WorldWideScience

Sample records for low-mass circum-planetary nebulas

  1. Ages of evolved low mass stars: Central stars of planetary nebulae and white dwarfs

    Directory of Open Access Journals (Sweden)

    Costa R.D.D.

    2013-03-01

    Full Text Available We have developed several methods to estimate the ages of central stars of planetary nebulae (CSPN, which are based either on observed nebular properties or on data from the stars themselves. Our goal is to derive the age distribution of these stars and compare the results with empirical distributions for CSPN and white dwarfs. We have initially developed three methods based on nebular abundances, using (i an age-metallicity relation which is also a function of the galactocentric distance; (ii an age-metallicity relation obtained for the galactic disk, and (iii the central star masses derived from the observed nitrogen abundances. In this work we present two new, more accurate methods, which are based on kinematic properties: (I in this method, the expected rotation velocities of the nebulae around the galactic centre at their galactocentric distances are compared with the predicted values for the galactic rotation curve, and the differences are attributed to the different ages of the evolved stars; (II we determine directly the U, V, W, velocity components of the stars, as well as the velocity dispersions, and use the dispersion-age relation by the Geneva-Copenhagen survey. These methods were applied to two large samples of galactic CSPN. We conclude that most CSPN in the galactic disk have ages under 5 Gyr, and that the age distribution is peaked around 1 to 3 Gyr.

  2. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Stassun, Keivan G.

    2012-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ∼50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days X /L bol ≈ –3.3). However, we find a significant positive correlation between L X /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  3. Binaries discovered by the SPY survey VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB5-a recently ejected common envelope?

    OpenAIRE

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.A.

    2011-01-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods $\\simeq0.1-0.3\\,{\\rm d}$. Here we report the discovery ...

  4. Very low mass stars

    International Nuclear Information System (INIS)

    Liebert, J.; Probst, R.G.

    1987-01-01

    This paper discusses several theoretical and observational topics involved in discovering and analyzing very low mass stellar objects below about 0.3 M circle, as well as their likely extension into the substellar range. The authors hereafter refer to these two classes of objects as VLM stars and brown dwarfs, respectively; collectively, they are called VLM objects. The authors outline recent theoretical work on low-mass stellar interiors and atmospheres, the determination of the hydrogen-burning mass limit, important dynamical evidence bearing on the expected numbers of such objects, and the expectations for such objects from star-formation theory. They focus on the properties of substellar objects near the stellar mass limit. Observational techniques used to discover and analyze VLM objects are summarized

  5. Olivier Chesneau's Work on Low Mass Stars

    Science.gov (United States)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  6. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  7. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  8. Observing nebulae

    CERN Document Server

    Griffiths, Martin

    2016-01-01

    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  9. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  10. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  11. Low-Mass VOST Valve, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two low-mass, linear throttling, high-efficiency, leak-proof cryogenic valves of diameters 1/2" and 4" will be built and tested. Based upon cryogenically-proven...

  12. The Crab Nebula

    International Nuclear Information System (INIS)

    Mitton, S.

    1979-01-01

    The subject is covered in chapters, as follows: A.D.1054, a star explodes (historical account of observations of the supernova of which the Crab Nebula is the remnant); the telescope takes over (discovery and subsequent observation of the Crab Nebula); the message of the fiery remnant (detailed structure and its interpretation); the invisible nebula (electromagnetic radiation from the Crab Nebula and its interpretation); a beacon in the night (the discovery of pulsars, with special reference to the pulsar in the Crab Nebula; observation and theory); the strange world of a neutron star (theory, prediction and observation); magnetic fields and energy flow from the pulsar (stellar magnetosphere; luminosity of the nebula); how does the pulsar pulse (observation; models to explain beaming); outburst and aftermath (types of supernovae and their evolution; nucleosynthesis); supernovae and their remnants (account of observations since early records); the Crab Nebula and modern astronomy. (U.K.)

  13. THE FREQUENCY OF LOW-MASS EXOPLANETS

    International Nuclear Information System (INIS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Bailey, J.; Wittenmyer, R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.

    2009-01-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search-an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ∼ -1 (for dN/dM ∝ M α ) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M + .

  14. The Frequency of Low-Mass Exoplanets

    Science.gov (United States)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  15. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  16. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  17. 30 Doradus: The Low-Mass Stars

    Science.gov (United States)

    Zinnecker, H.; Brandl, B.; Brandner, W.; Moneti, A.; Hunter, D.

    We have obtained HST/NICMOS H-band images of the central 1'x1' field around the R136 starburst cluster in the 30 Doradus HII region, in an attempt to reveal the presence (or absence) of a low-mass stellar population (M VIH 3-colour image of the central 30" x 30" area. The result clearly shows unexpected patches of extinction, with one patch only about 5" from the cluster core.

  18. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  19. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  20. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  1. Thirty New Low-mass Spectroscopic Binaries

    Science.gov (United States)

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  2. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  3. Bipolar nebulae and type I planetary nebulae

    International Nuclear Information System (INIS)

    Calvet, N.; Peimbert, M.

    1983-01-01

    It is suggested that the bipolar nature of PN of type I can be explained in terms of their relatively massive progenitors (Msub(i) 2.4 Msub(o)), that had to lose an appreciable fraction of their mass and angular momentum during their planetary nebulae stage. The following objects are discussed in relation with this suggestion: NGC 6302, NGC 2346, NGC 2440, CRL 618, Mz-3 and M2-9. It is found that CRL 618 is overbundant in N/O by a factor of 5-10 relative to the Orion Nebula. (author)

  4. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  5. Ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.

    2013-01-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce

  6. Ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  7. Wolf-Rayet nebulae

    International Nuclear Information System (INIS)

    Chu, You-Hua

    2016-01-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 10 3 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses. (paper)

  8. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  9. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  10. Spectroscopic Observations of Nearby Low Mass Stars

    Science.gov (United States)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  11. Low Mass Dark Matter: Some Perspectives

    International Nuclear Information System (INIS)

    Chen Shaolong

    2012-01-01

    The low mass (10 GeV scale) dark matter is indicted and favored by several recent dark matter direct detection experimental results, such as DAMA and CoGeNT. In this talk, we discuss some aspects of the low mass dark matter. We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of models where the dark matter-nucleon spin-independent interactions break the isospin symmetry. The indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the dark matter self-annihilation is dominated by heavy quarks or τ-lepton final states. The asymmetric dark matter doesn't suffer the constraints from the indirect detection results. We propose a model of asymmetric dark matter where the matter and dark matter share the common origin, the asymmetries in both the matter and dark matter sectors are simultaneously generated through leptogenesis, and we explore how this model can be tested in direct search experiments.

  12. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  13. Exploring Our Low-Mass Neighbors

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    The Karl G. Jansky Very Large Array, located in Socorro, NM. [John Fowler]Taking advantage of a program offered by the National Radio Astronomy Observatory (NRAO), an undergraduate class has observed local dwarf galaxies to learn about their properties.The Benefits of Nearby DwarfsIf you want to learn about the physical properties of low-mass galactic halos, the best place to look is nearby dwarf galaxies. These objects have the benefit of being close enough that we can resolve individual stars, allowing us to explore the relationship between star formation and the surrounding interstellar medium. They also allow us to directly measure bulk velocities, so we can interpret the distributions of both dark and baryonic matt5ter in these galaxies.HI images of UGC 11411. Left: HI mass surface density. Right: the intensity-weighted velocity field of the HI gas, which reveals the bulk kinematics of the galaxy. [Bralts-Kelly et al. 2017]Though thousands of local-volume, gas-rich objects have been explored by gas surveys in the past, many have slipped through the cracks due to the varied selection criteria of these different surveys. In a new study, neutral atomic hydrogen observations are presented for the first time for two of these star-forming, gas-rich dwarf galaxies.A Class in ActionGuided by Professor John Cannon and collaborators at other universities, a class of undergraduates at Macalester College in St. Paul, Minnesota, has coauthored a study of the neutral interstellar medium of these two local dwarf galaxies. The project was made possible by the Observing for University Classes program offered by NRAOs Karl G. Jansky Very Large Array (VLA), in which university classes in observational astronomy can apply for observing time with the VLA.Top: a view of UGC 11411s stars from Hubble. Middle: the locations of the galaxys star formation, as traced by SAOs telescopes observations of H. Bottom: UGC 11411s neutral interstellar medium distribution (red contour), overlaid

  14. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  15. Explosion of a low mass neutron star

    International Nuclear Information System (INIS)

    Blinnikov, S.I.; Imshennik, V.S.; Nadyozhin, D.K.; Novikov, I.D.; Polnarev, A.G.; AN SSSR, Moscow. Fizicheskij Inst.); Perevodchikova, T.V.

    1990-01-01

    The hydrodynamical disruption of a low mass neutron star is investigated for the case when the stellar mass becomes smaller than the minimum value, M min ≅0.1 M sun . The final phase of the process is shown to proceed explosively, leading to an expansion of all the star, with a kinetic energy of 4.8 MeV per nucleon. The results of calculations are virtually independent of the way in which the neutron star mass goes down below M min (mass exchange in a close binary stellar system, nucleon decay, or some effective mass loss due to a hypothetical decrease of the gravitational constant). The neutron star disruption is followed by a short (0.01-0.1 s) burst of thermal hard X-rays and soft gamma-rays (kT=10-100 keV) with a subsequent much more prolonged tail of radiation induced by decays of long-lived radioactive nuclides. Some fraction of the explosion energy may be emitted in the form of neutrinos. (orig.)

  16. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  17. A Tactile Carina Nebula

    Science.gov (United States)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  18. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  19. The filamentary nebulae S 188

    International Nuclear Information System (INIS)

    Rosado, M.; Kwitter, K.B.

    1982-01-01

    The crescent shaped nebula S 188 is identified as a planetary nebula (PN) of Peimbert's Type I on the basis of its observed nebula spectrum. New FP interferometric work allows to determine the systemic motion of this nebula. The derived kinematical distance exceeds Cudworth's distance estimate supporting the idea that Peimbert's Type I PNs have larger ejected masses than typical PNs. A discussion about the origin of its non-spherical shape is also given. (author)

  20. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  1. Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2017-05-01

    We consider a dynamical shake-up model to explain the low mass of Mars and the lack of planets in the asteroid belt. In our scenario, a secular resonance with Jupiter sweeps through the inner solar system as the solar nebula depletes, pitting resonant excitation against collisional damping in the Sun’s protoplanetary disk. We report the outcome of extensive numerical calculations of planet formation from planetesimals in the terrestrial zone, with and without dynamical shake-up. If the Sun’s gas disk within the terrestrial zone depletes in roughly a million years, then the sweeping resonance inhibits planet formation in the asteroid belt and substantially limits the size of Mars. This phenomenon likely occurs around other stars with long-period massive planets, suggesting that asteroid belt analogs are common.

  2. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  3. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  4. GAP OPENING BY EXTREMELY LOW-MASS PLANETS IN A VISCOUS DISK

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2013-01-01

    By numerically integrating the compressible Navier-Stokes equations in two dimensions, we calculate the criterion for gap formation by a very low mass (q ∼ 10 –4 ) protoplanet on a fixed orbit in a thin viscous disk. In contrast with some previously proposed gap-opening criteria, we find that a planet can open a gap even if the Hill radius is smaller than the disk scale height. Moreover, in the low-viscosity limit, we find no minimum mass necessary to open a gap for a planet held on a fixed orbit. In particular, a Neptune-mass planet will open a gap in a minimum mass solar nebula with suitably low viscosity (α ∼ –4 ). We find that the mass threshold scales as the square root of viscosity in the low mass regime. This is because the gap width for critical planet masses in this regime is a fixed multiple of the scale height, not of the Hill radius of the planet.

  5. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Justin M.; Kilic, Mukremin; Brown, Warren R.; Kenyon, Scott J.

    2011-01-01

    We describe spectroscopic observations of 21 low-mass (≤0.45 M sun ) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ≤30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  6. Review of solar nebula models

    International Nuclear Information System (INIS)

    Wood, J.A.; Morfill, G.E.

    1988-01-01

    The major changes that have occurred in thinking about protosolar nebula models are discussed. The concept favored by astrophysicists for the last decade, that of a viscous accretion-disk nebula, is examined. The properties of recent accretion-disk models that are most relevant to chondrite-forming processes are noted. 27 references

  7. Searching For Low-mass Companions Of Cepheids

    Science.gov (United States)

    Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.

    2011-05-01

    The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.

  8. Reconstruction of data in low-mass magnetostrictive chambers

    International Nuclear Information System (INIS)

    Daley, H.M.

    1983-01-01

    The reconstruction of spark positions in a set of low-mass spark chambers with remote magnetostrictive readout, used in a study of the reaction π - p → K 0 Λ, is described. The main detectors used were optical spark chambers but in order to provide information close to the vertices low-mass magnetostrictive chambers were fitted inside the cone of the superconducting polarised target magnet. (U.K.)

  9. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  10. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    Science.gov (United States)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  11. Infrared nebula in the Chamaeleon T association

    International Nuclear Information System (INIS)

    Schwartz, R.D.; Henize, K.G.

    1983-01-01

    Data are tabulated for seven nebulae in the Chamaeleon T association. Three, which are large and clearly related to illuminating stars, appear to be typical reflection nebulae. Three are small wisps attached to stars and are probably cometary-type reflection nebulae. The remaining nebula is a triangular wisp having an unusually red spectral energy distribution and showing no illuminating star on visual wavelength photographs. The western tip of this nebula coincides closely with the position of a recently reported infrared source. The nebula is probably one lobe of a bipolar nebula

  12. Dynamic Responses of Flexible Cylinders with Low Mass Ratio

    Science.gov (United States)

    Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael

    2017-11-01

    Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.

  13. Low mass dilepton production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pisutova, N.; Pisut, J.

    1988-01-01

    The total transverse energy dependence of low mass dilepton (and single low p T photon) production was demonstrated to be a signature of the onset of the evidence of plasma formation in heavy ion collisions. Cross-sections are presented for low mass dilepton production in proton-nucleus and heavy ion collisions which represent lower bounds for the ''collectivization'' and the thermalization of matter produced in the collision. Higher cross-section are a signature of the onset of the formation of thermalized matter. (author). 4 figs., 11 refs

  14. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  15. Slope of the mass function of low-mass stars

    International Nuclear Information System (INIS)

    Malkov, O.Yu.

    1987-01-01

    It is shown that the modern method of obtaining the initial mass function contains a number of a uncertainties that can have a significant effect on the slope of the function in the low-mass section (m < m**). The influence of changes of the mass-luminosity relation, the scale of bolometric corrections, and the luminosity function on the form of the mass function is considered. The effect of photometrically unresolved binaries is also discussed. Some quantitative estimates are made, and it is shown that the slope of the initial mass function in the low-mass section can vary in wide ranges

  16. THE KINEMATICS OF THE NEBULAR SHELLS AROUND LOW MASS PROGENITORS OF PNe WITH LOW METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, Margarita; López, José Alberto; Richer, Michael G., E-mail: mally@astrosen.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: richer@astrosen.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, C.P. 22800 Ensenada, BC, México (Mexico)

    2016-03-15

    We analyze the internal kinematics of 26 planetary nebulae (PNe) with low metallicity that appear to derive from progenitor stars of the lowest masses, including the halo PN population. Based upon spatially resolved, long-slit, echelle spectroscopy drawn from the San Pedro Mártir Kinematic Catalog of PNe, we characterize the kinematics of these PNe measuring their global expansion velocities based upon the largest sample used to date for this purpose. We find kinematics that follow the trends observed and predicted in other studies, but also find that most of the PNe studied here tend to have expansion velocities less than 20 km s{sup −1} in all of the emission lines considered. The low expansion velocities that we observe in this sample of low metallicity PNe with low mass progenitors are most likely a consequence of a weak central star (CS) wind driving the kinematics of the nebular shell. This study complements previous results that link the expansion velocities of the PN shells with the characteristics of the CS.

  17. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  18. Heavy water stratification in a low-mass protostar

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims. The key program Chemical HErschel Surveys of Star

  19. Origin of the hot gas in low-mass protostars

    DEFF Research Database (Denmark)

    Van Kempen, T. A.; Kristensen, L. E.; Herczeg, G. J.

    2010-01-01

    Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Ar...

  20. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Beltran, M. T.; Morata, O.; Masque, J. M.; Busquet, G.; Sanchez-Monge, A.; Estalella, R.; Franco, G. A. P.

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star formation efficiency which makes it a good laboratory in which to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary and appears to be threaded by a uniform magnetic field at scales of a few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster-forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30 m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace the densest regions better than previous Two Micron All Sky Survey (2MASS) extinction maps, while 2MASS extinction maps trace the diffuse gas better. The properties of the cores derived from dust emission show average radii of ∼0.09 pc, densities of ∼1.3x10 5 cm -3 , and core masses of ∼2.5 M sun . Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission with CS detections in the whole sample. Two of them, cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.

  1. The Toby Jug nebula (IC 2220): a bipolar and biconical nebula

    International Nuclear Information System (INIS)

    Perkins, H.G.; King, D.J.; Scarrott, S.M.

    1981-01-01

    An optical linear polarization map of IC 2220, the nebula surrounding the cool red giant HD 65750, is presented. The nebula appears to be bipolar and biconical in structure. The mass of the nebula is estimated to be 0.01 solar mass and is consistent with the nebula being formed from the current mass loss stage of the central star. (author)

  2. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  3. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  4. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  5. Searching for Low-mass Companions of Cepheids, Part II

    Science.gov (United States)

    Remage Evans, Nancy; Tingle, E.; Bond, H. E.; Schaefer, G. H.; Mason, B.; Karovska, M.; Wolk, S.; Pillitteri, I.; DePasquale, J.; Guinan, E.; Engle, S.

    2012-01-01

    The formation of a binary/multiple system is an effective way to manipulate angular momentum during the star-formation process. The properties of binary systems (separations and mass ratios) are thus the ``fingerprints" of the process. Low mass companions are the most difficult to identify particularly for massive stars. We are conducting a snapshot survey of the nearest Cepheids (5 Msun stars) using the Hubble Space Telescope Wide Field Camera 3 (WFC3) to discover possible resolved low mass companions. The color-magnitude combination is the first approach to identifying probable physical companions. The distributions of mass and separation for these stars will be discussed. Financial suppoet was provided by Hubble grant GO-12215.01-A and the Chandra X-ray Center NASA contract NAS8-03060.

  6. The different baryonic Tully-Fisher relations at low masses.

    Science.gov (United States)

    Brook, Chris B; Santos-Santos, Isabel; Stinson, Greg

    2016-06-11

    We compare the Baryonic Tully-Fisher relation (BTFR) of simulations and observations of galaxies ranging from dwarfs to spirals, using various measures of rotational velocity V rot . We explore the BTFR when measuring V rot at the flat part of the rotation curve, V flat , at the extent of H i gas, V last , and using 20 per cent ( W 20 ) and 50 per cent ( W 50 ) of the width of H i line profiles. We also compare with the maximum circular velocity of the parent halo, [Formula: see text], within dark matter only simulations. The different BTFRs increasingly diverge as galaxy mass decreases. Using V last  one obtains a power law over four orders of magnitude in baryonic mass, with slope similar to the observed BTFR. Measuring V flat gives similar results as V last when galaxies with rising rotation curves are excluded. However, higher rotation velocities would be found for low-mass galaxies if the cold gas extended far enough for V rot to reach a maximum. W 20 gives a similar slope as V last but with slightly lower values of V rot for low-mass galaxies, although this may depend on the extent of the gas in your galaxy sample. W 50 bends away from these other relations towards low velocities at low masses. By contrast, [Formula: see text] bends towards high velocities for low-mass galaxies, as cold gas does not extend out to the radius at which haloes reach [Formula: see text]. Our study highlights the need for careful comparisons between observations and models: one needs to be consistent about the particular method of measuring V rot , and precise about the radius at which velocities are measured.

  7. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  8. The Trifid Nebula: Stellar Sibling Rivalry

    Science.gov (United States)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  9. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  10. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  11. Contraction of the solar nebula

    International Nuclear Information System (INIS)

    Rawal, J.J.

    1984-01-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection is operative and brings about the halt at various stages of contraction. It is found that the radius of the contracting solar nebula follows the Titius-Bode law. The consequences of the relation are also discussed. The aim is to attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it. (Auth.)

  12. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Adams, S.; Seaton, M.J.

    1982-01-01

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  13. Circumnebular neutral hydrogen in planetary nebulae

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Pottasch, S.R.

    1990-01-01

    Centimeter line observations of six compact planetary nebulae are reported. Circumnebular atomic hydrogen absorption has been observed in NGC 6790, NGC 6886, IC 418, IC 5117, and BD +30 deg 3639, while H I was not observed to a high upper limit in NGC 6741. Hydrogen was also detected in emission from BD +30 deg 3639. The expansion velocities of the circumnebular envelopes are similar to the expansion velocities observed for the ionized nebula. The optical depth of circumnebular H I appears to decrease with increasing linear radius of the ionized nebulae, indicating that these nebulae are ionization bounded and that the amount of atomic hydrogen decreases as young nebulas evolve. 28 refs

  14. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  15. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  16. Small Low Mass Advanced PBR's for Bi-Modal Operation

    Science.gov (United States)

    Ludewig, Hans; Todosow, Michael; Powell, James R.

    1994-07-01

    A preliminary assessment is made of a low mass bi-modal reactor for use as a propulsion unit and as a heat source for generating electricity. This reactor is based on the particle bed reactor (PBR) concept. It will be able to generate both thrust and electricity simultaneously. This assessment indicates that the reactor can generate approximately 6.8 (4) N of thrust using hydrogen as a coolant, and 100 KWe using a closed Brayton cycle (CBC) power conversion system. Two cooling paths pass through the reactor allowing simultaneous operation of both modes. The development of all the components for this reactor are within the experience base of the NTP project.

  17. A spectral differential characterization of low-mass companions

    Directory of Open Access Journals (Sweden)

    Lyubchik Y.

    2013-04-01

    Full Text Available We present a new approach with which the dynamical mass of low-mass companions around cool stars can be found. In order to discover companions to late-type stars the stellar spectrum is removed. For this we substract two spectra obtained at different orbital phases from each other in order to discover the companion spectrum in the difference spectrum in which the companion lines appear twice (positive and negative signal. The resulting radial velocity difference of these two signals provides the true mass of the companion. For our test case GJ1046, an M2V dwarf with a low-mass companion that most likely is a brown dwarf we select the CO line region in the K-band. We show that the dynamical mass of a faint companion to an M dwarf can be determined using our spectral differential technique. Only if the companion rotates rapidly and has a small radial velocity amplitude due to a high mass, does blending occur for all lines so that our approach fails. In addition to determining the companion mass, we restore the single companion spectrum from the difference spectrum using singular value decomposition.

  18. Optimizing EDELWEISS detectors for low-mass WIMP searches

    Science.gov (United States)

    Arnaud, Q.; Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; de Jésus, M.; Dumoulin, L.; Eitel, K.; Foerster, N.; Gascon, J.; Giuliani, A.; Gros, M.; Hehn, L.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le-Sueur, H.; Maisonobe, R.; Marnieros, S.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Poda, D.; Queguiner, E.; Rozov, S.; Sanglard, V.; Scorza, S.; Siebenborn, B.; Vagneron, L.; Weber, M.; Yakushev, E.; EDELWEISS Collaboration

    2018-01-01

    The physics potential of EDELWEISS detectors for the search of low-mass weakly interacting massive particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely, profile likelihood and boosted decision tree. Both current and achievable experimental performances are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above ˜5 GeV /c2 . The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross section of σSI=7 ×10-42 cm2 is expected for a WIMP mass in the range 2 - 5 GeV /c2 . The requirements for a future hundred-kilogram-scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50 eVe e , we show that such an experiment installed in an even lower background environment (e.g., at SNOLAB) together with an exposure of 1 000 kg .yr , should allow us to observe about 80 B 8 neutrino events after discrimination.

  19. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Stevenson, David J.

    2013-01-01

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M ⊕ , multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  20. Photometric Study of Fourteen Low-mass Binaries

    International Nuclear Information System (INIS)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J.; Hoňková, K.

    2017-01-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  1. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  2. Evidence for AGN feedback in low-mass galaxies

    Science.gov (United States)

    Masters, Karen; Penny, Sam; Smethurst, Rebecca; Krawczyk, Coleman; Nichol, Bob; SDSS-IV MaNGA

    2018-01-01

    Despite being the dominant galaxy population by number in groups and clusters, the formation and quenching mechanism of dwarf galaxies remains unknown. We present evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M* less than 5e9 Msun, fainter than Mr = -19) selected from the first two years of the MaNGA survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find 6 galaxies in our sample that appear to have an active AGN that is preventing on-going star-formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionised gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesise these six galaxies are low-mass equivalents to the “red geysers” observed in more massive galaxies. Of the other 62 galaxies in the sample, we find 8 do appear to have some low-level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionised gas emission throughout their structures, consistent with them being quenched. I will show that despite being the "simplest" galaxies in our current models of galaxy formation, these quenched dwarf galaxies are a diverse population.

  3. Low mass large aperture vacuum window development at CEBAF

    International Nuclear Information System (INIS)

    Keppel, C.

    1995-01-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed

  4. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  5. DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.; Girart, J. M.

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12,000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival Two Micron All Sky Survey data, we estimate that the surveyed areas present total visual extinctions in the range 0.6 mag ≤ A V ≤ 4.6 mag. While the observed polarizations show a well-ordered large-scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one sees details that are characteristics of each core. Although many observed stars present degrees of polarization that are unusual for the common interstellar medium (ISM), our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic ISM. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region to investigate the processes that prevailed during the initial phases of low-mass stellar formation.

  6. Discovery of a parsec-scale bipolar nebula around MWC 349A

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.

    2012-05-01

    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 μm data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.

  7. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Mapes, M.; Leonhardt, W.J.

    1993-01-01

    Large aperture, low mass, thin vacuum windows are required to minimize beam loss in the beam lines of particle accelerators as the products of nuclear collisions move from upstream targets to downstream detectors. This article describes the design, fabrication, testing, and operating experience of a large rectangular vacuum window, 122 cmx61 cm, and two circular windows of 91.4 and 96.5 cm diam. These window designs utilize a composite Kevlar 29 fabric and Mylar laminate as a window material with a typical combined thickness of 0.35 mm. Data for several material thicknesses are also presented. The windows are usually designed to withstand a pressure differential of two to three atmospheres to achieve the required factor of safety. These windows are typically used in the medium vacuum range of 10 -4 Torr. The equations used to predict the behavior of the window material will also be discussed

  8. Collapse of white dwarfs in low mass binary systems

    International Nuclear Information System (INIS)

    Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.

    1987-01-01

    Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)

  9. Dynamical shake-up and the low mass of Mars

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott

    2017-10-01

    The low mass of Mars and the lack of planets in the asteroid belt are important constraints on theories of planet formation. We revisit the idea that sweeping secular resonances involving the gas giants and theSun's dissipating protoplanetary disk can explain these features of our Solar System. To test this "dynamical shake-up" scenario, we perform an extensive suite of simulations to track terrestrial planet formation from planetesimals. We find that if the Sun’s gas disk depletes in roughly a million years, then a sweeping resonance with Jupiter inhibits planet formation in the asteroid belt and substantially limits the mass of Mars. We explore how this phenomenon might lead to asteroid belt analogs around other stars with long-period, massive planets.

  10. Feedback in low-mass galaxies in the early Universe.

    Science.gov (United States)

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  11. Formation of Extremely Low-mass White Dwarf Binaries

    Science.gov (United States)

    Sun, M.; Arras, P.

    2018-05-01

    Motivated by the discovery of several pulsating, extremely low-mass white dwarfs (ELM WDs, mass M ≲ 0.18 M ⊙) that likely have WD companions, this paper discusses binary formation models for these systems. ELM WDs are formed using angular momentum losses by magnetic braking. Evolutionary models are constructed using the Modules for Experiments in Stellar Astrophysics (MESA), with ELM WD progenitors in the range 1.0 ≲ M d/M ⊙ ≲ 1.5 and WD companions in the range 0.4 ≲ M a/M ⊙ ≲ 0.9. A prescription to reduce magnetic braking for thin surface convection zones is included. Upon the thinning of the evolved donor envelope, the donor star shrinks out of contact and mass transfer (MT) ceases, revealing the ELM WD. Systems with low masses have previously been suggested as possible AM CVNs. Systems with high masses, up to the limit M ≃ 0.18 M ⊙ at which shell flashes occur on the WD cooling track, tend to expand out to orbital periods P orb ≳ 15 hr. In between this range, ELM WDs may become pulsators both as pre-WDs and on the WD cooling track. Brickhill’s criterion for convective mode driving is used to estimate the location of the blue edge of the g-mode instability strip. In the appendix, we show that the formation of an ELM WD by unstable MT or a common-envelope event is unlikely. Stable Roche-lobe overflow with conservative MT produces only M ≳ 0.2 M ⊙.

  12. Low Mass Printable Devices for Energy Capture, Storage, and Use

    Science.gov (United States)

    Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function

  13. THE VARIABLE REFLECTION NEBULA CEPHEUS A EAST

    International Nuclear Information System (INIS)

    Hodapp, Klaus W.; Bressert, Eli

    2009-01-01

    We report K'-band imaging observations of the reflection nebula associated with Cepheus A East covering the time interval from 1990 to 2004. Over this time the reflection nebula shows variations of flux distribution, which we interpret as the effect of inhomogeneous and varying extinction in the light path from the illuminating source HW2 to the reflection nebula. The obscuring material is located within typical distances of ∼ 10 AU from the illuminating source.

  14. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  15. Mass distribution and evolutionary scheme for central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Heap, S.R.; Augensen, H.J.; Widener Univ., Chester, PA)

    1987-01-01

    IUE data and a distance measuring method that considered central stars in optically thick nebulae were used to examine mass distributions of planetary nebulae. Other data such as spectral type, spatial and kinematic characteristics, etc., were studied to derive relationships between population type and mass distribution. A central star mass range of at least 0.55 solar mass was obtained. Stars with masses of at least 0.64 solar mass, concentrated in the galactic disk, originated from 1.5 solar mass stars. Low mass nuclei originated in old disk or halo populations and evolved from 1.0 solar mass objects. A mass-loss parameter value of 1/3 was calculated for red giants, implying that white dwarfs evolve from stars of under 5 solar masses. Mass distributions around planetary nuclei were concluded to follow patterns associated with the individual mass. 75 references

  16. The western Veil nebula (Image)

    Science.gov (United States)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  17. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  18. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  19. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  20. Low mass SN Ia and the late light curve

    International Nuclear Information System (INIS)

    Colgate, S.A.; Fryer, C.L.

    1995-01-01

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co 56 , whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co 56 decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10 51 erg in kinetic energy) explosion must be small, M ejec = 0.4M circle-dot with M ejec ∝ KE 0.5 . Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M circle-dot . This is very difficult to explain with the ''canonical'' Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni 56 production and hence result in type Ia supernovae with luminosities decreased down to ∼ 50% that predicted by the ''standard'' model

  1. LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY

    International Nuclear Information System (INIS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle; Dolphin, Andrew; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.; Girardi, Léo

    2015-01-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H i Arecibo Legacy Fast ALFA survey. The H i and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging with the Hubble Space Telescope to two magnitudes below the red clump in order to study the evolution of Leo P. We refine the distance measurement to Leo P to be 1.62 ± 0.15 Mpc, based on the luminosity of the horizontal branch stars and 10 newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ∼0.4 Mpc from Sextans B, the nearest galaxy in the NGC 3109 association of dwarf galaxies of which Leo P is clearly a member. The star responsible for ionizing the H ii region is most likely an O7V or O8V spectral type, with a stellar mass ≳25 M ⊙ . The presence of this star provides observational evidence that massive stars at the upper end of the initial mass function are capable of being formed at star formation rates as low as ∼10 −5 M ⊙ yr −1 . The best-fitting star formation history (SFH) derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its SFH is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that the local environment dominates the quenching of the Milky Way satellites

  2. LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Girardi, Léo, E-mail: kmcquinn@astro.umn.edu [Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-10-20

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H i Arecibo Legacy Fast ALFA survey. The H i and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging with the Hubble Space Telescope to two magnitudes below the red clump in order to study the evolution of Leo P. We refine the distance measurement to Leo P to be 1.62 ± 0.15 Mpc, based on the luminosity of the horizontal branch stars and 10 newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ∼0.4 Mpc from Sextans B, the nearest galaxy in the NGC 3109 association of dwarf galaxies of which Leo P is clearly a member. The star responsible for ionizing the H ii region is most likely an O7V or O8V spectral type, with a stellar mass ≳25 M{sub ⊙}. The presence of this star provides observational evidence that massive stars at the upper end of the initial mass function are capable of being formed at star formation rates as low as ∼10{sup −5} M{sub ⊙} yr{sup −1}. The best-fitting star formation history (SFH) derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its SFH is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that the local environment dominates the quenching of the Milky Way satellites.

  3. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M ∼ sun undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  4. Assembly techniques for ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-01-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100–200 KeV/c) for particles momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams

  5. Assembly techniques for ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  6. Methanol maps of low-mass protostellar systems

    DEFF Research Database (Denmark)

    Kristensen, L. E.; van Dishoeck, E. F.; van Kempen, T. A.

    2010-01-01

    shows that strong CO depletion leads to a high gas-phase abundance of CH 3OH not just for the Serpens sources, but also for a larger sample of deeply embedded protostars. Conclusions. The observations illustrate the large-scale, low-level desorption of CH3OH from dust grains, extending out to and beyond...... on grain surfaces and is therefore a clean tracer of surface chemistry. Aims. Determining the physical and chemical structure of low-mass, young stellar objects, in particular the abundance structure of CH3OH, to investigate where and how CH3OH forms and how it is eventually released back to the gas phase...... source. None of the Serpens Class 0 sources show the high-K lines seen in several other Class 0 sources. The abundance is typically 10-9-10-8 with respect to H2 in the outer envelope, whereas "jumps" by factors of up to 102-103 inside the region where the dust temperature exceeds 100 K are not excluded...

  7. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  8. LOW-MASS VISUAL COMPANIONS TO NEARBY G-DWARFS

    International Nuclear Information System (INIS)

    Tokovinin, Andrei

    2011-01-01

    A complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the Two Micron All Sky Survey (2MASS) Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20'', 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to a companion frequency of 0.13 ± 0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by an alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions-a necessary step toward reaching unbiased multiplicity statistics over the full range of orbital periods and, eventually, understanding the origin of multiple systems.

  9. Chandra Observation of Polaris: Census of Low-mass Companions

    Science.gov (United States)

    Evans, Nancy Remage; Guinan, Edward; Engle, Scott; Wolk, Scott J.; Schlegel, Eric; Mason, Brian D.; Karovska, Margarita; Spitzbart, Bradley

    2010-05-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s-1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag. Based on observations made with the NASA Chandra Satellite.

  10. CHANDRA OBSERVATION OF POLARIS: CENSUS OF LOW-MASS COMPANIONS

    International Nuclear Information System (INIS)

    Remage Evans, Nancy; Wolk, Scott J.; Karovska, Margarita; Spitzbart, Bradley; Guinan, Edward; Engle, Scott; Schlegel, Eric; Mason, Brian D.

    2010-01-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log L X = 28.89 erg s -1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, 'C' and 'D', are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag.

  11. Dust discs around low-mass main-sequence stars

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Walker, H.J.

    1988-01-01

    Current understanding of the formation of circumstellar discs as a natural accompaniment to the process of low-mass star formation is briefly reviewed. Models of the thermal emission from the dust discs around the prototype stars α Lyr, α PsA, β Pic and ε Eri are discussed, which indicate that the central regions of three of these discs are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest dust lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud that sweeps up grains crossing its orbit. The colour, diameter and thickness of the optical image of β Pic, obtained by coronagraphic techniques, have provided further information on the size, radial distribution of number density and orbital inclination of the grains. The difference in surface brightness on the two sides of the disc is puzzling, but might be explained if the grains are elongated and aligned by the combined effects of a stellar wind and a magnetic field of spiral configuration. Finally, we discuss the orbital evolution and lifetimes of particles in these discs, which are governed primarily by radiation pressure, Poynting-Robertson drag and grain-grain collisions. (author)

  12. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  13. INTERACTIONS BETWEEN FORMING STARS AND DENSE GAS IN THE SMALL LOW-MASS CLUSTER CEDERBLAD 110

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, E. F. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Wong, T. [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thompson, K. L., E-mail: ladd@bucknell.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2011-12-20

    We present observations of dense gas and outflow activity in the Cederblad 110 region of the Chamaeleon I dark cloud complex. The region contains nine forming low-mass stars in evolutionary stages ranging from Class 0 to Class II/III crowded into a 0.2 pc region with high surface density ({Sigma}{sub YSO} {approx} 150 pc{sup -2}). The analysis of our N{sub 2}H{sup +} (J = 1{yields}0) maps indicates the presence of 13 {+-} 3 solar masses of dense (n {approx} 10{sup 5} cm{sup -3}) gas in this region, much of which is unstable against gravitational collapse. The most unstable material is located near the Class 0 source MMS-1, which is almost certainly actively accreting material from its dense core. Smaller column densities of more stable dense gas are found toward the region's Class I sources, IRS 4, 11, and 6. Little or no dense gas is colocated with the Class II and III sources in the region. The outflow from IRS 4 is interacting with the dense core associated with MMS-1. The molecular component of the outflow, measured in the (J = 1{yields}0) line of {sup 12}CO, appears to be deflected by the densest part of the core, after which it appears to plow through some of the lower column density portions of the core. The working surface between the head of the outflow lobe and the dense core material can be seen in the enhanced velocity dispersion of the dense gas. IRS 2, the Class III source that produces the optical reflection nebula that gives the Cederblad 110 region its name, may also be influencing the dense gas in the region. A dust temperature gradient across the MMS-1 dense core is consistent with warming from IRS 2, and a sharp gradient in dense gas column density may be caused by winds from this source. Taken together, our data indicate that this region has been producing several young stars in the recent past, and that sources which began forming first are interacting with the remaining dense gas in the region, thereby influencing current and future star

  14. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  15. Abundances of planetary nebula NGC 5315

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Koornneef, J; Feibelman, WA

    2002-01-01

    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  16. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  17. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  18. A SMOKING GUN IN THE CARINA NEBULA

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; Chu, You-Hua; White, Stephen M.; Strohmayer, Tod; Petre, Rob

    2009-01-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ∼30 years. The soft X-ray spectrum, consistent with kT ∼ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ∼10 6 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  19. for the internal rotation evolution of low-mass stars

    Directory of Open Access Journals (Sweden)

    Pinçon Charly

    2017-01-01

    Full Text Available Due to the space-borne missions CoRoT and Kepler, noteworthy breakthroughs have been made in our understanding of stellar evolution, and in particular about the angular momentum redistribution in stellar interiors. Indeed, the high-precision seismic data provide with the measurement of the mean core rotation rate for thousands of low-mass stars from the subgiant branch to the red giant branch. All these observations exhibit much lower core rotation rates than expected by current stellar evolution codes and they emphasize the need for an additional transport process. In this framework, internal gravity waves (herefater, IGW could play a signifivative role since they are known to be able to transport angular momentum. In this work, we estimate the effciency of the transport by the IGW that are generated by penetrative convection at the interface between the convective and the radiative regions. As a first step, this study is based on the comparison between the timescale for the waves to modify a given rotation profile and the contraction/expansion timescale throughout the radiative zone of 1.3M⊙ stellar models. We show that IGW, on their own, are ineffcient to slow down the core rotation of stars on the red giant branch, where the radiative damping becomes strong enough and prevent the IGW from reaching the innermost layers. However, we find that IGW generated by penetrative convection could effciently modify the core rotation of subgiant stars as soon as the amplitude of the radial differential rotation between the core and the base of the convective zone is high enough, with typical values close to the observed rotation rates in these stars. This result argues for the necessity to account for IGW generated by penetrative convection in stellar modeling and in the angular momentum redistribution issue.

  20. Low-mass dark matter search with CDMSlite

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aralis, T.; Aramaki, T.; Arnquist, I. J.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Binder, T.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chang, Y.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fascione, E.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hong, Z.; Hoppe, E. W.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Jena, C.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; MacDonell, D.; Mahapatra, R.; Mandic, V.; Mast, N.; Miller, E. H.; Mirabolfathi, N.; Moffatt, R. A.; Mohanty, B.; Morales Mendoza, J. D.; Nelson, J.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Peñalver Martinez, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Reynolds, T.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Senapati, K.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wilson, M. J.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2018-01-01

    The SuperCDMS experiment is designed to directly detect WIMPs (Weakly Interacting Massive Particles) that may constitute the dark matter in our galaxy. During its operation at the Soudan Underground Laboratory, germanium detectors were run in the CDMSlite (Cryogenic Dark Matter Search low ionization threshold experiment) mode to gather data sets with sensitivity specifically for WIMPs with masses ${<}10$ GeV/$c^2$. In this mode, a large detector-bias voltage is applied to amplify the phonon signals produced by drifting charges. This paper presents studies of the experimental noise and its effect on the achievable energy threshold, which is demonstrated to be as low as 56 eV$_{\\text{ee}}$ (electron equivalent energy). The detector biasing configuration is described in detail, with analysis corrections for voltage variations to the level of a few percent. Detailed studies of the electric-field geometry, and the resulting successful development of a fiducial parameter, eliminate poorly measured events, yielding an energy resolution ranging from ${\\sim}$9 eV$_{\\text{ee}}$ at 0 keV to 101 eV$_{\\text{ee}}$ at ${\\sim}$10 keV$_{\\text{ee}}$. New results are derived for astrophysical uncertainties relevant to the WIMP-search limits, specifically examining how they are affected by variations in the most probable WIMP velocity and the galactic escape velocity. These variations become more important for WIMP masses below 10 GeV/$c^2$. Finally, new limits on spin-dependent low-mass WIMP-nucleon interactions are derived, with new parameter space excluded for WIMP masses ${\\lesssim}$3 GeV/$c^2$.

  1. The first frost in the Pipe Nebula

    Science.gov (United States)

    Goto, Miwa; Bailey, Jeffrey D.; Hocuk, Seyit; Caselli, Paola; Esplugues, Gisela B.; Cazaux, Stephanie; Spaans, Marco

    2018-02-01

    Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims: We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods: Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results: The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions: A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation. Based on data collected by SpeX at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.Based also on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.The final reduced spectra (FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610

  2. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  3. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Miniature Low-Mass Drill Actuated by Flextensional Piezo Stack

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph

    2010-01-01

    characteristics of low mass, small size, low power, and low axial loads for sampling.

  5. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  6. Processing NASA Earth Science Data on Nebula Cloud

    Science.gov (United States)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  7. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  8. Spatiokinematical models of five planetary nebulae

    International Nuclear Information System (INIS)

    Sabbadin, F.

    1984-01-01

    The [OOOI] and Hα expansion velocity fields in the planetary nebulae NGC6058 and 6804 and the [OIII], Hα and [NII] expansion velocity fields in NGC6309, 6751 and 6818, were obtained from high dispersion spectra. Spatiokinematical models of the nebulae were derived assuming an expansion velocity of the gas proportional to the distance from the central star and using the expansion velocity-radius correlation previously given. The observational parameters of the nebulae (radius, mass and expansion velocity) and of the exciting stars (temperature, radius and luminosity) closely fit the suggested evolutionary model for this class of objects. (author)

  9. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven

    2007-01-01

    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  10. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  11. The Boomerang Nebula: a highly polarized bipolar

    International Nuclear Information System (INIS)

    Taylor, K.N.R.; Scarrott, S.M.

    1980-01-01

    An optical linear polarization map of a bipolar nebula is presented. Polarizations of approximately 60 per cent are observed in the optically thin lobes. The map leads to a geometry of the object consisting of a central star with an equatorial disc of dust and optically thin lobes illuminated by the central star. The grains in the disc are aligned. The object is a protoplanetary nebula. (author)

  12. Is gas in the Orion nebula depleted

    International Nuclear Information System (INIS)

    Aiello, S.; Guidi, I.

    1978-01-01

    Depletion of heavy elements has been recognized to be important in the understanding of the chemical composition of the interstellar medium. This problem is also relevant to the study of H II regions. In this paper the gaseous depletion in the physical conditions of the Orion nebula is investigated. The authors reach the conclusion that very probably no depletion of heavy elements, due to sticking on dust grains, took place during the lifetime of the Orion nebula. (Auth.)

  13. Evolutionary sequence of models of planetary nebulae

    International Nuclear Information System (INIS)

    Vil'koviskij, Eh.Ya.; Kondrat'eva, L.N.; Tambovtseva, L.V.

    1983-01-01

    The evolutionary sequences of model planetary nebulae of different masses have been calculated. The computed emission line intensities are compared with the observed ones by means of the parameter ''reduced size of the nebula'', Rsub(n). It is shown that the evolution tracks of Schonberner for the central stars are consistent with the observed data. Part of ionized mass Mi in any nebulae does not not exceed 0.3 b and in the average Msu(i) 3 years at actual values of radius Rsub(i) <0.025 ps. Then the luminosity growth slows down to the maximum temperature which central star reaches and decreases with sharp decrease of the star luminosity. At that, the radius of ionized zone of greater mass nebulae can even decrease, inspite of the constant expansion of the nebula. As a result nebulae of great masses having undergone the evolution can be included in the number of observed compact objects (Rsub(n) < 0.1 ps)

  14. The Orion Nebula: The Jewel in the Sword

    Science.gov (United States)

    2001-01-01

    ). With these new facilities, astronomers will be able to make very detailed studies - among others, they will be looking for evidence that the dust and gas in these disks might be agglomerating to form planets. Free-floating planets in Orion? Recently, research teams working at other telescopes have claimed to have already seen planets in the Orion Nebula, as very dim objects, apparently floating freely between the brighter stars in the cluster. They calculated that if those objects are of the same age as the other stars, if they are located in the cluster, and if present theoretical predictions of the brightness of young stars and planets are correct, then they should have masses somewhere between 5 and 15 times that of planet Jupiter. Astronomer Mark McCaughrean is rather sceptical about this: " Calling these objects "planets" of course sounds exciting, but that interpretation is based on a number of assumptions. To me it seems equally probable that they are somewhat older, higher-mass objects of the "brown dwarf" type from a previous generation of star formation in Orion, which just happen to lie near the younger Trapezium Cluster today. Even if these objects were confirmed to have very low masses, many astronomers would disagree with them being called planets, since the common idea of a planet is that it should be in orbit around a star ". He explains: " While planets form in circumstellar disks, current thinking is that these Orion Nebula objects probably formed in the same way as do stars and brown dwarfs, and so perhaps we'd be better off talking about them just as low-mass brown dwarfs " and also notes that " similar claims of "free-floating planets" found in another cluster associated with the star Sigma Orionis have also been met with some scepticism ". Here, as in other branches of science, claim, counter-claim, scepticism and amicable controversy are typical elements of the scientific search for the truth. Thus the goal must now be to look at these objects in

  15. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  16. Understanding Galactic planetary nebulae with precise/reliable nebular abundances

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; di Criscienzo, M.; Yagüe, A.

    2017-10-01

    We compare recent precise/reliable nebular abundances - as derived from high-quality optical spectra and the most recent ICFs - in a sample of Galactic planetary nebulae (PNe) with nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) ATON models in the metallicity range Z ⊙/4 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios can be obtained. Two DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 M⊙). Their actual C/O ratios, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  17. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  18. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  19. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  20. The simplest models of the reflection nebulae

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.

    1977-01-01

    Some models of the reflection nebulue have been considered. The (U-B), (B-V) and (V-R) colors and the U, B, V and R polarization have been calculated for a model of a reflection nebula associated with a large dust cloud. For the cases in which the illuminating star is far from the surface of the cloud, the form of the nebula has been considered to be spherical. If the star is close to the surface of the cloud, a part of the nebura boundary has been considered to be flat. Single scattering within the homogeneous nebula has been assumed. All the calculations use the scattering by spheres as given by the Mie's theory. The effect of variations of chemical composition and size distribution function of the grains and the position of the illuminating star has been examined. Comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with the refraction index m=1.30-0.02i and size parameter asub(o)=0.5μ represent satisfactorily the observation if the star is embedded 0.7 pc behind the front surface of the nebula

  1. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  2. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.

    1977-01-01

    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  3. Ring nebulae associated with Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Chu, Y.-H.

    1982-01-01

    Using strict selection criteria, the author and colleagues have searched for ring nebulae associated with Wolf-Rayet stars in the Galaxy and the Magellanic Clouds. 15 WR ring nebulae are identified in the Galaxy, 9 in the Large Magellanic Cloud, and none in the small Magellanic Cloud. The morphology and kinematics of these 24 nebulae have subsequently been observed to study their nature. These nebulae and their references are listed and a correlation between spectral and nebular types is presented. (Auth.)

  4. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  5. Monitoring the Crab Nebula with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  6. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  7. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  8. Full transverse-momentum spectra of low-mass Drell-Yan pairs at LHC energies

    CERN Document Server

    Fái, G; Zhang, X; Fai, George; Qiu, Jianwei; Zhang, Xiaofei

    2003-01-01

    The transverse momentum distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation. We argue that at LHC energies the results should be reliable for the entire transverse momentum range. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence.

  9. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  10. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    Science.gov (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  11. Angular diameters of Magellanic Cloud plantary nebulae. I. Speckle interferometry

    International Nuclear Information System (INIS)

    Wood, P.R.; Bessell, M.S.; Dopita, M.A.

    1986-01-01

    Speckle interferometric angular diameters of Magellanic Cloud planetary nebulae are presented. The mass of ionized gas in each nebula has been derived from the angular diameter and published H-beta line fluxes; the derives masses range from less than 0.006 to more than 0.19 solar mass. The planetary nebulae observed were the brightest in the Magellanic Clouds; consequently, they are all relatively small, young, bright, and dense. They are almost certainly only partially ionized, so that the masses derived for the ionized parts of the nebula are lower limits to the total nebula mass. The properties of the Magellanic Cloud nebulae are compared with those of planetary nebulae at the galactic center. 27 references

  12. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  13. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  14. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  15. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  16. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J.

    2015-01-01

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc

  17. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  18. A new bipolar nebula in Centaurus

    International Nuclear Information System (INIS)

    Wegner, G.; Glass, I.S.

    1979-01-01

    A new bipolar or butterfly-shaped nebula has been discovered and shown to have an infrared excess. The spectra of the central object and wings are of similar type, around G0. No emission lines are apparent. The infrared excess appears to be due to thermal emission from dust. (U.K.)

  19. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  20. Orbital decay and accretion for planetary or binary systems within a planetary nebula

    International Nuclear Information System (INIS)

    Choi, K.H.

    1980-01-01

    The problem of the survival of a planet and low mass secondary orbiting a primary star that becomes a planetary nebula is studied. The values of the mass of primary used are 1.0, and 1.5, and 2.0 M/sub sun/ and the values for the planet's mass are 0.001 M/sub sun/ and 0.01 M/sub sun/. The mass of the secondary is 0.1 M/sub sun/. The evolution of the orbital elements and mass of the secondary due to accretion and drag forces in the common envelope are presented. The possible application of the results to V471 Tau, UU Sge, WZ Sge, and the sun-jupiter system are discussed

  1. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  2. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  3. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  4. Chemistry in the final stages of stellar evolution: Millimeter and submillimeter observations of supergiants and planetary nebulae

    Science.gov (United States)

    Edwards, Jessica Louise

    High mass loss rates in evolved stars make them the major contributors to recycling processed material back into the interstellar medium. This mass loss creates large circumstellar shells, rich in molecular material. This dissertation presents millimeter and submillimeter studies of the end stages of low mass and high mass stars in order to probe their molecular content in more detail. In low mass stars, the molecular material is carried on into the planetary nebula (PN) stage. Observations of CS, HCO+, and CO in planetary nebulae (PNe) of various post-asymptotic giant branch ages have shown that molecular abundances in these objects do not significantly vary with age, as previously thought. More detailed observations of the slightly oxygen-rich PN NGC 6537 resulted in the detection of CN, HCN, HNC, CCH, CS, SO, H 2CO, HCO+ and N2H+, as well as numerous 13C isotopologues. Observations of the middle-aged PN M2-48 showed the presence of CN, HCN, HNC, CS, SO, SO2, SiO, HCO+, N2H+, and several 13C isotopologues. These observations represent the first detections of CS, SO, SO2, and SiO in any planetary nebula. The implications of these observations are discussed. A 1 mm spectral survey of the supergiant star NML Cygni has been carried out with the Arizona Radio Observatory Submillimeter Telescope resulting in the observation of 102 emission features arising from 17 different molecules and 4 unidentified features. The line profiles observed in this circumstellar shell are asymmetric and vary between different molecules, akin to what has been seen in another supergiant, VY Canis Majoris. The non-LTE radiative transfer code ESCAPADE has been used to model molecular abundances in the various asymmetric outflows of VY Canis Majoris, showing just how chemically and kinematically complex these supergiant circumstellar envelopes really are.

  5. Low-mass Stars with Extreme Mid-Infrared Excesses: Potential Signatures of Planetary Collisions

    Science.gov (United States)

    Theissen, Christopher; West, Andrew

    2018-01-01

    I investigate the occurrence of extreme mid-infrared (MIR) excesses, a tracer of large amounts of dust orbiting stars, in low-mass stellar systems. Extreme MIR excesses, defined as an excess IR luminosity greater than 1% of the stellar luminosity (LIR/L* ≥ 0.01), have previously only been observed around a small number of solar-mass (M⊙) stars. The origin of this excess has been hypothesized to be massive amounts of orbiting dust, created by collisions between terrestrial planets or large planetesimals. Until recently, there was a dearth of low-mass (M* ≤ 0.6M⊙) stars exhibiting extreme MIR excesses, even though low-mass stars are ubiquitous (~70% of all stars), and known to host multiple terrestrial planets (≥ 3 planets per star).I combine the spectroscopic sample of low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (70,841 stars) with MIR photometry from the Wide-field Infrared Survey Explorer (WISE), to locate stars exhibiting extreme MIR excesses. I find the occurrence frequency of low-mass field stars (stars with ages ≥ 1 Gyr) exhibiting extreme MIR excesses is much larger than that for higher-mass field stars (0.41 ± 0.03% versus 0.00067 ± 0.00033%, respectively).In addition, I build a larger sample of low-mass stars based on stellar colors and proper motions using SDSS, WISE, and the Two-Micron All-Sky Survey (8,735,004 stars). I also build a galactic model to simulate stellar counts and kinematics to estimate the number of stars missing from my sample. I perform a larger, more complete study of low-mass stars exhibiting extreme MIR excesses, and find a lower occurrence frequency (0.020 ± 0.001%) than found in the spectroscopic sample but that is still orders of magnitude larger than that for higher-mass stars. I find a slight trend for redder stars (lower-mass stars) to exhibit a higher occurrence frequency of extreme MIR excesses, as well as a lower frequency with increased stellar age. These samples probe important

  6. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  7. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    Science.gov (United States)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  8. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  9. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  10. Nebulae at keratoconus--the result after excimer laser removal.

    Science.gov (United States)

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated.

  11. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  12. Nebula observations. Catalogues and archive of photoplates

    Science.gov (United States)

    Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.

    2017-12-01

    A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.

  13. Multiband observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Krassilchtchikov, A M; Bykov, A M; Castelletti, G M; Dubner, G M; Kargaltsev, O Yu; Pavlov, G G

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical ( HST ), and X-ray ( Chandra ) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other. (paper)

  14. Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens

    2012-01-01

    Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic

  15. The effect of M dwarf starspot activity on low-mass planet

    NARCIS (Netherlands)

    Barnes, J.R.; Jeffers, S.V.; Jones, H.R.A.

    2011-01-01

    In light of the growing interest in searching for low mass, rocky planets, we investigate the impact of starspots on radial velocity searches for earth-mass planets in orbit about M dwarf stars. Since new surveys targeting M dwarfs will likely be carried out at infrared wavelengths, a comparison

  16. Environmental impact study of Orion Nebula dust

    International Nuclear Information System (INIS)

    Cardelli, J.A.; Clayton, G.C.

    1988-01-01

    In this paper, new high-quality extinction curves are presented for Theta-1 Ori A, C, and D, and Theta-2 Ori A and B, over the wavelength range 3300-6000 A. These are coupled with near-infrared and ultraviolet data to produce extinction curves from 0.12 to 3.5 microns. The Orion Nebula region is interesting in that most of the known processes of dust-grain growth, processing, and destruction may be operating nearly simultaneously in close proximity to one another. Each of these processes is considered with respect to the observed extinction curves and environmental conditions in the Orion Nebula and its associated molecular cloud. Plausible grain populations are fit to the observed extinction curves. A good fit to the average Theta Ori extinction curve can be obtained with: (1) a combination of larger than normal silicate grains produced through coagulation and accretion; (2) evaporation of volatile mantles; and (3) a reduction in the column density of small (smaller than 0.01 micron) grains responsible for the bump and far-ultraviolet extinction through differential acceleration due to radiation pressure and possible evaporation. It seems plausible to explain the observed peculiar extinction in the Orion Nebula simply by environmental effects on otherwise normal grains. 59 references

  17. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  18. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    International Nuclear Information System (INIS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-01-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H 2 knots are found nearly twice as far to the east of the source as to its west, and that H 2 emission extends farther east of the source than the previously known CO outflow.

  19. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  20. Proto-planetary nebulae. I. The extreme bipolar nebulae M2-9 and M1-91

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1991-01-01

    Results are presented on a long-slit optical spectroscopy measurements of the prototype bipolar planetary nebula M2-9 and the M1-91 bipolar nebula, performed in order to determine the nature of the morphology of the wings of these two nebulae. It is concluded that the overall bipolar morphologies of these nebulae might be due to the orbital motions of binaries, with the orbital angular momentum vector defining the axis of the nebula. Secondary symmetries in the nebulae, such as the point-symmetric knots in M1-91, could be due to other symmetries, such as the rotation axis of one of the individual stars or the polar axis of the accretion disk. 39 refs

  1. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J. [Instituto de Astrofisica de Andalucia-C.S.I.C., Glorieta de la Astronomia, 18008 Granada (Spain)

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  2. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    International Nuclear Information System (INIS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.

    2012-01-01

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10 8 -10 10 M ☉ , located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the properties of the ICM

  3. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Porto de Mello, Gustavo F.; Ferreira, Leticia D. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lactea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Agol, Eric, E-mail: jpaty@mail.ustc.edu.cn [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  4. Abundances of the planetary nebula Hu 1-2

    NARCIS (Netherlands)

    Pottasch, [No Value; Hyung, S; Aller, LH; Beintema, DA; Bernard-Salas, J; Feibelman, WA; Klockner, HR

    The ISO and IUE spectra of the "elliptical" nebula Hu 1-2 are presented. These spectra are combined with new, high resolution spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated and compared to

  5. Abundances of planetary nebulae NGC 7662 and NGC 6741

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA

    2001-01-01

    The ISO and IUE spectra of the elliptical nebulae NGC7662 and NGC6741 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  6. Starlight excitation of permitted lines in the Orion Nebula

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    From an idealized model of the Orion Nebula and from an analysis of line ratios it is shown that direct starlight excitation of the permitted O I line dominates over recombination and Lyman line fluorescence. The line strengths predicted by this mechanism agree reasonably well with those observed in the Orion Nebula. The application of direct starlight excitation to other ions is also discussed

  7. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    NARCIS (Netherlands)

    Pottasch, [No Value; Acker, A

    1998-01-01

    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  8. Abundances of neon, sulfur, and argon in planetary nebulae

    International Nuclear Information System (INIS)

    Beck, S.C.; Lacy, J.H.; Townes, C.H.; Geballe, T.R.; Baas, F.

    1981-01-01

    Infrared observations of [Ne II], [S IV], and [Ar III] are used with optical observations to discuss the abundances of Ne, S, and Ar in 18 planetary nebulae. In addition, infrared observations of 18 other nebulae are presented. The derived abundances of S and Ar are each slightly enhanced relative to previous studies

  9. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D

    2002-01-01

    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  10. Low mass muon pair production in 450 GeV p-Be collisions

    International Nuclear Information System (INIS)

    Veenhof, R.J.

    1993-01-01

    The ability to observe both electron and muon pairs enables us to carry out two largely independent studies of the low mass lepton pairs. This is particularly important in view of the uncertainty in the normalisation of the meson decay background. The Helios detector is described in Chapter 2.0 with particular emphasis on the performance of the drift chamber system. The event selection and the reconstruction of the muons is described in Chapter 3.0. Chapter 4.0 summarises the current knowledge of the decays of mesons into low mass muon pairs. Our own measurements of meson properties are presented in Chapter 5.0. The question whether we need anomalous pairs to explain our data, is answered in Chapter 6.0. (orig.)

  11. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    International Nuclear Information System (INIS)

    Hermes, J. J.; Brown, Warren R.; Kilic, Mukremin; Gianninas, A.; Chote, Paul; Sullivan, D. J.; Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H.; Mason, Paul A.

    2014-01-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M ☉ ) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  12. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Chote, Paul; Sullivan, D. J. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Mason, Paul A., E-mail: j.j.hermes@warwick.ac.uk [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2014-09-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M {sub ☉}) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  13. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    CERN Document Server

    Gonella, Laura; Desch, Klaus

    2013-11-11

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are dis...

  14. The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley

    Science.gov (United States)

    Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.

    1987-01-01

    Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.

  15. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  16. Search for low mass exotic baryons in one pion electroproduction data measured at JLAB

    International Nuclear Information System (INIS)

    Tatischeff, B.; Tomasi-Gustafsson, E.

    2007-02-01

    This paper aims to give further evidence for the existence of low mass exotic baryons. Narrow structures in baryonic missing mass or baryonic invariant mass were previously observed during the last ten years. Since their existence is sometimes questionable, the structure functions of one pion electroproduction cross sections, measured at JLAB, are studied to add information on the possible existence of these narrow exotic baryonic resonances. (authors)

  17. GAS LOSS BY RAM PRESSURE STRIPPING AND INTERNAL FEEDBACK FROM LOW-MASS MILKY WAY SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Emerick, Andrew; Low, Mordecai-Mark Mac [Department of Astronomy, Columbia University, New York, NY (United States); Grcevich, Jana [Department of Astrophysics, American Museum of Natural History, New York, NY (United States); Gatto, Andrea [Max-Planck-Institute für Astrophysik, Garching, bei München (Germany)

    2016-08-01

    The evolution of dwarf satellites in the Milky Way (MW) is affected by a combination of ram pressure stripping (RPS), tidal stripping, and internal feedback from massive stars. We investigate gas loss processes in the smallest satellites of the MW using three-dimensional, high-resolution, idealized wind tunnel simulations, accounting for gas loss through both ram pressure stripping and expulsion by supernova feedback. Using initial conditions appropriate for a dwarf galaxy like Leo T, we investigate whether or not environmental gas stripping and internal feedback can quench these low-mass galaxies on the expected timescales, shorter than 2 Gyr. We find that supernova feedback contributes negligibly to the stripping rate for these low star formation rate galaxies. However, we also find that RPS is less efficient than expected in the stripping scenarios we consider. Our work suggests that although RPS can eventually completely strip these galaxies, other physics is likely at play to reconcile our computed stripping times with the rapid quenching timescales deduced from observations of low-mass MW dwarf galaxies. We discuss the roles additional physics may play in this scenario, including host-satellite tidal interactions, cored versus cuspy dark matter profiles, reionization, and satellite preprocessing. We conclude that a proper accounting of these physics together is necessary to understand the quenching of low-mass MW satellites.

  18. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States)

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  19. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    International Nuclear Information System (INIS)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-01-01

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T eff = 9100 ± 170 K and log g = 6.22 ± 0.06, which corresponds to a mass of ∼0.17 M ☉ . This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  20. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Gianninas, A.; Kilic, M. [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Hermes, J. J., E-mail: tremblay@stsci.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  1. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Xu, Y.; Xu, D. W.; Wei, J. Y., E-mail: wj@bao.ac.cn [CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2016-12-10

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.

  2. A UV spectroscopic snapshot survey of low-mass stars in the Hyades

    Science.gov (United States)

    Agueros, Marcel

    2017-08-01

    Because of its proximity, the 650-Myr-old Hyades open cluster is a unique resource for exploring the relationship between magnetic activity, rotation, and age in low-mass stars. While the cluster has been largely ignored in UV studies of the dependence of activity on rotation, we now have an extensive and growing set of complementary rotation period, Halpha, and X-ray measurements with which to examine in detail the rotation-activity relation at 650 Myr and to constrain theories of magnetic heating. We propose to measure Mg II line emission, the strongest NUV activity tracer, in COS spectra of 86 Hyads ranging in spectral type from G to M with known rotation periods or currently being observed by K2. These stars form a representative sample of low-mass Hyads with known periods and are a significant addition to, and expansion of, the sample of 20 mainly solar-mass rotators with existing (mostly low-resolution) IUE NUV spectra. The Mg II measurements will contribute significantly to our goal of mapping out the rotation-activity relation star-by-star in this benchmark open cluster. This, in turn, will move us toward an improved understanding of the radiation environment and habitability of the exoplanets we continue to find around low-mass stars.

  3. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  4. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  5. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.

    1988-01-01

    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  6. Effects of mass and metallicity upon planetary nebula formation

    International Nuclear Information System (INIS)

    Papp, K.A.; Purton, C.R.; Kwok, S.

    1983-01-01

    We construct a parameterized function which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. Our analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebula in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy

  7. The effects of mass and metallicity upon planetary nebula formation

    Science.gov (United States)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  8. Aerodynamics of solid bodies in the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-07-01

    On a centrally condensed solar nebula, the pressure gradient in the gas causes the nebula to rotate more slowly than the free orbital velocity. Drag forces cause the orbits of solid bodies to decay. Their motions have been investigated analytically and numerically for all applicable drag laws. The maximum radial velocity developed is independent of the drag law, and insensitive to the nebular mass. Results are presented for a variety of model nebulae. Radial velocities depend strongly on particle size, reaching values of the order of 10/sup 4/ cm/s for metre-sized objects. Possible consequences include: mixing of solid matter with the solar nebula on short timescales, collisions leading to rapid accumulation of planetesimals, fractionation of bodies by size or density, and production of regions of anomalous composition in the solar nebula.

  9. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  10. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  11. Electrodynamic coupling between pulsars and surrounding nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio; L' Aquila Univ. (Italy). Istituto di Fisica); Ferrari, A [Cambridge Univ. (UK). Inst. of Astronomy; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Istituto di Fisica)

    1976-02-01

    In this work a study is presented of collective plasma processes by which pulsars can energetically support young supernova remnants. We show that many of the observed features of the Crab Nebula can be adequately interpreted in terms of a parametric interaction between the low-frequency electromagnetic wave emitted by the pulsar in the oblique rotator model and a relativistic wind of charged particle leaking from the pulsar's inner magnetosphere. In particular we show that there is a relativistic parametric resonant coupling of the strong wave with electrostatic and electromagnetic modes.

  12. ELEMENT MASSES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M. [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  13. Planetary nebulae and the interstellar medium

    Science.gov (United States)

    Aller, L. H.

    1986-01-01

    In addition to available published data on planetary nebulae (PN), some 40 objects largely concentrated towards the galactic center and anticenter regions were included. All were observed with the Lick 3(sup m) telescope and image tube scanner. Abundances of C, N, O, Ne, Cl, and Ar were determined by a procedure in which theoretical models were used to obtain ionization correction factors (ICF). Of the 106 PN, 66 are N-rich and 40 are N-poor. There appear to be no significant differences between the average compositions in the solar neighborhood and the average taken over the entire observable portion of the galaxy.

  14. Orion infrared nebula/molecular cloud

    International Nuclear Information System (INIS)

    Zuckerman, B.; Palmer, P.

    1975-01-01

    Observational and theoretical studies of the Orion Nebula and the associated molecular clouds have greatly increased our understanding of this and other regions in which star formation is taking place. Fundamental questions remain unanswered; and in this Letter we address three of them: (1) the chemical composition of the molecular cloud, (2) its internal motions, and (3) the role of magnetic fields in its evolution. We show that the gas phase chemistry and internal motions in one part of the cloud are distinctly different from those in the rest of the cloud, and two recent estimates of the magnetic field strengths are very uncertain. (auth)

  15. The low-mass star and sub-stellar populations of the 25 Orionis group

    Science.gov (United States)

    Downes, Juan José; Briceño, César; Mateu, Cecilia; Hernández, Jesús; Vivas, Anna Katherina; Calvet, Nuria; Hartmann, Lee; Petr-Gotzens, Monika G.; Allen, Lori

    2014-10-01

    We present the results of a survey of the low-mass star and brown dwarf population of the 25 Orionis group. Using optical photometry from the CIDA (Centro de Investigaciones de Astronomía `Francisco J. Duarte', Mérida, Venezuela) Deep Survey of Orion, near-IR photometry from the Visible and Infrared Survey Telescope for Astronomy and low-resolution spectroscopy obtained with Hectospec at the MMT telescope, we selected 1246 photometric candidates to low-mass stars and brown dwarfs with estimated masses within 0.02 ≲ M/M⊙ ≲ 0.8 and spectroscopically confirmed a sample of 77 low-mass stars as new members of the cluster with a mean age of ˜7 Myr. We have obtained a system initial mass function of the group that can be well described by either a Kroupa power-law function with indices α3 = -1.73 ± 0.31 and α2 = 0.68 ± 0.41 in the mass ranges 0.03 ≤ M/M⊙ ≤ 0.08 and 0.08 ≤ M/M⊙ ≤ 0.5, respectively, or a Scalo lognormal function with coefficients m_c=0.21^{+0.02}_{-0.02} and σ = 0.36 ± 0.03 in the mass range 0.03 ≤ M/M⊙ ≤ 0.8. From the analysis of the spatial distribution of this numerous candidate sample, we have confirmed the east-west elongation of the 25 Orionis group observed in previous works, and rule out a possible southern extension of the group. We find that the spatial distributions of low-mass stars and brown dwarfs in 25 Orionis are statistically indistinguishable. Finally, we found that the fraction of brown dwarfs showing IR excesses is higher than for low-mass stars, supporting the scenario in which the evolution of circumstellar discs around the least massive objects could be more prolonged.

  16. Complex molecules in the hot core of the low-mass protostar NGC 1333 IRAS 4A

    NARCIS (Netherlands)

    Bottinelli, S; Ceccarelli, C; Lefloch, B; Williams, JP; Castets, A; Caux, E; Cazaux, S; Maret, S; Parise, B; Tielens, AGGM

    2004-01-01

    We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS

  17. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  18. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  19. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  20. PLANETS AROUND LOW-MASS STARS (PALMS). II. A LOW-MASS COMPANION TO THE YOUNG M DWARF GJ 3629 SEPARATED BY 0.''2

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P.; Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@ifa.hawaii.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-09-01

    We present the discovery of a 0.''2 companion to the young M dwarf GJ 3629 as part of our high-contrast adaptive optics imaging search for giant planets around low-mass stars with the Keck-II and Subaru telescopes. Two epochs of imaging confirm that the pair is comoving and reveal signs of orbital motion. The primary exhibits saturated X-ray emission which, together with its UV photometry from GALEX, points to an age younger than {approx}300 Myr. At these ages the companion lies below the hydrogen burning limit with a model-dependent mass of 46 {+-} 16 M{sub Jup} based on the system's photometric distance of 22 {+-} 3 pc. Resolved YJHK photometry of the pair indicates a spectral type of M7 {+-} 2 for GJ 3629 B. With a projected separation of 4.4 {+-} 0.6 AU and an estimated orbital period of 21 {+-} 5 yr, GJ 3629 AB is likely to yield a dynamical mass in the next several years, making it one of only a handful of brown dwarfs to have a measured mass and an age constrained from the stellar primary.

  1. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  2. Theoretical investigation into the existence of molecules in planetary nebulae

    International Nuclear Information System (INIS)

    Carlson, W.J.

    1980-01-01

    Calculations of chemical kinetic equilibrium molecular abundances in the neutral regions of planetary nebulae are presented. The development of these abundances during the expansion of the nebula is calculated. The physical parameters in the neutral regions following the formation of the nebula by the ejection of the envelope of a long peiod variable star have been taken from available dynamical models. Similarly, the temperature and luminosity of the central star as a function of time have been taken from available theoretical calculations. The thermal equilibrium has been solved independently. The temperatures in the shell and later in the condensations which develop are in the range from 30 to 250 K. Number densities range from 10 7 for the youngest model calculated to 2 x 10 4 for neutral condensations in a 10,000 year old nebula. It is shown that, for a typical nebula containing 0.2 Msub solar, molecules are expected to be the dominant form for only a short period early in the expansion phase. Subsequently, the condensations are not sufficiently optically thick to permit the continued existence of a preponderance of molecules. The molecular abundances in the later models are similar to those in diffuse interstellar clouds. The expectation arising from those results is that little molecular material will be injected into the interstellar medium by planetary nebulae. There is, however, a remarkable resemblance between the conditions in the model calculated at very early stages of the expansion and conditions deduced from observations for proto-planetary nebulae

  3. Spectrophotometry of ring nebulae around Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Kwitter, K.B.

    1979-01-01

    Spectrophotometric observations of four ring nebulae surrounding population I Wolf-Rayet (WN) stars have been obtained, and four additional filamentary nebulae in order to determine the physical conditions and chemical abundances in these objects. It was concluded that the ring nebulae are enriched in nitrogen and helium as a result of contamination of the ambient interstellar medium by the helium- and nitrogen-rich wind from the central Wolf-Rayet star. Of the additional nebulae studied, two were found to be Peimbert Type I planetary nebulae, overabundant in nitrogen and helium due to mixing of CNO processed material into the parent envelope prior to ejection. One of the remaining objects, a shell around an Oef star, is found to have normal abundances; the other, a small H II region around an early Be star, also exhibits normal abundances. It was attempted to interpret the ring nebulae and the Oef shell as interstellar bubbles, according to recent theory; it met with varying degrees of success. For two of the ring nebulae, the fraction of nebular mass contributed by the central star can be estimated from published stellar abundances. It was found that in these two cases, the stellar wind has provided less than 10% of the observed nebular mass

  4. VLA Ammonia Observations of IRAS 16253-2429: A Very Young and Low Mass Protostellar System

    Science.gov (United States)

    Wiseman, Jennifer J.

    2011-01-01

    IRAS l6253-2429. the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source as possibly one of the youngest and lowest mass sources in formation yet known.

  5. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  6. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  7. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  8. EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION

    International Nuclear Information System (INIS)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.

    2016-01-01

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  9. EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States)

    2016-12-10

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  10. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  11. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging

    Science.gov (United States)

    Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao

    2017-09-01

    The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.

  12. Emission - line theoretical profiles for Wolf- Rayet stars with low-mass companions

    International Nuclear Information System (INIS)

    Antokhin, I.I.

    1986-01-01

    Profiles of the resonant line λ 765 A and the subordinate line λ 4058 of N4 have been calculated for a binary system medel consisting of the Wolf-Rayet star and the low-mass companion (possibly, a relativistic object) by means of Sobolev approximation. The equations of statistical equilibrium have been solved for the first 32 levels of N4. Two cases have been considered: 1) detached zone of N5 surrounding the Wolf-Rayet star and the companion; 2) common zone of N5. The criteria for detection of presence of a companion in line profile observations have been formulated

  13. On type Ia supernovae and the formation of single low-mass white dwarfs

    OpenAIRE

    Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Han, Zhanwen

    2008-01-01

    There is still considerable debate over the progenitors of type Ia supernovae (SNe Ia). Likewise, it is not agreed how single white dwarfs with masses less than ~0.5 Msun can be formed in the field, even though they are known to exist. We consider whether single low-mass white dwarfs (LMWDs) could have been formed in binary systems where their companions have exploded as a SN Ia. In this model, the observed single LMWDs are the remnants of giant-branch donor stars whose envelopes have been st...

  14. On the production of low-mass lepton pairs at large transverse momentum

    International Nuclear Information System (INIS)

    Aurenche, P.; Baier, R.; Fontannaz, M.

    1988-03-01

    We relate the cross section for the production of low-mass lepton (Drell-Yan) pairs at large transverse momentum to the inclusive prompt (real) photon spectrum. The later one is then evaluated at second order in the QCD coupling constant α s ; predictions are obtained using next-to-leading order quark/gluon densities. Finally, a quantitative comparison with the recent pair data of the UA1 Collaboration is successfully performed. Therefore the considered process is conjectured as an extremely useful probe of the proton structure at small values of x

  15. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known....... The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries....

  16. Critical heat flux correlation analysis for PWR reactors with low mass flow

    International Nuclear Information System (INIS)

    Carajilescov, Pedro

    1996-01-01

    The major limit in the thermalhydraulic design of water cooled reactors consists in the occurrence of critical heat flux, which is verified by correlation of large range of validity. In the present work, the major design correlations were analyzed, through comparisons with experimental data, for utilization in PWR with low mass flux in the core. The results show that the EPRI correlation, with modifications, gives conservative results, from the safety point of view, with lower data spreading, being the most indicated for the reactor thermal design. (author)

  17. Recent results from LHCb on W, Z and low mass Drell-Yan production

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Recent results from the LHCb experiment are presented that test QCD and the electroweak theory. Inclusive and differential cross-sections, as well as cross-section ratios and asymmetries, for W and Z boson production are measured and compared to next-to-next-to-leading order QCD predictions using the most recent parton distribution functions.  In addition, differential cross-sections for low mass Drell-Yan production are presented in the di-muon mass range 5

  18. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  19. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji

    1995-01-01

    In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)

  20. Construction and performance of MEGAs low-mass, high-rate cylindrical MWPCs

    Science.gov (United States)

    Cooper, M. D.; Armijo, V.; Black, J. K.; Bolton, R. D.; Carius, S.; Espinoza, C.; Hart, G.; Hogan, G. E.; Gonzales, A.; Kroupa, M. A.; Mischke, R. E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Whitehouse, D. A.; Wilkinson, C. A.; Stantz, K.; Szymanski, J. J.; Jui, C. C.; Gagliardi, C. A.; Tribble, R. E.; Tu, X.-L.; Fisk, R. J.; Koetke, D. D.; Manweiler, R. W.; Nord, P. M.; Stanislaus, S.; Piilonen, L. E.; Zhang, Y. D.

    A design for extremely low mass, high-resolution multiwire proportional chambers (MWPC) was achieved by the MEGA collaboration in its experiment to search for the lepton family number violating decay μ→eγ. To extend the present branching ratio limit by over an order of magnitude, these MWPCs were operated in high particle fluxes. They showed minimal effects of aging, and evidenced spatial and energy resolutions for the orbiting positrons from muon decay which were consistent with our design parameters. The unique features of these chambers, their assembly into the MEGA positron spectrometer, and their performance during the experiment are described in this paper.

  1. CubeSat mechanical design: creating low mass and durable structures

    Science.gov (United States)

    Fiedler, Gilbert; Straub, Jeremy

    2017-05-01

    This paper considers the mechanical design of a low-mass, low-cost spacecraft for use in a multi-satellite sensing constellation. For a multi-spacecraft mission, aggregated small mass and cost reductions can have significant impact. One approach to mass reduction is to make cuts into the structure, removing material. Stress analysis is used to determine the level of material reduction possible. Focus areas for this paper include determining areas to make cuts to ensure that a strong shape remains, while considering the comparative cost and skill level of each type of cut. Real-world results for a CubeSat and universally applicable analysis are presented.

  2. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  3. A search for low-mass stars and brown dwarfs in the Pleiades

    International Nuclear Information System (INIS)

    Jameson, R.F.; Skillen, I.

    1989-01-01

    Seven areas of size 25 arcmin 2 each were imaged at R and I in the Pleiades. The objects observed are plotted on a colour-magnitude diagram. Comparison with theory using the age of the Pleiades shows that nine of these objects might be low-mass Pleiades members. Of these, five would then be brown dwarfs although this number reduces if an older age is assumed for the cluster. Equally, all these objects may be old M dwarfs which are not cluster members. We are not yet able to distinguish definitely between these two possibilities. (author)

  4. Study of the low mass dimuon continuum produced in hadronic interactions

    International Nuclear Information System (INIS)

    Badier, J.; Bourotte, J.; Mine, P.; Vanderhagen, R.; Boucrot, J.; Callot, O.; Decamp, D.; Karyotakis, Y.; Lefrancois, J.; Crozon, M.; Delpierre, P.; Leray, T.; Maillard, J.; Tilquin, A.

    1984-01-01

    We present here the analysis of low mass dimuon events (1.8 2 ) produced by positive and negative pion and proton beams at 200 GeV/c. Using the difference between the π - and the π + cross sections, and comparing to the Drell-Yan model, we find a K-factor of 2.47+-0.5. Only about 1/2 of the events can be attributed to the Drell-Yan mechanism. If the remaining events are attributed to muonic decays of D mesons we find an upper limit for the cross section of charmed meson production. (orig.)

  5. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  6. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  7. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  8. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Steene, Griet Van de [Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels (Belgium); Winckel, Hans Van [Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Sperauskas, Julius [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: g.vandesteene@oma.be, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: julius.sperauskas@ff.vu.lt, E-mail: David.Bohlender@nrc-cnrc.gc.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2017-09-10

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  9. An investigation of the Carina Nebula

    Science.gov (United States)

    Brooks, Kate J.

    2000-10-01

    It is well known that the radiation fields and stellar winds of massive stars can drastically affect the physical conditions, structure and chemistry of the giant molecular cloud (GMC) from which they formed. It is also thought that massive stars are at least partly responsible for triggering further star formation within a GMC. The details of this interaction, however, are not well understood and additional detailed study of massive star-forming regions is needed. This study has focused on a multi-wavelength investigation of the Carina Nebula. This is a spectacular massive star-forming region that contains two of the most massive star clusters in our galaxy, Trumpler 14 and Trumpler 16, and one of the most massive stars known -- η Car. The goal of this study has been to obtain information on the molecular gas, ionized gas and photodissociation regions (PDRs) from a collection of instruments which have the highest angular resolution and sensitivity available to date. The Mopra Telescope and the Swedish-ESO Submillimeter Telescope (SEST) were used to obtain a series of molecular line observations of the GMC between 150 and 230 GHz. Observations of H110α recombination-line emission at 4.874 GHz and the related continuum emission were obtained with the Australia Telescope Compact Array and used to study the ionized gas associated with the two HII regions, Car I and Car II. H2 1--0 S(1) (2.12 microns) and Brγ (2.16 microns) observations using the University of New South Wales Infrared Fabry-Perot (UNSWIRF) and 3.29 micron narrow-band observations obtained with the SPIREX/Abu thermal infrared camera were used to study the PDRs on the surface of molecular clumps in the Keyhole region, a dark optical feature in the vicinity of η Car. The results of these observations provide detailed information on the excitation conditions, kinematics and morphology of regions within the HII region/molecular cloud complex of the Carina Nebula. In addition, the results confirm that

  10. The Search for Binaries in Post-Asymptotic Giant Branch Stars: Do Binary Companions Shape the Nebulae?

    Directory of Open Access Journals (Sweden)

    Bruce J. Hrivnak

    2012-03-01

    Full Text Available Binary companions are often invoked to explain the axial and point symmetry seen in the majority of planetary nebulae and proto-planetary nebulae (PPNs. To explore this hypothesis, we have undertaken a long-term (20 year study of light and velocity variations in PPNs. From the photometric study of 24 PPNs, we find that all vary in brightness, and from a subset of 12 carbon-rich PPNs of F-G spectral type we find periods of 35-155 days, with the cooler having the longer periods. The variations are seen to be due to pulsation; no photometric evidence for binarity is seen. A radial velocity study of a sub-sample of seven of the brightest of these shows that they all vary with the pulsation periods. Only one shows evidence of a longer-term variation that we tentatively identify as being due to a binary companion. We conclude that the present evidence for the binary nature of these PPNs is meager and that any undetected companions of these PPNs must be of low mass ( 30 years.

  11. Simultaneous, multi-wavelength flare observations of nearby low-mass stars

    Science.gov (United States)

    Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia

    2018-01-01

    Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

  12. High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Gao, Yan; Wang, Yawei; Guo, Liangqia; Jiang, Guibin

    2015-07-07

    Rapid screening and identification of hazardous chemicals in complex samples is of extreme importance for public safety and environmental health studies. In this work, we report a new method for high-throughput, sensitive, and rapid screening of low-mass hazardous compounds in complex media without complicated sample preparation procedures. This method is achieved based on size-selective enrichment on ordered mesoporous carbon followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis with graphene as a matrix. The ordered mesoporous carbon CMK-8 can exclude interferences from large molecules in complex samples (e.g., human serum, urine, and environmental water samples) and efficiently enrich a wide variety of low-mass hazardous compounds. The method can work at very low concentrations down to part per trillion (ppt) levels, and it is much faster and more facile than conventional methods. It was successfully applied to rapidly screen and identify unknown toxic substances such as perfluorochemicals in human serum samples from athletes and workers. Therefore, this method not only can sensitively detect target compounds but also can identify unknown hazardous compounds in complex media.

  13. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  14. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  15. The initial mass function for very low mass stars in the Hyades

    International Nuclear Information System (INIS)

    Hubbard, W.B.; Burrows, A.; Lunine, J.I.

    1990-01-01

    Theoretical luminosity functions at various evolutionary ages for stars and substellar objects (brown dwarfs), spanning the mass range from 0.03 to 0.2 solar mass is computed. These functions constrain the distribution of very low mass objects in a star cluster of known age. Calculations with a 1988-1989 survey of faint members of the Hyades cluster by Leggett and Hawkins (1988, 1989), a cluster whose age is 6 x 10 to the 8th yr are compared. The comparison shows that the survey does not reach sufficiently low luminosities to reveal brown dwarfs. A strong constraint on the initial mass function (IMF) for very low mass stars in the Hyades is obtained and it is inferred that its IMF does not increase with decreasing mass for the mass interval investigated here. Results imply at most a moderate contribution from brown dwarfs to the cluster mass, and to the Galaxy's mass if the Hyades are representative of the Galaxy as a whole. 10 refs

  16. THE FREQUENCY OF LOW-MASS EXOPLANETS. III. TOWARD η+ AT SHORT PERIODS

    International Nuclear Information System (INIS)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; Horner, J.; Butler, R. P.; O'Toole, Simon J.; Jones, H. R. A.; Carter, B. D.

    2011-01-01

    Determining the occurrence rate of 'super-Earth' planets (m sin i + ) is a critically important step on the path toward determining the frequency of Earth-like planets (η + ), and hence the uniqueness of our solar system. Current radial-velocity surveys, achieving precisions of 1 m s -1 , are now able to detect super-Earths and provide meaningful estimates of their occurrence rate. We present an analysis of 67 solar-type stars from the Anglo-Australian Planet Search specifically targeted for very high precision observations. When corrected for incompleteness, we find that the planet occurrence rate increases sharply with decreasing planetary mass. Our results are consistent with those from other surveys: in periods shorter than 50 days, we find that 3.0% of stars host a giant (msin i > 100 M + ) planet, and that 17.4% of stars host a planet with msin i + . The preponderance of low-mass planets in short-period orbits is in conflict with formation simulations in which the majority of super-Earths reside at larger orbital distances. This work gives a hint as to the size of η + , but to make meaningful predictions on the frequency of terrestrial planets in longer, potentially habitable orbits, low-mass terrestrial planet searches at periods of 100-200 days must be made an urgent priority for ground-based Doppler planet searches in the years ahead.

  17. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  18. ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Mac Low, Mordecai-Mark; Paardekooper, Sijme-Jan

    2010-01-01

    Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs toward equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 M + , can open a gap during the late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M + , released beyond 1 AU in our models avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.

  19. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Gonella, Laura

    2013-10-01

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  20. Unstable low-mass planetary systems as drivers of white dwarf pollution

    Science.gov (United States)

    Mustill, Alexander J.; Villaver, Eva; Veras, Dimitri; Gänsicke, Boris T.; Bonsor, Amy

    2018-05-01

    At least 25 {per cent} of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

  1. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    Science.gov (United States)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  2. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  3. DISCOVERY OF A BRIGHT, EXTREMELY LOW MASS WHITE DWARF IN A CLOSE DOUBLE DEGENERATE SYSTEM

    International Nuclear Information System (INIS)

    Vennes, S.; Kawka, A.; Nemeth, P.; Thorstensen, J. R.; Skinner, J. N.; Pigulski, A.; Steslicki, M.; Kolaczkowski, Z.; Srodka, P.

    2011-01-01

    We report the discovery of a bright (V ∼ 13.7), extremely low mass white dwarf in a close double degenerate system. We originally selected GALEX J171708.5+675712 for spectroscopic follow-up among a group of white dwarf candidates in an ultraviolet-optical reduced proper-motion diagram. The new white dwarf has a mass of 0.18 M sun and is the primary component of a close double degenerate system (P = 0.246137 days, K 1 = 288 km s -1 ) comprising a fainter white dwarf secondary with M 2 ∼ 0.9 M sun . Light curves phased with the orbital ephemeris show evidence of relativistic beaming and weaker ellipsoidal variations. The light curves also reveal secondary eclipses (depth ∼8 mmag) while the primary eclipses appear partially compensated by the secondary gravitational deflection and are below detection limits. Photospheric abundance measurements show a nearly solar composition of Si, Ca, and Fe (0.1-1 sun), while the normal kinematics suggest a relatively recent formation history. Close binary evolutionary scenarios suggest that extremely low mass white dwarfs form via a common-envelope phase and possible Roche lobe overflow.

  4. Speeding up low-mass planetary microlensing simulations and modeling: The caustic region of influence

    International Nuclear Information System (INIS)

    Penny, Matthew T.

    2014-01-01

    Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of light curves. However, for low-mass planets, most of these computations are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass planet detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up simulations by a factor of ∼30-125 (depending on the survey's annual duty-cycle) at the cost of missing ∼1% of detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M ⊕ . For planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.

  5. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.

    2014-01-01

    Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M ≲ 0.45 M ☉ ) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μ WD = 0.74 M ☉ , with a standard deviation σ WD = 0.24 M ☉ . Our model constrains the NS companion fraction f NS to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs

  6. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Silvestri, Nicole M.; Anderson, Scott F.; Kleinman, S. J.; Liebert, James W.

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M sun ) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P MSP +4 -2 %.

  7. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  8. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  9. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  10. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  11. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  12. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  13. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  14. Roberts 22: a bipolar nebula with OH emission

    International Nuclear Information System (INIS)

    Allen, D.A.; Hyland, A.R.; Caswell, J.L.

    1980-01-01

    Roberts 22 is a bipolar reflection nebula illuminated by a hidden A2 Ie star. Most of its energy is radiated at infrared wavelengths. It also shows strong OH maser emission (OH 284.18 - 0.79) on the 1612 and 1665 MHz transitions, generally similar to the masers associated with M stars having infrared excesses. But the system contains no late-type star. This remarkable assemblage of attributes makes Roberts 22 unique; however, it is probably a key member of the newly-recognized population of bipolar nebulae. From an analysis of the properties of Roberts 22 some published interpretations of other bipolar nebulae are questioned, in particular the derivation of spectral types for their underlying stars by the assumption of photo-ionization of the gas, and their evolutionary description as proto-planetary nebulae. (author)

  15. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  16. The carbon budget in the outer solar nebula

    International Nuclear Information System (INIS)

    Simonelli, D.P.; Pollack, J.B.; Mckay, C.P.; Reynolds, R.T.; Summers, A.L.

    1989-01-01

    The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from solar nebula condensates, strongly suggest that most of the carbon in the outer solar nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of solar nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the small percentage of the carbon-bearing solid in the outer solar nebula. 71 refs

  17. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  18. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  19. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  20. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  1. Statistical and physical study of one-sided planetary nebulae.

    Science.gov (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  2. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  3. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  4. Polarimetric evidence against a collimated outflow in the Horsehead Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Gledhill, T M; Scarrott, S M

    1985-08-01

    Imaging polarimetry of the Horsehead Nebula in Orion shows that the 'jaw' region of the nebula, which includes a proposed collimated flow from a highly reddened star B33-6, is illuminated by a distant source, sigma Orionis, and not by B33-6. The polarization pattern also shows features which suggest the presence of magnetically aligned dust grains in the surrounding medium. The possible structure of the aligning field is discussed.

  5. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.

    2014-02-01

    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  6. Interpretation of the [ClIII] Lines in Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H; Czyzak, S J; Walker, M F; Krueger, T K

    1970-05-01

    The intensity ratio of the green lambdalambda5517 and 5537 lines of [ClIII] serves as an indicatrix of the electron density in many gaseous nebulae whose spectra can be observed with an image converter. Quantitative interpretation of the line ratio requires accurate values of the collisional strengths and transition probabilities. With improved values of these parameters we have revised electron densities for a number of nebulae; the results seem to be in good accord with those derived from other criteria.

  7. The Boomerang Nebula - The Coldest Region of the Universe

    Science.gov (United States)

    Sahai, Raghvendra; Nyman, Lars-Ake

    1997-01-01

    In this letter, we report such observations of the Boomerang Nebula which show it to be a unique object, consisiting of an ultra-cold and extremely massive molecular envolope, expanding at very high speed. The extreeme physical characteristics of the Boomerang Nebula reported here have never been seen before in any AGB or post-AGB object, and should spur new theoretical and obesrvational efforts to understand the nature of the mass-loss processes occurring during later stellar evolution.

  8. Distribution of mass in the planetary system and solar nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-09-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula.

  9. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  10. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  11. PLANETS AROUND LOW-MASS STARS (PALMS). V. AGE-DATING LOW-MASS COMPANIONS TO MEMBERS AND INTERLOPERS OF YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P.; Montet, Benjamin T.; Riddle, Reed [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Shkolnik, Evgenya L.; Flagg, Laura [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Liu, Michael C.; Howard, Andrew W.; Aller, Kimberly M.; Best, William M. J.; Kotson, Michael C.; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schlieder, Joshua E. [NASA Postdoctoral Program Fellow, NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Mann, Andrew W.; Dupuy, Trent J. [Department of Astronomy, University of Texas at Austin, TX (United States); Hinkley, Sasha [Physics and Astronomy, University of Exeter, EX4 4QL Exeter (United Kingdom); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Johnson, John Asher [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Weinberger, Alycia J. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd NW, Washington, DC 20015 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Herczeg, Gregory J., E-mail: bpbowler@caltech.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871 (China); and others

    2015-06-10

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7–M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8–120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (∼10–100 M{sub Jup}) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892–0929121 C (40–60 M{sub Jup}) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ∼40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229–2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the

  12. PLANETS AROUND LOW-MASS STARS (PALMS). V. AGE-DATING LOW-MASS COMPANIONS TO MEMBERS AND INTERLOPERS OF YOUNG MOVING GROUPS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Montet, Benjamin T.; Riddle, Reed; Shkolnik, Evgenya L.; Flagg, Laura; Liu, Michael C.; Howard, Andrew W.; Aller, Kimberly M.; Best, William M. J.; Kotson, Michael C.; Baranec, Christoph; Schlieder, Joshua E.; Mann, Andrew W.; Dupuy, Trent J.; Hinkley, Sasha; Crepp, Justin R.; Johnson, John Asher; Weinberger, Alycia J.; Allers, Katelyn N.; Herczeg, Gregory J.

    2015-01-01

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7–M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8–120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (∼10–100 M Jup ) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892–0929121 C (40–60 M Jup ) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ∼40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229–2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest

  13. From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348

    National Research Council Canada - National Science Library

    Najita, Joan R; Tiede, Glenn P; Carr, John S

    2000-01-01

    We investigate the low-mass population of the young cluster IC 348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative...

  14. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  15. The Nature of the Stingray Nebula from Radio Observations

    Science.gov (United States)

    Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.

    2018-06-01

    We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.

  16. Featured Image: A Detailed Look at the Crab Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  17. PHYSICAL PROPERTIES OF THE LOW-MASS ECLIPSING BINARY NSVS 02502726

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Youn, Jae-Hyuck; Kim, Seung-Lee; Lee, Chung-Uk, E-mail: jwlee@kasi.re.kr, E-mail: jhyoon@kasi.re.kr, E-mail: slkim@kasi.re.kr, E-mail: leecu@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejon 305-348 (Korea, Republic of)

    2013-01-01

    NSVS 02502726 has been known as a double-lined, detached eclipsing binary that consists of two low-mass stars. We obtained BVRI photometric follow-up observations in 2009 and 2011 to measure improved physical properties of the binary star. Each set of light curves, including the 2008 data given by Cakirli et al., was simultaneously analyzed with the previously published radial velocity curves using the Wilson-Devinney binary code. The conspicuous seasonal light variations of the system are satisfactorily modeled by a two-spot model with one starspot on each component and by changes of the spot parameters with time. Based on 23 eclipse timings calculated from the synthetic model and one ephemeris epoch, an orbital period study of NSVS 02502726 reveals that the period has experienced a continuous decrease of -5.9 Multiplication-Sign 10{sup -7} day yr{sup -1} or a sinusoidal variation with a period and semi-amplitude of 2.51 yr and 0.0011 days, respectively. The timing variations could be interpreted as either the light-travel-time effect due to the presence of an unseen third body, or as the combination of this effect and angular momentum loss via magnetic stellar wind braking. Individual masses and radii of both components are determined to be M{sub 1} = 0.689 {+-} 0.016 M{sub Sun }, M{sub 2} = 0.341 {+-} 0.009 M{sub Sun }, R{sub 1} = 0.707 {+-} 0.007 R{sub Sun }, and R{sub 2} = 0.657 {+-} 0.008 R{sub Sun }. The results are very different from those of Cakirli et al. with the primary's radius (0.674 {+-} 0.006 R{sub Sun }) smaller the secondary's (0.763 {+-} 0.007 R{sub Sun }). We compared the physical parameters presented in this paper with current low-mass stellar models and found that the measured values of the primary star are best fitted to a 79 Myr isochrone. The primary is in good agreement with the empirical mass-radius relation from low-mass binaries, but the secondary is oversized by about 85%.

  18. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  19. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    International Nuclear Information System (INIS)

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A.; Fisk, R.; Koetke, D.D.; Manweiler, R.W.; Jui, C.C.

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay μ → eγ with a sensitivity of 10 -13 . A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 x 10 4 e + /mm 2 /s and a thickness of 3 x 10 -4 radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m 2 ) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources

  20. Mapping radio emitting-region on low-mass stars and brown dwarfs

    Directory of Open Access Journals (Sweden)

    Hallinan G.

    2011-07-01

    Full Text Available Strong magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7 have emerged from a number of radio observations, including the periodic beams. The highly (up to 100% circularly polarized nature of the emission point to an effective amplification mechanism of the high-frequency electromagnetic waves – the electron cyclotron maser (ECM instability. Several anisotropic velocity distibution models of electrons, including the horseshoe distribution, ring shell distribution and the loss-cone distribution, are able to generate the ECM instability. A magnetic-field-aligned electric potential would play an significant role in the ECM process. We are developing a theoretical model in order to simulate ECM and apply this model to map the radio-emitting region on low-mass stars and brown dwarfs.

  1. Excitation of Neutron Star f-mode in Low Mass X-ray Binaries

    International Nuclear Information System (INIS)

    Araujo, J C N de; Miranda, O D; Aguiar, O D

    2006-01-01

    Neutron Stars (NSs) present a host of pulsation modes. Only a few of them, however, is of relevance from the gravitational wave (GW) point of view. Among the various possible modes the pulsation energy is mostly stored in the f-mode in which the fluid parameters undergo the largest changes. An important question is how the pulsation modes are excited in NSs. Here we consider the excitation of the f-mode in the accreting NSs belonging to Low Mass X-ray Binaries (LMXBs), which may well be a recurrent source of GWs, since the NSs are continuously receiving matter from their companion stars. We also discuss the detectability of the GWs for the scenario considered here

  2. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  3. LP 400-22, A Very Low Mass and High-Velocity White Dwarf

    Science.gov (United States)

    Kawka, Adela; Vennes, Stephane; Oswalt, Terry D.; Smith, J. Allyn; Silvestri, Nicole M.

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11,080+/-140 K and a surface gravity of log g = 6.32 +/-0.08. Therefore, this is a helium-core white dwarf with a mass of 0.17 M,. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.

  4. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs

    Science.gov (United States)

    Miranda, Ryan; Lai, Dong

    2018-02-01

    We investigate the migration of a low-mass (≲10 M⊕) planet near the inner edge of a protoplanetary disc using two-dimensional viscous hydrodynamics simulations. We employ an inner boundary condition representing the truncation of the disc at the stellar corotation radius. As described by Tsang, wave reflection at the inner disc boundary modifies the Type I migration torque on the planet, allowing migration to be halted before the planet reaches the inner edge of the disc. For low-viscosity discs (α ≲ 10-3), planets may be trapped with semi-major axes as large as three to five times the inner disc radius. In general, planets are trapped closer to the inner edge as either the planet mass or the disc viscosity parameter α increases, and farther from the inner edge as the disc thickness is increased. This planet trapping mechanism may impact the formation and migration history of close-in compact multiplanet systems.

  5. Low Mass Ions in Laser Desorption/Ionization Mass Spectrometry of 1-Methoxy-5-aminotetrazole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Gyeong; Bae, Kwang Tae; Goh, Eun Mee; Bae, Se Won [Agency for Defense Development, Daejeon (Korea, Republic of); Shin, Ik-Soo [Soongsil University, Seoul (Korea, Republic of)

    2016-01-15

    The development of novel energetic molecules (EMs) with high power, good safety features, great chemical stability, and environmentally less harmful nature is of great interest in the satellite launcher, missile warhead, ammunition, and pyrotechnic researches. Recently, many researchers have focused on aromatic nitrogen heterocycles such as pyrazole, imidazole, triazole, tetrazole, and pentazole as promising candidates to replace the current EMs used in civilian and military applications. We performed MALDI and LDI experiments with energetic tetrazole derivatives which were of great interest for the application of high performance explosives and fast burning propellants. Particularly, LDI experiments provided low mass ion peaks from decomposition of MAT, which were useful to analyze decomposition mechanism of tetrazoles at TOF MS in high vacuum. The LDI experiments showed various decomposed ion products, which implied several decomposition mechanisms including the detachment of side function groups and the fragmentation of tetrazole ring. The high-level DFT calculations also supported the peaks obtained from LDI experiments.

  6. Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    CERN Document Server

    Gomez Marzoa, Manuel

    The Phase-1 upgrade of the LHC to full design luminosity, planned for 2019 at CERN, requires the modernisation of the experiments around the accelerator. The Inner Tracking System (ITS), the innermost detector at the ALICE experiment, will be upgraded by replacing the current apparatus by new silicon pixels arranged in 7 cylindrical layers. Each layer is composed by multiple independent modules, named staves, which provide mechanical support and cooling to the chips. This thesis aims to develop and validate experimentally an ultra-lightweight stave cooling system for the ITS Upgrade. The moderate thermal requirements, with a nominal power density of 0.15 W/cm^2 and a maximum chip temperature of 30ºC, are counterweighted by extreme low-mass restrictions, obliging to resort to lightweight, non-metallic materials, such as carbon fibre-reinforced polymers and plastics. Novel lightweight stave concepts were developed and experimentally validated, meeting the thermal requirements with minimal material inventory. T...

  7. The BDNYC database of low-mass stars, brown dwarfs, and planetary mass companions

    Science.gov (United States)

    Cruz, Kelle; Rodriguez, David; Filippazzo, Joseph; Gonzales, Eileen; Faherty, Jacqueline K.; Rice, Emily; BDNYC

    2018-01-01

    We present a web-interface to a database of low-mass stars, brown dwarfs, and planetary mass companions. Users can send SELECT SQL queries to the database, perform searches by coordinates or name, check the database inventory on specified objects, and even plot spectra interactively. The initial version of this database contains information for 198 objects and version 2 will contain over 1000 objects. The database currently includes photometric data from 2MASS, WISE, and Spitzer and version 2 will include a significant portion of the publicly available optical and NIR spectra for brown dwarfs. The database is maintained and curated by the BDNYC research group and we welcome contributions from other researchers via GitHub.

  8. Luminosity excesses in low-mass young stellar objects - a statistical study

    International Nuclear Information System (INIS)

    Strom, K.M.; Strom, S.E.; Kenyon, S.J.; Hartmann, L.

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties. 38 references

  9. Low mass dilepton production at the SPS probing hot and dense nuclear matter

    CERN Document Server

    Pérez de los Heros, C; Baur, R; Breskin, Amos; Chechik, R; Drees, A; Jacob, C; Faschingbauer, U; Fisher, P H; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Günzel, T F; Hess, F; Irmscher, D; Lenkeit, B C; Olsen, L H; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Rehak, P; Schön, A; Schükraft, Jürgen; Sampietro, M; Shimansky, S S; Shor, A; Specht, H J; Steiner, V; Tapprogge, Stefan; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Wurm, J P; Yurevich, V I

    1996-01-01

    CERES and HELIOS-3 have detected a significant enhancement of low--mass dileptons in nuclear collisions at 200 GeV/nucleon with respect to the expected ``conventional'' sources. The onset of the excess, starting at a mass of $\\sim2m_{\\pi}$, and the possibility of a quadratic dependence on the event multiplicity suggest the opening of the $\\pi^+\\pi^-\\rightarrow e^+e^-(\\mu^+\\mu^-)$ annihilation channel. This would be the first observation of thermal radiation from dense hadronic matter. Possible interpretations of these results are presented, including the reduction of the $\\rho$ mass due to partial restoration of chiral symmetry in the dense fireball formed in the collision.

  10. Production of low mass dimuons at high transverse momentum: Study of rho,#betta#,phi resonances

    International Nuclear Information System (INIS)

    Badier, J.; Bourotte, J.; Mine, P.; Vanderhaghen, R.; Weisz, S.; Boucrot, J.; Callot, O.; Decamp, D.; Karyotakis, Y.; Lefrancois, J.; Crozon, M.; Delpierre, P.; Leray, T.; Maillard, J.; Tilquin, C.; Valentin, J.

    1983-01-01

    We use low mass dimuons (0.35 2 ) to analyse the production at high transverse momentum (Psub(T) >= 2 GeV/c) of the resonances p, #betta#, THETA. We have studied the variation of the cross section with the type of incident particle (π, K, p) at 150, 200, 280 GeV/c and the nuclear effects by comparison of platinum and hydrogen targets. There is no significant difference between the slopes of the transverse momentum distributions with those observed at lower Psub(T) (0< Psub(T) < 2 GeV/c), meanwhile xsub(F)-distributions show a leading effect in the production of THETA by kaons at these relatively high transverse momenta. (orig.)

  11. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  12. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    Science.gov (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  13. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  14. FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Stephan, Alexander P. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland); Geller, Aaron; Rasio, Frederic A., E-mail: snaoz@astro.ucla.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60201 (United States)

    2016-05-10

    The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in the LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10{sup 4} au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.

  15. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M BH ∼>10 8 M sun ) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L 2 O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M BH -σ * relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M BH and σ * seen in elliptical galaxies is not universal. The elliptical galaxy M BH -σ * relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M BH -σ * relation in this low-mass regime.

  16. Evolution of low-mass stars in the alpha persei cluster

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Burnham, J.N.; Jones, B.F.

    1985-01-01

    We present a photometric and spectroscopic study of low-mass members of the α Persei cluster. Now relative proper motions have been obtained for 4000 stars in a 1X2 x 1X2 region of the α Persei open cluster. The survey extends to Vroughly-equal16.5 mag, much fainter than the previous proper motion surveys. Optical photometry and high-dispersion spectroscopy of the possible cluster members from our survey, as well as a set of 10th to 12th magnitude stars from previous surveys, have also been obtained. The new photometry shows an apparent pre-main sequence (PMS), but we cannot yet accurately determine the PMS turn-on point. The faint stars in the cluster have positions in a V versus V-I diagram that are roughly in accord with the 5 x 10 7 yr isochrone derived by VandenBerg et al. In agreement with previous results for the Pleiades cluster, some of the late-type α Persei members are photometric variables, with periods of 1 day or less. Light curves and estimated periods are presented for six of the G and K dwarf members of the cluster. We attribute the periodic light variations to spots on the surfaces of these stars, which are carried around the visible hemisphere by rapid rotation. The photometric periods are consistent with rotational broadening measurements when available. Projected rotational velocities derived from the echelle spectra indicate that nearly 50% of the stars observed that are later than G2 have 25 km s -1 -1 . The large rotational velocities among low-mass stars in young clusters are ascribed to spin-up during contraction to the main sequence

  17. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  18. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  19. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Brittany E. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Road, Tempe, AZ 85281 (United States)

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV; 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  20. The Hunt for Low-Mass Black Holes in the JWST Era

    Science.gov (United States)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  1. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    Science.gov (United States)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  2. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  3. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A. [Department of Astronomy, Columbia University, 550 W 120th Street, New York, NY 10027 (United States)

    2014-12-20

    Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M ≲ 0.45 M {sub ☉}) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μ{sub WD} = 0.74 M {sub ☉}, with a standard deviation σ{sub WD} = 0.24 M {sub ☉}. Our model constrains the NS companion fraction f {sub NS} to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.

  4. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  5. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    Science.gov (United States)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  6. Long-term captures of low-mass intruders by binary stars

    International Nuclear Information System (INIS)

    Hills, J.G.

    1983-01-01

    Intensive computer simulations were made of three families of encounters between a binary star and a low-mass intruder which previous work indicated have a high probability of producing long-lived triple-star systems. For comparison, a fourth family which produces few long-lived trinaries was also studied. In the first two families, the binary components are equally massive and the closest approach of the intruder to the center of mass of the binary is about two times its semimajor axis, a 0 . In Family 1, the orbit of the original binary is circular, e = 0, while in Family 2, e 0 = 0.95. In Family 3 one binary component is 100 times as massive as the other, the orbit is circular, and the low-mass intruder enters the binary at nearly zero impact parameter. The probability that the intruder is trapped for at least one revolution around the binary is 0.24, 0.46, and 0.51, respectively, for these three families of encounters. The fraction of the intruders surviving successive revolutions drops rapidly. However, one encounter in Family 1 and two in Family 3 resulted in the intruder making more than 300 revolutions around the inner binary before escaping. Some intruders remained bound for more than 20 000 revolutions of the inner binary. The longest duration captures occur when the intruder is thrown into an orbit with a very large semimajor axis. About 20% of the encounters in the three families result in the intruder being thrown into an orbit with a semimajor axis a>100 a 0 , while about 2% result in the intruder going into an orbit with a>1000 a 0 . Intruders thrown into these large semimajor axis orbits have the best chance of having their orbits stabilized by passing stars

  7. The carbon budget in the outer solar nebula.

    Science.gov (United States)

    Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L

    1989-01-01

    Detailed models of the internal structures of Pluto and Charon, assuming rock and water ice as the only constituents, indicate that the mean silicate mass fraction of this two-body system is on the order of 0.7; thus the Pluto/Charon system is significantly "rockier" than the satellites of the giant planets (silicate mass fraction approximately 0.55). This compositional contrast reflects different formation mechanisms: it is likely that Pluto and Charon formed directly from the solar nebula, while the circumplanetary nebulae that produced the giant planet satellites were derived from envelopes that surrounded the forming giant planets (envelopes in which icy planetesimals dissolved more readily than rocky planetesimals). Simple cosmic abundance calculations, and the assumption that the Pluto/Charon system formed directly from solar nebula condensates, strongly suggest that the majority of the carbon in the outer solar nebula was in the form of carbon monoxide; these results are consistent with (1) inheritance from the dense molecular clouds in the interstellar medium (where CH4/CO nebula chemistry. Theoretical predictions of the C/H enhancements in the atmospheres of the giant planets, when compared to the actual observed enhancements, suggest that 10%, or slightly more, of the carbon in the outer solar nebula was in the form of condensed materials (although the amount of condensed C may have dropped slightly with increasing heliocentric distance). Strict compositional limits computed for the Pluto/Charon system using the densities of CH4 and CO ices indicate that these pure ices are at best minor components in the interiors of these bodies, and imply that CH4 and CO ices were not the dominant C-bearing solids in the outer nebula. Clathrate-hydrates could not have appropriated enough CH4 or CO to be the major form of condensed carbon, although such clathrates may be necessary to explain the presence of methane on Pluto after its formation from a CO-rich nebula

  8. A HST/WFC3 Search for Substellar Companions in the Orion Nebula Cluster

    Science.gov (United States)

    Strampelli, Giovanni Maria; Aguilar, Jonathan; Aparicio, Antonio; Piotto, Giampaolo; Pueyo, Laurent; Robberto, Massimo

    2018-01-01

    We present new results relative to the population of substellar binaries in the Orion Nebula Cluster. We reprocessed HST/WFC3 data using an analysis technique developed to detect close companions in the wings of the stellar PSFs, based on the PyKLIP implementation of the KLIP PSF subtraction algorithm. Starting from a sample of ~1200 stars selected over the range J=11-15 mag, we were able to uncover ~80 candidate companions in the magnitude range J=16-23 mag. We use the presence of the 1.4 micron H2O absorption feature in the companion photosphere to discriminate 32 bona-fide substellar candidates from a population of reddened background objects. We derive an estimate of the companion mass assuming a 2Myr isochrone and the reddening of their primary. With 8 stellar companions, 19 brown dwarfs and 5 planetary mass objects, our study provide us with an unbiased sample of companions at the low-mass end of the IMF, probing the transition from binary to planetary systems.

  9. Mixing and Transport in the Solar Nebula

    Science.gov (United States)

    Boss, Alan P.

    2003-01-01

    Boss & Vanhala (2000, 2001) prepared reviews of triggered collapse and injection models, using Prudence Foster's finite differences code at very high spatial resolution (440 x 1440 cells) to demonstrate the convergence of the R-T fingers in triggered injection models. A two dimensional hydrodynamical calculation with unprecedentedly high spatial resolution (960 x 2880 zones, or almost 3 million grid points) demonstrated that it suitable shock front can both trigger the collapse of an otherwise stable presolar cloud, and inject shock front particles into the collapsing cloud through the formation of what become Rayleigh-Taylor fingers of compressed fluid layers falling into the gravitational potential well of the growing protostar. These calculations suggest that heterogeneity derived from these R-T fingers will persist down to the scale of their injection onto the surface of the solar nebula. Haghighipour developed a numerical code capable of calculating the orbital evolution of dust grains of varied sizes in a gaseous nebula, subject to Epstein and Stokes drag as well as the self-gravity of the disk. In collaboration with the PI and George W. Wetherill, Haghighipour has been involved in development of a new idea on the possibility of rapid formation of ice giant planets via the disk instability mechanism. Haghighipour studied the stability of a five-body system consisting of the Sun and four protoplanets by numerically integrating their equations of motions. Using Levison and Duncan s SWIFT integrator, Haghighipour showed that, depending on the orbital parameters of the bodies, such a system can be stable for 0.1-10 Myr. Time periods of 1 Myr or more are long enough to be consistent with the time scale proposed for the formation of giant planets by the disk instability mechanism and the photoevaporation of the gaseous envelopes of the outermost protoplanets by a nearby OB star, resulting in the formation of ice giant planets. The PI has used his three dimensional

  10. Signatures of Chemical Evolution in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha

    2011-01-01

    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  11. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  12. Pinwheel Nebula around WR 98a.

    Science.gov (United States)

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  13. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  14. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  15. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  16. Planetary nebulae: 20 years of Hubble inquiry

    Science.gov (United States)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  17. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  18. The impact of Einstein observations on our understanding of low mass star formation

    International Nuclear Information System (INIS)

    Walter, F.M.

    1990-01-01

    Prior to 1980, the world of pre-main sequence stars, if not well understood, was at least well defined. The Herbig and Rao (1972) catalog listed 69 pre-main sequence stars in Tau-Aur, with the vast majority clearly being T Tauri stars. The characteristics of the classical T Tauri stars include strong Hα emission, with W λ (Hα)>5-10A; forbidden line emission; continuum ultraviolet and IR excesses; veiling of the absorption line spectrum; significant stellar variability; Li I λ6707A absorption; and association with dark clouds and/or emission nebulosities. Star forming regions were observed extensively with the Einstein Observatory, and showed the abundance of stellar X-ray sources in the Orion Nebula. About 1/3 of the known T Tauri stars were detected as X-ray sources, yet the vast majority of the X-ray sources detected were coincident with anonymous stars not suspected to be pre-main sequence stars. In the grand tradition of X-ray astronomy, X-ray astronomers trooped to telescopes to identify the optical counterparts. It was shown that 5 of the counterparts were K7-M0 stars, above the main sequence, with strong Li I absorption and that these stars were kinematic members of the Tau-Aur star formation complex. Since then, additional members of this class of naked T Tauri Stars (NTTS) have been studied, and charts provided for X-ray selected pre-main sequence star candidates in the general vicinity of Tau-Aur. Thirty five X-ray sources have been selected and optically confirmed as NTTS in Tau-Aur

  19. EXPLORING THE LOW-MASS END OF THE MBH-σ* RELATION WITH ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Xiao Ting; Barth, Aaron J.; Greene, Jenny E.; Ludwig, Randi R.; Ho, Luis C.; Bentz, Misty C.; Jiang Yanfei

    2011-01-01

    We present new measurements of stellar velocity dispersions, using spectra obtained with the Keck Echellette Spectrograph and Imager (ESI) and the Magellan Echellette (MagE), for 76 Seyfert 1 galaxies from the recent catalog of Greene and Ho. These objects were selected from the Sloan Digital Sky Survey (SDSS) to have estimated black hole (BH) masses below 2 x 10 6 M sun . Combining our results with previous ESI observations of similar objects, we obtain an expanded sample of 93 galaxies and examine the relation between BH mass and velocity dispersion (the M BH -σ * relation) for active galaxies with low BH masses. The low-mass active galaxies tend to follow the extrapolation of the M BH -σ * relation of inactive galaxies. Including results for active galaxies of higher BH mass from the literature, we find a zero point α = 7.68 ± 0.08 and slope of β = 3.32 ± 0.22 for the M BH -σ * relation (in the form log M BH = α + βlog (σ * /200 km s -1 )), with intrinsic scatter of 0.46 ± 0.03 dex. This result is consistent, within the uncertainties, with the slope of the M BH -σ * relation for reverberation-mapped active galaxies with BH masses from 10 6 to 10 9 M sun . For the subset of our sample having morphological information from Hubble Space Telescope images, we examine the slope of the M BH -σ * relation separately for subsamples of barred and unbarred host galaxies, and find no significant evidence for a difference in slope. We do find a mild offset between low-inclination and high-inclination disk galaxies, such that more highly inclined galaxies tend to have larger σ * at a given value of BH mass, presumably due to the contribution of disk rotation within the spectroscopic aperture. We also find that the velocity dispersion of the ionized gas, measured from narrow emission lines including [N II] λ6583, [S II] λλ6716, 6731, and the core of [O III] λ5007 (with the blueshifted wing removed), trace the stellar velocity dispersion well for this large

  20. Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.

    Science.gov (United States)

    de Marchi, G.; Paresce, F.

    1995-12-01

    property of the initial mass function itself, implying that very low mass stars are not produced in any dynamically significant amount by globular clusters, irrespective of their metal content or cluster history. This result is consistent with recent determinations of the initial mass function both in the disk and in the halo, suggesting the existence of some limitation in the mechanism of low-mass star formation.

  1. Continuous emission from the gaseous nebula beyond the Lyman limit

    International Nuclear Information System (INIS)

    Bolgova, G.T.; Khromov, G.S.

    1975-01-01

    Models of spherically-symmetric isothermic hydrogen nebula with an exciting star in the centre are considered. Spectra and energies of diffuse radiation of nebula and of direct radiation of its kernel are calculated in the Lyman continuum for the external boundary of the object. The spectrum of the diffuse radiation is shown to be to a great extent invariant in relation to all parameters of models except for Tsub(e). The total loss in energy of Lsub(c)-radiation of kernel through the external border of the ionized nebula, amounts to 20-30% in the average even at a considerable optical thickness of the object tausub(0). The greater part of this energy is transferred via direct ionizing radiation, though the relative contribution of the diffuse Lsub(c)-radiation of nebula reaches 30% at low temperatures of the exciting star and at large tausub(0). The results of this work may be applied to calculating the energy balance of the star-nebula system, the heating of dust particles and ionization of the neighbouring interstellar medium, and also for determining the conditions of observation of the far ultra-violet radiation of similar objects

  2. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  3. Spectral and interferometric observation of four emission nebulas

    International Nuclear Information System (INIS)

    Lozinskaya, T.A.; Klement'eva, A.Yu.; Zhukov, G.V.; Shenavrin, V.I.

    1975-01-01

    Results of spectrophotometric and interferometric observations of four emission nebulae are presented; electron temperature Te and electron density Ne are estimated; mean beam velocities and parameters of the internal motion in the nebylae are determined. The following objects have been investigated: 1) a bright compact nebulae of unknown nature 2.5 in size which is identified with the non-thermal radiosource G6.4-0.5 in the region W28; 2) nebulae RCW171 5' in size which is identified with the radiosource G23.1+0.6; 3) the nebulae Simeiz 34/Sharpless 261/d 1950 =6sup(h)05sup(m), sigma 1950 =+15 deg 49'; its diameter is approximately 30 an extensive complex of bright emission fibres in the nebulae Swan, which are partially projected into a possible remainder of the outburst of a supernova W63; L 1950 =20sup(h)17sup(m); S 1950 =45 deg 30' its diameter is approximately 1 deg 5

  4. The discovery of a highly polarized bipolar nebula

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Scarrott, S.M.; Menzies, J.

    1989-01-01

    During a search for the optical counterparts of IRAS sources whose flux peaks at 25 microns, a small faint bipolar nebula was discovered in Monoceros at the position of IRAS 07131-0147. The CCD images display the object's considerable structure. The central star seems relatively free of closeby nebulosity: the two lobes have a bow-tie structure with those parts nearest to the star consisting of series of small knots. The outer parts of the lobes seem to be made up of filaments streaming away from knots. On the basis of its optical spectrum, the central star was classified as a M5-6 giant. In the IRAS color classification scheme of Van der Veen and Habing (1988), the central star is VIb which indicates that there are distinct hot and cold components of circumstellar dust and that the mass loss process may have temporarily abated. Therefore, it is proposed that the object is in the post main sequence stage of evolution and is a protoplanetary nebulae. Young protoplanetary nebulae have totally obscured central stars illuminating reflective lobes whereas older ones such as M2-9 have lobes seen in emission from gas ionized by the central hot star which is clearly visible. Since the central object of IRAS07131-0147 is a relatively unobscured late type star and the lobes are seen only by reflection, it is suggested that this nebula is a protoplanetary nebula in an evolutionary stage intermediate between that of CRL2688 and M2-9

  5. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  6. The spatial distribution of infrared radiation from visible reflection nebulae

    Science.gov (United States)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  7. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    OpenAIRE

    Bednarek, W.; Protheroe, R. J.

    1997-01-01

    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  8. Observations of low mass stars in clusters: some constraints and puzzles for stellar evolution theory

    International Nuclear Information System (INIS)

    Cannon, R.D.

    1984-01-01

    The author attempts to: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars; and (ii) point out some problem areas where observations and theory do not seem to agree very well. He concentrates on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase are considered. (Auth.)

  9. Low-mass X-ray binaries from black hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  10. On the Existence of Low-Mass Dark Matter and its Direct Detection

    Science.gov (United States)

    Bateman, James; McHardy, Ian; Merle, Alexander; Morris, Tim R.; Ulbricht, Hendrik

    2015-01-01

    Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM χ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with χ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too. PMID:25622565

  11. Low-mass X-ray binaries and globular clusters streamers and arcs in NGC 4278

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Fabbiano, G. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Brassington, N. J. [Center for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertordshire, AL10 9AB (United Kingdom)

    2014-03-01

    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50'' in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D {sub 25} isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.

  12. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S. [Institute for Astrophysical Research, Boston University, Boston, MA (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, South Bend, IN (United States); Hinkley, Sasha [Department of Physics and Astronomy, University of Exeter, Exeter (United Kingdom); Morton, Timothy D., E-mail: dpiskorz@gps.caltech.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States)

    2015-12-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.

  13. General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers

    Science.gov (United States)

    Giacomazzo, Bruno

    2017-01-01

    We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.

  14. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  15. THE ELM SURVEY. III. A SUCCESSFUL TARGETED SURVEY FOR EXTREMELY LOW MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2012-01-10

    Extremely low mass (ELM) white dwarfs (WDs) with masses < 0.25 M{sub Sun} are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the seven ELM WDs with follow-up observations, six are short-period binaries and four have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or an Ia progenitor. The overall ELM survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.

  16. THE ELM SURVEY. III. A SUCCESSFUL TARGETED SURVEY FOR EXTREMELY LOW MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Allende Prieto, Carlos

    2012-01-01

    Extremely low mass (ELM) white dwarfs (WDs) with masses ☉ are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the seven ELM WDs with follow-up observations, six are short-period binaries and four have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or an Ia progenitor. The overall ELM survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.

  17. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    Science.gov (United States)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  18. Neutralino-nucleon cross sections for detection of low-mass dark matter particles

    International Nuclear Information System (INIS)

    Titkova, I.V.; Bednyakov, V.A.

    2004-01-01

    The weakly interacting massive particle (WIMP) is one of the main candidates for the relic dark matter. In the effective low-energy minimal supersymmetric standard model (effMSSM), the neutralino-nucleon spin and scalar cross sections in the low-mass regime were calculated. The calculated cross sections are compared with almost all currently available experimental exclusion curves for spin-dependent WIMP-proton and WIMP-neutron cross sections. It is demonstrated that in general about two-orders-of-magnitude improvement of the current DM experimental sensitivities is needed to reach the effMSSM SUSY predictions. To avoid misleading discrepancies between data and SUSY calculations, it is preferable to use a mixed spin-scalar coupling approach. It is noticed that the DAMA evidence favours the light Higgs coupling approach. It is noticed that the DAMA evidence favours the light Higgs sector in the effMSSM, a high event rate in a 73 Ge detector and relatively high upgoing muon fluxes from relic neutralino annihilations on the Earth and the Sun

  19. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  20. CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Hincelin, U. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Commerçon, B. [Ecole Normale Supérieure de Lyon, CRAL, UMR 5574 du CNRS, Université Lyon I, 46 Allée d’Italie, F-69364 Lyon cedex 07 (France); Wakelam, V.; Hersant, F.; Guilloteau, S. [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Herbst, E., E-mail: ugo.hincelin@gmail.com [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-05-01

    The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical model with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.

  1. Gravitational microlensing by low-mass objects in the globular cluster M22.

    Science.gov (United States)

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  2. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    Science.gov (United States)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  3. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  4. On the Existence of Low-Mass Dark Matter and its Direct Detection

    Science.gov (United States)

    Bateman, James; McHardy, Ian; Merle, Alexander; Morris, Tim R.; Ulbricht, Hendrik

    2015-01-01

    Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM χ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with χ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too.

  5. Identification and characterization of low mass stars and brown dwarfs using Virtual Observatory tools

    Science.gov (United States)

    Aberasturi, Miriam

    2015-11-01

    Context: Two thirds of the stars in our galactic neighborhood (d searches. Brown dwarfs (BDs) are self-gravitating objects that do not get enough mass to maintain a sufficiently high temperature in their core for stable hydrogen fusion. They represent the link between low-mass stars and giant planets. Due to their low temperatures, BDs emit significant flux at mid-infrared wavelength which makes this range very adequate to look for this type of objects. The Virtual Observatory (VO) is an international initiative designed to help the astronomical community in the exploitation of the multi-wavelength information that resides in data archives. In the last years the Spanish Virtual Observatory is conducting a number of projects focused on the study of substellar objects taking advantage of Virtual Observatory tools for an easy data access and analysis of large area surveys. This is the framework where this thesis has been carried out. This dissertation addresses three problems in the framework of low-mass stars and brown dwarfs, namely, the search for brown dwarf candidates crossmatching catalogues (Chapter 4), the search for nearby bright M dwarfs and the subsequent spectroscopic characterization (Chapter 5), and a study of binarity in mid to late-T brown dwarfs (Chapter 6); the first two topics use Virtual Observatory tools. Aims and methodology:In the first paper we carried out a search of brown dwarfs in the sky area in common to the WISE, 2MASS Point Source and SDSS catalogues. A VO-workflow with the criteria that must accomplish our candidates was built using STILTS. The workflow returned 138 sources that were visually inspected. For the six new candidates that passed the inspection, proper motions were calculated using the positions and the different observing epochs of the catalogues previously quoted. Effective temperatures were estimated using VOSA and spectral types and distances using appropriate photometric calibrations. In the second publication we

  6. Study of deuterated water in the low-mass protostar IRAS16293-2422

    Science.gov (United States)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Herschel Chess Team

    2011-05-01

    Observations of deuterated water are an important complement for studies of H2O, since they give strong constraints on the formation processes: grain surfaces versus gas-phase chemistry through energetic process as shocks. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program has allowed to detect a lot of transitions of HDO (8) and H2O (16) as well as its isotopes H_218O and H_217O towards the low-mass protostar IRAS16293-2422 thanks to the unbiaised spectral survey carried out with the HIFI instrument on board the Herschel Space Observatory. Complementary data of HDO from the ground-based telescopes IRAM and JCMT are also available, allowing a precise determination of the abundance of deuterated water through the protostar envelope. In order to reproduce the observed line profiles, we have performed a modeling of HDO from the hot corino through the envelope using the physical structure of the protostar (Crimier et al. 2010) and the spherical Monte Carlo radiative transfer code RATRAN, which takes also into account radiative pumping by continuum emission from dust. We have used new HDO collision rates with H_2, recently computed by Wiesenfeld, Scribano and Faure (2011, PCCP). The same method has been applied to model H_2O and its isotopes H_218O and H_217O. We will present the results of this analysis and discuss the determined abundances.

  7. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.

    2012-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eu/k = 4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces...... the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C...

  8. Statistics of Low-Mass Companions to Stars: Implications for Their Origin

    Science.gov (United States)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    One of the more significant results from observational astronomy over the past few years has been the detection, primarily via radial velocity studies, of low-mass companions (LMCs) to solar-like stars. The commonly held interpretation of these is that the majority are "extrasolar planets" whereas the rest are brown dwarfs, the distinction made on the basis of apparent discontinuity in the distribution of M sin i for LMCs as revealed by a histogram. We report here results from statistical analysis of M sin i, as well as of the orbital elements data for available LMCs, to rest the assertion that the LMCs population is heterogeneous. The outcome is mixed. Solely on the basis of the distribution of M sin i a heterogeneous model is preferable. Overall, we find that a definitive statement asserting that LMCs population is heterogeneous is, at present, unjustified. In addition we compare statistics of LMCs with a comparable sample of stellar binaries. We find a remarkable statistical similarity between these two populations. This similarity coupled with marked populational dissimilarity between LMCs and acknowledged planets motivates us to suggest a common origin hypothesis for LMCs and stellar binaries as an alternative to the prevailing interpretation. We discuss merits of such a hypothesis and indicate a possible scenario for the formation of LMCs.

  9. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    International Nuclear Information System (INIS)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin; Muirhead, Philip S.; Crepp, Justin R.; Hinkley, Sasha; Morton, Timothy D.

    2015-01-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits

  10. 2D dynamics of the radiative core of low mass stars

    Directory of Open Access Journals (Sweden)

    Hypolite Delphine

    2017-01-01

    Full Text Available Understanding the internal rotation of low mass stars all along their evolution is of primary interest when studying their rotational dynamics, internal mixing and magnetic field generation. In this context, helio- and asteroseismology probe angular velocity gradients deep within solar type stars at different evolutionary stages. Still the rotation close to the center of such stars on the main sequence is hardly detectable and the dynamical interaction of the radiative core with the surface convective envelope is not well understood. For instance, the influence of the differential rotation profile sustained by convection and applied as a boundary condition to the radiation zone is very important in the formation of tachoclines. In this work, we study a 2D hydrodynamical model of a radiative core when an imposed, solar or anti-solar, differential rotation is applied at the upper boundary. This model uses the Boussinesq approximation and we find that the shear induces a cylindrical differential rotation associated with a unique cell of meridional circulation in each hemisphere (counterclockwise when the shear is solar-like and clockwise when it is anti-solar. The results are discussed in the framework of seismic observables (internal rotation rate, core-to-surface rotation ratio while perspectives to improve our modeling by including magnetic field or transport by internal gravity waves will be discussed.

  11. LP 543-25: A Rare Low-mass Runaway Disk Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    LP 543-25 or PSS 544-7 is a high proper-motion star located 458 pc from the Sun in the constellation of Canis Minor; it has been argued that it could be a candidate cannonball star ejected by a star cluster. Here, we revisit the issue of the kinematics of this interesting star using Gaia DR2. The heliocentric Galactic velocity components are (U, V, W) = (206, -289, 30) km/s; the corresponding Galactocentric Galactic velocity components show that LP 543-25 is moving in the Galactic plane and away from the Galactic Center at a rate of nearly 200 km/s, which is compatible with an origin in one of the multiple star clusters that inhabit the inner regions of the Milky Way. LP 543-25 appears to be a member of an elusive class of stars, the low-mass runaway stars. It is perhaps one of the closest and less massive runaway stars identified so far.

  12. THE Na 8200 Å DOUBLET AS AN AGE INDICATOR IN LOW-MASS STARS

    International Nuclear Information System (INIS)

    Schlieder, Joshua E.; Simon, Michal; Lépine, Sébastien; Rice, Emily; Fielding, Drummond; Tomasino, Rachael

    2012-01-01

    We investigate the use of the gravity sensitive neutral sodium (Na I) doublet at 8183 Å and 8195 Å (Na 8200 Å doublet) as an age indicator for M dwarfs. We measured the Na doublet equivalent width (EW) in giants, old dwarfs, young dwarfs, and candidate members of the β Pic moving group using medium-resolution spectra. Our Na 8200 Å doublet EW analysis shows that the feature is useful as an approximate age indicator in M-type dwarfs with (V – K s ) ≥ 5.0, reliably distinguishing stars older and younger than 100 Myr. A simple derivation of the dependence of the Na EW on temperature and gravity supports the observational results. An analysis of the effects of metallicity shows that this youth indicator is best used on samples with similar metallicity. The age estimation technique presented here becomes useful in a mass regime where traditional youth indicators are increasingly less reliable, is applicable to other alkali lines, and will help identify new low-mass members in other young clusters and associations.

  13. Electromagnetic pulse from supernovae. [model for old low-mass stars

    Science.gov (United States)

    Colgate, S. A.

    1975-01-01

    Upper and lower limits to the radiated electromagnetic pulse from a supernova are calculated assuming that the mass fraction of the matter expanding inside the dipole magnetic field shares energy and maintains the pressure balance in the process. A supernova model is described in which the explosion occurs in old low-mass stars containing less than 10% hydrogen in their ejecta and a remnant neutron star is produced. The analysis indicates that although the surface layer of a star of 1 g/cu thickness may be shock-accelerated to an energy factor of about 100 and may expand into the vacuum with an energy factor approaching 10,000, the equatorial magnetic field will retard this expansion so that the inner, more massive ejecta layers will effectively accelerate the presumed canonical dipole magnetic field to greater velocities than would the surface layer alone. A pulse of 10 to the 46th power ergs in a width of about 150 cm will result which will not be affected by circumstellar matter or electron self-radiation effects. It is shown that interstellar matter will attenuate the pulse, but that charge separation may reduce the attenuation and allow a larger pulse to escape.

  14. DENSITY WAVES EXCITED BY LOW-MASS PLANETS IN PROTOPLANETARY DISKS. I. LINEAR REGIME

    International Nuclear Information System (INIS)

    Dong, Ruobing; Stone, James M.; Petrovich, Cristobal; Rafikov, Roman R.

    2011-01-01

    Density waves excited by planets embedded in protoplanetary disks play a central role in planetary migration and gap opening processes. We carry out two-dimensional shearing sheet simulations to study the linear regime of wave evolution with the grid-based code Athena and provide detailed comparisons with theoretical predictions. Low-mass planets (down to ∼0.03 M ⊕ at 1 AU) and high spatial resolution (256 grid points per scale height) are chosen to mitigate the effects of wave nonlinearity. To complement the existing numerical studies, we focus on the primary physical variables such as the spatial profile of the wave, torque density, and the angular momentum flux carried by the wave, instead of secondary quantities such as the planetary migration rate. Our results show percent level agreement with theory in both physical and Fourier spaces. New phenomena such as the change of the toque density sign far from the planet are discovered and discussed. Also, we explore the effect of the numerical algorithms and find that a high order of accuracy, high resolution, and an accurate planetary potential are crucial to achieve good agreement with the theory. We find that the use of a too large time step without properly resolving the dynamical timescale around the planet produces incorrect results and may lead to spurious gap opening. Global simulations of planet migration and gap opening violating this requirement may be affected by spurious effects resulting in, e.g., the incorrect planetary migration rate and gap opening mass.

  15. Results on SM Higgs boson searches at low mass from ATLAS

    CERN Document Server

    Anastopoulos, C; The ATLAS collaboration

    2012-01-01

    The Standard Model Higgs boson searches at low mass with the ATLAS experiment, in a dataset corresponding to an integrated luminosity of 4.6 to 4.9 fb1 of pp collision data collected at sqrts = 7 TeV at the LHC, are presented. A Standard Model Higgs boson is excluded at the 95% confidence level in the region from 110 GeVto 117.5 GeV, 118.5 GeVto 122.5 GeV, and 129 GeVto 539 GeV, while the range 120 GeVto 555 GeVis expected to be excluded in the absence of a signal. The mass regions between 130 GeV and 486 GeV are excluded at the 99% CL. An excess of events is observed at Higgs boson mass hypotheses around 126 GeV with a local significance of 2.9 standard deviations ($\\sigma$). The global probability for the background to produce an excess at least as significant anywhere in the entire explored Higgs boson mass range is estimated to be 15%, corresponding to a significance of approximately 1 $\\sigma$.

  16. Results on SM Higgs boson searches at low mass from ATLAS

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    2014-01-01

    The Standard Model Higgs boson searches at low mass with the ATLAS experiment, in a dataset corresponding to an integrated luminosity of 4.6 to 4.9 fb -1 of pp collision data collected at √(s)=7 TeV at the LHC, are presented. A standard model Higgs boson is excluded at the 95% confidence level (CL) in the region from 110 GeV to 117.5 GeV, 118.5 GeV to 122.5 GeV, and 129 GeV to 539 GeV, while the range 120 GeV to 555 GeV is expected to be excluded in the absence of signal. The mass regions between 130 GeV and 486 GeV are excluded at the 99% CL. An excess of events is observed at Higgs boson mass hypotheses around 126 GeV with a local significance of 2.9 standard deviations (σ). The global probability for the background to produce an excess at least as significant anywhere in the entire explored Higgs boson mass range is estimated to be ∼ 15%, corresponding to a significance of approximately 1σ. (author)

  17. Understanding of variability properties in very low mass stars and brown dwarfs

    Science.gov (United States)

    Mondal, Soumen; Ghosh, Samrat; Khata, Dhrimadri; Joshi, Santosh; Das, Ramkrishna

    2018-04-01

    We report on photometric variability studies of a L3.5 brown dwarf 2MASS J00361617+1821104 (2M0036+18) in the field and of four young brown dwarfs in the star-forming region IC 348. From muti-epoch observations, we found significant periodic variability in 2M0036+18 with a period of 2.66 ± 0.55 hours on one occasion while it seemed to be non-variable on three other occasions. An evolving dust cloud might cause such a scenario. Among four young brown dwarfs of IC 348 in the spectral range M7.25 - M8, one brown dwarf 2MASS J03443921+3208138 shows significant variability. The K-band spectra (2.0-2.4 μm) of nine very low mass stars (M1 - M9 V) are used to characterize the water band index (H20-K2). We found that it is strongly correlated with the surface temperature of M dwarfs.

  18. Constraining the inclination of the Low-Mass X-ray Binary Cen X-4

    Science.gov (United States)

    Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.

    2018-05-01

    We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.

  19. Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Armengaud, E.; De Boissière, T. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex, 91191 France (France); Arnaud, Q.; Augier, C.; Benoît, A.; Billard, J.; Cazes, A.; Charlieux, F. [Institut de Physique Nucléaire de Lyon-UCBL, IN2P3-CNRS, 4 rue Enrico Fermi, Villeurbanne Cedex, 69622 France (France); Benoît, A.; Bres, G.; Camus, P. [Institut Néel, CNRS/UJF, 25 rue des Martyrs, BP 166, Grenoble, 38042 France (France); Bergé, L.; Broniatowski, A.; Chapellier, M.; Dumoulin, L. [CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, 91405 France (France); Bergmann, T. [Karlsruher Institut für Technologie, Institut für Prozessdatenverarbeitung und Elektronik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); Blümer, J. [Karlsruher Institut für Technologie, Institut für Experimentelle Kernphysik, Gaedestr. 1, Karlsruhe, 76128 Germany (Germany); Brudanin, V.; Filosofov, D. [JINR, Laboratory of Nuclear Problems, Joliot-Curie 6, Dubna, Moscow Region, 141980 Russian Federation (Russian Federation); Eitel, K., E-mail: eric.armengaud@cea.fr [Karlsruher Institut für Technologie, Institut für Kernphysik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); and others

    2016-05-01

    We present the results of a search for elastic scattering from galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) in the 4–30 GeV/ c {sup 2} mass range. We make use of a 582 kg-day fiducial exposure from an array of 800 g Germanium bolometers equipped with a set of interleaved electrodes with full surface coverage. We searched specifically for ∼ 2.5–20 keV nuclear recoils inside the detector fiducial volume. As an illustration the number of observed events in the search for 5 (resp. 20) GeV/ c {sup 2} WIMPs are 9 (resp. 4), compared to an expected background of 6.1 (resp. 1.4). A 90% CL limit of 4.3 × 10{sup −40} cm{sup 2} (resp. 9.4 × 10{sup −44} cm{sup 2}) is set on the spin-independent WIMP-nucleon scattering cross-section for 5 (resp. 20) GeV/ c {sup 2} WIMPs. This result represents a 41-fold improvement with respect to the previous EDELWEISS-II low-mass WIMP search for 7 GeV/ c {sup 2} WIMPs. The derived constraint is in tension with hints of WIMP signals from some recent experiments, thus confirming results obtained with different detection techniques.

  20. A CCD-based search for very low mass members of the Pleiades cluster

    Science.gov (United States)

    Stauffer, John R.; Hamilton, Donald; Probst, Ronald G.

    1994-01-01

    We have obtained deep charge coupled device (CCD)V and I images of a number of fields near the center of the Pleiades open cluster. We have also obtained imaging data for Praesepe, a very similar cluster in terms of distance and richness but nearly 10 times older than the Pleiades. Because brown dwarfs are predicted to become much fainter and cooler between Pleiades and Praesepe ages, this provides a powerful differential technique for placing constraints on the brown dwarf population in open clusters. Combined with our previously reported observations, we now have data for about 0.4 sq deg in the Pleiades, corresponding roughly to 5% of the area of that cluster. We have searched the new CCD frames for additional Pleiades brown dwarf candidates. Two possible candidates are present, the faintest of which has V approximately equal to 22.5, (V-I)(sub K) approximately equal to 4.6. Because we do not have proper motion data and the colors of these objects are not redder than the reddest known field stars, it is possible that some or all of our candidates are somewhat higher mass field stars rather than Pleiades-age brown dwarfs. Even if all six of the proposed brown dwarf candidates in our 0.4 sq deg field are Pleiades members, the relatively small number found suggests that low mass stars or brown dwarfs do not contribute significantly to the total mass of the cluster.

  1. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  2. Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?

    Science.gov (United States)

    Yang, Huan; East, William E.; Lehner, Luis

    2018-04-01

    The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.

  3. LOW-MASS AGNs AND THEIR RELATION TO THE FUNDAMENTAL PLANE OF BLACK HOLE ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Gültekin, Kayhan; King, Ashley L.; Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Pinkney, Jason, E-mail: kayhan@umich.edu [Department of Physics and Astronomy, Ohio Northern University, 525 S. Main St., Ada, OH 45810 (United States)

    2014-06-20

    We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion—the plane that relates X-ray emission, radio emission, and mass of an accreting black hole—to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than 10{sup 6.3} M {sub ☉}, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than ∼10{sup 7} M {sub ☉}, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.

  4. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    Science.gov (United States)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  5. EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.; Chakrabarty, Deepto; Remillard, Ronald A.; Schulz, Norbert [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fender, Rob [Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Fridriksson, Joel K., E-mail: jeroen@space.mit.edu [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2016-10-10

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in its X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.

  6. GJ 3236: A NEW BRIGHT, VERY LOW MASS ECLIPSING BINARY SYSTEM DISCOVERED BY THE MEARTH OBSERVATORY

    International Nuclear Information System (INIS)

    Irwin, Jonathan; Charbonneau, David; Berta, Zachory K.; Quinn, Samuel N.; Latham, David W.; Torres, Guillermo; Blake, Cullen H.; Burke, Christopher J.; Esquerdo, Gilbert A.; Fueresz, Gabor; Mink, Douglas J.; Nutzman, Philip; Szentgyorgyi, Andrew H.; Calkins, Michael L.; Falco, Emilio E.; Bloom, Joshua S.; Starr, Dan L.

    2009-01-01

    We report the detection of eclipses in GJ 3236, a bright (I = 11.6), very low mass binary system with an orbital period of 0.77 days. Analysis of light and radial velocity curves of the system yielded component masses of 0.38 ± 0.02 M sun and 0.28 ± 0.02 M sun . The central values for the stellar radii are larger than the theoretical models predict for these masses, in agreement with the results for existing eclipsing binaries, although the present 5% observational uncertainties limit the significance of the larger radii to approximately 1σ. Degeneracies in the light curve models resulting from the unknown configuration of surface spots on the components of GJ 3236 currently dominate the uncertainties in the radii, and could be reduced by obtaining precise, multiband photometry covering the full orbital period. The system appears to be tidally synchronized and shows signs of high activity levels as expected for such a short orbital period, evidenced by strong Hα emission lines in the spectra of both components. These observations probe an important region of mass-radius parameter space around the predicted transition to fully convective stellar interiors, where there are a limited number of precise measurements available in the literature.

  7. THE Na 8200 Angstrom-Sign DOUBLET AS AN AGE INDICATOR IN LOW-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E.; Simon, Michal [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Lepine, Sebastien; Rice, Emily [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Fielding, Drummond [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Tomasino, Rachael, E-mail: michal.simon@stonybrook.edu, E-mail: schlieder@mpia-hd.mpg.de, E-mail: lepine@amnh.org, E-mail: erice@amnh.org, E-mail: dfieldi1@jhu.edu, E-mail: tomas1r@cmich.edu [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2012-05-15

    We investigate the use of the gravity sensitive neutral sodium (Na I) doublet at 8183 Angstrom-Sign and 8195 Angstrom-Sign (Na 8200 Angstrom-Sign doublet) as an age indicator for M dwarfs. We measured the Na doublet equivalent width (EW) in giants, old dwarfs, young dwarfs, and candidate members of the {beta} Pic moving group using medium-resolution spectra. Our Na 8200 A doublet EW analysis shows that the feature is useful as an approximate age indicator in M-type dwarfs with (V - K{sub s}) {>=} 5.0, reliably distinguishing stars older and younger than 100 Myr. A simple derivation of the dependence of the Na EW on temperature and gravity supports the observational results. An analysis of the effects of metallicity shows that this youth indicator is best used on samples with similar metallicity. The age estimation technique presented here becomes useful in a mass regime where traditional youth indicators are increasingly less reliable, is applicable to other alkali lines, and will help identify new low-mass members in other young clusters and associations.

  8. Abundance in the planetary nebulae NGC 6537 and He2-111

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Feibelman, WA

    2000-01-01

    The ISO and IUE spectra of the bipolar planetary nebulae NGC 6537 and He2-111 are presented. These spectra are combined with the spectrum in the visual wavelength region from the nebulae to obtain a complete spectrum that is corrected for extinction. The chemical abundance of the nebulae is then

  9. Lifetime of the solar nebula constrained by meteorite paleomagnetism.

    Science.gov (United States)

    Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E

    2017-02-10

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.

  10. Abundance of carbon and magnesium in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1980-01-01

    The Orion nebula has been observed in two positions with IUE (International Ultraviolet Explorer) in the low-resolution mode (approx.7 A) and in the spectral range 1150--3200 A. Emission lines of C II], C III], [O II], and He I have been measured and used to determine what is probably the first reliable abundance of carbon in H II regions. The logarithmic total abundance of carbon is found to be 8.4 close to the solar value. In contrast with the situation in the planetary nebula of similar excitation, IC 418, where the resonance Mg II lambda2800 line is observed to be relatively strong, in the Orion nebula the lambda2800 line is not detectable. an upper limit for the magnesium abundance of the order of 10 times smaller than in the Sun is suggested

  11. Ring-shaped nebulae around FU Orionis stars

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1987-01-01

    Observational data on the morphology and spectra of the nebulae surrounding V1057 Cyg, V1515 Cyg, and V1735 Cyg stars are presented and studied. The data reveal that V1735 Cyg is more highly reddened than the nebula and the spectra of all three nebulae are from reflection. A simple model for the dust shell is proposed and it is argued that the shells may indicate a relatively advanced evolutionary state for the FU Orionis star. The relation between the shells and the evolution of the stars is examined. The models of Herbig (1977), Mould et al. (1978), Larson (1980), and Hartmann and Kenyon (1985), which are utilized to analyze the FU Orionis outburst phenomenon, are tested. 23 references

  12. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  13. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  14. Layers in the Central Orion Nebula

    Science.gov (United States)

    O'Dell, C. R.

    2018-04-01

    The existence of multiple layers in the inner Orion Nebula has been revealed using data from an Atlas of spectra at 2″ and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10″×10″ to produce high Signal to Noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12{^''.}8 - 39″width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III]} may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25″ arise from variations in velocity of the background PDR. In a region 25″ ENE of the Orion-S Cloud one finds dramatic changes in the [O III] components, including the signals from the V_{low,[O III]} and V_{MIF,[O III]} becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  15. Ultraviolet imaging of planetary nebulae with GALEX

    Science.gov (United States)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  16. Asymmetric Planetary Nebulae VI: the conference summary

    Science.gov (United States)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  17. Do stellar and nebular abundances in the Cocoon nebula agree?

    Science.gov (United States)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  18. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    Science.gov (United States)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  19. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    Science.gov (United States)

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  20. The blue supergiant MN18 and its bipolar circumstellar nebula

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  1. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  2. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    Science.gov (United States)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  3. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  4. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  5. Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry

    International Nuclear Information System (INIS)

    Pascoli, G.

    1990-01-01

    Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure

  6. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Skillman, Evan D.; McQuinn, Kristen B. W. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States); Weisz, Daniel R. [Astronomy Department, Box 351580, University of Washington, Seattle, WA, 98195 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart 7005, TAS (Australia); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l’Universite, F-67000 Strasbourg (France); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Boylan-Kolchin, Michael [INAF–Osservatorio Astronomico di Teramo, via M. Maggini, 64100 Teramo (Italy); Mayer, Lucio [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); McConnachie, Alan [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Navarro, Julio F., E-mail: monelli@iac.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2016-03-10

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.

  7. CONSTRAINTS OF THE PHYSICS OF LOW-MASS AGB STARS FROM CH AND CEMP STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Piersanti, L.; Gobrecht, D. [INAF—Osservatorio Astronomico di Teramo, I-64100 (Italy); Karinkuzhi, D.; Goswami, A. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2016-12-20

    We analyze a set of published elemental abundances from a sample of CH stars which are based on high resolution spectral analysis of ELODIE and SUBARU/HDS spectra. All the elemental abundances were derived from local thermodynamic equilibrium analysis using model atmospheres, and thus they represent the largest homogeneous abundance data available for CH stars to date. For this reason, we can use the set to constrain the physics and the nucleosynthesis occurring in low mass asymptotic giant branch (AGB) s.tars. CH stars have been polluted in the past from an already extinct AGB companion and thus show s-process enriched surfaces. We discuss the effects induced on the surface AGB s-process distributions by different prescriptions for convection and rotation. Our reference theoretical FRUITY set fits only part of the observations. Moreover, the s-process observational spread for a fixed metallicity cannot be reproduced. At [Fe/H] > −1, a good fit is found when rotation and a different treatment of the inner border of the convective envelope are simultaneously taken into account. In order to increase the statistics at low metallicities, we include in our analysis a selected number of CEMP stars and, therefore, we compute additional AGB models down to [Fe/H] = −2.85. Our theoretical models are unable to attain the large [hs/ls] ratios characterizing the surfaces of those objects. We speculate on the reasons for such a discrepancy, discussing the possibility that the observed distribution is a result of a proton mixing episode leading to a very high neutron density (the so-called i-process).

  8. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    International Nuclear Information System (INIS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; II, Neal J. Evans

    2017-01-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  9. Pruning The ELM Survey: Characterizing Candidate Low-mass White Dwarfs through Photometric Variability

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Keaton J.; Winget, D. E.; Montgomery, M. H.; Castanheira, B. G.; Vanderbosch, Z.; Winget, K. I. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Hermes, J. J. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Brown, Warren R., E-mail: keatonb@astro.as.utexas.edu [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States)

    2017-02-01

    We assess the photometric variability of nine stars with spectroscopic T {sub eff} and log g values from the ELM Survey that locates them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6, and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity (RV) variations that confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31 hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cut-off for surface reflection in a white dwarf, and this target is likely a high-amplitude δ Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured RV variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342 hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius >0.4 R {sub ⊙}—too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to ELM white dwarf classification is SDSS J105435.78−212155.9, which has consistent signatures of Doppler beaming and ellipsoidal variations. We conclude that the ELM Survey contains multiple false positives from another stellar population at T {sub eff}≲9000 K, possibly related to the sdA stars recently reported from SDSS spectra.

  10. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    Science.gov (United States)

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  11. TRACING COLD H I GAS IN NEARBY, LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    Warren, Steven R.; Skillman, Evan D.; Stilp, Adrienne M.; Dalcanton, Julianne J.; Ott, Jürgen; Walter, Fabian; Petersen, Eric A.; Koribalski, Bärbel; West, Andrew A.

    2012-01-01

    We analyze line-of-sight atomic hydrogen (H I) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array—ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The H I Nearby Galaxy Survey (THINGS) to trace regions containing cold (T ∼ –1 . Our galaxy sample spans four orders of magnitude in total H I mass and nine magnitudes in M B . We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low-dispersion ( –1 ) component of the spectrum. Most H I spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km s –1 . Cold H I is found in 23 of 27 (∼85%) galaxies after a reduction of the sample size due to quality-control cuts. The cold H I contributes ∼20% of the total line-of-sight flux when found with warm H I. Spectra best fit by a single Gaussian, but dominated by cold H I emission (i.e., have velocity dispersions of –1 ), are found primarily beyond the optical radius of the host galaxy. The cold H I is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global H I distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total H I gas of only a few percent in each galaxy.

  12. New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2

    Science.gov (United States)

    Gillen, Edward; Hillenbrand, Lynne A.; David, Trevor J.; Aigrain, Suzanne; Rebull, Luisa; Stauffer, John; Cody, Ann Marie; Queloz, Didier

    2017-11-01

    We present the discovery and characterization of four low-mass (Msystems in the sub-Gyr old Praesepe open cluster using Kepler/K2 time series photometry and Keck/HIRES spectroscopy. We present a new Gaussian process EB model, GP-EBOP, as well as a method of simultaneously determining effective temperatures and distances for EBs. Three of the reported systems (AD 3814, AD 2615 and AD 1508) are detached and double-lined, and precise solutions are presented for the first two. We determine masses and radii to 1%-3% precision for AD 3814 and to 5%-6% for AD 2615. Together with effective temperatures determined to ˜50 K precision, we test the PARSEC v1.2 and BHAC15 stellar evolution models. Our EB parameters are more consistent with the PARSEC models, primarily because the BHAC15 temperature scale is hotter than our data over the mid-M-dwarf mass range probed. Both ADs 3814 and 2615, which have orbital periods of 6.0 and 11.6 days, are circularized but not synchronized. This suggests that either synchronization proceeds more slowly in fully convective stars than the theory of equilibrium tides predicts, or magnetic braking is currently playing a more important role than tidal forces in the spin evolution of these binaries. The fourth system (AD 3116) comprises a brown dwarf transiting a mid-M-dwarf, which is the first such system discovered in a sub-Gyr open cluster. Finally, these new discoveries increase the number of characterized EBs in sub-Gyr open clusters by 20% (40%) below M< 1.5 M ⊙ (M< 0.6 M ⊙).

  13. A fast search strategy for gravitational waves from low-mass x-ray binaries

    International Nuclear Information System (INIS)

    Messenger, C; Woan, G

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems. A component of this strategy is based on the incoherent summation of frequency-modulated binary signal sidebands, a method previously employed in the detection of electromagnetic pulsar signals from radio observations. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required a priori. For the final stage we propose a fully coherent Markov chain Monte Carlo based follow-up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass x-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting x-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search

  14. The effects of magnetic fields and protostellar feedback on low-mass cluster formation

    Science.gov (United States)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2018-05-01

    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.

  15. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Greenwood, Aaron; Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Henning, Thomas [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Ménard, François [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Dent, William R. F. [Department of Engineering, Atacama Large Millimeter/submillimeter Array (ALMA) Santiago Central Offices, Alonso de Córdova 3107, Vitacura, Casilla 763 0355, Santiago (Chile); II, Neal J. Evans, E-mail: equant@lpl.arizona.edu [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  16. Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara

    Science.gov (United States)

    Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael

    2018-06-01

    We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.

  17. Twin radio relics in the nearby low-mass galaxy cluster Abell 168

    Science.gov (United States)

    Dwarakanath, K. S.; Parekh, V.; Kale, R.; George, L. T.

    2018-06-01

    We report the discovery of twin radio relics in the outskirts of the low-mass merging galaxy cluster Abell 168 (redshift=0.045). One of the relics is elongated with a linear extent ˜800 kpc and projected width of ˜80 kpc and is located ˜900 kpc towards the north of the cluster centre, oriented roughly perpendicular to the major axis of the X-ray emission. The second relic is ring-shaped with a size ˜220 kpc and is located near the inner edge of the elongated relic at a distance of ˜600 kpc from the cluster centre. These radio sources were imaged at 323 and 608 MHz with the Giant Meterwave Radio Telescope and at 1520 MHz with the Karl G. Jansky Very Large Array (VLA). The elongated relic was detected at all frequencies, with a radio power of 1.38 ± 0.14 × 1023 W Hz-1 at 1.4 GHz and a power law in the frequency range 70-1500 MHz (S ∝ να, α = -1.1 ± 0.04). This radio power is in good agreement with that expected from the known empirical relation between the radio powers of relics and host cluster masses. This is the lowest mass (M500 = 1.24 × 1014 M⊙) cluster in which relics due to merger shocks are detected. The ring-shaped relic has a steeper spectral index (α) of -1.74 ± 0.29 in the frequency range 100-600 MHz. We propose this relic to be an old plasma, revived due to adiabatic compression by the outgoing shock that produced the elongated relic.

  18. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Anglada-Escude, Guillem [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Liu, Michael C.; Bowler, Brendan P. [Institute for Astronomy, University of Hawaii at Manoa 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Weinberger, Alycia J.; Boss, Alan P. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Reid, I. Neill [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Tamura, Motohide, E-mail: shkolnik@lowell.edu [National Astronomical Observatory of Japan, Tokyo (Japan)

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  19. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    Science.gov (United States)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  20. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    International Nuclear Information System (INIS)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel; Davison, Cassy L.; Malo, Lison; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3

  1. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  2. BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary

    Science.gov (United States)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.

    2008-08-01

    We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  3. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field

    Science.gov (United States)

    Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.

    2017-06-01

    Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.

  4. THE ELM SURVEY. I. A COMPLETE SAMPLE OF EXTREMELY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Prieto, Carlos Allende

    2010-01-01

    We analyze radial velocity observations of the 12 extremely low-mass (ELM), with ≤0.25 M sun , white dwarfs (WDs) in the MMT Hypervelocity Star Survey. Eleven of the twelve WDs are binaries with orbital periods shorter than 14 hr; the one non-variable WD is possibly a pole-on system among our non-kinematically selected targets. Our sample is unique: it is complete in a well-defined range of apparent magnitude and color. The orbital mass functions imply that the unseen companions are most likely other WDs, although neutron star companions cannot be excluded. Six of the eleven systems with orbital solutions will merge within a Hubble time due to the loss of angular momentum through gravitational wave radiation. The quickest merger is J0923+3028, a g = 15.7 ELM WD binary with a 1.08 hr orbital period and a ≤130 Myr merger time. The chance of a supernova Ia event among our ELM WDs is only 1%-7%, however. Three binary systems (J0755+4906, J1233+1602, and J2119-0018) have extreme mass ratios and will most likely form stable mass-transfer AM CVn systems. Two of these objects, SDSS J1233+1602 and J2119-0018, are the lowest surface gravity WDs ever found; both show Ca II absorption likely from accretion of circumbinary material. We predict that at least one of our WDs is an eclipsing detached double WD system, important for constraining helium core WD models.

  5. The Effect of Stellar Contamination on Transmission Spectra of Low-mass Exoplanets

    Science.gov (United States)

    Rackham, Benjamin V.; Apai, Daniel; Giampapa, Mark S.

    2017-10-01

    of small exoplanets, including those of the TRAPPIST-1 system. Constraining stellar contamination will likely be a limiting factor for detecting atmospheric features in transmission spectra of low-mass exoplanets around late-type stars from TESS.

  6. Infrared studies of galactic nebulae. IV - Continuum and line radiation from planetary nebulae.

    Science.gov (United States)

    Gillett, F. C.; Merrill, K. M.; Stein, W. A.

    1972-01-01

    Observations are reported of the detection of IR radiation from several planetary nebulae not previously known to be radiating at these wavelengths. Broad spectral bandwidth observations indicate that ir radiation in excess of that expected from atomic processes is a common phenomenon among these objects. Investigations with narrow spectral bandwidth show that in a few cases the energy in the 10.52-micron line is a significant fraction of the total energy observed in the broad-band measurements and in other cases a relatively small fraction of the total radiation. Other observations on two sources with narrow spectral bandwidth adjacent to the 10.52-micron line indicate that at these wavelengths a true continuum of radiation exists as well as lines. The results are discussed in relation to visual and radio-wavelength data.

  7. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  8. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    Science.gov (United States)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  9. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.

    2011-01-01

    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  10. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  11. A 'FIREWORK' OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    International Nuclear Information System (INIS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Viti, S.; Wesson, R.; Smith, M. D.; Zijlstra, A. A.

    2009-01-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H 2 v = 1 → 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H 2 surface brightness in the inner ring: H 2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H 2 formation and destruction rates, H 2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.

  12. A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)

    Science.gov (United States)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Wesson, R.

    2009-08-01

    We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).

  13. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA. II. EXTENDED DATA SET

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Padovani, M.; Beltrán, M. T.; Sánchez-Monge, Á.; Busquet, G.; Morata, O.; Masqué, J. M.; Estalella, R.; Alves, F. O.; Franco, G. A. P.

    2012-01-01

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A V to N H 2 factor of (1.27 ± 0.12) × 10 –21 mag cm 2 and a background visual extinction of ∼6.7 mag possibly arising from the cloud material. We derived an average core diameter of ∼0.08 pc, density of ∼10 5 cm –3 , and mass of ∼1.7 M ☉ . Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the 'diffuse' (e.g., the 'ubiquitous' CO, C 2 H, and CS), 'oxo-sulfurated' (e.g., SO and CH 3 OH), and 'deuterated' (e.g., N 2 H + , CN, and HCN) starless core groups

  14. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  15. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  16. Search of low-mass WIMPs with a p -type point contact germanium detector in the CDEX-1 experiment

    Science.gov (United States)

    Zhao, W.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Wong, H. T.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J.; Li, J.; Li, J. M.; Li, X.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, M.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2016-05-01

    The CDEX-1 experiment conducted a search of low-mass (events is observed after the subtraction of the known background. Using 335.6 kg-days of data, exclusion constraints on the weakly interacting massive particle-nucleon spin-independent and spin-dependent couplings are derived.

  17. Low-mass lepton pair production in Pb–Au collisions at 40 A.GeV

    Indian Academy of Sciences (India)

    directly probe the early stages of the fireball evolution; the instantaneous emission after ... In other words, low-mass pairs would have to be rejected on the .... shown in the right panel of figure 3, the data quality clearly rules out an unmodified ρ,.

  18. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4

    NARCIS (Netherlands)

    Oberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred; van Dishoeck, Ewine F.

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high-mass star-forming regions. Spitzer IRS now provides a unique opportunity to probe solid CH4 toward low-mass star-forming regions as well. Infrared spectra

  19. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  20. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades

    Science.gov (United States)

    Stauffer, John R.; Liebert, James; Giampapa, Mark; Macintosh, Bruce; Reid, Neill; Hamilton, Donald

    1994-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km s(exp -1) for approximately 20 candidate very low mass members of the Hyades and Pleiades clusters. The radial velocities for the Hyades sample suggest that nearly all of these stars are indeed highly probable members of the Hyades. The faintest stars in the Hyades sample have masses of order 0.1 solar mass. We also obtained radial velocities for four candidate very low mass members of the Pleiades and two objects that are candidate BD Pleiads. All of these stars have apparent V magnitudes fainter than the Hyades stars we observed, and the resultant radial velocity accuracy is worse. We believe that the three brighter stars are indeed likely very low mass stellar members of the Pleiades, whereas the status of the two brown dwarf candidates is uncertain. The Hyades stars we have observed and the three Pleiades very low mass stars are the lowest mass members of any open cluster whose membership has been confirmed by radial velocities and whose chromospheric activity has been measured. We see no change in chromospheric activity at the boundary where stars are expected to become fully convective (M approximately equals 0.3 solar mass) in either cluster. In the Pleiades, however, there may be a decrease in chromospheric activity for stars with (V-I)(sub K) greater than 3.5 (M less than or equal to 0.1 solar mass).

  1. Low mass dimuon production in 200 GeV/c per nucleon sulphur ion collisions on heavy targets

    International Nuclear Information System (INIS)

    Vasseur, G.

    1989-11-01

    The HELIOS/2 experiment at CERN studies, among other features, low mass muon pairs production in 200 GeV/c per nucleon sulphur-nucleus interactions, compared to proton-nucleus interactions at the same energy. As muons interact weakly with nuclear matter, they provide relatively clean information on the initial state of these collisions. In addition, an anomalous production of low mass dileptons, with an unusual quadratic dependence upon multiplicity, could be a signature of quark-gluon plasma. To get the target produced dimuon signal, two sources of backgrounds have to be removed: the dimuon production in the dump and the pion and kaon decays into muons. After subtraction of these backgrounds, acceptance correction and normalization, a dimuon signal is obtained, especially at low mass. It is compatible with known sources of low mass dimuons: vector meson decays and Dalitz pairs. In proton-nucleus, this result is in contradiction with previous experiments. In sulphur-nucleus, no great effect giving evidence of quark-gluon plasma formation is observed [fr

  2. Expansion patterns and parallaxes for planetary nebulae

    Science.gov (United States)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  3. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  4. Observational study of Herbig-Haro nebulae

    International Nuclear Information System (INIS)

    Brugel, E.W.

    1981-01-01

    Spectrophotometric data have been obtained for twelve Herbig-Haro nebulae with the multichannel spectrometer on the Mt. Palomar 5.08 meter telescope and with the image intensified dissector scanner on the Kitt Peak 2.13 meter telescope. Energy distributions of the continuous spectra of the Herbig-Haro objects H-H 1 (NW), H-H 2A, H-H 2G, H-H 2H, H-H 24A and H-H 32 have been determined in the wavelength range 3300 to 8000A. The signal-to-noise ratio has been improved in comparison to an earlier attempt to measure the continuum in H-H 1 and H-H 2H. Reddening corrections are based on Miller's [SII] method. The [FeII] emission line spectra have also been utilized as a secondary method for determining the interstellar reddening. In all continua the flux F/sub lambda/ increases rapidly with decreasing wavelength after the small scale structure has been averaged out. A power law interpolation F/sub lambda/ proportional lambda/sup -n/ demonstrates that for all observed H-H objects n lies in the range between 2.04 (H-H 2A, H-H 2H) and 2.92 (H-H 32). The relation of these results to recent I.U.E. observations of H-H 1 is discussed. It is also found that the ratio of the total optical continuum flux to Hβ flux is almost the same for all observed H-H objects with the sole exception of H-H 24A in which the continuum is considerably stronger than in other objects. This fact leads to difficulties in the usual dust scattering hypothesis for the interpretation of H-H continua. It is argued, if these energy distributions are really due to dust scattering in stellar continua as has been usually assumed, the original source must be a hot object and cannot be a T Tauri star.An interpretation in terms of transition radiation (as suggested by Gurzadyan) does not seem to be possible because the observed rise of F/sub lambda/ towards the ultraviolet is too steep

  5. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    Energy Technology Data Exchange (ETDEWEB)

    Bochanski, Jr, John J. [Univ. of Washington, Seattle, WA (United States)

    2008-01-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  6. MOLECULAR OUTFLOWS IN THE SUBSTELLAR DOMAIN: MILLIMETER OBSERVATIONS OF YOUNG VERY LOW MASS OBJECTS IN TAURUS AND ρ OPHIUCHI

    International Nuclear Information System (INIS)

    Ngoc Phan-Bao; Lee, Chin-Fei; Ho, Paul T. P.; Tang, Ya-Wen

    2011-01-01

    We report here our search for molecular outflows from young very low mass stars and brown dwarfs in Taurus and ρ Ophiuchi. Using the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy, we have observed four targets at 1.3 mm wavelength (230 GHz) to search for CO J = 2 → 1 outflows. A young very low mass star MHO 5 (in Taurus) with an estimated mass of 90 M J , which is just above the hydrogen-burning limit, shows two gas lobes that are likely outflows. While the CO map of MHO 5 does not show a clear structure of outflow, possibly due to environment gas, its position-velocity diagram indicates two distinct blue- and redshifted components. We therefore conclude that they are components of a bipolar molecular outflow from MHO 5. We estimate an outflow mass of 7.0 x 10 -5 M sun and a mass-loss rate of 9.0 x 10 -10 M sun . These values are over two orders of magnitude smaller than the typical ones for T Tauri stars and somewhat weaker than those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi. This makes MHO 5 the first young very low mass star showing a bipolar molecular outflow in Taurus. The detection boosts the scenario that very low mass objects form like low-mass stars but in a version scaled down by a factor of over 100.

  7. Magnetic Modeling of Inflated Low-mass Stars Using Interior Fields No Larger than ˜10 kG

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2017-11-01

    We have previously reported on models of low-mass stars in which the presence of inflated radii is ascribed to magnetic fields that impede the onset of convection. Some of our magneto-convection models have been criticized because, when they were first reported by Mullan & MacDonald, the deep interior fields were found to be very large (50-100 MG). Such large fields are now known to be untenable. For example, Browning et al. used stability arguments to suggest that interior fields in low-mass stars cannot be larger than ˜1 MG. Moreover, 3D models of turbulent stellar dynamos suggest that fields generated in low-mass interiors may be not much stronger than 10-20 kG. In the present paper, we present magneto-convective models of inflated low-mass stars in which the interior fields are not permitted to be stronger than 10 kG. These models are used to fit empirical data for 15 low-mass stars for which precise masses and radii have been measured. We show that our 10 kG magneto-convective models can replicate the empirical radii and effective temperatures for 14 of the stars. In the case of the remaining star (in the Praesepe cluster), two different solutions have been reported in the literature. We find that one of these solutions can be fitted well with our model using the nominal age of Praesepe (800 Myr). However, the second solution cannot be fitted unless the star’s age is assumed to be much younger (˜150 Myr).

  8. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  9. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  10. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  11. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  12. Hard X-ray Variations in the Crab Nebula

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  13. Millimeter-wave molecular line observations of the Tornado nebula

    International Nuclear Information System (INIS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-01-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13 CO, and HCO + with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = –14 km s –1 and +5 km s –1 . These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s –1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s –1 cloud is more tightly bound by self-gravity than the –14 km s –1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s –1 cloud collided into the –14 km s –1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  14. Unusual motions in the Wolf-Rayet nebula NGC 6888

    International Nuclear Information System (INIS)

    Johnson, P.G.; Songsathaporn, R.

    1981-01-01

    A systematic survey of the velocity structure within the Wolf-Rayet ring nebula NGC 6888 has been undertaken by making observations of the [N II] line profiles. They reveal a hitherto undetected and particularly unusual velocity structure with three of the brightest portions of the circumference of this ring exhibiting triple line components. Possible models to explain these observations are discussed. (author)

  15. Multibaseline Observations of the Occultation of Crab Nebula by the ...

    Indian Academy of Sciences (India)

    tribpo

    Observations of the radio source Crab Nebula were made at the time of transit during. June 1986 and 1987. The fringe amplitude V(S) for a baseline S was calibrated using the corresponding baseline fringe amplitude of radio source 3C123 or 3C134 and normalised to the preoccultation value V(O). Normalised fringe ...

  16. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  17. OpenNebula KVM SR-IOV driver

    CSIR Research Space (South Africa)

    Macleod, D

    2013-05-01

    Full Text Available With the recent release of an OFED which supports SR-IOV on Infiniband HCAs it is now possible to use verbs from inside a VM. This VMM driver supports these Infiniband HCAs, and any other SR-IOV network device, in OpenNebula....

  18. Modern techniques in galaxy kinematics : Results from planetary nebula spectroscopy

    NARCIS (Netherlands)

    Romanowsky, AJ; Douglas, NG; Kuijken, K; Arnaboldi, M; Gerssen, J; Merrifield, MR; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    We have observed planetary nebulae (PNe) in several early-type galaxies using new techniques on 4- to 8-meter-class telescopes. We obtain the first large data sets (greater than or similar to 100 velocities each) of PN kinematics in galaxies at greater than or similar to 15 Mpc, and present some

  19. Protostar Evolution in the Orion Nebula Cluster (ONC)

    Science.gov (United States)

    Sanchez, Michael Allan

    2018-01-01

    We present our preliminary analysis of the protostars within the Orion Nebula Cluster (ONC). We developed a pipeline to identify protostars in the ONC using the IRAC instrument aboard Spitzer. We verified our photometric measurements with the catalog provided by Megeath et al. (2012). We then classified the protostar evolution stages (0/I, Flatt, II, and III) based on their spectral slope.

  20. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    NARCIS (Netherlands)

    Marigo, P; Bernard-Salas, J; Pottasch, S. R.; Tielens, A. G. G. M.; Wesselius, P. R.

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. The accuracy on the observed abundances is essential in order to make a reliable comparison with the models.

  1. Formation of planetary nebulae with close binary nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Livio, M; Salzman, J; Shaviv, G [Tel Aviv Univ. (Israel). Dept. of Physics and Astronomy

    1979-07-01

    A model for the formation of planetary nebulae with a close binary as a nucleus is presented. The model is based on mass loss instability at L/sub 2/. The instability is demonstrated. The conditions on the mass loss are formulated and analysed. The observational consequence of the model is described briefly and its relation to symbiotic stars and cataclysmic binaries discussed.

  2. Spectrum and the structure of the bipolar nebula S 106

    Energy Technology Data Exchange (ETDEWEB)

    Solf, J [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany, F.R.)

    1980-12-01

    Optically the compact region S 106 appears as a bipolar nebula with the exciting stellar source located between the lobes and embedded in a flat disk of material of high visual extinction. Associated with the nebula is a massive molecular cloud exhibiting a rotating disk-like structure, the axis of rotation being observed in the same direction as the bipolar axis of the nebula. We analyse new optical and near-infrared spectra obtained with an image-tube spectrograph. The emission line spectrum of both lobes resembles that of the Orion nebula and indicates high electron density throughout. The nebular continuum discovered in both lobes is interpreted as originating from an early-type stellar source between the lobes, and scattered by dust particles coexisting with the ionized gas within the lobes. The Hsub(..cap alpha..) radial velocity field indicates supersonic motion of ionized material flowing radially outward through the lobes. The shape and kinematic structure of the lobes are in qualitative agreement with the predictions of the champagne model of Tenorio-Tagle (1979) applied to the case of star formation near the center of a disk-shaped dense cloud.

  3. PERIODIC VARIABILITY OF LOW-MASS STARS IN SLOAN DIGITAL SKY SURVEY STRIPE 82

    International Nuclear Information System (INIS)

    Becker, A. C.; Hawley, S. L.; Ivezic, Z.; Kowalski, A. F.; Sesar, B.; Bochanski, J. J.; West, A. A.

    2011-01-01

    We present a catalog of periodic stellar variability in the 'Stripe 82' region of the Sloan Digital Sky Survey. After aggregating and re-calibrating catalog-level data from the survey, we ran a period-finding algorithm (Supersmoother) on all point-source light curves. We used color selection to identify systems that are likely to contain low-mass stars, in particular M dwarfs and white dwarfs. In total, we found 207 candidates, the vast majority of which appear to be in eclipsing binary systems. The catalog described in this paper includes 42 candidate M dwarf/white dwarf pairs, four white dwarf pairs, 59 systems whose colors indicate they are composed of two M dwarfs and whose light-curve shapes suggest they are in detached eclipsing binaries, and 28 M dwarf systems whose light-curve shapes suggest they are in contact binaries. We find no detached systems with periods longer than 3 days, thus the majority of our sources are likely to have experienced orbital spin-up and enhanced magnetic activity. Indeed, 26 of 27 M dwarf systems that we have spectra for show signs of chromospheric magnetic activity, far higher than the 24% seen in field stars of the same spectral type. We also find binaries composed of stars that bracket the expected boundary between partially and fully convective interiors, which will allow the measurement of the stellar mass-radius relationship across this transition. The majority of our contact systems have short orbital periods, with small variance (0.02 days) in the sample near the observed cutoff of 0.22 days. The accumulation of these stars at short orbital period suggests that the process of angular momentum loss, leading to period evolution, becomes less efficient at short periods. These short-period systems are in a novel regime for studying the effects of orbital spin-up and enhanced magnetic activity, which are thought to be the source of discrepancies between mass-radius predictions and measurements of these properties in eclipsing

  4. ROSAT Energy Spectra of Low-Mass X-Ray Binaries

    Science.gov (United States)

    Schulz, N. S.

    1999-01-01

    The 0.1-2.4 keV bandpass of the ROSAT Position Sensitive Proportional Counter (PSPC) offers an opportunity to study the very soft X-ray continuum of bright low-mass X-ray binaries (LMXBs). In 46 pointed observations, 23 LMXBs were observed with count rates between 0.4 and 165.4 counts s-1. The survey identified a total of 29 different luminosity levels, which are compared with observations and identified spectral states from other missions. The atoll source 4U 1705-44 was observed near Eddington luminosities in an unusually high intensity state. Spectral analysis provided a measure of the interstellar column density for all 49 observations. The sensitivity of spectral fits depends strongly on column density. Fits to highly absorbed spectra are merely insensitive toward any particular spectral model. Sources with column densities well below 1022 cm-2 are best fitted by power laws, while the blackbody model gives clearly worse fits to the data. Most single-component fits from sources with low column densities, however, are not acceptable at all. The inclusion of a blackbody component in eight sources can improve the fits significantly. The obtained emission radii of less than 5 km suggest emission from the neutron star surface. In 10 sources acceptable fits can only be achieved by including soft-line components. With a spectral resolution of the PSPC of 320-450 eV, between 0.6 and 1.2 keV unresolved broad-line features were detected around 0.65, 0.85, and 1.0 keV. The line fluxes range within 10-11 and 10-12 ergs cm-2 s-1, with equivalent widths between 24 and 210 eV. In LMC X-2, 2S 0918-549, and 4U 1254-690, line emission is indicated for the first time. The soft emission observed in 4U 0614+091 compares with recent ASCA results, with a new feature indicated at 1.31 keV. The deduced line fluxes in 4U 1820-30 and Cyg X-2 showed variability of a factor of 2 within timescales of 1-2 days. Average fluxes of line components in 4U 1820-30 varied by the same factor over a

  5. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, Mark David [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-12-01

    to low-mass WIMPs. This is the CDMS low ionization threshold experiment (CDMSlite), which has pushed the frontier at lower WIMP masses. This dissertation describes the second run of CDMSlite at Soudan: its hardware, operations, analysis, and results. The results include new WIMP mass-cross section upper limits on the spin-independent and spin-dependent WIMP-nucleon interactions. Thanks to the lower background and threshold in this run compared to the first CDMSlite run, these limits are the most sensitive in the world below WIMP masses of ~4 GeV/c2. This demonstrates also the great promise and utility of the high-voltage operating mode in the SuperCDMS SNOLAB experiment.

  6. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    Science.gov (United States)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  7. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    Science.gov (United States)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  8. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    Science.gov (United States)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  9. MAGNETIC FIELD TOPOLOGY IN LOW-MASS STARS: SPECTROPOLARIMETRIC OBSERVATIONS OF M DWARFS

    International Nuclear Information System (INIS)

    Phan-Bao, Ngoc; Lim, Jeremy; Donati, Jean-Francois; Johns-Krull, Christopher M.; MartIn, Eduardo L.

    2009-01-01

    The magnetic field topology plays an important role in the understanding of stellar magnetic activity. While it is widely accepted that the dynamo action present in low-mass partially convective stars (e.g., the Sun) results in predominantly toroidal magnetic flux, the field topology in fully convective stars (masses below ∼0.35 M sun ) is still under debate. We report here our mapping of the magnetic field topology of the M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based on time series data collected from 20 hr of observations spread over three successive nights with the ESPaDOnS spectropolarimeter. Our tomographic imaging technique applied to time series of rotationally modulated circularly polarized profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4 dwarf. We then apply a synthetic spectrum fitting technique for measuring the average magnetic flux on the star. The flux measured in G 164-31 is |Bf| = 3.2 ± 0.4 kG, which is significantly greater than the average value of 0.68 kG determined from the imaging technique. The difference indicates that a significant fraction of the stellar magnetic energy is stored in small-scale structures at the surface of G 164-31. Our Hα emission light curve shows evidence for rotational modulation suggesting the presence of localized structure in the chromosphere of this M dwarf. The radius of the M4 dwarf derived from the rotational period and the projected equatorial velocity is at least 30% larger than that predicted from theoretical models. We argue that this discrepancy is likely primarily due to the young nature of G 164-31 rather than primarily due to magnetic field effects, indicating that age is an important factor which should be considered in the interpretation of this observational result. We also report here our polarimetric observations of five other M dwarfs with spectral types from M0 to M4.5, three of them showing strong Zeeman signatures.

  10. Chemical Abundances of Planetary Nebulae in the Substructures of M31. II. The Extended Sample and a Comparison Study with the Outer-disk Group

    Science.gov (United States)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio

    2018-01-01

    We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.

  11. Modelling the ArH+ emission from the Crab nebula

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  12. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  13. Super-Acceleration in the Flaring Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, Marco, E-mail: marco.tavani@inaf.it

    2013-10-15

    The Crab Nebula continues to surprise us. The Crab system (energized by a very powerful pulsar at the center of the Supernova Remnant SN1054) is known to be a very efficient particle “accelerator” which can reach PeV energies. Today, new surprising data concerning the gamma-ray flares produced by the Crab Nebula challenge models of particle acceleration. The total energy flux from the Crab has been considered for many decades substantially stable at X-ray and gamma-ray energies. However, this paradigm was shattered by the AGILE discovery and Fermi confirmation in September 2010 of transient gamma-ray emission from the Crab. Indeed, we can state that four major flaring gamma-ray episodes have been detected by AGILE and Fermi during the period mid-2007/2012. During these events, transient particle acceleration occurs in a regime which apparently violates the MHD conditions and synchrotron cooling constraints. This fact justifies calling “super-acceleration” the mechanism which produces the “flaring Crab phenomenon”. Radiation between 50 MeV and a few GeV is emitted with a quite hard spectrum within a short timescale (hours-days), with no obvious relation with simultaneous optical and X-ray emissions in the inner Nebula. “Super-acceleration” implies overcoming synchrotron cooling by strong (and “parallel”) electric fields most likely produced by magnetic field reconnection within the pulsar wind outflow. This acceleration appears to be very efficient and, remarkably, limited by radiation reaction. It is not clear at the moment where in the Nebula this phenomenon occurs. An intense observational program is now focused on the Crab Nebula to resolve its most challenging mystery.

  14. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  15. A grid of one-dimensional low-mass star formation collapse models

    Science.gov (United States)

    Vaytet, N.; Haugbølle, T.

    2017-02-01

    Context. Numerical simulations of star formation are becoming ever more sophisticated, incorporating new physical processes in increasingly realistic set-ups. These models are being compared to the latest observations through state-of-the-art synthetic renderings that trace the different chemical species present in the protostellar systems. The chemical evolution of the interstellar and protostellar matter is very topical, with more and more chemical databases and reaction solvers available online to the community. Aims: The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modelling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. Methods: A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert-like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 M⊙, temperatures of 5-30 K, and radii 3000 ≤ R0 ≤ 30 000 AU. Results: A spread due to differing initial conditions and optical depths, was found in the thermal evolutionary tracks of the runs. Within less than an order of magnitude, all first and second Larson cores had masses and radii essentially independent of the initial conditions. Radial profiles of the gas density, velocity, and temperature were found to vary much more outside of the first core than inside. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years before the onset of

  16. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  17. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  18. DISCOVERY OF A LOW-MASS COMPANION TO THE SOLAR-TYPE STAR TYC 2534-698-1

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Mahadevan, Suvrath; Sivarani, Thirupathi; Cochran, William D.; Street, Rachel A.; Henry, Gregory W.; Williamson, Michael H.

    2009-01-01

    Brown dwarfs and low-mass stellar companions are interesting objects to study since they occupy the mass region between deuterium and hydrogen burning. We report here the serendipitous discovery of a low-mass companion in an eccentric orbit around a solar-type main-sequence star. The stellar primary, TYC 2534-698-1, is a G2V star that was monitored both spectroscopically and photometrically over the course of several months. Radial velocity observations indicate a minimum mass of 0.037 M sun and an orbital period of ∼103 days for the companion. Photometry outside of the transit window shows the star to be stable to within ∼6 millimags. The semimajor axis of the orbit places the companion in the 'brown dwarf desert' and we discuss potential follow-up observations that could constrain the mass of the companion.

  19. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    Science.gov (United States)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  20. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  1. Low mass planets in protoplanetary disks with net vertical magnetic fields: the Planetary Wake and Gap Opening

    OpenAIRE

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens ga...

  2. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades, 2

    Science.gov (United States)

    Stauffer, John R.; Liebert, James; Giampapa, Mark

    1995-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km/s for approximately 20 candidate very low mass members of the Pleiades cluster and for a few proposed very low mass members of the Hyades. Most of the Pleiades targets were selected from the recent Hambly, Hawkins, and Jameson proper motion survey, where they were identified as probable Pleiades brown dwarfs with an age spread from 3 to 70 Myr. Our spectroscopic data and a reinterpretation of the photometric data confirm that these objects are indeed likely Pleiades members; however, we believe that they more likely have masses slightly above the hydrogen burning mass limit and that there is no firm evidence for an age spread amongst these stars. All of the very low mass Pleiades and Hyades members show H alpha in emission. However, the ratio of H alpha flux to biometric flux in the Pleiades shows a maximum near M(sub Bol) approximately equal to 9.5 (M approximately equal to 0.3 solar mass) and a sharp decrease to lower masses. This break occurs at the approximate mass where low mass stars are expected to become fully convective, and it is tempting to assume that the decrease in H alpha flux is caused by some change in the behavior of stellar dynamos at this mass. We do not see a similar break in activity at this mass in the Hyades. We discuss possible evolutionary explanations for this difference in the H alpha activity between the two clusters.

  3. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  4. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    International Nuclear Information System (INIS)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-01-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references

  5. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    Science.gov (United States)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  6. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre

  7. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  8. Planetary Nebulae in the Solar Neighbourhood: Statistics, Distance Scale and Luminosity Function

    Science.gov (United States)

    Frew, David J.

    2008-07-01

    10 magnitudes below the bright PN cutoff magnitude, M*. The local [OIII] PNLF is seen to be much more bottom-heavy than previously recognised, with up to half of all PNe being fainter than 7 mag below M*. An exponential increase in PN numbers occurs to ∼8.3 mag below M*, where a marked turnover in the PNLF is seen. The very faintest PNe may represent a population of low-mass objects with low-luminosity central stars. New estimates for the number density, scale height, birth rate, and total number of Galactic PNe, as extrapolated from the solar neighbourhood sample, are also given. The total Galactic population is estimated to be 24,000 ± 4000 PNe with r < 1.5 pc, and 13,000 ± 2000 PNe with r < 0.9 pc. The MW/LMC luminosity ratio implies a total LMC PN population of ∼2400. Evidently many more PNe remain to be discovered in this system. The observed Galactic population leads to a PN birthrate of 0.8 ± 0.3 × 10^-12 pc^-3yr^-1, fully consistent within the errors with the birthrate of white dwarfs. A remarkable bow-shock nebula around a previously unnoticed, bright, nova-like cataclysmic variable, V341 Ara, has also been discovered as part of this study. The star has a high space motion, leading to the formation of the parabolic bow-shock at the interaction of the disk wind and the ISM. The proximity of this nebula to the Sun suggests the space density of such objects may quite high. Similar nebulae might be found through a narrowband search around other CVs with significant proper motion.

  9. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  10. Million-degree plasma pervading the extended Orion Nebula.

    Science.gov (United States)

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  11. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  12. Catalysis by Dust Grains in the Solar Nebula

    Science.gov (United States)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  13. The gas-to-dust ratio in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1974-01-01

    About sixty spectra have been obtained using an image tube with the nebular spectrograph of the Asiago 122cm reflector, in a position W-E from north of the Trapezium across the star P 1925 into the bay area of the Orion Nebula. Twenty-five spectra have been selected for accurate measurements of the Hβ intensity and of the electron density by the [S II] 6730/6716 intensity line ratio. The results are interpreted in terms of well-mixed gas and dust, not only in the central bright regions, but even in the bay area, where the coefficient of dust extinction counted per electron is found to be larger than in the bright centre of the nebula

  14. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  15. Probing Shocks of the Young Planetary Nebula NGC 7027

    Science.gov (United States)

    Montez, Rodolfo

    2013-09-01

    The rapid evolution of the planetary nebula NGC 7027 provides a rare glimpse at the evolution of the shocks. We propose a detailed spatial and spectroscopic study of the shock conditions in NGC 7027 that will enhance and bridge our understanding of the shocks seen in other planetary nebula. Comparison between the Cycle 1 observation and a new Cycle 15 observation will (i) confirm the presence of the two components in the extended X-ray emission, (ii) measure the changes (spatial and spectral) in the components, and, (iii) provide a valuable trove of tests and inputs for shock conditions and hydrodynamical simulations. We rely on the unprecedented spatial resolution and soft-sensitivity of Chandra.

  16. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  17. Variation of the extinction law in the Trifid nebula

    OpenAIRE

    Cambrésy, L.; Rho, J.; Marshall, D. J.; Reach, W. T.

    2011-01-01

    Context. In the past few years, the extinction law has been measured in the infrared wavelengths for various molecular clouds and different laws have been obtained. Aims. In this paper we seek variations of the extinction law within the Trifid nebula region. Such variations would demonstrate local dust evolution linked to variation of the environment parameters such as the density or the interstellar radiation field. Methods. The extinction values, A_λ/A_v, are obtained using the 2MASS, UKIDS...

  18. Millimeter-wave molecular line observations of the Tornado nebula

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, D. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S., E-mail: sakai.daisuke@nao.ac.jp [Department of Physics, Institute of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan)

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  19. Very bright optical transient near the Trifid and Lagoon Nebulae

    Science.gov (United States)

    Dunsby, Peter

    2018-03-01

    Peter Dunsby (University of Cape Town) reports the detection of a very bright optical transient in the region between the Lagoon and Trifid Nebulae based on observations obtained from Cape Town on 20 March 2018, between 01:00 and 03:45 UT. The object was visible throughout the full duration of the observations and not seen when this field was observed previously (08 March 2018).

  20. THE LINE POLARIZATION WITHIN A GIANT Lyα NEBULA

    International Nuclear Information System (INIS)

    Prescott, Moire K. M.; Smith, Paul S.; Schmidt, Gary D.; Dey, Arjun

    2011-01-01

    Recent theoretical work has suggested that Lyα nebulae could be substantially polarized in the Lyα emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyα polarization measurements for a giant Lyα nebula at z∼ 2.656. We do not detect any significant linear polarization of the Lyα emission: P Lyα = 2.6% ± 2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyα (e.g., from the nearby active galactic nucleus, AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyα nebulae.