atmospheric Sciences, Edmonton, AB (Canada); Moslow, T. F. [Ulster Petroleum Ltd., Calgary, AB (Canada)

    1998-09-01

    Because of the obvious importance of reservoir quality to reservoir performance, diagenetic controls on reservoir quality of Middle Triassic reservoir facies are investigated by comparing two reservoir lithofacies. The implications of porosity structure on the efficiency of primary and secondary hydrocarbon recovery are also assessed. Halfway reservoir facies are composed of bioclastic grainstones (lithofacies G) and litharenites/sublitharenites (lithofacies H), both of which are interpreted as tidal inlet fills. Although paragenetic evolution was similar for the two reservoir facies, subtle differences in reservoir quality are discernible. These are controlled by sedimentary structures, porosity type, grain constituents, and degree of cementation. Reservoir quality in lithofacies G is a function of connectivity of the pore network. In lithofacies H, secondary granular porosity creates a more homogeneous interconnected pore system, wide pore throats and low aspect ratios. The high porosity and low permeability values of the bioclastic grainstones are suspected to cause inefficient flushing of hydrocarbons during waterflooding. However, it is suggested that recovery may be enhanced by induced hydraulic fracturing and acidization of lower permeability calcareous cemented zones. 52 refs., 15 figs.

  13. Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish-based index (FBI) for French lakes

    OpenAIRE

    Launois, L.; Veslot, J.; Irz, P.; Argillier, C.

    2010-01-01

    1.Fish-based indices of biotic integrity (IBI) have been developed for many lotic systems but remain scarce for lakes. The goal of the present study was to assess the responses of lentic fish assemblages to anthropogenic pressures when environmental variability was controlled for, and to compare them between French natural lakes and reservoirs. 2.Environmental features, catchment-scale anthropogenic descriptors and fish data were collected from 30 natural lakes and 59 reservoirs throughout...

  14. New well pattern optimization methodology in mature low-permeability anisotropic reservoirs

    Science.gov (United States)

    Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei

    2018-02-01

    In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.

  15. Low-Loss Photonic Reservoir Computing with Multimode Photonic Integrated Circuits.

    Science.gov (United States)

    Katumba, Andrew; Heyvaert, Jelle; Schneider, Bendix; Uvin, Sarah; Dambre, Joni; Bienstman, Peter

    2018-02-08

    We present a numerical study of a passive integrated photonics reservoir computing platform based on multimodal Y-junctions. We propose a novel design of this junction where the level of adiabaticity is carefully tailored to capture the radiation loss in higher-order modes, while at the same time providing additional mode mixing that increases the richness of the reservoir dynamics. With this design, we report an overall average combination efficiency of 61% compared to the standard 50% for the single-mode case. We demonstrate that with this design, much more power is able to reach the distant nodes of the reservoir, leading to increased scaling prospects. We use the example of a header recognition task to confirm that such a reservoir can be used for bit-level processing tasks. The design itself is CMOS-compatible and can be fabricated through the known standard fabrication procedures.

  16. Virtual Breakthrough Series, Part 1: Preventing Catheter-Associated Urinary Tract Infection and Hospital-Acquired Pressure Ulcers in the Veterans Health Administration.

    Science.gov (United States)

    Zubkoff, Lisa; Neily, Julia; King, Beth J; Dellefield, Mary Ellen; Krein, Sarah; Young-Xu, Yinong; Boar, Shoshana; Mills, Peter D

    2016-11-01

    In 2014 the Veterans Health Administration (VHA) of the Department of Veterans Affairs (VA) implemented a Virtual Breakthrough Series (VBTS) collaborative to help VHA facilities prevent hospital-acquired conditions: catheter-associated urinary tract infection (CAUTI) and hospital-acquired pressure ulcers (HAPUs). During the prework phase, participating facilities assembled a multidisciplinary team, assessed their current system for CAUTI or HAPU prevention, and examined baseline data to set improvement aims. The action phase consisted of educational conference calls, coaching, and monthly team reports. Learning was conducted via phone, web-based options, and e-mail. The CAUTI bundle focused on four key principles: (1) avoidance of indwelling urinary catheters, (2) proper insertion technique, (3) proper catheter maintenance, and (4) timely removal of the indwelling catheter. The HAPU bundle focused on assessment and inspection, pressure-relieving surfaces, turning and repositioning, incontinence management, and nutrition/hydration assessment and intervention. For the 18 participating units, the mean aggregated CAUTI rate decreased from 2.37 during the prework phase to 1.06 per 1,000 catheter-days during the action (implementation) phase (p model for implementing a virtual model for improvement. Copyright 2016 The Joint Commission.

  17. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  18. Central Blood Pressure and Chronic Kidney Disease Progression

    Directory of Open Access Journals (Sweden)

    Debbie L. Cohen

    2011-01-01

    Full Text Available Hypertension, diabetes, and proteinuria are well-recognized risk factors for progressive kidney function loss. However, despite excellent antihypertensive and antidiabetic drug therapies, which also often lower urinary protein excretion, there remains a significant reservoir of patients with chronic kidney disease who are at high risk for progression to end-stage kidney disease. This has led to the search for less traditional cardiovascular risk factors that will help stratify patients at risk for more rapid kidney disease progression. Among these are noninvasive estimates of vascular structure and function. Arterial stiffness, manifested by the pulse wave velocity in the aorta, has been established in a number of studies as a significant risk factor for kidney disease progression and cardiovascular endpoints. Much less well studied in chronic kidney disease are measures of central arterial pressures. In this paper we cover the physiology behind the generation of the central pulse wave contour and the studies available using these approaches and conclude with some speculations on the rationale for why measurements of central pressure may be informative for the study of chronic kidney disease progression.

  19. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  20. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  1. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    Science.gov (United States)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  2. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  3. System transient analysis code development for low pressure and low power

    International Nuclear Information System (INIS)

    Kim, Hee Cheol

    1998-02-01

    A real time reactor system analysis code, ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensable), two energy equations (gas and mixture) and one momentum equation (mixture) constituted with the drift flux model. The capability of ARTIST in predicting two-phase flow void distribution in the system has been validated against experimental data. The results of the ARTIST axial void distribution at low pressure and low flow, are far better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. Also, RELAP5/MOD3 calculation shows the large amplitude of void fraction oscillations at low pressure. These results imply that interfacial momentum transfer terms in the two-fluid model formulation should be carefully constituted, especially for the low pressure condition due to the big density differences between steam and water. Thermal-hydraulic state solution scheme is developed when noncondensable gas exists. Numerical consistency and convergence of obtaining equilibrium state is tested with the ideal problems for various situations including very low partial pressure conditions. Calculated thermal-hydraulic state for each test shows consistent and expected behaviour. A new multi-layer back propagation network algorithm for calculating the departure from nucleate boiling ratio (DNBR) is developed and adopted in ARTIST code in order to have real-time DNBR evaluation by eliminating the tandem procedure of the transient DNBR calculation. The algorithm trained by different patterns generated by latin hypercube sampling method on the performance space is tested for the randomly sampled untrained data and the transient DNBR data. The uncertainty of the algorithm is

  4. Effect of Preoperative Low Maximal Flow Rate on Postoperative Voiding Trials after the Midurethral Sling Procedure in Women with Stress Urinary Incontinence.

    Science.gov (United States)

    Chae, Ji Y; Bae, Jae H; Lee, Jeong G; Park, Hong S; Moon, Du G; Oh, Mi M

    2017-06-02

    To evaluate the effects of preoperative low maximal flow rate (Qmax) on voiding trials after the midurethral sling (MUS) procedure in women with stress urinary incontinence (SUI). One hundred and sixty-eight women who underwent MUS procedure were enrolled. Preoperative free uroflowmetry was performed and patients were divided by Qmax. Low Qmax was defined as a Qmax under 15 mL/sec with voided volume at least 150 mL. Surgical results, failure of voiding trial, and postoperative uroflowmetry parameters were compared between the groups. Failure of voiding trial was defined by a PVR more than 100 mL on postoperative uroflowmetry. At the discharge day, there were 42 cases showing failure of voiding trial and 33 cases requiring CIC, but only one patient showed failure of voiding trial at 12 months postoperatively. Overall, 48 patients had preoperative low Qmax. Low Qmax group showed lower Qmax in all of postoperative uroflowmetry, but there were no significant differences in the rate of postoperative voiding trial failure or CIC. The low Qmax group was then divided into two groups according to the preoperative detrusor pressure at Qmax over and under 20 cmH 2 O in pressure flow study. Comparing the two groups, no significant differences were observed in the cure rate, voiding trial failure or CIC. Our results suggest that women with preoperative low Qmax experienced no definite unfavorable voiding problem from the MUS procedure compared to those with normal voiding function. MUS procedure may be regarded as a safe and successful procedure in SUI women with low Qmax. © 2017 John Wiley & Sons Australia, Ltd.

  5. Bladder pressure measurements and urinary tract infection in trauma patients.

    Science.gov (United States)

    Duane, Therèse M; Young, Andrew; Weber, William; Wolfe, Luke G; Malhotra, Ajai K; Aboutanos, Michel B; Whelan, James F; Mayglothling, Julie; Ivatury, Rao R

    2012-04-01

    The purpose of this trial was to determine if using a closed technique for bladder pressure measurements (BPMs) would eliminate them as a risk factor for urinary tract infection (UTI) in trauma patients, as was shown previously using an open technique. Data were collected prospectively from January 2006 until December 2009 by a dedicated epidemiology nurse and combined with trauma registry data at our Level 1 trauma center. All trauma patients admitted to the surgical trauma intensive care unit (STICU) with and without UTIs were compared for demographic and epidemiologic data. A closed system was used in which the urinary drainage catheter (UDC) remained connected to the bag and 45 mL of saline was injected through a two-way valved sideport, with subsequent measurements through the sideport. There were 1,641 patients in the trial. The UTI group was sicker (Injury Severity Score [ISS] 18.7±11.9 no UTI vs. 28±10.7 UTI; p<0.0001), with longer stays (11.4±12.4 days no UTI vs. 37.9±20.3 days UTI; p<0.0001) and more UDC days (4.3±6.6 no UTI vs. 23.9±16.6 UTI; p<0.0001). The BPM group had more UDC days (15.6 days±16.0 BPM vs. 5.4 days±7.3 no BPM; p<0.0001), yet no difference in UTI rate/1,000 UDC days (5.7 no BPM vs. 8.0 BPM; p=0.5291). Logistic regression demonstrated only UDC days to be a predictor of UTI (1.125; 95% confidence interval [CI] 1.097-1.154; p<0.0001), whereas ISS (1.083, 95% CI 1.063-1.104; p<0.0001) and age (1.051, 95% CI 1.037-1.065; p<0.0001) were the only predictors of death. Although patients undergoing BPM have more UTIs than patients without BPM, the measurements are not an independent predictor of UTI when done by the closed technique. These findings emphasize the judicious use of BPM with a closed system and, more importantly, the need for early removal of catheters.

  6. Pressure and pressure derivative analysis for injection tests with variable temperature without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Martinez, Javier Andres; Montealegre Matilde

    2008-01-01

    The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases

  7. Quantifying the clay content with borehole depth and impact on reservoir flow

    Science.gov (United States)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  8. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  9. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  10. Four to seven random casual urine specimens are sufficient to estimate 24-h urinary sodium/potassium ratio in individuals with high blood pressure.

    Science.gov (United States)

    Iwahori, T; Ueshima, H; Torii, S; Saito, Y; Fujiyoshi, A; Ohkubo, T; Miura, K

    2016-05-01

    This study was done to clarify the optimal number and type of casual urine specimens required to estimate urinary sodium/potassium (Na/K) ratio in individuals with high blood pressure. A total of 74 individuals with high blood pressure, 43 treated and 31 untreated, were recruited from the Japanese general population. Urinary sodium, potassium and Na/K ratio were measured in both casual urine samples and 7-day 24-h urine samples and then analyzed by correlation and Bland-Altman analyses. Mean Na/K ratio from random casual urine samples on four or more days strongly correlated with the Na/K ratio of 7-day 24-h urine (r=0.80-0.87), which was similar to the correlation between 1 and 2-day 24-h urine and 7-day 24-h urine (r=0.75-0.89). The agreement quality for Na/K ratio of seven random casual urine for estimating the Na/K ratio of 7-day 24-h urine was good (bias: -0.26, limits of agreements: -1.53-1.01), and it was similar to that of 2-day 24-h urine for estimating 7-day 24-h values (bias: 0.07, limits of agreement: -1.03 to 1.18). Stratified analyses comparing individuals using antihypertensive medication and individuals not using antihypertensive medication showed similar results. Correlations of the means of casual urine sodium or potassium concentrations with 7-day 24-h sodium or potassium excretions were relatively weaker than those for Na/K ratio. The mean Na/K ratio of 4-7 random casual urine specimens on different days provides a good substitute for 1-2-day 24-h urinary Na/K ratio for individuals with high blood pressure.

  11. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    Science.gov (United States)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  12. Intraarterial infusion of cisplatin with and without preoperative concurrent radiation for urinary bladder cancer. A preliminary report

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Mori, Hiromu; Matsumoto, Shunro

    1995-01-01

    We evaluated the clinical efficacy of treating urinary bladder cancer by intraarterial infusion of cisplatin using an implanted reservoir with and without preoperative concurrent radiation. No previous reports have compared the results obtained by these two methods of treatment. Twenty-three patients with bladder cancer were treated by intraarterial infusion of cisplatin using an implanted reservoir with (n=13) and without (n=10) concurrent radiation. The cisplatin plus radiation group received intraarterial cisplatin at a total dose of 200-400 mg and concurrent radiation to a total dose to 30 Gy. The cisplatin group received intraarterial cisplatin at a total dose of 100-600 mg. In the cisplatin plus radiation group, the overall tumor response rate was 92%. Seven of 13 (53%) patients obtained complate response (CR), and the 2-year actuarial survival rate was 92%. Only one of the seven complete responders has had a local recurrence. In the cisplatin group, the overall tumor response rate was 90%. Four of 10 (40%) patients obtained CR, and median survival was 8 months. Three of the four complete responders have had local recurrence. There was no significant difference between these two groups in the frequency of side effects. Concurrent radiation therapy with intraarterial cisplatin resulted in a very low rate of recurrence of bladder cancer compared with intraarterial cisplatin therapy alone. This method was useful for urinary bladder cancer and may become the treatment of choice for this type of cancer. (author)

  13. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  14. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  15. Correlation between the trajectory of systolic blood pressure and new renal damage in a nonhypertensive population.

    Science.gov (United States)

    Wang, Zhi-Jun; Jia, Dao; Tian, Jun; Liu, Jie; Li, Li-Jie; Huang, Yu-Ling; Cao, Xin-Ying; Ning, Chun-Hong; Zhao, Quan-Hui; Yu, Jun-Xing; Zhang, Rui-Ying; Zhang, Ya-Jing; Gao, Jing-Sheng; Wu, Shou-Ling

    2017-10-01

    This study aims to investigate the correlation between the trajectory of systolic blood pressure (SBP) and new renal damage in a nonhypertensive population. This prospective cohort study included a total of 14 382 nonhypertensive individuals, employees of Kailuan Group of Companies, who took part in five healthy examinations in 2006-2007, 2008-2009, 2010-2011, 2012-2013, and 2014-2015, and had complete data. These individuals were divided into four groups according to the different trajectories of SBP: low-low, low-stable, middle-high, and high-high groups. The correlation between the trajectory of SBP and new renal damage in a nonhypertensive population was analyzed using a multivariate Cox's proportional hazard regression model. (a) A total of 14 382 individuals had complete data and the average age of these individuals was 44.6±10.8 years. Among these, 10 888 (75.7%) individuals were men and 3494 (24.3%) individuals were women. (b) These individuals were divided into four groups according to different trajectories of blood pressure: low-low group, accounting for 13.15% (blood pressure was group, accounting for 53.91% (blood pressure was between 115 and 116 mmHg); middle-high group, accounting for 28.77% (blood pressure was between 125 and 131 mmHg); and high-high group, accounting for 4.6% (blood pressure was between 126 and 151 mmHg). (c) With the increase in the trajectory of SBP, the detection rate of renal damage increased gradually. From the low-low group to the high-high group, the detection rates of estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m were 2.3, 2.4, 3.6, and 4.3%, respectively; the positive rates of urinary protein were 1.7, 2.9, 3.8, and 5.5%, respectively; and the detection rates of eGFR less than 60 ml/min/1.73 m or positive urinary protein were 4, 5.2, 7.3, and 9.3%, respectively (Pgroup, the risk of eGFR less than 60 ml/min/1.73 m increased by nearly 1.5 times in the high-high group and in

  16. Low reproducibility of maximum urinary flow rate determined by portable flowmetry

    NARCIS (Netherlands)

    Sonke, G. S.; Kiemeney, L. A.; Verbeek, A. L.; Kortmann, B. B.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    To evaluate the reproducibility in maximum urinary flow rate (Qmax) in men with lower urinary tract symptoms (LUTSs) and to determine the number of flows needed to obtain a specified reliability in mean Qmax, 212 patients with LUTSs (mean age, 62 years) referred to the University Hospital Nijmegen,

  17. Thermodynamic evolution of the Los Azufres, Mexico, geothermal reservoir from 1982 to 2002

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor Manuel; Barragan, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Torres, Marco Antonio [Comision Federal de Electricidad, Residencia Los Azufres, Campamento Agua Fria, Los Azufres, Michoacan (Mexico)

    2005-10-01

    An investigation has been made of the response of the Los Azufres geothermal reservoir to 20 years of development, beginning in 1982. The simulator WELFLO was used to characterize the thermodynamic conditions of the reservoir fluids. The first response to exploitation consisted of a decrease in pressure and an increase in enthalpy. Small decreases in reservoir pressure associated with large increases in fluid enthalpy characterize the long-term response in the northern production area. In the southern production area, long-term changes include decreases in pressure and mass flow rate, increases in steam production and, in wells affected by injection, increases in both pressure and total mass flow rate. These changes reflect the effects of boiling, cooling and fluid mixing, processes resulting from large-scale fluid production. (author)

  18. Increased urinary cadmium excretion and its relationship to urinary N-acetyl-[beta]-D-glucosaminidase activity in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hiroshi; Satoh, Hiroshi (Tohoku Univ. School of Medicine, Dept. of Environmental Health Sciences, Sendai (Japan)); Suzuki, Shosuke (Gunma Univ. School of Medicine, Dept. of Public Health, Maebashi (Japan)); Tohyama, Chiharu (National Institute of Environmental Studies, Environmental Health Sciences Div., Tsukuba (Japan))

    1992-10-01

    To assess the renal effects of low-level exposure to cadmium due to smoking we examined blood and urinary levels of cadmium and urinary excretions of N-acetyl-[beta]-D-glucosaminidase (NAG), [beta][sub 2]-microglobulin (BMG) and metallothionein in 94 male workers aged 18-55 years. Both blood and urinary cadmium levels indicated excess exposure to cadmium caused by smoking. The urinary cadmium concentration ranged between 0.1 and 5.0 [mu]g/g creatinine and increased significantly with age in the smokers. Neither urinary NAG nor BMG was increased in the smokers compared from non-smokers. A positive relationship between urinary cadmium and metallothionein was obtained not only in the smokers but also in the non-smokers. Furthermore, in the smokers urinary cadmium and metallothionein was positively related with urinary NAG. Since NAG in urine mostly originates from tubular cells by lysosomal exocytosis, the results may reflect an early cadmium effect on the lysosomal functions. Inhibitory effect of cadmium on the lysosomal degradation activities was discussed as a possible explanation of the positive relationship of urinary cadmium and metallothionein to urinary NAG. (orig.).

  19. CO2/ brine substitution experiments at simulated reservoir conditions

    Science.gov (United States)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  20. Experimental study an a low pressure solar still

    International Nuclear Information System (INIS)

    Sriram, V.; Kalidasa Murugavel, K.; Samuel Hansen, R.

    2013-01-01

    In this work, a low pressure, single basin double slope Solar Still was fabricated and tested for different depths and with different wick and porous materials. A vacuum pump was used to maintain low pressure inside the still. External condenser was used to condense the vapor with raw water as cooling fluid. The performance of the low pressure still was compared with conventional still. The total production of the still was increased by 88.66% when a light cotton cloth was used as wick material in the basin along with minimum depth of water. (authors)

  1. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  2. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  3. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  4. Assessing Urinary Tract Junction Obstruction Defects by Methylene Blue Dye Injection.

    Science.gov (United States)

    Yun, Kangsun

    2017-10-12

    Urinary tract junction obstruction defects are congenital anomalies inducing hydronephrosis and hydroureter. Murine urinary tract junction obstruction defects can be assessed by tracking methylene blue dye flow within the urinary system. Methylene blue dye is injected into the renal pelvis of perinatal embryonic kidneys and dye flow is monitored from the renal pelvis of the kidney through the ureter and into the bladder lumen after applying hydrostatic pressure. Dye accumulation will be evident in the bladder lumen of the normal perinatal urinary tract, but will be constrained between the renal pelvis and the end point of an abnormal ureter, if urinary tract obstructions occur. This method facilitates the confirmation of urinary tract junction obstructions and visualization of hydronephrosis and hydroureter. This manuscript describes a protocol for methylene blue dye injection into the renal pelvis to confirm urinary tract junction obstructions.

  5. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    Science.gov (United States)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  6. Fishery management problems and possibilities on large southeastern reservoirs

    Science.gov (United States)

    Parsons, John W.

    1958-01-01

    Principal problems concerning the fisheries of large reservoirs in the Southeast are: inefficient and highly selective exploitation of fish stocks, and protection and reclamation of damaged or threatened fisheries in tailwaters and tributary streams. Seven mainstream reservoirs on which data are available support an average angling pressure of 4.9 trips per acre per year and an average catch of 16 pounds of sport fish and 6 pounds of food fish. Commercial take is 7 pounds per acre. The rate of catch of sport fish, based upon tag returns, is only 3 percent. Sixteen storage reservoirs support an average angling pressure of 5.0 trips per acre per year and an average catch of 13 pounds of sport fish and 1 pound of food fish. Commercial catch is of no significance. Average rate of catch of sport fish is 17 percent of the catchable population. Fish population studies indicate that there are twice as many sport fish and four times as many food fish in mainstream than there are in storage reservoirs.

  7. Urinary tract infections in women with urogynaecological symptoms.

    Science.gov (United States)

    Lakeman, Marielle M E; Roovers, Jan-Paul W R

    2016-02-01

    Urinary tract infections are common in the field of urogynaecology. Women with persistent urinary symptoms seem more likely to have bacteriuria despite negative cultures. In this review, we will give an overview of the recent insights on the relationship between urinary tract infection and persistent urinary symptoms and possible new therapeutic options. Recently published articles evaluated the prevalence of low-count bacteriuria (≥10 CFU/ml) or intracellular bacterial communities in women with overactive bladder symptoms (OAB). Differences in urinary microbioma observed in women with and without OAB symptoms were evaluated. In the light of these findings, current screening strategies were discussed and alternative screening methods for bacteriuria developed. Low-count bacteriuria (≥10 CFU/ml) seems to be more prevalent in women with OAB. Also intracellular bacterial communities are more commonly detected in these women. The microbioma found in women with urinary symptoms appeared to differ from healthy controls. The current screening methods might be insufficient as they are targeted at detecting uropathogenic Escherichia coli, mostly using a detection threshold of at least 10 CFU/ml and failing to detect intracellular bacterial communities. Studies evaluating the efficacy of treating women with low-count bacteriuria are limited but promising.

  8. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  9. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  10. Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2008-01-01

    Full Text Available Abstract Background In the setting of highly active antiretroviral therapy (HAART, plasma levels of human immunodeficiency type-1 (HIV-1 rapidly decay to below the limit of detection of standard clinical assays. However, reactivation of remaining latently infected memory CD4+ T cells is a source of continued virus production, forcing patients to remain on HAART despite clinically undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to 44 months, making it the major known obstacle to the eradication of HIV-1 infection. However, the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely potential mechanisms are low-level viral replication and the intrinsic stability of latently infected cells. Methods Here we use a mathematical model of T cell dynamics in the setting of HIV-1 infection to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare the behavior of this model to patient derived data in order to gain insight into the role of low-level viral replication in the setting of HAART. Results By comparing the behavior of our model to patient derived data, we find that the viral dynamics observed in patients on HAART could be consistent with low-level viral replication but that this replication would not significantly affect the decay rate of the latent reservoir. Rather than low-level replication, the intrinsic stability of latently infected cells and the rate at which they are reactivated primarily determine the observed reservoir decay rate according to the predictions of our model. Conclusion The intrinsic stability of the latent reservoir has important implications for efforts to eradicate HIV-1 infection and suggests that intensified HAART would not accelerate the decay of the latent reservoir.

  11. Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART

    Science.gov (United States)

    Sedaghat, Ahmad R; Siliciano, Robert F; Wilke, Claus O

    2008-01-01

    Background In the setting of highly active antiretroviral therapy (HAART), plasma levels of human immunodeficiency type-1 (HIV-1) rapidly decay to below the limit of detection of standard clinical assays. However, reactivation of remaining latently infected memory CD4+ T cells is a source of continued virus production, forcing patients to remain on HAART despite clinically undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to 44 months, making it the major known obstacle to the eradication of HIV-1 infection. However, the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely potential mechanisms are low-level viral replication and the intrinsic stability of latently infected cells. Methods Here we use a mathematical model of T cell dynamics in the setting of HIV-1 infection to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare the behavior of this model to patient derived data in order to gain insight into the role of low-level viral replication in the setting of HAART. Results By comparing the behavior of our model to patient derived data, we find that the viral dynamics observed in patients on HAART could be consistent with low-level viral replication but that this replication would not significantly affect the decay rate of the latent reservoir. Rather than low-level replication, the intrinsic stability of latently infected cells and the rate at which they are reactivated primarily determine the observed reservoir decay rate according to the predictions of our model. Conclusion The intrinsic stability of the latent reservoir has important implications for efforts to eradicate HIV-1 infection and suggests that intensified HAART would not accelerate the decay of the latent reservoir. PMID:18171475

  12. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  13. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  14. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    Science.gov (United States)

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  16. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    Science.gov (United States)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  17. Modeling low pressure baroreceptors and their contribution to blood pressure control

    OpenAIRE

    Sánchez de Zambrano, Betsy Mirley; Rojas-Sulbarán, Rubén Darío

    2016-01-01

    The main mechanism for blood pressure (BP) control is coordinated by the central nervous system through the sympathetic and parasympathetic systems. In order to simulate this mechanism, different mathematical models are available, but they take into account only the high pressure receptors as sensing systems for BP. However, other receptors located in low pressure areas have not, as far as we know, been considered in the models described in the literature, despite their important role in the ...

  18. Refined reservoir description to maximize oil recovery

    International Nuclear Information System (INIS)

    Flewitt, W.E.

    1975-01-01

    To assure maximized oil recovery from older pools, reservoir description has been advanced by fully integrating original open-hole logs and the recently introduced interpretive techniques made available through cased-hole wireline saturation logs. A refined reservoir description utilizing normalized original wireline porosity logs has been completed in the Judy Creek Beaverhill Lake ''A'' Pool, a reefal carbonate pool with current potential productivity of 100,000 BOPD and 188 active wells. Continuous porosity was documented within a reef rim and cap while discontinuous porous lenses characterized an interior lagoon. With the use of pulsed neutron logs and production data a separate water front and pressure response was recognized within discrete environmental units. The refined reservoir description aided in reservoir simulation model studies and quantifying pool performance. A pattern water flood has now replaced the original peripheral bottom water drive to maximize oil recovery

  19. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  20. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  1. Immunohistochemical Differentiation between Urothelial Papillomas and Papillary Neoplasms of Low Malignant Potential of the Urinary Bladder.

    Science.gov (United States)

    Alrashidy, Mohammed; Atef, Aliaa; Baky, Tarek Abdel

    2016-01-01

    Urothelial papilloma and non-invasive papillary carcinoma are common neoplasms of the urinary bladder. Distinguishing papillomas and papillary carcinomas, especially the low grade type, is often debatable on the basis of histological features alone. We investigated immunohistochemical expression of cytokeratin 20 (CK20), p53, and Ki-67 in a group of 20 urothelial papilloma cases and 30 noninvasive papillary neoplasms of low malignant potential (PNLMP) of the urinary bladder. Whole tissue sections were examined. Among the 30 carcinoma cases, 12 (40%) showed strong reactivity for the whole panel, 16 (53%) reacted positively for two markers, and 2 (7%) reacted just to one of them. Ki-67 was considered positive in 27 cases (90%) and p53 in 24 (80%), CK20 showed positive reactivity in 21 cases (70%). Only small percentages of papillomas were positive, and then only weakly. We concluded that the intense positivity of suspicious cells for at least one of these markers would confirm the presence of malignant changes and favours the diagnosis of carcinoma.

  2. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  3. [Ultrasound of the urinary system].

    Science.gov (United States)

    Segura-Grau, A; Herzog, R; Díaz-Rodriguez, N; Segura-Cabral, J M

    2016-09-01

    Ultrasound techniques are able to provide a fairly complete examination of the urinary system, achieving a high sensitivity in relevant-pathology detection, especially in the kidney, bladder and prostate. Early detection of pathologies such as tumors or urinary tract obstructions, sometimes even before their clinical manifestation, has improved their management and prognosis in many cases. This, added to its low cost and harmlessness, makes ultrasound ideal for early approaches and follow-up of a wide number of urinary system pathologies. In this article, the ultrasound characteristics of the main urinary system pathologies that can be diagnosed by this technique, are reviewed. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis.

    Science.gov (United States)

    He, Yi; Zeng, Hui-Zhi; Yu, Yang; Zhang, Jia-Shu; Duan, Xingping; Zeng, Xiao-Na; Gong, Feng-Tao; Liu, Qi; Yang, Bo

    2017-09-01

    We investigated whether prostate fibrosis was associated with urinary dysfunction in chronic prostatitis (CP) and whether resveratrol improved urinary dysfunction and the underlying molecular mechanism. Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. Bladder pressure and volume tests investigated the effect of resveratrol on urinary dysfunction in CP rats. Western blotting and immunohistochemical staining examined the expression level of C-kit/SCF and TGF-β/Wnt/β-catenin. Compared to the control group, the maximum capacity of the bladder, residual urine volume and maximum voiding pressure, the activity of C-kit/SCF and TGF-β/Wnt/β-catenin pathways were increased significantly in the CP group. Resveratrol treatment significantly improved these factors. CP induced significantly prostate fibrosis, which exhibits a close relationship with urinary dysfunction. Resveratrol improved fibrosis, which may be associated with the suppression of C-kit/SCF and TGF-β/Wnt/β-catenin pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  6. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  7. Lower Urinary Tract Symptoms in Elderly Population With Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Camille Chesnel

    2018-03-01

    Full Text Available Purpose The aim of this study is to compare the clinical and urodynamic characteristics of urinary disorders in multiple sclerosis (MS patients in a geriatric population with a nongeriatric population. Methods This study was conducted retrospectively between 2010 and 2016. Each patient with MS aged 65 and older was matched with 2 patients with MS aged less than 65 in sex, form of MS, and Expended Disability Status Scale (EDSS. Demographic data, urinary symptoms, treatment, quality of life, repercussion of lower urinary tract symptoms on daily life activities and psychological state and urodynamic parameters were collected. Differences between the 2 populations were evaluated using Student test, chi-square, or Fischer tests. Results Twenty-four patients with MS aged 65 and older (mean age, 69.8 years were matched with 48 patients aged less than 65 years (mean age, 49.4 years. Maximum urethral closure pressure was lower in the elderly population than in the nongeriatric population (mean±standard deviation [SD]: 35.6±18.5 cm H2O vs. 78.2±52.3 cm H2O, P<0.001. In the male population, there was no statistical difference in any other clinical or urodynamic endpoints. In the female population, voiding symptoms was more described in the nongeriatric population (Urinary Symptom Profile low stream: 3.4±3.5 vs. 1.7±2.4, P=0.04, geriatric population had less urinary treatment (P=0.05. LUTS had less impact on quality of life (Qualiveen: 1.4±1.0 vs. 2.1±0.9, P=0.02 on the geriatric population than in the nongeriatric of female MS patients. Conclusions Geriatric population of MS has few differences of urinary disorders compared to a nongeriatric population with EDSS, sex, and MS form equal. However, the psychological impact of these urinary disorders is less important in female geriatric population.

  8. Non-equilbrium behavior of low-pressure plasma jets

    International Nuclear Information System (INIS)

    Chang, C.H.; Pfender, E.

    1989-01-01

    After establishing the basic equations, some sample calculations are presented to examine the thermodynamic state of the plasma from atmospheric to low pressures (80 mbar). These results indicate the validity of local thermodynamic equilibrium (LTE) at atmospheric pressure as well as strong deviations from LTE at lower pressures especially in terms of chemical equilibrium. Departures from kinetic equilibrium are not as severe as those from chemical equilibrium along the centerline of the jet. However, there are some departures from transitional equilibrium in the fringes of the jet. It is demonstrated that conventional methods based on the LTE assumption are not appropriate for describing low-pressure plasma jets

  9. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  10. Sacral root neuromodulation in idiopathic nonobstructive chronic urinary retention.

    Science.gov (United States)

    Shaker, H S; Hassouna, M

    1998-05-01

    Sacral root neuromodulation is becoming a superior alternative to the standard treatment of idiopathic nonobstructive urinary retention. We report results in 20 successive patients who underwent sacral foramen implantation to restore bladder function. After an initial, thorough baseline assessment 20 patients 19.43 to 55.66 years old with idiopathic nonobstructive urinary retention underwent percutaneous nerve evaluation. Response was assessed by a detailed voiding diary. Responders underwent implantation with an S3 foramen implant, and were followed 1, 3 and 6 months postoperatively, and every 6 months thereafter. Sacral root neuromodulation restored voiding capability in these patients. Bladders were emptied with minimal post-void residual urine, which decreased from 78.3 to 5.5 to 10.2% of the total voided volume from baseline to postoperative followup. These results were reflected in uroflowmetry and pressure-flow studies, which were almost normal after implantation. Furthermore, the urinary tract infection rate decreased significantly and associated pelvic pain improved substantially. The Beck depression inventory and SF-36 quality of life questionnaire indicated some improvement but reached significance in only 1 item. In addition, cystometrography showed no significant difference after 6 months of implantation compared with baseline values. Complications were minimal and within expectations. Sacral root neuromodulation is an appealing, successful modality for nonobstructive urinary retention. Only patients who have a good response to percutaneous nerve evaluation are candidates for implantation. The high efficacy in patients who undergo implantation, relative simplicity of the procedure and low complication rate make this a treatment breakthrough in this difficult group.

  11. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs

    Directory of Open Access Journals (Sweden)

    Gao Li

    2017-07-01

    Full Text Available The damages of different drilling modes to reservoirs are different in types and degrees. In this paper, the geologic characteristics and types of such damages were analyzed. Then, based on the relationship between reservoir pressure and bottom hole flowing pressure corresponding to different drilling modes, the experimental procedures on reservoir damages in three drilling modes (e.g. gas drilling, liquid-based underbalanced drilling and overbalanced drilling were designed. Finally, damage simulation experiments were conducted on the tight sandstone reservoir cores of the Jurassic Ahe Fm in the Tarim Basin and Triassic Xujiahe Fm in the central Sichuan Basin. It is shown that the underbalanced drilling is beneficial to reservoir protection because of its less damage on reservoir permeability, but it is, to some extent, sensitive to the stress and the empirical formula of stress sensitivity coefficient is obtained; and that the overbalanced drilling has more reservoir damages due to the invasion of solid and liquid phases. After the water saturation of cores rises to the irreducible water saturation, the decline of gas logging permeability speeds up and the damage degree of water lock increases. It is concluded that the laboratory experiment results of reservoir damage are accordant with the reservoir damage characteristics in actual drilling conditions. Therefore, this method reflects accurately the reservoir damage characteristics and can be used as a new experimental evaluation method on reservoir damage in different drilling modes.

  12. Testing of low pressure proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, M; Naso, V; Lucentini, M; Rubini, L

    1998-07-01

    One of the main issues concerning PEMFC is the choice of operating pressure, for both stationary and automotive applications. This is because the air compressor may absorb a significant amount--up to 25%--of the power output of the fuel cells stack. A comparison has been made between the performance of various stacks of different dimensions, tested in the De Nora Laboratories operated at high (4 bar) and low (1.5 bar) pressures, considering power output reduced by the compressor power absorption. Differences of performance and efficiency between high and low pressure stacks have been noticed in the range of 10%. In operating at low pressure, higher efficiency is obtainable, but the maximum power of the stack is less; this means less fuel consumption, but requires a greater reacting surface and larger dimension of the stack. Consequently low pressures make the system simpler (a blower can be used instead of a compressor), and safer (there is practically no risk of breaking the membrane).

  13. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  14. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    Science.gov (United States)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well

  15. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.

    Science.gov (United States)

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D

    2017-10-15

    Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants

  16. Performance modeling of an integral, self-regulating cesium reservoir for the ATI-TFE

    International Nuclear Information System (INIS)

    Thayer, K.L.; Ramalingam, M.L.; Young, T.J.

    1993-01-01

    This work covers the performance modeling of an integral metal-matrix cesium-graphite reservoir for operation in the Advanced Thermionic Initiative-Thermionic Fuel Element (ATI-TFE) converter configuration. The objectives of this task were to incorporate an intercalated cesium-graphite reservoir for the 3C 24 Cs→2C 36 Cs+Cs (g) two phase equilibrium reaction into the emitter lead region of the ATI-TFE. A semi two-dimensional, cylindrical TFE computer model was used to obtain thermal and electrical converter output characteristics for various reservoir locations. The results of this study are distributions for the interelectrode voltage, output current density, and output power density as a function of axial position along the TFE emitter. This analysis was accomplished by identifying an optimum cesium pressure for three representative pins in the ATI ''driverless'' reactor core and determining the corresponding position of the graphite reservoir in the ATI-TFE lead region. The position for placement of the graphite reservoir was determined by performing a first-order heat transfer analysis of the TFE lead region to determine its temperature distribution. The results of this analysis indicate that for the graphite reservoirs investigated the 3C 24 Cs→2C 36 Cs+Cs (g) equilibrium reaction reservoir is ideal for placement in the TFE emitter lead region. This reservoir can be directly coupled to the emitter, through conduction, to provide the desired cesium pressure for optimum performance. The cesium pressure corresponding to the optimum converter output performance was found to be 2.18 torr for the ATI core least power TFE, 2.92 torr for the average power TFE, and 4.93 torr for the maximum power TFE

  17. Quality Management and Control of Low Pressure Cast Aluminum Alloy

    Science.gov (United States)

    Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan

    2018-01-01

    This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.

  18. Relationship between plasma uridine and urinary urea excretion.

    Science.gov (United States)

    Ka, Tuneyoshi; Inokuchi, Taku; Tamada, Daisuke; Suda, Michio; Tsutsumi, Zenta; Okuda, Chihiro; Yamamoto, Asako; Takahashi, Sumio; Moriwaki, Yuji; Yamamoto, Tetsuya

    2010-03-01

    To investigate whether the concentration of uridine in plasma is related to the urinary excretion of urea, 45 healthy male subjects with normouricemia and normal blood pressure were studied after providing informed consent. Immediately after collection of 24-hour urine, blood samples were drawn after an overnight fast except for water. The contents of ingested foods during the 24-hour urine collection period were described by the subjects and analyzed by a dietician. Simple regression analysis showed that plasma uridine was correlated with the urinary excretions of urea (R = 0.41, P urea. These results suggest that an increase in de novo pyrimidine synthesis leads to an increased concentration of uridine in plasma via nitrogen catabolism in healthy subjects with normouricemia and normal blood pressure. (c) 2010 Elsevier Inc. All rights reserved.

  19. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  20. The Vaginal Microbiota and Urinary Tract Infection.

    Science.gov (United States)

    Stapleton, Ann E

    2016-12-01

    The vagina is a key anatomical site in the pathogenesis of urinary tract infection (UTI) in women, serving as a potential reservoir for infecting bacteria and a site at which interventions may decrease the risk of UTI. The vaginal microbiota is a dynamic and often critical factor in this pathogenic interplay, because changes in the characteristics of the vaginal microbiota resulting in the loss of normally protective Lactobacillus spp. increase the risk of UTI. These alterations may result from the influence of estrogen deficiency, antimicrobial therapy, contraceptives, or other causes. Interventions to reduce adverse effects on the vaginal microbiota and/or to restore protective lactobacilli may reduce the risks of UTI.

  1. Response time verification of in situ hydraulic pressure sensors in a nuclear reactor

    International Nuclear Information System (INIS)

    Foster, C.G.

    1978-01-01

    A method and apparatus for verifying response time in situ of hydraulic pressure and pressure differential sensing instrumentation in a nuclear circuit is disclosed. Hydraulic pressure at a reference sensor and at an in situ process sensor under test is varied according to a linear ramp. Sensor response time is then determined by comparison of the sensor electrical analog output signals. The process sensor is subjected to a relatively slowly changing and a relatively rapidly changing hydraulic pressure ramp signal to determine an upper bound for process sensor response time over the range of all pressure transients to which the sensor is required to respond. Signal linearity is independent of the volumetric displacement of the process sensor. The hydraulic signal generator includes a first pressurizable gas reservoir, a second pressurizable liquid and gas reservoir, a gate for rapidly opening a gas communication path between the two reservoirs, a throttle valve for regulating rate of gas pressure equalization between the two reservoirs, and hydraulic conduit means for simultaneously communicating a ramp of hydraulic pressure change between the liquid/gas reservoir and both a reference and a process sensor. By maintaining a sufficient pressure differential between the reservoirs and by maintaining a sufficient ratio of gas to liquid in the liquid/gas reservoir, excellent linearity and minimal transient effects can be achieved for all pressure ranges, magnitudes, and rates of change of interest

  2. Urinary incontinence and vaginal squeeze pressure two years post-cesarean delivery in primiparous women with previous gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Angélica Mércia Pascon Barbosa

    2011-01-01

    Full Text Available OBJECTIVE: To assess the prevalence of urinary incontinence and associated vaginal squeeze pressure in primiparous women with and without previous gestational diabetes mellitus two years post-cesarean delivery. METHODS: Primiparous women who delivered by cesarean two years previously were interviewed about the delivery and the occurrence of incontinence. Incontinence was reported by the women and vaginal pressure evaluated by a Perina perineometer. Sixty-three women with gestational diabetes and 98 women without the disease were screened for incontinence and vaginal pressure. Multiple logistic regression models were used to evaluate the independent effects of gestational diabetes. RESULTS: The prevalence of gestational incontinence was higher among women with gestational diabetes during their pregnancies (50.8% vs. 31.6% and two years after a cesarean (44.8% vs. 18.4%. Decreased vaginal pressure was also significantly higher among women with gestational diabetes (53.9% vs. 37.8%. Maternal weight gain and newborn weight were risk factors for decreased vaginal pressure. Maternal age, gestational incontinence and decreased vaginal pressure were risk factors for incontinence two years after a cesarean. In a multivariate logistic model, gestational diabetes was an independent risk factor for gestational incontinence. CONCLUSIONS: The prevalence of incontinence and decreased vaginal pressure two years post-cesarean were elevated among women with gestational diabetes compared to women who were normoglycemic during pregnancy. We confirmed an association between gestational diabetes mellitus and a subsequent decrease of vaginal pressure two years post-cesarean. These results may warrant more comprehensive prospective and translational studies.

  3. A pulse tube cryocooler with a cold reservoir

    Science.gov (United States)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  4. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2013-01-01

    for critical temperature, pressure and acentric factor.This work presents new phase equilibrium data for binary MEG/reservoir fluid and ternary MEG/water/reservoir fluid systems, where two reservoir fluids from Statoil operated fields are used. The solubility data are reported over a range of temperatures......The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  5. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach.

    Science.gov (United States)

    Ye, LvZhou; Zhang, Hou-Dao; Wang, Yao; Zheng, Xiao; Yan, YiJing

    2017-08-21

    An efficient low-frequency logarithmic discretization (LFLD) scheme for the decomposition of fermionic reservoir spectrum is proposed for the investigation of quantum impurity systems. The scheme combines the Padé spectrum decomposition (PSD) and a logarithmic discretization of the residual part in which the parameters are determined based on an extension of the recently developed minimum-dissipaton ansatz [J. J. Ding et al., J. Chem. Phys. 145, 204110 (2016)]. A hierarchical equations of motion (HEOM) approach is then employed to validate the proposed scheme by examining the static and dynamic system properties in both the Kondo and noninteracting regimes. The LFLD scheme requires a much smaller number of exponential functions than the conventional PSD scheme to reproduce the reservoir correlation function and thus facilitates the efficient implementation of the HEOM approach in extremely low temperature regimes.

  6. Investigation of oil production conditions and production operation by solution gas drive in low permeable heterogeneous limestones

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, W

    1966-04-01

    It was the purpose of this study to investigate the production of oil and gas from a low permeable heterogeneous limestone-reservoir by solution gas drive. The rock-samples were subjected to extensive petrolphysical analyses in order to characterize the pore structure of of the limestone material. Laboratory model flow tests were undertaken to outline in detail the production history during the pressure depletion process under reservoir conditions and by using original reservoir fluids. The experiments were carried out at different rates of pressure decline. It can be stated that the rate of pressure decline is the most important factor affecting the oil recovery and the development of the gas-oil-ratio in a model flow test. The present investigation leads to the following conclusion: It is posible to get reliable results which could be the base for a reservoir performance prediction only when the gas and oil phase are maintained at equilibrium conditions within the rock sample during the pressure decline. An additional calculation of the solution gas drive reservoir production history by the Tarner method shows a good agreement of the experimental and the calculated data. (40 refs.)

  7. The female urinary microbiome in urgency urinary incontinence.

    Science.gov (United States)

    Pearce, Meghan M; Zilliox, Michael J; Rosenfeld, Amy B; Thomas-White, Krystal J; Richter, Holly E; Nager, Charles W; Visco, Anthony G; Nygaard, Ingrid E; Barber, Matthew D; Schaffer, Joseph; Moalli, Pamela; Sung, Vivian W; Smith, Ariana L; Rogers, Rebecca; Nolen, Tracy L; Wallace, Dennis; Meikle, Susan F; Gai, Xiaowu; Wolfe, Alan J; Brubaker, Linda

    2015-09-01

    The purpose of this study was to characterize the urinary microbiota in women who are planning treatment for urgency urinary incontinence and to describe clinical associations with urinary symptoms, urinary tract infection, and treatment outcomes. Catheterized urine samples were collected from multisite randomized trial participants who had no clinical evidence of urinary tract infection; 16S ribosomal RNA gene sequencing was used to dichotomize participants as either DNA sequence-positive or sequence-negative. Associations with demographics, urinary symptoms, urinary tract infection risk, and treatment outcomes were determined. In sequence-positive samples, microbiotas were characterized on the basis of their dominant microorganisms. More than one-half (51.1%; 93/182) of the participants' urine samples were sequence-positive. Sequence-positive participants were younger (55.8 vs 61.3 years old; P = .0007), had a higher body mass index (33.7 vs 30.1 kg/m(2); P = .0009), had a higher mean baseline daily urgency urinary incontinence episodes (5.7 vs 4.2 episodes; P urinary incontinence episodes, -4.4 vs -3.3; P = .0013), and were less likely to experience urinary tract infection (9% vs 27%; P = .0011). In sequence-positive samples, 8 major bacterial clusters were identified; 7 clusters were dominated not only by a single genus, most commonly Lactobacillus (45%) or Gardnerella (17%), but also by other taxa (25%). The remaining cluster had no dominant genus (13%). DNA sequencing confirmed urinary bacterial DNA in many women with urgency urinary incontinence who had no signs of infection. Sequence status was associated with baseline urgency urinary incontinence episodes, treatment response, and posttreatment urinary tract infection risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  9. Properties of thick GEM in low-pressure deuterium

    International Nuclear Information System (INIS)

    Lee, C S; Ota, S; Tokieda, H; Kojima, R; Watanabe, Y N; Uesaka, T

    2014-01-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241 Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 10 3 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time

  10. Properties of thick GEM in low-pressure deuterium

    Science.gov (United States)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  11. Urinary Bladder Detrusor Dysfunction Symptoms in Lyme Disease

    Directory of Open Access Journals (Sweden)

    Basant K. Puri

    2013-09-01

    Full Text Available Purpose Symptoms of urinary bladder detrusor dysfunction have been rarely reported in Lyme disease. The aim was to carry out the first systematic study to compare the prevalence of such symptoms in a group of Lyme disease patients and a group of matched controls. Methods A questionnaire relating to detrusor function was administered to 17 serologically positive Lyme disease patients and to 18 control subjects. Results The two groups were matched in respect of age, sex, body mass, and mean arterial blood pressure. None of the 35 subjects was taking medication which might affect urinary function and none had undergone a previous operative procedure on the lower urinary tract. Six of the Lyme patients (35% and none of the controls (0% had symptoms of detrusor dysfunction (P<0.01. Conclusions This first systematic controlled study confirms that Lyme disease is associated with urinary bladder detrusor dysfunction. Further evaluation of detrusor function is warranted in this disease.

  12. Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection

    Science.gov (United States)

    Steigedal, Magnus; Marstad, Anne; Haug, Markus; Damås, Jan K.; Strong, Roland K.; Roberts, Pacita L.; Himpsl, Stephanie D.; Stapleton, Ann; Hooton, Thomas M.; Mobley, Harry L. T.; Hawn, Thomas R.

    2014-01-01

    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection. PMID:25398327

  13. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii?

    Science.gov (United States)

    Ho, Chester H; Johnson, Tova; Miklacic, Joan; Donskey, Curtis J

    2009-10-01

    Ho CH, Johnson T, Miklacic J, Donskey CJ. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii? To determine the extent of environmental contamination associated with low-pressure pulsatile lavage of stage III or IV pressure ulcers in patients with spinal cord injury (SCI) when routine infection control precautions are used for wounds colonized or infected with Acinetobacter baumannii. Prospective investigation in which pressure ulcer cultures and environmental cultures were obtained before and after low-pressure pulsatile lavage treatment, and before and after regular dressing changes. Environmental cultures included the patient's bedrail and settle plates placed 0.6, 1.5, and 2.4m from the wound to assess airborne spread of A. baumannii. SCI inpatient unit in a Department of Veterans Affairs Medical Center. Inpatients (N=15) with SCI receiving daily low-pressure pulsatile lavage treatment for stage III or IV pressure ulcers with standard dressing change, as well as regular dressing changes without low-pressure pulsatile lavage at other times of the day. Standard, regular dressing changes and dressing changes with low-pressure pulsatile lavage. Comparison of frequency of environmental contamination with A. baumannii associated with low-pressure pulsatile lavage versus regular dressing changes. Of the 15 SCI inpatients meeting inclusion criteria, 9 (60%) grew A. baumannii from their wounds. Of the 9 patients with wound cultures positive for A. baumannii, only 1 (11%) had environmental contamination with this organism after performance of low-pressure pulsatile lavage, and the same patient had environmental contamination after a standard dressing change. The antibiotic susceptibility patterns of the wound and environmental A. baumannii isolates were identical. Low-pressure pulsatile lavage using the infection control methods described is not associated with an increased

  14. Estimation of the 24-h urinary protein excretion based on the estimated urinary creatinine output.

    Science.gov (United States)

    Ubukata, Masamitsu; Takei, Takashi; Nitta, Kosaku

    2016-06-01

    The urinary protein/creatinine ratio [Up/Ucr (g/gCr)] has been used in the clinical management of patients with chronic kidney disease (CKD). However, a discrepancy is often noted between the Up/Ucr and 24-h urinary protein excretion [24hUp (g/day)] in patients with extremes of muscle mass. We examined devised a method for precise estimation of the 24-h urinary protein excretion (E-24hUp) based on estimation of 24-h urinary creatinine output (E-24hCr). Three parameters, spot Up/Ucr, 24hUP and E-24hUp (=Up/Ucr × E-24hCr), were determined in 116 adult patients with CKD. The correlations among the groups were analyzed. There was a significant correlation between the Up/Ucr and 24hUp (p high urinary protein group (>3.5 g/day). There was a significant correlation between the Up/Ucr and 24hUp in the low (p = 0.04) and high urinary protein (p = 0.01) groups, whereas the correlation coefficient was lower in the intermediate urinary protein (p = 0.07) group. Thus, we found a significant correlation between 24hUp and E-24hUp in the study population overall (p high urinary protein group (p < 0.001). We conclude that a poor correlation exists between the Up/Ucr and 24hUp in patients with intermediate urinary protein excretion levels. The recommended parameter for monitoring proteinuria in such patients may be the E-24hUp, which is calculated using the E-24hCr.

  15. Considering heterogeneities by transmissibilities averaging on adapted meshes in reservoir simulation; Prise en compte des heterogeneites par prise de moyenne des transmissivites sur maillages adaptes en simulation de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Urgelli, D

    1998-10-16

    Reservoir heterogeneity can be described using geostatistical models. But these models generate the heterogeneity on millions of fine grid blocks, which leads to prohibitive computational costs for reservoir simulations. In order to reduce the number of grid blocks, averaging techniques are needed to up-scale the fine scale permeabilities to the larger scales appropriate for flow simulation and engineering calculations. Grid block permeability up-scaling for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description. But, the equivalent permeability on coarse grid blocks cannot be used directly on the numerical scheme. Usually, the harmonic average of the coarse grid block permeability is used for the transmissibility calculation, but it might cause a loss of accuracy. The purpose of this thesis is to present a new procedure for computing the equivalent transmissibility in the discretized flow equations on Cartesian grids and Corner Point Geometry grids. An application of this technique to a finite volume type numerical scheme is detailed. The principle of this technique is to calculate a permeability term on a shifted block placed between the two adjacent blocks where the transmissibility must be determined. At the field scale, the flow region can be divided into two types : a linear flow pattern with a low pressure gradient far from the wells and a radial flow pattern with a high pressure gradient in the vicinity of the wells. The radial flow region is usually more important for the prediction of production forecast, because it is directly related to the well. This was demonstrated theoretically and numerically for 2-D problem. The transmissibility up-scaling in radial flow pattern consists to determine the transmissibilities in the vicinity of wells and the numerical Productivity Index simultaneously. This new method called `shifted

  16. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  17. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    Science.gov (United States)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  18. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment.

    Science.gov (United States)

    Gottschick, Cornelia; Deng, Zhi-Luo; Vital, Marius; Masur, Clarissa; Abels, Christoph; Pieper, Dietmar H; Wagner-Döbler, Irene

    2017-08-14

    The urinary microbiota is similarly complex as the vaginal and penile microbiota, yet its role as a reservoir for pathogens and for recurrent polymicrobial biofilm diseases like bacterial vaginosis (BV) is not clear. Here, we analysed the urinary microbiota of healthy men and women and compared it with that of women during BV and after antibiotic treatment using next-generation sequencing of the 16S rRNA gene V1-V2 regions. Eight different community types, so called urotypes (UT), were identified in healthy humans, all of which were shared between men and women, except UT 7, dominated in relative abundance by Lactobacillus crispatus, which was found in healthy women only. Orally applied metronidazole significantly reduced Shannon diversity and the mean relative abundance of Gardnerella vaginalis, Atopobium vaginae, and Sneathia amnii, while L. iners increased to levels twofold higher than those found in healthy women. Although individual urine microbial profiles strongly responded to the antibiotic, the healthy community could not be restored. The correlation between urinary and vaginal fluid microbiota was generally weak and depending on UT and BV status. It was highest in UT 1 in acute BV (59% of samples), but after metronidazole treatment, only 3 out of 35 women showed a significant correlation between their urinary and vaginal microbiota composition. Urethra and bladder thus harbor microbial communities distinct from the vagina. The high abundance of BV related species in the urine of both men and women suggests that urine may act as a reservoir of pathogens and contribute to recurrence. ClinicalTrials.gov, NCT02687789.

  19. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  20. Modelling and simulation of compressible fluid flow in oil reservoir: a case study of the Jubilee Field, Tano Basin (Ghana)

    International Nuclear Information System (INIS)

    Gawusu, S.

    2015-07-01

    Oil extraction represents an important investment and the control of a rational exploitation of a field means mastering various scientific techniques including the understanding of the dynamics of fluids in place. This thesis presents a theoretical investigation of the dynamic behaviour of an oil reservoir during its exploitation. The study investigated the dynamics of fluid flow patterns in a homogeneous oil reservoir using the Radial Diffusivity Equation (RDE) as well as two phase oil-water flow equations. The RDE model was solved analytically and numerically for pressure using the Constant Terminal Rate Solution (CTRS) and the fully implicit Finite Difference Method (FDM) respectively. The mathematical derivations of the models and their solution procedures were presented to allow for easy utilization of the techniques for reservoir and engineering applications. The study predicted that the initial oil reservoir pressure will be able to do the extraction for a very long time before any other recovery method will be used to aid in the extraction process depending on the rate of production. Reservoir simulation describing a one dimensional radial flow of a compressible fluid in porous media may be adequately performed using ordinary laptop computers as revealed by the study. For the simulation of MATLAB, the case of the Jubilee Fields, Tano Basin was studied, an algorithm was developed for the simulation of pressure in the reservoir. It ensues from the analysis of the plots of pressure vrs time and space that the Pressure Transient Analysis (PTA) was duly followed. The approximate solutions of the analytical and numerical solutions to the Radial Diffusivity Equation (RDE) were in excellent agreement, thus the reservoir simulation model developed can be used to describe typical pressure-time relationships that are used in conventional Pressure Transient Analysis (PTA). The study was extended to two phase oil-water flow in reservoirs. The flow of fluids in multi

  1. The Potosi Reservoir Model 2013c, Property Modeling Update

    Energy Technology Data Exchange (ETDEWEB)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    rate declines gradually to 1.2 million tons per annum (1.1 MTPA) in year 18 and stays constant. This implies that a minimum of three (3) wells could be required in the Potosi to reach the injection target. The injectivity evaluated in this Task was higher compared to the preceding Task, since the current facies modeling (guided by the porosity map from the seismic inversion) indicated a higher density of vugs within the vugular zones. 5 As the CO2 follows the paths where vugs interconnection exists, a reasonably large and irregular plume extent was created. After 30 years of injection, the plume extends 13.7 mi (22 km) in E-W and 9.7 mi (16 km) in N-S directions. After injection finishes, the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 60 years post-injection, the plume extends 14.2 mi (22.8 km) in E-W and 10 mi (16 km) in N-S directions, and remains constant as the remaining pressure gradient has become very low. Should the targeted cumulative injection of 106 million tons (96 MT) be achieved; a much larger plume extent could be expected. The increase of reservoir pressure at the end of injection is approximately 1,200 psia (8,274 kPa) around the injector and gradually decreases away from the well. The reservoir pressure increase is less than 10 psia (69 kPa) beyond 14 mi (23 km) away from injector. Should the targeted cumulative injection of 106 million tons (96 MT) be achieved; a much larger areal pressure increase could be expected. The reservoir pressure declines rapidly during the first 30 years post injection and the initial reservoir pressure is nearly restored after 100 years post-injection. The present evaluation is mainly associated with uncertainty on the vugs permeability and interconnectivity. The use of porosity mapping from seismic inversion might have reduced the uncertainty on the lateral vugs body distributions. However, major uncertainties on the Potosi vugs permeability remains. Therefore, injection

  2. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  3. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  4. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  5. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    Energy Technology Data Exchange (ETDEWEB)

    Pastouret, Alan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Gooijer, Frans [Draka Cableteq USA, Inc., North Dighton, MA (United States); Overton, Bob [Draka Cableteq USA, Inc., North Dighton, MA (United States); Jonker, Jan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Curley, Jim [Draka Cableteq USA, Inc., North Dighton, MA (United States); Constantine, Walter [Draka Cableteq USA, Inc., North Dighton, MA (United States); Waterman, Kendall Miller [Draka Cableteq USA, Inc., North Dighton, MA (United States)

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  6. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  7. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  8. Outcomes of single- vs double-cuff artificial urinary sphincter insertion in low- and high-risk profile male patients with severe stress urinary incontinence.

    Science.gov (United States)

    Ahyai, Sascha A; Ludwig, Tim A; Dahlem, Roland; Soave, Armin; Rosenbaum, Clemens; Chun, Felix K-H; Fisch, Margit; Schmid, Marianne; Kluth, Luis A

    2016-10-01

    To evaluate continence and complication rates of bulbar single-cuff (SC) and distal bulbar double-cuff (DC) insertion in male patients with severe stress urinary incontinence (SUI) according to whether the men were considered low or high risk for unfavourable artificial urinary sphincter (AUS) outcomes. In all, 180 male patients who underwent AUS implantation between 2009 and 2013 were followed according to institutional standards. Patients with previous pelvic radiation therapy, open bulbar urethral or UI surgery ('high risk') underwent distal bulbar DC (123 patients) insertion, all others ('low risk') had proximal bulbar SC (57) insertion. Primary and secondary endpoints consisted of continence and complication rates. Kaplan-Meier analysis determined explantation-free survival, and Cox regression models assessed risk factors for persistent UI and explantation. The median follow-up was 24 months. Whereas there was no significant difference in pad usage/objective continence after SC vs DC insertion, superior rates of subjective/social continence and less persistent UI were reported by the patients with DC devices (all P ≤ 0.02). Overall, device explantation (erosion, infection or mechanical failure) occurred in 12.8% of patients. While early ( 0.05), DC patients had a 5.7-fold higher risk of device explantation during late follow-up (P = 0.02) and significantly shorter explantation-free survival (log-rank, P = 0.003). Distal bulbar DC insertion in patients with a 'high-risk' profile (previous pelvic radiation, urethral surgery) leads to similar objective continence, but higher explantation rates when compared with patients considered 'low risk' with proximal bulbar SCs. Randomised controlled trials comparing both devices will be needed to determine whether the higher explanations rates are attributable to the DC device or to underlying risk factors. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  9. Urinary fumonisin B1 and estimated fumonisin intake in women from high and low exposure communities in Guatemala

    Science.gov (United States)

    Scope: Fumonisin (FB) intake can be high when maize is a dietary staple. We determined 1) urinary FB (UFB) in women consuming maize in high and low exposure communities in Guatemala, 2) the FB levels in maize, 3) the stoichiometric relationship between UFB and FB intake, and 4) the relative excreti...

  10. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  11. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  12. Vapour pressure of components made by the presence of HgS(s,alpha) in an oil/gas reservoir and consequences for the produced gas

    Energy Technology Data Exchange (ETDEWEB)

    Oestvold, T.; Gustavsen, Oe.; Grande, K.; Aas, N.; Olsvik, Mimmi Kjetsaa

    2006-03-15

    A thermodynamic analysis is presented on how components made from HgS (s,alpha), existing in a oil/gas reservoir, will distribute themselves between gas, water, liquid and solid components as a function of temperature and pressure. The consequence of the formation of mercury containing components on gas injection and on gas quality is discussed. Since equilibrium is established in the model calculation, other gas components in the gas phase and components in condensed phases present will also influence the composition of the gas. Six cases are considered in the calculation: 1) HgS(s,alpha) - Ar(g), 2) HgS(s,alpha) - Ar (g) - water with 10-4 molal NaCl at pH = 7, 3) HgS(s,alpha) - CH{sub 4}(g), 4) HgS(s,alpha) - CH{sub 4} (g) - water with 10-4 molal NaCl at pH = 7 and 5) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl at pH = 7, 6) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl and 5*10-5 molal NO-3- at pH = 7. When HgS(s,alpha) is present in an oil reservoir at 170 deg C and 200 bar, these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon. Mercury in the gas phase in the cases 1) is 4*10-7 bar and is determined by the evaporation and decomposition HgS(g) in the reservoir. In case 2) P{sub Hg} = 5.7*10-4 bar mainly determined by the formation of sulphate in the water phase. In the cases 3), 4) and 5) these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon, and the gas phase is dominated by Hg(g) at approx. *10-3 bar. The water phase may contain Hg(CH{sub 3}NH{sub 2}){sub 2}2+ if NO{sub 3}- for some reasons is introduced into the formation water, and the very carcinogenic dimethyl mercury compound, C{sub 2}HgH{sub 6}, can be formed in the gas phase. Both compounds, however, in insignificant low concentration/partial pressure. (Author)

  13. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty......-two 24-hour urine collections were obtained in space (n per astronaut = 1-14) and on the ground (n per astronaut = 2-12). Urinary albumin was measured by radioimmunoassay. For each astronaut, mean of data in space and on the ground was defined as individual average. RESULTS: The individual averages of 24...

  14. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  15. Epidemiology and resistance patterns in urinary pathogens from long-term care facilities and GP populations.

    LENUS (Irish Health Repository)

    Brabazon, E D

    2012-06-01

    Urinary tract infections (UTIs) are a major source of antimicrobial prescribing in the clinical setting and a potential reservoir for the emergence of resistant organisms. Although studies have been published on resistance rates for urinary pathogens from both hospital and general practitioner (GP) settings, there is little information from Long-Term Care Facilities (LTCFs) in Ireland. This study aimed to document the epidemiology and resistance rates in urinary isolates, in the LTCF and GP setting, from samples submitted to a typical microbiology laboratory. In 2010, there were 963 urinary isolates from LTCFs and 1,169 urinary isolates from GPs, identified from patients 65 years and over, with cytology suggestive of infection. E. coil was the most common causative organism identified. There were significantly higher levels of resistance to ampicillin, co-amoxiclav, ciprofloxacin, nitrofurantoin, trimethoprim, and piperacillin\\/tazobactam in the LTCF population compared to the GP population (e.g. for E. coli, 86%-v-69%; 30%-v- 21%; 58%-v-26%, 10%-v-3%, 68%-v-48%, 10%-v- 4% respectively). Isolates with resistance mechanisms to beta-lactams, were identified in both populations. Results presented in this paper demonstrate significant differences between resistance rates in LTCF and GP populations which suggest that there are implications for empiric antimicrobial prescribing for UTIs in the LTCF setting.

  16. CT urography of urinary diversions with enhanced CT digital radiography: preliminary experience.

    Science.gov (United States)

    Sudakoff, Gary S; Guralnick, Michael; Langenstroer, Peter; Foley, W Dennis; Cihlar, Krista L; Shakespear, Jonathan S; See, William A

    2005-01-01

    The purpose of this study was to determine if 3D-rendered CT urography (CTU) depicts both normal and abnormal findings in patients with urinary diversions and if the addition of contrast-enhanced CT digital radiography (CTDR) improves opacification of the urinary collecting system. Thirty CTU and contrast-enhanced CTDR examinations were performed in 24 patients who underwent cystectomy for bladder cancer. Indications for evaluation included hematuria, tumor surveillance, or suspected diversion malfunction. All examinations were evaluated without knowledge of the stage or grade of a patient's tumor and were compared with the clinical records. Opacification of the urinary collecting system was evaluated with 3D CTU alone, contrast-enhanced CTDR alone, and combined CTU and CTDR. Nine abnormalities were identified including distal ureteral strictures (n = 4), vascular compression of the mid left ureter (n = 1), scarring of the mid right pole infundibulum (n = 1), bilateral hydronephrosis and hydroureter (n = 1), urinary reservoir calculus (n = 1), and tumor recurrence invading the afferent limb of the neobladder (n = 1). Eight of the nine detected abnormalities were surgically or pathologically confirmed. All abnormalities were identified on all three imaging techniques but were best seen on 3D CTU and enhanced CTDR images. Incomplete opacification of the urinary collecting system occurred in 17 patients with CTU alone, 12 patients with contrast-enhanced CTDR alone, and nine patients with combined CTU and contrast-enhanced CTDR. Compared with CTU alone, the combined technique of 3D CTU and contrast-enhanced CTDR improved opacification by a statistically significant difference (p = 0.037). CTU with 3D rendering can accurately depict both normal and abnormal postoperative findings in patients with urinary diversions. Adding enhanced CTDR can improve visualization of the urinary collecting system.

  17. Delineation of upper urinary tract segments at MDCT urography in patients with extra-urinary mass lesions: retrospective comparison of standard and low-dose protocols for the excretory phase of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Lisse, Ulrike L. [University of Munich, Department of Urology, Munich (Germany); University of Munich Medical School, Department of Urology, Muenchen (Germany); Coppenrath, Eva M.; Meindl, Thomas; Degenhart, Christoph; Scherr, Michael K.; Reiser, Maximilian F.; Mueller-Lisse, Ullrich G. [University of Munich, Department of Radiology, Munich (Germany); Stief, Christian G. [University of Munich, Department of Urology, Munich (Germany)

    2011-02-15

    Excretory-phase CT urography (CTU) may replace excretory urography in patients without urinary tumors. However, radiation exposure is a concern. We retrospectively compared upper urinary tract (UUT) delineation in low-dose and standard CTU. CTU (1-2 phases, 120 KV, 4 x 2.5 mm, pitch 0.875, i.v. non-ionic contrast media, iodine 36 g) was obtained with standard (14 patients, n = 27 UUTs, average 175.6 mAs/slice, average delay 16.8 min) or low-dose (26 patients, n = 86 UUTs, 29 mAs/slice, average delay 19.6 min) protocols. UUT was segmented into intrarenal collecting system (IRCS), upper, middle, and lower ureter (UU,MU,LU). Two independent readers (R1,R2) graded UUT segments as 1-not delineated, 2-partially delineated, 3-completely delineated (noisy margins), 4-completely delineated (clear margins). Chi-square statistics were calculated for partial versus complete delineation and complete delineation (clear margins), respectively. Complete delineation of UUT was similar in standard and low-dose CTU (R1, p > 0.15; R2, p > 0.2). IRCS, UU, and MU clearly delineated similarly often in standard and low-dose CTU (R1, p > 0.25; R2, p > 0.1). LU clearly delineated more often in standard protocols (R1, 18/6 standard, 38/31 low-dose, p > 0.1; R2 18/6 standard, 21/48 low-dose, p < 0.05). Low-dose CTU sufficiently delineated course of UUT and may locate obstruction/dilation, but appears unlikely to find intraluminal LU lesions. (orig.)

  18. Magnesium based composites fabricated by low pressure infiltration

    International Nuclear Information System (INIS)

    Johansson, P.; Micski, A.; Savage, S.J.

    1993-01-01

    Magnesiumbased fiber composites have been produced by so called low pressure infiltration. The initial material consist of 'saffil' pre-forms and two magnesium alloys, Mg-9Al-1Zn and WE 54 (approximate composition Mg-5Y-1.5Nd-2(Tb,Er,Dy,Gd)-0.5Zr), and pure magnesium. The preforms consists of 10-30 vol% of short fibers linked together by SiO 2 or Al 2 O 3 . Three different routes have been tested in the search for a good low pressure infiltration method. The experiments cover corrosion testing in NaCl-solution, sliding wear, abrasion and erosion testing. Of the tested infiltration methods the best results were obtained in a resistance heated evacuable furnace, in which the metal was molted in a steel crucible and the preform was conveyed into the melt under protective atmosphere. The infiltration takes place at atmospheric pressure and the cooling is performed in a sealed tube in air. The microscopy studies shows that low pressure infiltrated composites contain considerable amounts of porosity in distinction from those fabricated by squeeze casting. The corrosion test has shown that in the tested environment the alloy WE 54 has good corrosion resistance while Mg-9Al-1Zn and pure magnesium show low corrosion resistance. The influence of fibres in the matrix seems to be very small. Both magnesium and the alloy Mg-9Al-1Zn show for two body abrasion an almost linear improvement of abrasion resistance with increased fiber content. Pure magnesium shows decreasing erosion resistance with increasing fibre content. The Mg-9Al-1Zn-alloy appears to show a maximum in erosion resistance at 10 vol% fibers. In sliding wear the materials show an optimum initial and steady state wear resistance at a fiber content of about 10%. In general Al 2 O 3 -binder gives better wear resistance than SiO 2 -binder. Tensile testing was performed on low pressure infiltrated and squeeze cast composites with WE 54 matrix. It shows that the low pressure infiltrated composites are inferior to those

  19. Feasibility of MR urography in patients with urinary diversion

    International Nuclear Information System (INIS)

    Battal, Bilal; Kocaoglu, Murat; Ilica, Turan; Akgun, Veysel; Aydur, Emin; Dayanc, Murat

    2011-01-01

    The aims of this study were to determine the diagnostic value of MR urography and to compare the T2- and T1-weighted MR urography techniques in patients with urinary diversion. We retrospectively reviewed 19 MR urograms in 14 patients (13 male and one female, 8–77 years old, mean age: 54.2) with urinary diversion. Magnetic resonance urography examinations were performed with 1.5-T MR scanners. In addition to T2- and T1-weighted MR urography techniques, conventional T1- and T2-weighted axial and coronal sequences were also obtained. Collecting systems were evaluated in five segments (right proximal and distal collecting system, left proximal and distal collecting system and conduit or reservoir). Imaging features of the urinary collecting systems were evaluated with T2- and T1-weighted MR urography images. The clinical, laboratory data and follow-up imaging findings were regarded as standard. A cross table was formed to determine sensitivity, specificity and accuracy of MR urography techniques. T2-weighted MR urography, T1-weighted MR urography and combination of these two techniques could demonstrate 89.01, 87.65 and 93.83% of all collecting system segments, respectively. For the detection of the pathologic urinary segments, sensitivity, specificity and accuracy were 100, 95.29 and 95.6% in T2-weighted MR urography and 100, 93.42 and 93.82% in T1-weighted MR urography, respectively. Sensitivity, specificity and accuracy were 100% in combined T2- and T1-weighted MR urography technique. Magnetic resonance urography is an effective imaging method for the evaluation of the urinary system in patients with urinary diversion. T2-weighted MR urography alone has high sensitivity, specificity and accuracy, does not require intravenous contrast medium and can be obtained in 3–5 min. However, T1-weighted MR urography may provide additional information in some cases.

  20. Stone risk after bladder substitution with the ileal-urethral Kock reservoir

    DEFF Research Database (Denmark)

    Osther, P J; Poulsen, A L; Steven, K

    2000-01-01

    : The participants were 23 male patients who had undergone bladder substitution with the ileal-urethral Kock reservoir and 25 healthy men. All subjects had sterile urine at the time of urine collection. Concentrations of calcium, magnesium, phosphorus, creatinine, citrate, oxalate, and ammonia in 24-h urine samples...... were measured. Estimates of ion activity products of calcium oxalate (CaOx), calcium phosphate (CaP), brushite (Bru), and magnesium ammonium phosphate (MAP) in urine were calculated according to Tiselius. RESULTS: There was no significant difference in 24-h urinary volume between patients...

  1. Hypertension increases urinary excretion of immunoglobulin G, ceruloplasmin and transferrin in normoalbuminuric patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Ohara, Nobumasa; Hanyu, Osamu; Hirayama, Satoshi; Nakagawa, Osamu; Aizawa, Yoshifusa; Ito, Seiki; Sone, Hirohito

    2014-02-01

    Increased urinary excretion of certain plasma proteins, such as immunoglobulin G (IgG), ceruloplasmin and transferrin, with different molecular radii of 55 Å or less and different isoelectric points have been reported to precede development of microalbuminuria in patients who have diabetes mellitus with hypertension. We examined how hypertension affects these urinary proteins in a diabetic state. Excretion of IgG, ceruloplasmin, transferrin, albumin, α2-macroglobulin with a large molecular radius of 88 Å and N-acetylglucosaminidase in first-morning urine samples were measured in normoalbuminuric patients (urinary albumin-to-creatinine ratio hypertension and nondiabetes mellitus (group hypertension, n = 32), type 2 diabetes mellitus and normotension (group diabetes mellitus, n = 52) and type 2 diabetes mellitus and hypertension (group Both, n =45), and in age-matched controls (n = 72). Urinary IgG, ceruloplasmin, transferrin, albumin and N-acetylglucosaminidase and estimated glomerular filtration rate (eGFR) were significantly elevated in groups diabetes mellitus and Both compared with controls. Furthermore, urinary IgG, ceruloplasmin and transferrin in group Both were significantly higher than those in group diabetes mellitus. These exhibited a positive and relatively strong association with eGFR compared with controls. No significant difference in urinary albumin or N-acetylglucosaminidase was found between the two diabetic groups. In contrast, group hypertension had elevated urinary transferrin without any changes in the other compounds. Urinary α2-macroglobulin did not differ among the four groups. These findings suggest that normoalbuminuric diabetic patients without hypertension have both glomerular hemodynamic changes such as increased intraglomerular hydraulic pressure and altered proximal tubules, and that hypertension increases intraglomerular hydraulic pressure. Increased urinary IgG, ceruloplasmin and transferrin may reflect an increase in

  2. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  3. Impact of pre-implant lower urinary tract symptoms on postoperative urinary morbidity after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Teishima, Jun; Iwamoto, Hideo; Miyamoto, Katsutoshi; Shoji, Koichi; Masumoto, Hiroshi; Inoue, Shogo; Kobayashi, Kanao; Kajiwara, Mitsuru; Matsubara, Akio

    2012-01-01

    The objectives of this study was to assess the impact of baseline lower urinary tract symptoms on postoperative urinary morbidity in patients being treated for prostate cancer with 125-I permanent prostate brachytherapy. A total of 104 prostate cancer patients were enrolled in this study. Their urinary morbidity was followed up using the International Prostate Symptom Score and Expanded Prostate Cancer Index Composite for 12 months or more after permanent prostate brachytherapy. Patients were classified into two groups based on their baseline International Prostate Symptom Score: the low International Prostate Symptom Score group (score≤7) and the high International Prostate Symptom Score group (score≥8). Urinary morbidity was estimated in each group based on the results of the International Prostate Symptom Score and Expanded Prostate Cancer Index Composite measured before permanent prostate brachytherapy, and at 1, 3, 6, 9 and 12 months after the end of all radiation therapy. The overall mean total International Prostate Symptom Score, International Prostate Symptom Score quality of life score, and urinary-related scores for Expanded Prostate Cancer Index Composite were significantly worse at 1 month after the end of treatment, but they improved gradually after the treatment and recovered to the baseline level within 12 months. Even in the high-International Prostate Symptom Score group, the International Prostate Symptom Score and International Prostate Symptom Score Quality of Life score were significantly worse at 1-3 months after permanent prostate brachytherapy, and then recovered to the baseline level without prolongation. Although the urination-related Expanded Prostate Cancer Index Composite score in the high-International Prostate Symptom Score group was significantly worse at 1 month after permanent prostate brachytherapy in comparison with that in the low-International Prostate Symptom Score group, it recovered to the baseline level without

  4. analysis of pressure variation of fluid in bounded circular reservoirs

    African Journals Online (AJOL)

    user

    analysis of the analysed finite element, imposing the boundary conditions and finally, getting the results that ... in reservoir engineering applications [2–7]. ... THEORY. The law of conservation of mass, Darcy's law and the equation of state has been combined to obtain the ..... fields in laser-two-layer solids weak interactions.

  5. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  6. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  7. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    Science.gov (United States)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  8. Study of the low pressure (Black Phase) SmS properties

    International Nuclear Information System (INIS)

    Bordier, G.

    1987-03-01

    SmS has been studied for its transition from the low pressure black phase to the high pressure intermediate valence phase; but the black phase properties seem to be very rich. The variations which pressure of the low-temperature electronic transport properties show the existence of a semi-metallic phase within the black phase domain in a pressure-temperature diagram, for a pressure above 4 kbar, which corresponds to the so-called B'phase. We study the insulating low pressure phase with a model involving acceptor like states. Using electronic paramagnetic resonance experiments we observe a square symmetry trivalent samarium ion neighbour of a sulfure defect, and magnetically coupled with the lattice. This defect exists in two nearly symmetric configurations and the resonance line broadens with temperature in an actived way. It gives rise to metastable effects yielding conductivity relaxations, analysed with stretched exponential laws, because the defect traps magnetically conduction electrons forming a bound magnetic polaron. The relaxation time at zero field is temperature actived. We develop a phenomenological model that gives the good orders of magnitude for the trapping barrier and for the critical field corresponding to the maximum of the low temperature magnetoresistance [fr

  9. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    Energy Technology Data Exchange (ETDEWEB)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  10. INVERTING ORTHOTOPIC ILEOCYSTOPLASTY FOR SHORT MESENTERY

    Directory of Open Access Journals (Sweden)

    V. A. Perepechay

    2010-01-01

    Full Text Available During orthotopic ileocystoplasty, the short mesentery causes an increase in the risk of incompetence of anastomosis of the reservoir with the urethra. Inverting orthotopic ileocystoplasty ensures a free reservoir pull-through into the small pelvis and eliminates tissue tension in the anastomosis. The proposed procedure differs from the Studer operation in that the reservoir is sutured lengthwise, after which it is inverted between the mesenteric leaves. The posterior reservoir wall is anteverted and freely brought out into the small pelvis. This reduces the distance to the urethral stump by 3-4 cm. This procedure was used in 19 patients to be operated on. There were no cases of reservoir or reservoir-urethral anastomotic incompetence. The mean neocystic capacity was 110, 350, and 490 ml 0, 3, and 12 months, respectively, after urethral catheter removal. The maximum reservoir pressure does not exceed 40 (mean 30 cm H2O. Daytime urinary retention was 94.7%; nocturnal urinary retention during forced nocturnal miction was 79%. The obtained functional results compare well with those achieved during the similar procedures.

  11. INVERTING ORTHOTOPIC ILEOCYSTOPLASTY FOR SHORT MESENTERY

    Directory of Open Access Journals (Sweden)

    V. A. Perepechay

    2014-07-01

    Full Text Available During orthotopic ileocystoplasty, the short mesentery causes an increase in the risk of incompetence of anastomosis of the reservoir with the urethra. Inverting orthotopic ileocystoplasty ensures a free reservoir pull-through into the small pelvis and eliminates tissue tension in the anastomosis. The proposed procedure differs from the Studer operation in that the reservoir is sutured lengthwise, after which it is inverted between the mesenteric leaves. The posterior reservoir wall is anteverted and freely brought out into the small pelvis. This reduces the distance to the urethral stump by 3-4 cm. This procedure was used in 19 patients to be operated on. There were no cases of reservoir or reservoir-urethral anastomotic incompetence. The mean neocystic capacity was 110, 350, and 490 ml 0, 3, and 12 months, respectively, after urethral catheter removal. The maximum reservoir pressure does not exceed 40 (mean 30 cm H2O. Daytime urinary retention was 94.7%; nocturnal urinary retention during forced nocturnal miction was 79%. The obtained functional results compare well with those achieved during the similar procedures.

  12. Repeated Treatments with Chitosan in Combination with Antibiotics Completely Eradicate Uropathogenic Escherichia coli From Infected Mouse Urinary Bladders.

    Science.gov (United States)

    Erman, Andreja; Hergouth, Veronika Križan; Blango, Matthew G; Kos, Mojca Kerec; Mulvey, Matthew A; Veranic, Peter

    2017-08-01

    Uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections, colonize and invade the epithelial cells of the bladder urothelium. Infection of immature urothelial cells can result in the formation of persistent intracellular reservoirs that are refractory to antibiotic treatments. Previously, we defined a novel therapeutic strategy that used the bladder cell exfoliant chitosan to deplete UPEC reservoirs. However, although a single treatment of chitosan followed by ciprofloxacin administration had a marked effect on reducing UPEC titers within the bladder, this treatment failed to prevent relapsing bacteriuria. We show here that repeated use of chitosan in conjunction with the antibiotic ciprofloxacin completely eradicates UPEC from the urinary tract and prevents the development of relapsing bouts of bacteriuria. In addition, microscopy revealed rapid restoration of bladder integrity following chitosan treatment, indicating that chitosan can be used to effectively combat recalcitrant bladder infections without causing lasting harm to the urothelium. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. An Unusual Cause of Urinary Incontinence: Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Serhan Kupeli

    2015-03-01

    Full Text Available Urinary incontinence in children can be originated mostly from urinary tract infections, but constipation, neurologic disorders, obstruction and tumors can also be considered among other causes. Pelvic tumors may present with back pain, bladder or bowel dysfunction. Ewing's sarcoma is among the small round-cell tumors of the childhood and potentially can arise from any part of the body. Here, we report an 11-year-old male presented with urinary incontinence and diagnosed as Ewing's sarcoma after 6 weeks' delay. Clinicians should suspect from pelvic tumors in the presence of urinary incontinence especially associated with low back pain. [Cukurova Med J 2015; 40(Suppl 1: 94-96

  14. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  15. Fifteen years of experience radical cystectomy and intestinal urinary diversion

    Directory of Open Access Journals (Sweden)

    M. I. Vasil’chenko

    2017-01-01

    Full Text Available Objective. Examination of the results of surgical treatment and analysis of the surgical technique and perioperative parameters in a series of radical cystectomy on the basis of its own 15 years of experience in the formation of orthotopic and heterotopic urinary reservoir of the ileum segment by developed and patented techniques in different versions: open radical cystectomy, laparoscopic radical cystectomy and robotassisted radical cystectomy.Materials and methods. A retrospective analysis of 310 radical cystectomy performed from 2000 to 2015, on the occasion of various pathologies of the bladder and prostate, as well as cancers of other organs (uterus, colon with involvement in the process of bladder tumor. Plastics of the bladder was performed from the segment of the terminal ileum. Formation of orthotopic bladder was performed by the method of M.I. Vasilchenko (RF patent for invention № 2337630 “Method of orthotopic bladder plastics” by M.I. Vasilchenko. The ureters are implanted by antireflux procedure. If unable to perform orthotopic bladder plastics recovery and self-urination, patients underwent the formation of heterotopic enteral reservoir with a holding valve.Results. It assesses the functionality and viability of organic shaped orthotopic and heterotopic urinary neocystis in the early and late postoperative periods in different versions. The proposed techniques have a beneficial effect on the improvement of the functional state and stabilization of the upper urinary tract. Analysis of morbidity and mortality was determined according to the classification of surgical complications on the Clavien–Dindo. This approach allowed to identify most of the complications and prevent an underestimation of the main negative results. Estimated oncologic efficacy of minimally invasive interventions laparoscopic radical cystectomy and robot-assisted radical cystectomy not inferior open radical cystectomy.Conclusions. Formation of

  16. Overtopping of Rubble Mound Breakwaters with Front Reservoir

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke

    2007-01-01

    The design and performance of breakwaters with front reservoir are discussed on the basis of physical 2-D model tests with a number of cross sections, in which vertopping discharge and spatial distribution, wave forces on inner parapet walls, and stability of reservoir armour were studied....... The sensitivity of these quantities to the width of the reservoir is discussed. It is demonstrated that front reservoir solutions are more economical than conventional cross section solutions, such as bermed structures and mild slope structures, in cases where low crests and small overtopping discharges...

  17. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert [Ecole Polytechnique Federale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), Neuchatel CH-2002 (Switzerland)

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  18. CT study in primary low spinal fluid pressure syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Moritoshi; Okayama, Kenji; Kubo, Hiromasa; Watanabe, Hiromi; Endou, Riuko (Ohmiya Red Cross Hospital, Yono, Saitama (Japan))

    1991-02-01

    CT findings in primary low spinal fluid pressure syndrome were studied on the basis of 3 cases. Case 1 was a 43-year-old male with a complicated bilateral isodense subdural hematoma (SDH). Case 2 was a 45-year-old female with a complicated bilateral high dense SDH. Case 3 was a 36-year-old female discharged without any complications after spinal fluid pressure normalized. Slight downward displacement of the brain under low spinal fluid pressure was shown as the narrowing of a Sylvian fissures and infratentorial cisterns on CT. On the other hand, in this syndrome with a complicated bilateral isodense SDH, in addition to this finding, CT revealed distortion and narrowing of body lateral ventricles, which might be differential findings from this syndrome without complicated SDH. Under low spinal fluid pressure, bridging veins are more stretched by a downward displacement of the brain. And consequently they were easily injured and SDH was developed. (author).

  19. Low cost sonoluminescence experiment in pressurized water

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, L; Insabella, M [LADOP, University of Mar del Plata (Argentina); Bilbao, L [INFIP, University of Buenos Aires and CONICET (Argentina)

    2012-06-19

    We present a low cost design for demostration and mesurements of light emission from a sonoluminescence experiment. Using pressurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  20. Low cost sonoluminescence experiment in pressurized water

    International Nuclear Information System (INIS)

    Bernal, L; Insabella, M; Bilbao, L

    2012-01-01

    We present a low cost design for demostration and mesurements of light emission from a sonoluminescence experiment. Using pressurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  1. CFD simulation of subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2001-01-01

    An increased interest to numerically simulate the subcooled flow boiling at low pressures (1 to 10 bar) has been aroused in recent years, pursued by the need to perform safety analyses of research nuclear reactors and to investigate the sump cooling concept for future light water reactors. In this paper the subcooled flow boiling has been simulated with a multidimensional two-fluid model used in a CFX-4.3 computational fluid dynamics (CFD) code. The existing model was adequately modified for low pressure conditions. It was shown that interfacial forces, which are usually used for adiabatic flows, need to be modeled to simulate subcooled boiling at low pressure conditions. Simulation results are compared against published experimental data [1] and agree well with experiments.(author)

  2. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  3. Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play

    Science.gov (United States)

    Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing

    2018-01-01

    Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or

  4. Ambulatory blood pressure monitoring and microalbuminuria in normotensive subjects with insulin-dependent diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Cohen Cesar Nissan

    2000-01-01

    Full Text Available OBJECTIVE: To assess the association between microalbuminuria with ambulatory blood pressure monitoring in normotensive individuals with insulin-dependent diabetes mellitus. METHODS: Thirty-seven patients underwent determination of the rate of urinary excretion of albumin through radioimmunoassay and ambulatory blood pressure monitoring. Their mean age was 26.5±6.7 years, and the mean duration of their disease was 8 (1-34 years. Microalbuminuria was defined as urinary excretion of albumin > or = 20 and 50% and diastolic pressure load > 30% during sleep was associated with microalbuminuria (p=0.008. The pressure drop during sleep did not differ between the groups. CONCLUSION: Microalbuminuric normotensive insulin-dependent diabetic patients show greater mean pressure value and pressure load during ambulatory blood pressure monitoring, and these variables correlate with urinary excretion of albumin.

  5. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  6. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  7. Condensate recovery by cycling at declining pressures

    Energy Technology Data Exchange (ETDEWEB)

    Havlena, Z G; Griffith, J D; Pot, R; Kiel, O G

    1967-06-05

    Cycling condensate reservoirs under conditions of declining pressure, rather than constant pressure, is advantageous from both a recovery and an economic standpoint. Wet gas displaced from the swept areas is recovered concurrently with wet gas recovered by gas expansion from the unswept portions of the reservoir. Any liquid condensed in the swept areas is revaporized by dry injection gas and recovered as an enriched gas. By this mode of operation, high condensate recovery is obtained, gas sales may be possible at an earlier stage of depletion, more flexibility in field and plant operations is feasible and reduction of 15% in investment and operating costs is achieved. Injection gas requirements are reduced by 40%. The Windfall reservoir in Canada has been successfully produced in this manner, starting in 1962. It is a typical retrograde type reservoir which in 1965 represented 15% of reservoirs exploited in North America.

  8. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  9. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  10. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    Science.gov (United States)

    Islam, Nayyer

    One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when

  11. Prolonged use of indwelling urinary catheter following acute urinary ...

    African Journals Online (AJOL)

    J.O. Bello

    prolonged use of urinary catheters following acute urinary retention secondary to benign prostate enlarge- ment (BPE) and urethral ... indwelling urinary catheter for >3 months following acute urinary retention due to BPE or USD. The study .... the major health-care financing strategy in Nigeria and accounts for more than ...

  12. Negative-pressure and low-pressure hydrocephalus: the role of cerebrospinal fluid leaks resulting from surgical approaches to the cranial base.

    Science.gov (United States)

    Filippidis, Aristotelis S; Kalani, M Yashar S; Nakaji, Peter; Rekate, Harold L

    2011-11-01

    Negative-pressure and low-pressure hydrocephalus are rare clinical entities that are frequently misdiagnosed. They are characterized by recurrent episodes of shunt failure because the intracranial pressure is lower than the opening pressure of the valve. In this report the authors discuss iatrogenic CSF leaks as a cause of low- or negative-pressure hydrocephalus after approaches to the cranial base. The authors retrospectively reviewed cases of low-pressure or negative-pressure hydrocephalus presenting after cranial approaches complicated with a CSF leak at their institution. Three patients were identified. Symptoms of high intracranial pressure and ventriculomegaly were present, although the measured pressures were low or negative. A blocked communication between the ventricles and the subarachnoid space was documented in 2 of the cases and presumed in the third. Shunt revisions failed repeatedly. In all cases, temporary clinical and radiographic improvement resulted from external ventricular drainage at subatmospheric pressures. The CSF leaks were sealed and CSF communication was reestablished operatively. In 1 case, neck wrapping was used with temporary success. Negative-pressure or low-pressure hydrocephalus associated with CSF leaks, especially after cranial base approaches, is difficult to treat. The solution often requires the utilization of subatmospheric external ventricular drains to establish a lower ventricular drainage pressure than the drainage pressure created in the subarachnoid space, where the pressure is artificially lowered by the CSF leak. Treatment involves correction of the CSF leak, neck wrapping to increase brain turgor and allow the pressure in the ventricles to rise to the level of the opening pressure of the valve, and reestablishing the CSF route.

  13. Comparative analysis of the pressure profilometry of vesicocutaneous continent catheterizable conduits between patients with and without rectus abdominis neosphincter (Yachia principle).

    Science.gov (United States)

    Rondon, Atila; Leslie, Bruno; Arcuri, Leonardo Javier; Ortiz, Valdemar; Macedo, Antonio

    2015-09-01

    To assess whether crossing rectus abdominis muscle strips, as proposed by Yachia, would change urinary catheterizable conduit's pressure profilometry, in static and dynamic conditions. Non-randomized selection of 20 continent patients that underwent Macedo's ileum-based reservoir, 10 including Yachia's technique (Study Group) and 10 without this mechanism of continence (Control Group). Demographics and cystometric data were assessed. Conduit's pressure profilometry was obtained by infusing saline through a multichannel catheter, at rest and during Valsalva maneuver. We assessed the pressure: (a) in the bladder; (b) in conduit's proximal segment; and (c) in conduit's distal segment, which is presumably the abdominal wall and crossed muscle strips site. Mean age at surgery was 6.1 years in the Control Group and 7.7 years in the Study Group. There was no statistically significant difference between groups regarding maximum cystometric bladder capacity and leakage point pressure. At rest, the pressure profilometry showed similar results between groups in all segments analyzed. During Valsalva maneuver, pressure profilometry showed similar results between groups in bladder and conduit's proximal segment pressure. In this condition, conduit's distal segment pressure in the Study Group (Mean = 72.9 and Peak = 128.7 cmH2 O) was significantly greater (P continence. © 2014 Wiley Periodicals, Inc.

  14. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    Science.gov (United States)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  15. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  16. Escherichia coli clonal group A causing bacteraemia of urinary tract origin

    DEFF Research Database (Denmark)

    Skjøt-Rasmussen, L; Olsen, S S; Jakobsen, L

    2013-01-01

    a distinctive VAG profile. The blood and urine isolates from each pair were found to be related in 26 of 27 CgA blood/urine pairs, confirming a urinary tract origin of infection. Furthermore, a relationship between the PFGE patterns of CgA blood/urine isolates and CgA isolates from UTI patients in general...... extraintestinal pathogenic E. coli. A reservoir of this pathogenic E. coli group in the community causing not only UTI but also more severe infections such as bacteraemia has implications for public health....

  17. Low-level wind response to mesoscale pressure systems

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  18. 49 CFR 229.49 - Main reservoir system.

    Science.gov (United States)

    2010-10-01

    ... automatic air brake system shall be adjusted so that the compressor will start when the main reservoir..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.49... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square...

  19. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  20. Another Method for Localization of Radiolucent Urinary Stones ...

    African Journals Online (AJOL)

    Objectives: 1. To study the feasibility and safety of localization of radiolucent urinary stones during ESWL utilising the refluxing intravesically injected contrast medium along indwelling ureteral stents. 2. To identify the optimum volume of contrast medium and the intravesical pressure at which adequate vesicoureteral reflux ...

  1. Bulk characterization of pharmaceutical powders by low-pressure compression II

    DEFF Research Database (Denmark)

    Hagsten Sørensen, A.; Sonnergaard, Jørn; Hovgaard, L.

    2006-01-01

    The aim of the present study was to investigate the effect of punch and die diameter, sample size, compression speed, and particle size on two low-pressure compression-derived parameters; the compressed density and the Walker w parameter. The excellent repeatability of the low-pressure compressio...

  2. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  3. Epidural blood patch for refractory low CSF pressure headache

    DEFF Research Database (Denmark)

    Madsen, Søren Aalbæk; Fomsgaard, Jonna Storm; Jensen, Rigmor

    2011-01-01

    primary effect parameter was total headache burden defined as area under the curve (AUC: intensity × duration) and as secondary effect parameters we identified: intensity (VAS 0-10), frequency (days per month), duration in hours (total hours/month) and also medication days (days on medication...... of non-invasive/conservative measures and invasive measures with epidural blood patch providing the cornerstone of the invasive measures. In the present pilot study we therefore aimed to evaluate the treatment efficacy of epidural blood patch (EBP) in treatment-refractory low-pressure headache. Our......Once believed an exceedingly rare disorder, recent evidence suggests that low cerebrospinal fluid (CSF) pressure headache has to be considered an important cause of new daily persistent headaches, particularly among young and middle-aged individuals. Treatment of low CSF pressure headache consists...

  4. Epidural blood patch for refractory low CSF pressure headache

    DEFF Research Database (Denmark)

    Madsen, Søren Aalbæk; Fomsgaard, Jonna Storm; Jensen, Rigmor

    2011-01-01

    of non-invasive/conservative measures and invasive measures with epidural blood patch providing the cornerstone of the invasive measures. In the present pilot study we therefore aimed to evaluate the treatment efficacy of epidural blood patch (EBP) in treatment-refractory low-pressure headache. Our......Once believed an exceedingly rare disorder, recent evidence suggests that low cerebrospinal fluid (CSF) pressure headache has to be considered an important cause of new daily persistent headaches, particularly among young and middle-aged individuals. Treatment of low CSF pressure headache consists...... primary effect parameter was total headache burden defined as area under the curve (AUC: intensity × duration) and as secondary effect parameters we identified: intensity (VAS 0-10), frequency (days per month), duration in hours (total hours/month) and also medication days (days on medication...

  5. Low vs Standard Pressures in Gynecologic Laparoscopy: a Systematic Review.

    Science.gov (United States)

    Kyle, Esther B; Maheux-Lacroix, Sarah; Boutin, Amélie; Laberge, Philippe Y; Lemyre, Madeleine

    2016-01-01

    The optimal intraperitoneal pressure during laparoscopy is not known. Recent literature found benefits of using lower pressures, but the safety of doing abdominal surgery with low peritoneal pressures needs to be assessed. This systematic review compares low with standard pneumoperitoneum during gynecologic laparoscopy. We searched Medline, Embase, and the Cochrane Library for randomized controlled trials comparing intraperitoneal pressures during gynecologic laparoscopy. Two authors reviewed references and extracted data from included trials. Risk ratios, mean differences, and standard mean differences were calculated and pooled using RevMan5. Of 2251 studies identified, three were included in the systematic review, for a total of 238 patients. We found a statistically significant but modest diminution in postoperative pain of 0.38 standardized unit based on an original 10-point scale (95% confidence interval [CI], -0.67 to -0.08) during the immediate postoperative period when using low intraperitoneal pressure of 8 mm Hg compared with ≥ 12 mm Hg and of 0.50 (95% CI, -0.80 to -0.21) 24 hours after the surgery. Lower pressures were associated with worse visualization of the surgical field (risk ratio, 10.31; 95% CI, 1.29-82.38). We found no difference between groups over blood loss, duration of surgery, hospital length of stay, or the need for increased pressure. Low intraperitoneal pressures during gynecologic laparoscopy cannot be recommended on the behalf of this review because improvement in pain scores is minimal and visualization of the surgical field is affected. The safety of this intervention as well as cost-effectiveness considerations need to be further studied.

  6. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    Science.gov (United States)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  7. DIFFERENTIAL APPROACH TO URINARY SYNDROME VERIFICATION IN MEDICOPROPHYLACTIC FACILITIES IN CHILDREN WITH URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    E.M. Pleshkova

    2011-01-01

    Full Text Available Urinary syndrome is an invariable and often the only manifestation of renal and urinary tract injury. Modern laboratory diagnostics prioritize prompt tests such as «dry chemistry» urine analysis using deep-stick tests. Study objective: to evaluate diagnostic accuracy of deep-stick tests in urinary syndrome verification in pediatric urinary tract infections (UTI. Methods: examination of a urinary sample using standard methods and prompt analysis with urine biochemical composition analyser among 66 children aging from 2 months to 16 years. From this group: 28 children had UTI and 38 other somatic diseases. Results: it has been shown that nitrite test-sticks have low diagnostic sensitivity — 69%, high prognostic value of a positive result (90% and high specificity (94%. Diagnostic sensitivity of leucocytic esterase is 73%, its’ prognostic value of a positive result — 92% and diagnostic specificity — 94%. Erythrocyteuria test had diagnostic sensitivity of 80% and specificity of 95%. Protein test had diagnostic sensitivity of 61% and prognostic value of 64% and 81% specificity. Conclusion: deep-stick test implementation with regard to specifications of this method will allow a more differential approach to it’s use in labs of medicoprophylactic facilities, also reduce the amount of time required for lab urine examinations, as well as to increase reliability of diagnostic information.Key words: children, urinary tract infections, stick-tests, «dry chemistry», diagnostic accuracy, method, urinalysis. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (6: 89–95

  8. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  9. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  10. Negative Ions in low pressure discharges

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Vender, D.; Haverlag, M.; Kroesen, G.M.W.; Hoog, de F.J.

    1995-01-01

    Several aspects of negative ions in low pressure discharges are treated. The elementary processes, in which negative ions are produced and destroyed, are summarized. The influence of negative ions on plasma operation is analyzed in terms of transport equations. It is shown that diffusion, electric

  11. Accuracy of simple urine tests for diagnosis of urinary tract infections in low-risk pregnant women

    OpenAIRE

    Feitosa,Danielle Cristina Alves; Silva,Márcia Guimarães da; Parada,Cristina Maria Garcia de Lima

    2009-01-01

    Anatomic and physiological alterations during pregnancy predispose pregnant women to urinary tract infections (UTI). This study aimed to identify the accuracy of the simple urine test for UTI diagnosis in low-risk pregnant women. Diagnostic test performance was conducted in Botucatu, SP, involving 230 pregnant women, between 2006 and 2008. Results showed 10% UTI prevalence. Sensitivity, specificity and accuracy of the simple urine test were 95.6%, 63.3% and 66.5%, respectively, in relation to...

  12. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    Science.gov (United States)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  13. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: a provisional study.

    Science.gov (United States)

    Keenswijk, Werner; Ilias, Mohamad Ikram; Raes, Ann; Donckerwolcke, Raymond; Walle, Johan Vande

    2018-01-01

    There is evidence pointing to a decrease of the glomerular filtration rate (GFR) in a subgroup of nephrotic children, likely secondary to hypovolemia. The aim of this study is to validate the use of urinary potassium to the sum of potassium plus sodium ratio (UK/UK+UNa) as an indicator of hypovolemia in nephrotic syndrome, enabling detection of those patients who will benefit from albumin infusion. We prospectively studied 44 nephrotic children and compared different parameters to a control group (36 children). Renal perfusion and glomerular permeability were assessed by measuring clearance of para-aminohippurate and inulin. Vaso-active hormones and urinary sodium and potassium were also measured. Subjects were grouped into low, normal, and high GFR groups. In the low GFR group, significantly lower renal plasma flow (p = 0.01), filtration fraction (p = 0.01), and higher UK/UK+UNa (p = 0.03) ratio were noted. In addition, non-significant higher plasma renin activity (p = 0.11) and aldosteron (p = 0.09) were also seen in the low GFR group. A subgroup of patients in nephrotic syndrome has a decrease in glomerular filtration, apparently related to hypovolemia which likely can be detected by a urinary potassium to potassium plus sodium ratio > 0.5-0.6 suggesting benefit of albumin infusion in this subgroup. What is Known: • Volume status can be difficult to assess based on clinical parameters in nephrotic syndrome, and albumin infusion can be associated with development of pulmonary edema and fluid overload in these patients. What is New: • Urinary potassium to the sum of urinary potassium plus sodium ratio can accurately detect hypovolemia in nephrotic syndrome and thus identify those children who would probably respond to albumin infusion.

  14. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  15. analysis of pressure variation of fluid in an infinite acting reservoir

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... radial diffusivity equation for a reservoir acting as if it was infinite in size and ... differential equation there is an infinite number of a possible solution ..... [3] Van Everdingen, A. F. and Hurst, W. The Application of the. Laplace ...

  16. Bladder pressure measurements are an independent predictor of urinary tract infection in trauma patients.

    Science.gov (United States)

    Duane, Therèse M; Brown, Holly; Wolfe, Luke G; Malhotra, Ajai K; Aboutanos, Michel B; Ivatury, Rao R

    2011-02-01

    To determine the risk factors for urinary tract infections (UTIs) specific to trauma patients in order to assist in the development of infection control protocols. Data were collected prospectively from January 2003 until December 2005 by an epidemiology nurse and combined with registry data from our Level 1 trauma center. The trauma patients admitted to the Surgery and Trauma Intensive Care Unit (STICU)(n = 938) who did and did not have UTIs were compared for demographics, Injury Severity Score (ISS), and epidemiologic data, including use of Foley catheters and bladder pressure measurements (BPMs). An open system was used for the measurements in which the catheter was disconnected from the bag to instill 50 mL of saline into the bladder, and an 18-gauge needle was inserted into the catheter to measure the pressure. A total of 50 patients had no Foley catheter or UTIs. Among the 836 patients with catheters but no BPMs, there were 36 UTIs (4.31%), whereas the 52 patients with catheters and BPMs had 12 UTIs (23.08%)(p BPMs was an independent predictor of death (OR 2.475; CI 1.191-6.328). This is the first study that demonstrates a greater risk of UTI with BPM using the open technique independent of patient gender or degree of injury. Given these findings and a previous trial demonstrating no difference in UTI rates with a closed circuit for BPM, our institution has incorporated a closed circuit technique into its infection control protocol.

  17. Pressure Ulcer Risk in the Incontinent Patient: Analysis of Incontinence and Hospital-Acquired Pressure Ulcers From the International Pressure Ulcer Prevalence™ Survey.

    Science.gov (United States)

    Lachenbruch, Charlie; Ribble, David; Emmons, Kirsten; VanGilder, Catherine

    2016-01-01

    To measure the prevalence of incontinence in the 2013-2014 International Pressure Ulcer Prevalence (IPUP) surveys and determine the relative risk of developing a facility-acquired pressure ulcers (FAPUs) by stage and by Braden Scale score groupings. The IPUP survey is an observational, cross-sectional cohort database designed to determine the frequency and severity of pressure ulcers in various populations. The survey includes acute care (91.4%), long-term acute care (1.7%), rehabilitation patients (1.7%) and long-term care residents (5.2%). Geographic distribution included 182,832 patients in the United States, 22,282 patients in Canada, and the rest of the world, primarily in Europe and the Middle East. We analyzed data from the 2013 and 2014 IPUP surveys to better understand the relationship between incontinence and the frequency and severity of FAPUs. The IPUP survey is an annual voluntary survey of patients who are hospitalized or who reside in long-term care facilities. Data were collected over a 24-hour period within each participating facility. Data collection included limited demographics, presence and stage of pressure ulcers, and pressure ulcer risk assessment score (Braden Scale for Pressure Sore Risk, Braden Q, Norton, Waterlow, and others). In addition, data were collected on pertinent pressure ulcer risk factors including the number of linen layers, use of a pressure redistributing surface, adherence to repositioning schedule, and whether moisture management was provided in the last 24 hours. We aggregated data by urinary, urinary catheter, fecal, fecal management system, double (urinary and fecal), and ostomy incontinence category. If patients were managed by indwelling urinary catheter or fecal management systems, they were considered incontinent in this analysis. In order to analyze ulcers likely to be affected by incontinence, we defined a subset of ulcers as Relevant Pressure Ulcers, which are ulcers that are facility-acquired, non

  18. The results interpretation of thermogasdynamic studies of vertical gas wells incomplete in terms of the reservoir penetration degree

    Directory of Open Access Journals (Sweden)

    M.N. Shamsiev

    2018-03-01

    Full Text Available A method is proposed for interpreting thermogasdynamic studies of vertical gas wells that are incomplete in terms of the reservoir penetration degree on the basis of inverse tasks theory. The inverse task has the aim to determine the reservoir parameters for nonisothermal filtration of a real gas to a vertical well in an anisotropic reservoir. In this case, the values ​​of the pressure and temperature at the well bottom, recorded by deep instruments, are assumed to be known. The solution of the inverse task is to minimize the functional. The iterative sequence for minimizing the functional is based on the Levenberg-Marquardt method. The convergence and stability of the iterative process for various input information have been studied on specific examples. The effect of reservoir anisotropy on the pressure and temperature changes at the bottom of the well is studied. It is shown that if the reservoir is not completely penetrated by the results of pressure and temperature measurements at the bottom of the well, anisotropy of the reservoir can be estimated after its launch. It should be noted that when studying thermodynamic processes in the vicinity of a well, which penetrates thick layers, it is necessary to take into account not only the heat exchange of the reservoir with the surrounding rocks, but also the geothermal temperature gradient.

  19. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.

    1998-03-01

    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  20. Triiodothyronine and thyroxine in urine. II. Renal handling, and effect of urinary protein.

    Science.gov (United States)

    Burke, C W; Shakespear, R A

    1976-03-01

    Mean urinary clearances of T3 were 164 ml/min in normal subjects, 177 in pregnancy, 221 in thyrotoxicosis, 174 in hypothyroidism, and 194 in 3 persons with undetectable T4 but normal T3 levels. T4 clearances were 38 ml/min in normal subjects, 48 in thyrotoxicosis, and 138 in hypothyroidism. Low creatinine clearance was associated with low clearances of T4 and T3. The data suggest urinary excretion of T3 by glomerular filtration of serum unbound T3 with added tubular excretion; and T4 excretion by glomerular filtration of unbound T4 and tubular reabsorption. However, 3-9% of urinary T3 and 5-12% of urinary T4 were bound to urinary proteins, and increased protein excretion caused markedly increased T4 excretion. In addition, 52% of urinary T3 and 68% of urinary T4 were bound to other substances of approximate mol wt 500-2,000, which may influence tubular handling of T3 or T4.

  1. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi

    DEFF Research Database (Denmark)

    Osther, Palle J S; Pedersen, Katja V; Lildal, Søren K

    2016-01-01

    PURPOSE OF REVIEW: Indications for ureterorenoscopy are expanding without hard scientific evidence to support its efficacy. Therefore, it is extremely important to focus on potential harmful effects of the procedure itself. This review explores how physiology of the upper urinary tract reacts...... of the β-receptor agonist isoproterenol in the irrigation fluid has shown a potential for reducing both intrarenal pressure and ureteral tone during ureterorenoscopy. SUMMARY: Upper urinary tract physiology has unique features that may be pushed into pathophysiological processes by the unique elements...

  2. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Myrup, B; Hansen, P M; Jensen, T

    1995-01-01

    We investigated the effect of heparin on urinary albumin excretion in patients with insulin-dependent diabetes mellitus. 39 patients with persistent urinary albumin excretion of 30-300 mg/24 h were randomly treated for 3 months with subcutaneous injections twice daily of isotonic saline, 5000 IU...

  3. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    Myrup, B.; Hansen, P.M.; Jensen, T.; Kofoed-Enevoldsen, A.; Feldt-Rasmussen, B.; Gram, J.; Kluft, C.; Jespersen, J.; Deckert, T.

    1995-01-01

    We investigated the effect of heparin on urinary albumin excretion in patients with insulin-dependent diabetes mellitus. 39 patients with persistent urinary albumin excretion of 30-300 mg/24 h were randomly treated for 3 months with subcutaneous injections twice daily of isotonic saline, 5000 IU

  4. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    Science.gov (United States)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  5. Changes in plasma and urinary nitrite after birth in premature infants at risk for necrotizing enterocolitis

    Science.gov (United States)

    Pun, Priti; Jones, Jesica; Wolfe, Craig; Deming, Douglas D.; Power, Gordon G.; Blood, Arlin B.

    2016-01-01

    Background Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis. Methods Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion. Results Nitrite fell 50% relative to cord levels in the first day after birth; and within 15 min after cord occlusion in lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels in infants who developed NEC were similar to those of preterm control infants on days 1 and 5, but significantly elevated at 15 and 20 d after birth. Conclusion Plasma nitrite falls dramatically at birth while newborn urinary nitrite levels are significantly greater than adults. Acute NEC is associated with elevated plasma and urinary nitrite levels. PMID:26539663

  6. Estimating 24-h urinary sodium/potassium ratio from casual ('spot') urinary sodium/potassium ratio: the INTERSALT Study.

    Science.gov (United States)

    Iwahori, Toshiyuki; Miura, Katsuyuki; Ueshima, Hirotsugu; Chan, Queenie; Dyer, Alan R; Elliott, Paul; Stamler, Jeremiah

    2017-10-01

    Association between casual and 24-h urinary sodium-to-potassium (Na/K) ratio is well recognized, although it has not been validated in diverse demographic groups. Our aim was to assess utility across and within populations of casual urine to estimate 24-h urinary Na/K ratio using data from the INTERSALT Study. The INTERSALT Study collected cross-sectional standardized data on casual urinary sodium and potassium and also on timed 24-h urinary sodium and potassium for 10 065 individuals from 52 population samples in 32 countries (1985-87). Pearson correlation coefficients and agreement were computed for Na/K ratio of casual urine against 24-h urinary Na/K ratio both at population and individual levels. Pearson correlation coefficients relating means of 24-h urine and casual urine Na/K ratio were r = 0.96 and r = 0.69 in analyses across populations and individuals, respectively. Correlations of casual urine Na/creatinine and K/creatinine ratios with 24-h urinary Na and K excretion, respectively, were lower than correlation of casual and 24-h urinary Na/K ratio in analyses across populations and individuals. The bias estimate with the Bland-Altman method, defined as the difference between Na/K ratio of 24-h urine and casual urine, was approximately 0.4 across both populations and individuals. Spread around, the mean bias was higher for individuals than populations. With appropriate bias correction, casual urine Na/K ratio may be a useful, low-burden alternative method to 24-h urine for estimation of population urinary Na/K ratio. It may also be applicable for assessment of the urinary Na/K ratio of individuals, with use of repeated measurements to reduce measurement error and increase precision. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  7. The time-lapse AVO difference inversion for changes in reservoir parameters

    Science.gov (United States)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  8. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    Science.gov (United States)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  9. Paraganglioma of the urinary bladder with pelvic metastasis

    Directory of Open Access Journals (Sweden)

    Jiun-Hung Geng

    2014-09-01

    Full Text Available A 52-year-old male, diagnosed with paraganglioma of the urinary bladder, underwent transurethral resection of the bladder tumor 10 years ago. He was lost to follow-up after the operation but was recently admitted to our hospital for the treatment of nasopharyngeal cancer. However, refractory hypertension with palpitation was noted and a computed tomography scan revealed a round, well-defined mass at the right pelvic region. Retroperitoneal tumor excision surgery was performed and a subsequent pathological analysis revealed paraganglioma. The diagnosis of paraganglioma of the urinary bladder with pelvic metastasis was confirmed and his blood pressure returned to normal level without medication after the operation.

  10. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  11. Clinical utility of urinary soluble Fas in screening for bladder cancer.

    Science.gov (United States)

    Srivastava, Anupam Kumar; Singh, Pankaj Kumar; Singh, Dhramveer; Dalela, Divakar; Rath, Srikanta Kumar; Bhatt, Madan Lal Brahma

    2016-06-01

    Early diagnosis of carcinoma of urinary bladder remains a challenge. Urine cytology, as an adjunct to cystoscopy, is less sensitive for low-grade tumors. Soluble Fas (sFas), a cell-surface receptor and member of the tumor necrosis factor superfamily, is frequently expressed in urinary bladder carcinoma. The objective of this study was to investigate the urinary sFas for diagnosis of transitional cell carcinoma (TCC) of urinary bladder. We examined urinary sFas concentration in 74 controls and 117 cases of TCC, both primary and recurrent disease, by using enzyme-linked immunosorbent assay and compared it with urinary cytology. Urinary sFas concentration was found to be significantly higher in the patient as compared to control group (P bladder cancer in comparison with cytology. Out of 15 node positive bladder cancer cases, 13 had high urinary sFas levels, whereas 12 were urinary cytology positive for malignancy. Urinary sFas can be used as a non-invasive diagnostic biomarker for TCC of urinary bladder, both for primary and recurrent disease. © 2014 Wiley Publishing Asia Pty Ltd.

  12. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests

    DEFF Research Database (Denmark)

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf

    2017-01-01

    Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration......, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls....... The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle...

  13. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    Science.gov (United States)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  14. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  15. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  16. Management of temporary urinary retention after arthroscopic knee surgery in low-dose spinal anesthesia: development of a simple algorithm.

    Science.gov (United States)

    Luger, Thomas J; Garoscio, Ivo; Rehder, Peter; Oberladstätter, Jürgen; Voelckel, Wolfgang

    2008-06-01

    In practice, trauma and orthopedic surgery during spinal anesthesia are often performed with routine urethral catheterization of the bladder to prevent an overdistention of the bladder. However, use of a catheter has inherent risks. Ultrasound examination of the bladder (Bladderscan) can precisely determine the bladder volume. Thus, the aim of this study was to identify parameters indicative of urinary retention after low-dose spinal anesthesia and to develop a simple algorithm for patient care. This prospective pilot study approved by the Ethics Committee enrolled 45 patients after obtaining their written informed consent. Patients who underwent arthroscopic knee surgery received low-dose spinal anesthesia with 1.4 ml 0.5% bupivacaine at level L3/L4. Bladder volume was measured by urinary bladder scanning at baseline, at the end of surgery and up to 4 h later. The incidence of spontaneous urination versus catheterization was assessed and the relative risk for catheterization was calculated. Mann-Whitney test, chi(2) test with Fischer Exact test and the relative odds ratio were performed as appropriate. *P 300 ml postoperatively had a 6.5-fold greater likelihood for urinary retention. In the management of patients with short-lasting spinal anesthesia for arthroscopic knee surgery we recommend monitoring bladder volume by Bladderscan instead of routine catheterization. Anesthesiologists or nurses under protocol should assess bladder volume preoperatively and at the end of surgery. If bladder volume is >300 ml, catheterization should be performed in the OR. Patients with a bladder volume of 500 ml.

  17. Blood pressure response to low level static contractions

    DEFF Research Database (Denmark)

    Fallentin, Nils; Jørgensen, Kurt

    1992-01-01

    The present study re-examines the 15% MVC concept, i.e. the existence of a circulatory steady-state in low intensity static contractions below 15% of maximal voluntary contraction (MVC). Mean arterial blood pressure was studied during static endurance contractions of the elbow flexor and extensor...... 0.7) min for elbow extension]. Mean arterial blood pressure exhibited a continuous and progressive increase during the 10% MVC contractions indicating that the 15% MVC concept would not appear to be valid. The terminal blood pressure value recorded at the point of exhaustion in the 10% MVC elbow...... the circulation to the muscles was arrested just prior to the cessation of the contraction, blood pressure only partly recovered and remained elevated for as long as the occlusion persisted, indicating the level of pressure-raising muscle chemoreflexes. Based on blood pressure recordings obtained during...

  18. Is urinary drainage necessary during continuous epidural analgesia after colonic resection?

    DEFF Research Database (Denmark)

    Basse, L; Werner, M; Kehlet, H

    2000-01-01

    BACKGROUND AND OBJECTIVES: Postoperative urinary retention may occur in between 10% and 60% of patients after major surgery. Continuous lumbar epidural analgesia, in contrast to thoracic epidural analgesia, may inhibit urinary bladder function. Postoperative urinary drainage has been common...... that routine bladder catheterization beyond postoperative day 1 may not be necessary in patients with ongoing continuous low-dose thoracic epidural analgesia....

  19. Low pressure microenvironments: Methane production at 50 mbar and 100 mbar by methanogens

    Science.gov (United States)

    Mickol, Rebecca L.; Kral, Timothy A.

    2018-04-01

    Low pressure is often overlooked in terms of possible biocidal effects when considering a habitable environment on Mars. Few experiments have investigated the ability for microorganisms to actively grow under low pressure conditions, despite the atmosphere being a location on Earth where organisms could be exposed to these pressures. Three species of methanogens (Methanobacterium formicicum, Methanosarcina barkeri, Methanococcus maripaludis) were tested for their ability to actively grow (demonstrate an increase in methane production and optical density) within low-pressure microenvironments at 50 mbar or 100 mbar. M. formicicum was the only species to demonstrate both an increase in methane and an increase in optical density during the low-pressure exposure period for experiments conducted at 50 mbar and 100 mbar. In certain experiments, M. barkeri showed an increase in optical density during the low-pressure exposure period, likely due to the formation of multicellular aggregates, but minimal methane production (conditions. Results indicate that low pressure exposure may just be inhibitory during the exposure itself, and metabolism may resume following incubation under more ideal conditions. Further work is needed to address growth/survival under Mars surface pressures.

  20. Thirteen years of exploitation with constant oilfield pressure

    Energy Technology Data Exchange (ETDEWEB)

    Dontov-Danu, Gh

    1966-12-01

    The paper describes a restoring and maintaining reservoir pressure by gas injection in two blocks of the Dacian stratum at Buscani. At the beginning of gas injection, the wells produced in gas lift and the crude oil flows were markedly decreasing. After about 6 months of injection the reservoir pressure has been restored, the wells flowed. This system allows constant crude oil flows for long periods. The oilfield recovery factor until December 31, 1965, is 51% i.e. by 150% higher than expected in the case of an exploitation without gas injection. This increase represents the extra crude oil and gasoline production obtained as a result of the application of the reservoir pressure maintenance process. The average consumption of working agent has been of 382 cu m gas per ton of additionally extracted crude oil.

  1. Association between light exposure at night and nighttime blood pressure in the elderly independent of nocturnal urinary melatonin excretion.

    Science.gov (United States)

    Obayashi, Kenji; Saeki, Keigo; Iwamoto, Junko; Ikada, Yoshito; Kurumatani, Norio

    2014-07-01

    Circadian misalignment between internal and environmental rhythms dysregulates blood pressure (BP) variability because of disruption of the biological clock, resulting in increased nighttime BP. Although exposure to light-at-night is associated with the circadian misalignment, it remains unclear whether exposure to light-at-night in home settings is associated with nighttime BP. In this cross-sectional analysis of 528 elderly individuals (mean age: 72.8 years), we measured bedroom light intensity at 1-min intervals on two consecutive nights along with ambulatory BP, overnight urinary melatonin excretion and actigraphy. With regard to adjusted mean comparisons using analysis of covariance, the light-at-night group (average: ≥5 lux; n = 109) showed significantly higher nighttime systolic BP (SBP; adjusted mean: 120.8 vs. 116.5 mmHg, p = 0.01) and diastolic BP (70.1 vs. 67.1 mmHg, p light-at-night and nighttime BP in different cutoff values for light-at-night intensity (i.e. 3 and 10 lux). In conclusion, exposure to light-at-night in home settings is significantly associated with increased nighttime BP in elderly individuals independently of overnight urinary melatonin excretion. A 4.3 mmHg increase in nighttime SBP is associated with a 6.1% increase in total mortality, which corresponds to approximately 10 000 annual excess deaths in Japanese elderly population.

  2. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  3. Urinary Tract Health

    Science.gov (United States)

    ... related to the urinary tract health of women: Urinary Tract Infections (UTIs) and Urinary Incontinence (UI). For information on a range of urinary tract health issues for women, men, and children, visit the National Kidney and Urologic Diseases Information ...

  4. A method to implement the reservoir-wave hypothesis using phase-contrast magnetic resonance imaging

    OpenAIRE

    Gray, Robert D.M.; Parker, Kim H.; Quail, Michael A.; Taylor, Andrew M.; Biglino, Giovanni

    2016-01-01

    The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a “reservoir pressure” related to the global compliance and resistance of the arterial system, and an “excess pressure” that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation stud...

  5. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  6. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    Science.gov (United States)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  7. Carbon resistor pressure gauge calibration at low stresses

    International Nuclear Information System (INIS)

    Cunningham, Bruce; Vandersall, Kevin S.; Niles, Angela M.; Greenwood, Daniel W.; Garcia, Frank; Forbes, Jerry W.; Wilson, William H.

    2002-01-01

    The 470 Ohm carbon resistor gauge has been used in the stress range up to 4-5 GPa for highly heterogeneous materials and/or divergent flow experiments. The attractiveness of the gauge is its rugged nature, simple construction, low cost, reproducibility, and survivability in dynamic events. Gauge drawbacks are the long time response to pressure equilibration and gauge resistance hysteresis. In the regime below 0.4 GPa, gauge calibration has been extrapolated. Because of the need for calibration data within this low stress regime, calibration experiments were performed using a split-Hopkinson bar, drop tower apparatus, and gas pressure chamber. Since the performance of the gauge at elevated temperatures is a concern, the change in resistance due to heating at atmospheric pressure was also investigated. Details of the various calibration arrangements and the results are discussed and compared to a calibration curve fit to previously published calibration data

  8. Study of SmS properties in the low pressure phase (black phase)

    International Nuclear Information System (INIS)

    Bordier, G.

    1986-01-01

    SmS was studied for the transition from low pressure phase (black phase) to high pressure phase with an intermediate valence. But the study of the black phase is very rich. The variations of electron transport properties with pressure at low temperature show a semi-metal phase located, in the pressure-temperature diagram in the black phase for pressure over 4 kbars, corresponding to the phase B'of the doping-temperature diagram. Electron spin resonance shows a lack of sulfur and nearby this defect a samarium ion, magnetically coupled with the matrix, presents a divalent trivalent transition. Resonance lines are broadened with temperature. Conductivity relaxations occur at low pressure and low temperature by trapping a conduction electron, by magnetic exchange giving a bounded magnetic polaron. The relaxation time at null magnetic field is activated. An approximation of trapping barrier and critical field corresponding the maximum magnetoresistance is given by a model [fr

  9. Associations of Urinary Caffeine and Caffeine Metabolites With Arterial Stiffness in a Large Population-Based Study.

    Science.gov (United States)

    Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Staessen, Jan A; Vogt, Bruno; Pechère-Bertschi, Antoinette; Burnier, Michel; Martin, Pierre-Yves; Eap, Chin B; Bochud, Murielle; Guessous, Idris

    2018-05-01

    To assess the influence of caffeine on arterial stiffness by exploring the association of urinary excretion of caffeine and its related metabolites with pulse pressure (PP) and pulse wave velocity (PWV). Families were randomly selected from the general population of 3 Swiss cities from November 25, 2009, through April 4, 2013. Pulse pressure was defined as the difference between the systolic and diastolic blood pressures obtained by 24-hour ambulatory monitoring. Carotid-femoral PWV was determined by applanation tonometry. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24-hour urine collections. Multivariate linear and logistic mixed models were used to explore the associations of quartiles of urinary caffeine and metabolite excretions with PP, high PP, and PWV. We included 863 participants with a mean ± SD age of 47.1±17.6 years, 24-hour PP of 41.9±9.2 mm Hg, and PWV of 8.0±2.3 m/s. Mean (SE) brachial PP decreased from 43.5 (0.5) to 40.5 (0.6) mm Hg from the lowest to the highest quartiles of 24-hour urinary caffeine excretion (P<.001). The odds ratio (95% CI) of high PP decreased linearly from 1.0 to 0.52 (0.31-0.89), 0.38 (0.22-0.65), and 0.31 (0.18-0.55) from the lowest to the highest quartile of 24-hour urinary caffeine excretion (P<.001). Mean (SE) PWV in the highest caffeine excretion quartile was significantly lower than in the lowest quartile (7.8 [0.1] vs 8.1 [0.1] m/s; P=.03). Similar associations were found for paraxanthine and theophylline, whereas no associations were found with theobromine. Urinary caffeine, paraxanthine, and theophylline excretions were associated with decreased parameters of arterial stiffness, suggesting a protective effect of caffeine intake beyond its blood pressure-lowering effect. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Artificial urinary sphincter implantation: an important component of complex surgery for urinary tract reconstruction in patients with refractory urinary incontinence.

    Science.gov (United States)

    Zhang, Fan; Liao, Limin

    2018-01-08

    We review our outcomes and experience of artificial urinary sphincter implantation for patients with refractory urinary incontinence from different causes. Between April 2002 and May 2017, a total of 32 patients (median age, 40.8 years) with urinary incontinence had undergone artificial urinary sphincter placement during urinary tract reconstruction. Eighteen patients (56.3%) were urethral injuries associated urinary incontinence, 9 (28.1%) had neurogenic urinary incontinence and 5 (15.6%) were post-prostatectomy incontinence. Necessary surgeries were conducted before artificial urinary sphincter placement as staged procedures, including urethral strictures incision, sphincterotomy, and augmentation cystoplasty. The mean follow-up time was 39 months. At the latest visit, 25 patients (78.1%) maintained the original artificial urinary sphincter. Four patients (12.5%) had artificial urinary sphincter revisions. Explantations were performed in three patients. Twenty-four patients were socially continent, leading to the overall success rate as 75%. The complication rate was 28.1%; including infections (n = 4), erosions (n = 4), and mechanical failure (n = 1). The impact of urinary incontinence on the quality of life measured by the visual analogue scale dropped from 7.0 ± 1.2 to 2.2 ± 1.5 (P urinary sphincter implantation in our center are unique, and the procedure is an effective treatment as a part of urinary tract reconstruction in complicated urinary incontinence cases with complex etiology.

  11. Heavy oil reservoir evaluation : performing an injection test using DST tools in the marine region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza, J.; Ruiz, P. [Halliburton, Mexico City (Mexico); Barrera, D.; Gutierrez, F. [Pemex, Mexico City (Mexico)

    2010-07-01

    This paper described an injection test conducted to evaluate heavy oil reserves in an offshore area of Mexico. The drill-stem testing (DST) evaluation used a fluid injection technique in order to eliminate the need for artificial lift and coiled tubing. A pressure transient analysis method was used to determine the static pressure of the reservoir, effective hydrocarbon permeability, and formation damage. Boundary effects were also characterized. The total volume of the fluid injection was determined by analyzing various reservoir parameters. The timing of the shut-in procedure was determined by characterizing rock characteristics and fluids within the reservoir. The mobility and diffusivity relationships between the zones with the injection fluids and reservoir fluids were used to defined sweep fluids. A productivity analysis was used to predict various production scenarios. DST tools were then used to conduct a pressure-production assessment. Case histories were used to demonstrate the method. The studies showed that the method provides a cost-effective means of providing high quality data for productivity analyses. 4 refs., 2 tabs., 15 figs.

  12. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  13. Psychogenic Urinary Retention in Children: A Case Report

    Directory of Open Access Journals (Sweden)

    Kong-Sang Wan

    2010-10-01

    Full Text Available Psychogenic urinary retention occurs relatively infrequently in children and is less common than in adults. The influence of psychogenic factors on voiding generally results in an irritative syndrome, but rarely in urinary retention. A definitive diagnosis is established by excluding other pathological conditions. Evaluation includes urine culture, renal echography, spine magnetic resonance imaging, voiding cysto-urethrography, intravenous pyelography, and uroflowmetry. Here, we report on a 6-year-old girl with a 1-month history of voiding difficulty. Urology studies, including urine culture, revealed Escherichia coli, which was not present in preadmission urine cultures. Renal ultrasound and radiological images showed no gross abnormalities or vesicoureteral reflux, but uroflowmetry showed a low flow rate with residual urine. The results of imaging studies and pediatric psychiatric consultation led to a diagnosis of psychogenic urinary retention combined with urinary tract infection. Urinary rehabilitation included intermittent catheterization, bladder training, and supportive psychotherapy, after which the patient recovered and was discharged.

  14. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  15. MODEL TESTING OF LOW PRESSURE HYDRAULIC TURBINE WITH HIGHER EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. K. Nedbalsky

    2007-01-01

    Full Text Available A design of low pressure turbine has been developed and it is covered by an invention patent and a useful model patent. Testing of the hydraulic turbine model has been carried out when it was installed on a vertical shaft. The efficiency was equal to 76–78 % that exceeds efficiency of the known low pressure blade turbines. 

  16. Energy R and D. Geothermal energy and underground reservoirs; R et D energie. Geothermie et reservoirs souterrains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Geothermal energy appears as a viable economic alternative among the different renewable energy sources. The French bureau of geological and mining researches (BRGM) is involved in several research and development programs in the domain of geothermal energy and underground reservoirs. This document presents the content of 5 programs: the deep hot dry rock system of Soultz-sous-Forets (construction and testing of the scientific pilot, modeling of the reservoir structure), the development of low and high enthalpy geothermal energy in the French West Indies, the comparison of the geothermal development success of Bouillante (Guadeloupe, French West Indies) with the check of the geothermal development of Nyssiros (Greece) and Pantelleria (Italy), the development of the high enthalpy geothermal potentialities of Reunion Island, and the underground storage of CO{sub 2} emissions in geologic formations (deep aquifers, geothermal reservoirs, abandoned mines or oil reservoirs). (J.S.)

  17. Urinary incontinence, pelvic floor dysfunction, exercise and sport.

    Science.gov (United States)

    Bø, Kari

    2004-01-01

    Urinary incontinence is defined as "the complaint of any involuntary leakage of urine" and is a common problem in the female population with prevalence rates varying between 10% and 55% in 15- to 64-year-old women. The most frequent form of urinary incontinence in women is stress urinary incontinence, defined as "involuntary leakage on effort or exertion, or on sneezing or coughing". The aim of this article is to systematically review the literature on urinary incontinence and participation in sport and fitness activities with a special emphasis on prevalence and treatment in female elite athletes. Stress urinary incontinence is a barrier to women's participation in sport and fitness activities and, therefore, it may be a threat to women's health, self-esteem and well-being. The prevalence during sports among young, nulliparous elite athletes varies between 0% (golf) and 80% (trampolinists). The highest prevalence is found in sports involving high impact activities such as gymnastics, track and field, and some ball games. A 'stiff' and strong pelvic floor positioned at an optimal level inside the pelvis may be a crucial factor in counteracting the increases in abdominal pressure occurring during high-impact activities. There are no randomised controlled trials or reports on the effect of any treatment for stress urinary incontinence in female elite athletes. However, strength training of the pelvic floor muscles has been shown to be effective in treating stress urinary incontinence in parous females in the general population. In randomised controlled trials, reported cure rates, defined as athletes than in other women. There is a need for more basic research on pelvic floor muscle function during physical activity and the effect of pelvic floor muscle training in female elite athletes.

  18. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Henriksen, J. E.; Tarnow, L.

    2013-01-01

    frequent adverse event leading to dose reduction in three cases and discontinuation in one, whereas gynaecomastia was not reported.Conclusion:Low dose spironolactone exerts significant BP and urinary albumin creatinine ratio lowering effects in high-risk patients with resistant hypertension and type 2...

  19. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  20. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  1. Prediction of Geomechanical Properties from Thermal Conductivity of Low-Permeable Reservoirs

    Science.gov (United States)

    Chekhonin, Evgeny; Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Ovcharenko, Yury; Zhukov, Vladislav; Martemyanov, Andrey

    2016-04-01

    A key to assessing a sedimentary basin's hydrocarbon prospect is correct reconstruction of thermal and structural evolution. It is impossible without adequate theory and reliable input data including among other factors thermal and geomechanical rock properties. Both these factors are also important in geothermal reservoirs evaluation and carbon sequestration problem. Geomechanical parameters are usually estimated from sonic logging and rare laboratory measurements, but sometimes it is not possible technically (low quality of the acoustic signal, inappropriate borehole and mud conditions, low core quality). No wonder that there are attempts to correlate the thermal and geomechanical properties of rock, but no one before did it with large amount of high quality thermal conductivity data. Coupling results of sonic logging and non-destructive non-contact thermal core logging opens wide perspectives for studying a relationship between the thermal and geomechanical properties. More than 150 m of full size cores have been measured at core storage with optical scanning technique. Along with results of sonic logging performed with Sonic Scanner in different wells drilled in low permeable formations in West Siberia (Russia) it provided us with unique data set. It was established a strong correlation between components of thermal conductivity (measured perpendicular and parallel to bedding) and compressional and shear acoustic velocities in Bazhen formation. As a result, prediction of geomechanical properties via thermal conductivity data becomes possible, corresponding results was demonstrated. The work was supported by the Russian Ministry of Education and Science, project No. RFMEFI58114X0008.

  2. Considerations in the modern management of stress urinary incontinence resulting from intrinsic sphincter deficiency.

    Science.gov (United States)

    Hillary, Christopher James; Osman, Nadir; Chapple, Christopher

    2015-09-01

    Intrinsic sphincter deficiency (ISD) is a common cause of stress urinary incontinence and is associated with more severe symptoms, often being associated with failed previous surgery. Due to the impaired sphincteric function, alternative surgical approaches are often required. The purpose of this review is to appraise the contemporary literature on the diagnosis and management of ISD. A PubMed search was performed to identify articles published between 1990 and 2014 using the following terms: ISD, stress urinary incontinence and type III stress urinary incontinence. Publications were screened for relevance, and full manuscripts were retrieved. Most studies base the diagnosis of ISD upon urodynamic appearances using recognized criteria (Valsalva leak point pressure <60 cm H2O or a maximum urethral closure pressure <20 cm H2O) in addition to clinical features. A range of non-surgical and surgical treatment options are available for the patient. Pubovaginal slings are more effective than retropubic colposuspensions with outcomes comparable to those reported with midurethral slings. The artificial urinary sphincter provides long-term cure rates; however, it is associated with specific morbidity including device erosion, mechanical failure and revision. The benefits of bulking agents, however, are not sustained beyond 1 year. There are few randomized controlled trials that compare accepted treatments specifically for patients with ISD. The lack of standardization in the definition and diagnostic criteria used limits inter-study comparisons. An assessment of urethral pressure profile when combined with the clinical features may help predict outcomes of surgical intervention.

  3. Scoping Summary Report: Development of Lower Basin Shortage Guidelines and Coordinated Management Strategies for Lake Powell and Lake Mead, Particularly Under Low Reservoir Conditions

    OpenAIRE

    U.S. Department of the Interior, Bureau of Reclamation

    2006-01-01

    The Bureau of Reclamation (Reclamation) acting on behalf of the Secretary of the Department of the Interior (Secretary) proposes to take action to adopt specific Colorado River Lower Basin shortage guidelines and coordinated reservoir management strategies to address operations of Lake Powell and Lake Mead, particularly under low reservoir conditions. This proposed Action will provide a greater degree of certainty to all water users and managers in the Colorado River Basin by providing more d...

  4. Comparison of an impec and a semi-implicit formulation for compositional reservoir simulation

    Directory of Open Access Journals (Sweden)

    B. R. B. Fernandes

    2014-12-01

    Full Text Available In compositional reservoir simulation, a set of non-linear partial differential equations must be solved. In this work, two numerical formulations are compared. The first formulation is based on an implicit pressure and explicit composition (IMPEC procedure, and the second formulation uses an implicit pressure and implicit saturation (IMPSAT. The main goal of this work is to compare the formulations in terms of computational times for solving 2D and 3D compositional reservoir simulation case studies. In the comparison, both UDS (Upwind difference scheme and third order TVD schemes were used. The computational results for the aforementioned formulations and the two interpolation functions are presented for several case studies involving homogeneous and heterogeneous reservoirs. Based on our comparison of IMPEC and IMPSAT formulations using several case studies presented in this work, the IMPSAT formulation was faster than the IMPEC formulation.

  5. Endoluminal isoproterenol reduces renal pelvic pressure during semirigid ureterorenoscopy

    DEFF Research Database (Denmark)

    Jakobsen, Jørn S; Jung, Helene U; Gramsbergen, Jan B

    2009-01-01

    OBJECTIVE To investigate the effects on the pressure-flow relation of renal pelvic pressure during semirigid ureterorenoscopy and endoluminal perfusion of isoproterenol (ISO) 0.1 microg/mL, with emphasis on local effects and cardiovascular side-effects, as topically administered ISO effectively...... and dose-dependently causes relaxation of the upper urinary tract in pigs with no concomitant cardiovascular side-effects. MATERIALS AND METHODS In anaesthetized female pigs (60 kg), 16 macroscopically normal upper urinary tract systems were subjected to ureterorenoscopy. Via a subcostal incision a 6-F...... catheter was placed in the renal pelvis for pressure measurements, and a semirigid ureteroscope (7.8 F) was inserted retrogradely in the renal pelvis, through which the pelvis was perfused. The blood pressure and heart rate were recorded. The increase in renal pelvic pressure was examined with increasing...

  6. Urinary bisphenol A levels in Turkish girls with premature thelarche.

    Science.gov (United States)

    Durmaz, E; Asci, A; Erkekoglu, P; Balcı, A; Bircan, I; Koçer-Gumusel, B

    2018-01-01

    There is a growing concern over the timing of pubertal breast development and its possible association with exposure to endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA). BPA is abundantly used to harden plastics. The aim of this study was to investigate the relation between premature thelarche (PT) and BPA by comparing the urinary BPA levels of PT girls with those of healthy subjects. Twenty-five newly diagnosed nonobese PT subjects (aged 4-8 years) who were admitted to the Pediatric Endocrinology Department at Akdeniz University were recruited. The control group composed of 25 age-matched girls without PT and other endocrine disorders. Urinary BPA levels were measured by high pressure liquid chromatography. The median urinary concentrations of BPA were found to be significantly higher in the PT group compared to the healthy control group (3.2 vs. 1.62 μg/g creatinine, p < 0.05). We observed a weak positive correlation between uterus volume and urinary BPA levels. There was a weak correlation between estradiol and urinary BPA levels ( r = 0.166; p = 0.37); and luteinizing hormone and urinary BPA levels ( r = 0.291; p = 0.08) of PT girls. Our results suggest that exposure to BPA might be one of the underlying factors of early breast development in prepubertal girls and EDCs may be considered as one of the etiological factors in the development of PT.

  7. Pressure and pressure derivative analysis for vertical gas and oil wells in stress sensitive homogeneous and naturally fractured formations without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Cantillo, Jose Humberto; Montealegre M, Matilde

    2007-01-01

    Currently, rock mechanics plays an important role in the oil industry. Effects of reservoir subsidence, compaction and dilation are being taken into account in modern reservoir management of complex systems. On the other hand, pressure well tests run in stress sensitive formations ought to be interpreted with non conventional techniques. During the last three decades, several studies relating transient pressure analysis for characterization of stress sensitive reservoirs have been introduced in the literature. Some of them deal with type curves and/or automated history matching. However, due to the nature of the problem, it does not exist a definitive study focused on the adequate characterization of reservoirs which permeability changes as fluid withdrawal advances; in this paper, the permeability modulus concept introduced by Pedroso (1986) is token as the starting basis. A great number of type curves were generated to study the behavior of the above mentioned formations under stress influence. It was found that permeability modulus, therefore permeability changes, can be correlated with the slope of the pressure derivative trend during the radial flow regime when the reservoir suffers compaction. It is also worth to mention that the time of which the minimum characteristic point of a naturally fractured formation (or the inflection point of o semi-log plot) found on the pressure derivative plot is practically the same for formations without stress influence. This contributes to the extension of the TDS technique, Tiab (1993), so a new methodology to characterize this kind of reservoirs is proposed here. This was verified by the solution of synthetic problems

  8. Optimisation of Oil Production in Two – Phase Flow Reservoir Using Simultaneous Method and Interior Point Optimiser

    DEFF Research Database (Denmark)

    Lerch, Dariusz Michal; Völcker, Carsten; Capolei, Andrea

    2012-01-01

    in the reservoir. A promising decrease of these remained resources can be provided by smart wells applying water injections to sustain satisfactory pressure level in the reservoir throughout the whole process of oil production. Basically to enhance secondary recovery of the remaining oil after drilling, water...... is injected at the injection wells of the down-hole pipes. This sustains the pressure in the reservoir and drives oil towards production wells. There are however, many factors contributing to the poor conventional secondary recovery methods e.g. strong surface tension, heterogeneity of the porous rock...... fields, or closed loop optimisation, can be used for optimising the reservoir performance in terms of net present value of oil recovery or another economic objective. In order to solve an optimal control problem we use a direct collocation method where we translate a continuous problem into a discrete...

  9. Rate transient analysis for homogeneous and heterogeneous gas reservoirs using the TDS technique

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Sanchez, Jairo Andres; Cantillo, Jose Humberto

    2008-01-01

    In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as decline curve analysis under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the fingerprint characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology

  10. Signal processing in urodynamics: towards high definition urethral pressure profilometry.

    Science.gov (United States)

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-03-22

    Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with

  11. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  12. Urinary Tract Infection (UTI)

    Science.gov (United States)

    ... Home A-Z Health Topics Urinary tract infections Urinary tract infections > A-Z Health Topics Urinary tract infections (PDF, ... Embed Subscribe To receive Publications email updates Submit Urinary tract infections Urinary tract infections (UTIs) are most often caused ...

  13. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  14. Applicability and optimization of SAGD in eastern Venezuela reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pina R, J.A.; Bashbush, J.L.; Fernandez, E.A. [Schlumberger, Caracas (Venezuela)

    2008-10-15

    Steam-assisted gravity drainage (SAGD) is one of the most effective enhanced oil recovery (EOR) methods. In Venezuela, a significant amount of heavy oil in place has been mapped, but limited areas have been developed. Suitable EOR methods need to be applied to extend the productive life of these reservoirs and increase their recovery factors. This paper presented and described an evaluation and stepwise optimization process for a steam-assisted gravity drainage (SAGD) project using a representative sector model from a field with fluid and reservoir characteristics from an eastern Venezuela formation. The purpose of the study was to understand the impact of key parameters in the process specific to the selected area and to understand the effects on the recovery factor in these reservoirs, which have previously produced with primary recovery mechanisms. The paper discussed a sensitivity analysis that was performed using thermal simulation. Thermal simulation and pressure-volume-temperature (PVT) analysis were described. Parameters that were analyzed included vertical well spacing, injection steam rate, well flowing pressure, and horizontal length of the well pair. The paper also presented a brief analysis of the effect on oil recovery from the angle of dip in the reservoir and the orientation of the well pair with regard to the direction of dip. A comparison between two- and three- pseudocomponent model results was also provided. The authors recommended that economic analyses should accompany the final optimization sequence, to incorporate financial and technical considerations for the selection design of the SAGD pilot. 7 refs., 12 tabs., 18 figs.

  15. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  16. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  17. The urinary microbiome and its contribution to lower urinary tract symptoms; ICI-RS 2015.

    Science.gov (United States)

    Drake, Marcus J; Morris, Nicola; Apostolidis, Apostolos; Rahnama'i, Mohammad S; Marchesi, Julian R

    2017-04-01

    The microbiome is the term used for the symbiotic microbial colonisation of healthy organs. Studies have found bacterial identifiers within voided urine which is apparently sterile on conventional laboratory culture, and accordingly there may be health and disease implications. The International Consultation on Incontinence Research Society (ICI-RS) established a literature review and expert consensus discussion focussed on the increasing awareness of the urinary microbiome, and potential research priorities. The consensus considered the discrepancy between findings of conventional clinical microbiology methods, which generally rely on culture parameters predisposed towards certain "expected" organisms. Discrepancy between selective culture and RNA sequencing to study species-specific 16S ribosomal RNA is increasingly clear, and highlights the possibility that protective or harmful bacteria may be overlooked where microbiological methods are selective. There are now strong signals of the existence of a "core" urinary microbiome for the human urinary tract, particularly emerging with ageing. The consensus reviewed the potential relationship between a patient's microbiome and lower urinary tract dysfunction, whether low-count bacteriuria may be clinically significant and mechanisms which could associate micro-organisms with lower urinary tract symptoms. Key research priorities identified include the need to establish the scope of microbiome across the range of normality and clinical presentations, and gain consensus on testing protocols. Proteomics to study enzymatic and other functions may be necessary, since different bacteria may have overlapping phenotype. Longitudinal studies into risk factors for exposure, cumulative risk, and emergence of disease need to undertaken. Neurourol. Urodynam. 36:850-853, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Fiscal 1992 report on geothermal development promotion survey (Development of geothermal reservoir assessment technique); 1989 nendo chinetsu kaihatsu sokushin chosa (Chinetsu choryusou hyoka shuho kaihatsu hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Efforts were exerted in fiscal 1984-1992 to develop techniques for appropriately assessing a geothermal reservoir for its productivity for duly predicting the optimum scale of power generation to be provided thereby. In the development of simulators, geothermal reservoir simulators (SING-1, -2, -3) and a geothermal well 2-phase flow simulator (WENG) were developed. As for the treatment of fractures in a reservoir and of substances soluble in the hot water, the methods for dealing with them were improved and augmented. In a model field study in a Hokkaido forest, reservoir pressure continuous observation and monitoring, temperature logging and pressure logging for existing wells, and geothermal fluid chemical analysis were performed for reservoir analysis, in which both natural state simulation and history mapping excellently reproduced the temperature and pressure distributions. The temperature and pressure distributions in a natural state simulation, out of the results of an analysis of the Oguni district model field, Kumamoto Prefecture, agreed not only with those in the natural state but also with the pressure transition data in the observation well. (NEDO)

  19. Low Pressure Circuit Control and adjust System Test

    International Nuclear Information System (INIS)

    Rubio, R.O; Brendstrup, C.J; Ocampo, A.C

    2000-01-01

    The hydraulic mechanism (MSAC) is a system that will be employed in the movement of the control rods of the CAREM-25 reactor.In this report, the experimental work on a prototype of MSAC in a low pressure circuit is presented: also the methodology and conclusions.Basic thermalhydraulic data from the MSAC was obtained, and the most relevant control parameters were determined.The response of the mechanism to changes in the control parameters was also evaluated. In conclusion, the response of the MSAC fulfills the aspects of reliability and repetitive movement with water flow pulses control, in the low pressure circuit at the Laboratorio de Mecanica, Materiales y Mediciones of INVAP S.E

  20. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  1. Vaginal position and length in the bitch: relationship to spaying and urinary incontinence

    International Nuclear Information System (INIS)

    Gregory, S.P.; Holt, P.E.; Parkinson, T.J.; Wathes, C.M.

    1999-01-01

    A study was undertaken to determine if the vagina might be a suitable site for the measurement of intra-abdominal pressure during cystometry in the bitch, The position of the cranial vagina and vaginal length were measured radiographically and the effects of spaying and urinary Incontinence on these variables were evaluated in 30 continent and 30 incontinent bitches. The study used retrograde vaginourethrograms which had been obtained from animals used in a previous study, The cranial vagina was intra-abdominal on 36 of the vaginourethrograms, being least commonly intra-abdominal in incontinent bitches (11/30), Vaginal position was related linearly to vaginal length and continence status (P<0.01), while its length was related to bodyweight(P<0.01). Allowing for bodyweight, neutered animals had significantly shorter vaginas than entire bitches (P<0.01). Measurement of intra-abdominal pressure with concomitant measurement of intravesical pressure is essential if accurate assessment of detrusor pressure is to be determined during cystometry, The vagina is unlikely to be a useful location from which to measure intra-abdominal pressure since any pressure-measuring catheter inserted into it may fall outside the abdominal pressure zone. This is particularly true of neutered and/or incontinent bitches, the groups in which urodynamic investigations of urinary incontinence are most frequently indicated

  2. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  3. Design and implementation of a caustic flooding EOR pilot at Court Bakken heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Chung, B.; Leung, L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Inc., Calgary, AB (Canada)

    2008-10-15

    Successful waterflooding has been ongoing since 1988 at the Court Bakken heavy oil field in west central Saskatchewan. There are currently 20 injectors and 28 active oil producers in the Court main unit which is owned by Nexen and Pengrowth. The Court pool has an estimated 103.8 mmbbl of original oil in place (OOIP), of which 24 per cent has been successfully recovered after 20 years of waterflooding. A high-level enhanced oil recovery (EOR) screening study was conducted to evaluate other EOR technologies for a heavy oil reservoir of this viscosity range (17 degrees API). Laboratory studies showed that caustic flooding may enhance oil recovery after waterflooding at the Court Bakken heavy oil pool. A single well test demonstrated that caustic injection effectively reduced residual oil saturation. A sector model reservoir simulation revealed that caustic flood could achieve 9 per cent incremental oil recovery in the pilot area. Following the promising laboratory results, a successful caustic flood pilot was implemented at Court heavy oil pool where the major challenges encountered were low reservoir pressure and water channeling. 6 refs., 2 tabs., 6 figs.

  4. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  5. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage

    Science.gov (United States)

    Bien, Justyna; Sokolova, Olga; Bozko, Przemyslaw

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs. PMID:22506110

  6. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    projects are prioritised: Develop technology for frontier areas like ultra-deep water areas and/or harsh environment, sub-salt/sub-basalt exploration imaging and reservoir characterization; Address risk factors and data integration challenges in mature areas and to develop technology and know-how for making additional resources that can be tied back to exiting infrastructures; Develop a better understanding of petroleum systems and plays on a semi-regional scale by integrating basin modelling and reservoir characterization; Increase confidence in hydrocarbon volumes and subsurface geometries; Reservoir characterisation of low permeable reservoirs; Establish a consortium that will focus on integration of different disciplines ranging from seismic, rock physics, sequence stratigraphy and basin modelling. Improving the communication and exchange of results generated by these different methods; Develop and implement a higher education strategy for both exploration and reservoir characterization disciplines within the Norwegian academia to provide relevant skills and expertise within Norway and worldwide. Part of this will be a further development of the play data base available and NPD. (Author)

  7. Method of approximate electric modeling of oil reservoir operation with formation of a gas cap during mixed exploitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Bragin, V A; Lyadkin, V Ya

    1969-01-01

    A potentiometric model is used to simulate the behavior of a reservoir in which pressure was dropped rapidly and solution gas migrated to the top of the structure forming a gas cap. Behavior of the system was represented by a differential equation, which was solved by an electrointegrator. The potentiometric model was found to closely represent past history of the reservoir, and to predict its future behavior. When this method is used in reservoirs where large pressure drops occur, repeated determination should be made at various time intervals, so that changes in relative permeability are taken into account.

  8. Source Mechanisms of Low Frequency Seismicity in a Hydraulic Fracturing Context

    Science.gov (United States)

    Zecevic, M.; Daniel, G.; Hubans, F.; Gouedard, P.

    2014-12-01

    In recent years, long-period long-duration (LPLD) events have been observed during hydraulic fracturing of hydrocarbon reservoirs (Das & Zoback, 2013). LPLDs are low-amplitude signals lasting from tens of seconds to minutes. Their source mechanisms are not fully understood. However, as they are remarkably similar in character to tectonic tremors it has been suggested that they may also have comparable source models. Current models suggest that a tectonic tremor consists of numerous slow-slip earthquakes superposed on each other to form continuous waveforms (Shelley et al., 2007). These slow-slip earthquakes are thought to be a result of shear slip on faults close to failure with low confining pressure, most likely due to the presence of fluid with pore pressures close to lithostatic pressures (Peng & Gomberg, 2010). This study aims to further understand the source mechanism of LPLDs. A hydraulic fracturing dataset containing thousands of located microseismic earthquakes (MEQs) and numerous LPLDs is presented. The MEQs are located around the injection stages whereas the LPLDs are clustered in a limited region within the reservoir. This clustering suggests that LPLDs can only be generated where the conditions in the reservoir are favorable. These results correspond with the possibility that LPLDs are manifestations of slow-slip, with the source locations confined by variations in the mechanical properties of the reservoir. To test this hypothesis a further understanding of the mechanisms of LPLDs and the stress field in which they occur is needed. However, calculating focal mechanisms for LPLDs is difficult due to their emergent onset and lack of clear phases. Consequently, LPLDs must be put into context with the observed MEQs. We will present the spatial distribution of the focal mechanisms of the MEQs and analyze our findings with respect to the occurrence of the LPLD events.

  9. Autonomic neuropathy in nondiabetic offspring of type 2 diabetic subjects is associated with urinary albumin excretion rate and 24-h ambulatory blood pressure: the Fredericia Study

    DEFF Research Database (Denmark)

    Foss, Anne-Catherine; Vestbo, Else; Frøland, Anders

    2001-01-01

    The aim of this study was to examine the impact of parental type 2 diabetes on the autonomic nervous system and to determine whether autonomic neuropathy is present and associated with changes in 24-h ambulatory blood pressure (AMBP) and urinary albumin excretion rate (UAER) in nondiabetic subjects......, Redmond, WA), and UAER was determined through three overnight urine samples. The subjects with parental type 2 diabetes had significantly lower heart rate variation in all three bedside tests (P

  10. Gradients in Catostomid assemblages along a reservoir cascade

    Science.gov (United States)

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  11. Diagnosis and clinical management of urinary tract infection

    OpenAIRE

    Heilberg, Ita Pfeferman; Schor, Nestor

    2003-01-01

    A review about recent aspects on diagnosis and clinical management of urinary tract infection (UTI) is presented. There is a wide variation in clinical presentation of UTI which include different forms as cystitis, pyelonephritis, urethral syndrome and the clinical relevance of asymptomatic bacteriuria and low-count bacteriuria that must be distinguished from contamination. Pathogenetic aspects concerning bacterial virulence as well as host factors in susceptibility to UTI as urinary tract ob...

  12. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  13. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  14. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  15. Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Annett Juretzko

    2017-04-01

    Full Text Available Background/Aims: Several studies sought to identify new biomarkers for chronic kidney disease (CKD. As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR. We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. Methods: We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC curves, spearman correlation coefficients and linear regression models were calculated. Results: Urinary angiotensinogen [2,511 (196-31,909 vs. 18.6 (8.3-44.0 pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155 vs. 0.069 (0.045-0.148 pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01 and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01 were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. Conclusion: Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may

  16. Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease.

    Science.gov (United States)

    Juretzko, Annett; Steinbach, Antje; Hannemann, Anke; Endlich, Karlhans; Endlich, Nicole; Friedrich, Nele; Lendeckel, Uwe; Stracke, Sylvia; Rettig, Rainer

    2017-01-01

    Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated. Urinary angiotensinogen [2,511 (196-31,909) vs. 18.6 (8.3-44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155) vs. 0.069 (0.045-0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by

  17. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... recovery are investigated. Recovery factors are evaluated for several different model setups and we find that storing 90 °C water at 2500 m depth is capable of reproducing, on average 67% of the stored energy. In addition, ambient reservoir temperature of 75 °C is slightly elevated leading to increased...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  18. A comparison of urinary tract pathology and morbidity in adult populations from endemic and non-endemic zones for urinary schistosomiasis on Unguja Island, Zanzibar

    Directory of Open Access Journals (Sweden)

    Khamis Simba

    2009-11-01

    Full Text Available Abstract Background Renal tract involvement is implicated in both early and late schistosomiasis leading to increased disease burden. Despite there being good estimates of disease burden due to renal tract disease secondary to schistosomiasis at the global level, it is often difficult to translate these estimates into local communities. The aim of this study was to assess the burden of urinary tract pathology and morbidity due to schistosomiasis in Zanzibar and identify reliable clinical predictors of schistosomiasis associated renal disease. Methods A cross-sectional comparison of Ungujan men and women living within either high or low endemic areas for urinary schistosomiasis was conducted. Using urine analysis with reagent strips, parasitological egg counts, portable ultrasonography and a qualitative case-history questionnaire. Data analysis used single and multiple predictor variable logistic regression. Results One hundred and sixty people were examined in the high endemic area (63% women and 37% men, and 101 people in the low endemic area (61% women and 39% men. In the high endemic area, egg-patent schistosomiasis and urinary tract pathology were much more common (p = 1 × 10-3, 8 × 10-6, respectively in comparison with the low endemic area. Self-reported frothy urine, self-reported haematuria, dysuria and urgency to urinate were associated with urinary tract pathology (p = 1.8 × 10-2, p = 1.1 × 10-4, p = 1.3 × 10-6, p = 1.1 × 10-7, respectively as assessed by ultrasonography. In a multi-variable logistic regression model, self-reporting of schistosomiasis in the past year, self-reporting of urgency to urinate and having an egg-positive urine sample were all independently associated with detectable urinary tract abnormality, consistent with schistosomiasis-specific disease. Having two or more of these features was moderately sensitive (70% as a predictor for urinary tract abnormality with high specificity (92%. Conclusion Having two

  19. Reduction of Urinary Tract Infections Caused By Urethral Catheter through the Implementation of Hydrophobic Coating and Geometrical Modifications

    Science.gov (United States)

    Gare, Aya

    2013-11-01

    Catheter-Associated Urinary Tract Infection (CAUTI) is the most common nosocomial infection in the U.S. healthcare system. The obstruction of urine caused by confined air bubbles result in the development of urinary back-flow and stagnation, wherein microbial pathogens could multiply rapidly and colonization within catheters become commonplace. Infections can be prevented by aseptic insertion and the maintenance of a closed drainage system, keeping high infection control standards, and preventing back-flow from the catheter bag. The goal of this study is to assess the effectiveness of a simple, low cost, modification that may be implemented into current catheter designs to reduce the incidence of CAUTI. Using the principle of transmission of fluid-pressure and the Young-Laplace equation for capillary pressure difference, this research focuses on improving the liquid flow in the presence of confined bubbles to prevent stagnation and reflux of bacteria-ridden urine into the body. Preliminary experiments are performed on a variety of tubes with hydrophobic-coating the interior, as well as geometrically modifying the tubes. Proof-of-Concept Prototype tubes are used to represent the drainage system of the catheter structure.

  20. [Urinary incontinence in degenerative spinal disease].

    Science.gov (United States)

    De Riggo, J; Benčo, M; Kolarovszki, B; Lupták, J; Svihra, J

    2011-01-01

    degenerative disease were regarded as approaching statistical significance (p = 0.09). The surgical treatment resulted in incontinence control in 15 (55.5 %) affected patients. A comparison of the factors leading to the development of urinary incontinence in degenerative spinal disease and those associated with the development of incontinence in the general population suggests that the aetiology in each case is different. The relationship between low back pain and urinary incontinence remains unknown. Degenerative spinal disease can result in acute or chronic urinary incontinence. Factors associated with its development include gender, BMI, radicular weakness and the type of degenerative disease. Surgical treatment improved or eliminated the symptoms of urinary incontinence in more than half of the patients affected.

  1. Urinary catheter - infants

    Science.gov (United States)

    Bladder catheter - infants; Foley catheter - infants; Urinary catheter - neonatal ... A urinary catheter is a small, soft tube placed in the bladder. This article addresses urinary catheters in babies. WHY IS ...

  2. Production of natural gas from methane hydrate by a constant downhole pressure well

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

    2007-01-01

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

  3. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  4. Rock music : a living legend of simulation modelling solves a reservoir problem by playing a different tune

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2008-07-15

    Tight sand gas plays are low permeability reservoirs that have contributed an output of 5.7 trillion cubic feet of natural gas per year in the United States alone. Anadarko Petroleum Corporation has significant production from thousands of wells in Texas, Colorado, Wyoming and Utah. Hydraulic fracturing is the key to successful tight sand production. Production engineers use modelling software to calculate a well stimulation program in which large volumes of water are forced under high pressure in the reservoir, fracturing the rock and creating high permeability conduits for the natural gas to escape. Reservoir engineering researchers at the University of Calgary, led by world expert Tony Settari, have improved traditional software modelling of petroleum reservoirs by combining fracture analysis with geomechanical processes. This expertise has been a valuable asset to Anadarko, as the dynamic aspect can have a significant effect on the reservoir as it is being drilled. The challenges facing reservoir simulation is the high computing time needed for analyzing fluid production based on permeability, porosity, gas and fluid properties along with geomechanical analysis. Another challenge has been acquiring high quality field data. Using Anadarko's field data, the University of Calgary researchers found that water fracturing creates vertical primary fractures, and in some cases secondary fractures which enhance permeability. However, secondary fracturing is not permanent in all wells. The newly coupled geomechanical model makes it possible to model fracture growth more accurately. The Society of Petroleum Engineers recently awarded Settari with an award for distinguished achievement in improving the technique and practice of finding and producing petroleum. 1 fig.

  5. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  6. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  7. Improving recovery efficiency of water-drive channel sandstone reservoir by drilling wells laterally

    Energy Technology Data Exchange (ETDEWEB)

    Zhiguo, F.; Quinglong, D.; Pingshi, Z.; Bingyu, J.; Weigang, L. [Research Institute of Exploration and Development, Daqing (China)

    1998-12-31

    Example of drilling a horizontal well in reservoir rock of only four meter thick by using existing casing pipe of low efficiency vertical wells to induce production in the top remaining reservoir is described. The experience shows that drilling horizontal wells laterally in thin bodies of sandstone reservoirs and improve their productivity is a feasible proposition. Productivity will still be low, but it can be improved by well stimulation. 3 refs., 3 figs.

  8. Parallel Numerical Simulations of Water Reservoirs

    Science.gov (United States)

    Torres, Pedro; Mangiavacchi, Norberto

    2010-11-01

    The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.

  9. Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012

    Directory of Open Access Journals (Sweden)

    Ivy Shiue

    2014-06-01

    Full Text Available Link between environmental chemicals and human health has emerged but not been completely examined in risk factors. Therefore, it was aimed to study the relationships of different sets of urinary environmental chemical concentrations and risk of high blood pressure (BP in a national, population-based study. Data were retrieved from United States National Health and Nutrition Examination Surveys, 2011–2012 including demographics, BP readings, and urinary environmental chemical concentrations. Analyses included chi-square test, t-test and survey-weighted logistic regression modeling. After full adjustment (adjusting for urinary creatinine, age, sex, ethnicity, and body mass index, urinary cesium (OR 1.56, 95%CI 1.11–2.20, P = 0.014, molybden (OR 1.46, 95%CI 1.06–2.01, P = 0.023, manganese (OR 1.42, 95%CI 1.09–1.86, P = 0.012, lead (OR 1.58, 95%CI 1.28–1.96, P < 0.001, tin (OR 1.44, 95%CI 1.25–1.66, P < 0.001, antimony (OR 1.39, 95%CI 1.10–1.77, P = 0.010, and tungsten (OR 1.49, 95%CI 1.25–1.77, P < 0.001 concentrations were observed to be associated with high BP. People with higher urinary mono-2-ethyl-5-carboxypentyl phthalate (OR 1.33, 95%CI 1.00–1.62, P = 0.006, mono-n-butyl phthalate (OR 1.35, 95%CI 1.13–1.62, P = 0.002, mono-2-ethyl-5-hydroxyhexyl (OR 1.25, 95%CI 1.05–1.49, P = 0.014, mono-n-methyl phthalate (OR 1.26, 95%CI 1.07–1.48, P = 0.007, mono-2-ethyl-5-oxohexyl (OR 1.25, 95%CI 1.07–1.48, P = 0.009, and monobenzyl phthalate (OR 1.40, 95%CI 1.15–1.69, P = 0.002 tended to have high BP as well. However, there are no clear associations between environmental parabens and high BP, nor between pesticides and high BP. In addition, trimethylarsine oxide (OR 2.47, 95%CI 1.27–4.81, P = 0.011 and dimethylarsonic acid concentrations (OR 1.42, 95%CI 1.12–1.79, P = 0.006 were seen to be associated with high BP. In sum, urinary heavy metal, phthalate, and arsenic concentrations were associated with high BP, although the

  10. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  11. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure

    Science.gov (United States)

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10-2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function.

  12. Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, S.A.; Gluyas, J.G.; Oldenburg, C.M.; Tsang, C.-F.

    2010-05-21

    Mathematical tools are needed to screen out sites where Joule-Thomson cooling is a prohibitive factor for CO{sub 2} geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO{sub 2} injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s{sup -1} (0.1 MT yr{sup -1}) into moderately warm (>40 C) and permeable formations (>10{sup -14} m{sup 2} (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).

  13. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  14. Urinary lithiasis and urinary tract malformations in children: A retrospective study of 34 cases

    Directory of Open Access Journals (Sweden)

    Jamila Chahed

    2011-01-01

    Full Text Available Background: Although the association of urinary lithiasis and urinary tract malformation is not rare, their management poses challenges. The aim of this study was to evaluate the relationship between urolithiasis and malformations of the urinary system. There were 34 patients (19 males and 15 females with a mean age of 4.8 years (range, 2 months to 14 years. All patients had urinary lithiasis with a urinary tract malformation. Abdominal pain was the most frequent clinical symptom (38%. Urinary infection was found in 7 patients (21% and macroscopic haematuria was present in 10 patients (29%. The most frequent urinary tract malformations were megaureter (8 cases, uretero-pelvic junction obstruction (7 cases and vesico-ureteric reflux (8 cases, but its malformative origin could not be confirmed. Treatment consisted of lithiasis extraction in 32 cases associated with specific treatment of the uropathy in 27 cases. Postoperative outcome was uneventful in all cases. In fact, urinary lithiasis and urinary tract malformation association is not rare. Indeed, 9-34% of urinary lithiasis are noted to be associated with urinary tract malformation. Positive diagnosis relies specifically on kidney ultrasound, intravenous urography, and urethrocystography. Treatment depends on the type of urinary tract malformation, localisation and size of the urinary lithiasis. Conclusion: In conclusion, urinary lithiasis and urinary tract malformation association is a frequent eventuality. Surgical intervention is the usual mode of treatment.

  15. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  16. The late occurrence of urinary tract damage in patients successfully treated by radiotherapy for cervical carcinoma

    International Nuclear Information System (INIS)

    Zoubek, J.; McGuire, E.J.; Noll, F.; DeLancey, J.O.

    1989-01-01

    Urinary tract complications apparently resulting from radiation therapy for carcinoma of the cervix can occur as long as 30 years after cessation of such treatment. Patients generally present with urinary incontinence and often are treated by standard operative methods that usually are unsuccessful. Incontinence is related to bladder fibrosis, urethral nonfunction and vesicovaginal fistuLa formation, and may be accompanied by bilateral ureteral obstruction. Of 11 patients with late complications of radiotherapy 4 had upper tract deterioration, 4 had vesicovaginal fistulas, 5 had an incompetent urethra aNd 9 had a fibrotic, noncompliant areflexive bladder. Treatment was aimed at providing adequate low pressure storage capacity and consisted of augmentation cystoplasty in 5 patients, repair of the fistula in 4 and correction of urethral dysfunction in 5. Women who complain of incontinence and/or irritable bladder symptoms with a history of radiotherapy for cervical carcinoma should be evaluated for fistuLa formation, urethral incompetence, and detrusor areflexia and fibrosis before treatment is done

  17. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  18. Predicting permeability of low enthalpy geothermal reservoirs: A case study from the Upper Triassic − Lower Jurassic Gassum Formation, Norwegian–Danish Basin

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    2017-01-01

    This paper aims at improving the predictability of permeability in low enthalpy geothermal reser-voirs by investigating the effect of diagenesis on sandstone permeability. Applying the best fittedporosity–permeability trend lines, obtained from conventional core analysis, to log-interpreted poros...

  19. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  20. Decrease in Urinary Creatinine Excretion in Early Stage Chronic Kidney Disease

    Science.gov (United States)

    Tynkevich, Elena; Flamant, Martin; Haymann, Jean-Philippe; Metzger, Marie; Thervet, Eric; Boffa, Jean-Jacques; Vrtovsnik, François; Houillier, Pascal; Froissart, Marc; Stengel, Bénédicte

    2014-01-01

    Background Little is known about muscle mass loss in early stage chronic kidney disease (CKD). We used 24-hour urinary creatinine excretion rate to assess determinants of muscle mass and its evolution with kidney function decline. We also described the range of urinary creatinine concentration in this population. Methods We included 1072 men and 537 women with non-dialysis CKD stages 1 to 5, all of them with repeated measurements of glomerular filtration rate (mGFR) by 51Cr-EDTA renal clearance and several nutritional markers. In those with stage 1 to 4 at baseline, we used a mixed model to study factors associated with urinary creatinine excretion rate and its change over time. Results Baseline mean urinary creatinine excretion decreased from 15.3±3.1 to 12.1±3.3 mmol/24 h (0.20±0.03 to 0.15±0.04 mmol/kg/24 h) in men, with mGFR falling from ≥60 to creatinine excretion at baseline. Mean annual decline in mGFR was 1.53±0.12 mL/min/1.73 m2 per year and that of urinary creatinine excretion rate, 0.28±0.02 mmol/24 h per year. Patients with fast annual decline in mGFR of 5 mL/min/1.73 m2 had a decrease in urinary creatinine excretion more than twice as big as in those with stable mGFR, independent of changes in urinary urea as well as of other determinants of low muscle mass. Conclusions Decrease in 24-hour urinary creatinine excretion rate may appear early in CKD patients, and is greater the more mGFR declines independent of lowering protein intake assessed by 24-hour urinary urea. Normalizing urine analytes for creatininuria may overestimate their concentration in patients with reduced kidney function and low muscle mass. PMID:25401694