Low-lying collective quadrupole and octupole strengths in even-even nuclei
International Nuclear Information System (INIS)
Raman, S.; Nestor, C.W. Jr.; Kahane, S.; Bhatt, K.H.
1991-01-01
The B(E2)↑ values for the first 2 + state of even-even nuclei in the Z≥50 region are compared with the predictions of several theoretical models. Comparative estimates of the overall agreement with the data are provided. Gaps and discrepancies in the data and examples that show interesting features such as shape changes are discussed. The B(E2)↑ values are examined critically to search for the dynamical Pauli effects predicted by the fermion dynamic symmetry model. The empirical B(E2)↑ and B(E3)↑ systematics are employed to obtain a measure of the harmonicity of the quadrupole and octupole vibrations. The fraction of the energy-weighted sum-rule strength exhausted by the sum of all known low-lying 2 + states below 2.3 MeV is found to be surprisingly constant in the 60< A<250 region except near closed shells
Erratum to: Quadrupole moments of low-lying baryons with spin ...
Indian Academy of Sciences (India)
physics pp. 1083. Erratum to: Quadrupole moments of low-lying baryons with spin-. 1. 2. +. , spin-. 3. 2. +. , and spin-. 3. 2. +. → 1. 2. + transitions. NEETIKA SHARMA and HARLEEN DAHIYA. ∗. Department of Physics, Dr. B.R. Ambedkar National Institute of Technology,. Jalandhar 144 011, India. ∗. Corresponding author.
Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes
International Nuclear Information System (INIS)
Sato, Koichi; Hinohara, Nobuo
2011-01-01
We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.
International Nuclear Information System (INIS)
Soloviev, V.G.; Shirikova, N.Yu.
1989-01-01
The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be in reasonable agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π the Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. (orig.)
International Nuclear Information System (INIS)
Solov'ev, V.G.; Shirikova, N.Yu.
1989-01-01
The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs
The low-lying collective multipole response of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Spieker, Mark; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Prill, Sarah; Vielmetter, Vera; Weinert, Michael; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)
2016-07-01
We present experimental results on the low-lying multipole response, which were obtained with the recently established DSA-method in Cologne. Nuclear level lifetimes in the sub-ps regime are extracted by means of centroid-shifts utilizing the (p,p{sup '}γ) reaction at the 10 MV FN-Tandem accelerator in Cologne. The scattered protons are coincidently detected with the deexciting γ rays using the SONIC rate at HORUS detector array, which allows for a precise determination of the reaction kinematics. In addition to the pioneering results on octupole and hexadecapole mixed-symmetry states of {sup 96}Ru, this contribution will feature new results on low-lying quadrupole-octupole coupled states and on the low-lying E2 strength of {sup 112,114}Sn, which was recently discussed to be generated due to a quadrupole-type oscillation of the neutron skin against the isospin-saturated core.
Linearised collective Schroedinger equation for nuclear quadrupole surface vibrations
International Nuclear Information System (INIS)
Greiner, M.; Heumann, D.; Scheid, W.
1990-11-01
The linearisation of the Schroedinger equation for nuclear quadrupole surface vibrations yields a new spin degree of freedom, which is called collective spin and has a value of 3/2. With the introduction of collective spin dependent potentials, this linearised Schroedinger equation is then used for the description of low energy spectra and electromagnetic transition probabilities of some even-odd Xe, Ir and Au nuclei which have a spin 3/2 in their groundstate. (orig.)
Electric quadrupole strength in nuclei
International Nuclear Information System (INIS)
Kirson, M.W.
1979-01-01
Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)
International Nuclear Information System (INIS)
Sarswat, S.P.; Bharti, Arun; Khosa, S.K.
1996-01-01
The yrast spectra has been obtained in the variation-after-projection framework using pairing-plus-quadrupole- quadrupole model for the two body interaction. Besides the low-lying yrast spectra, the calculated values of intrinsic quadrupole moments of some of the barium isotopes i.e. 124-134 Ba are presented
Quadrupole moments of low-lying baryons with spin
Indian Academy of Sciences (India)
The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...
RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg
Energy Technology Data Exchange (ETDEWEB)
Kuehn, R.; Dewald, A.; Kruecken, R. [Universitaet Koeln (Germany)] [and others
1996-12-31
The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.
International Nuclear Information System (INIS)
Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.
2000-01-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics
2000-07-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)
Low-lying magnetic dipole strength distribution in the γ-soft even-even 130-136Ba
International Nuclear Information System (INIS)
Guliyev, E.; Ertugral, F.; Kuliev, A.A.
2006-01-01
In this study the scissors mode 1 + states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 130-136 Ba isotopes. We consider the 1 + vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole-type separable forces restoring the broken symmetry by a deformed mean field according to A.A. Kuliev et al. (Int. J. Mod. Phys. E 9, 249 (2000)). It has been shown that the restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low-lying 1 + states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. The agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 134 Ba and 136 Ba is rather good. A destructive interference between the orbit and spin part of the M1 strength has been found for barium isotopes near the shell closer. For all the nuclei under investigation, the low-lying M1 transitions have ΔK=1 character as it is the case for the well-deformed nuclei. (orig.)
The monopole and quadrupole vibrations of a hot nucleus
International Nuclear Information System (INIS)
Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.
1989-03-01
An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)
Low lying magnetic dipole strength distribution in 176Hf
International Nuclear Information System (INIS)
Kuliev, A. A.; Ertugral, F.; Yakut, H.; Bektasoglu, M.; Guliyev, E.
2006-01-01
In this study the scissors mode 1 + states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 1 76Hf isotopes. We consider the 1 + vibrations generated by the isovector spin-spin interactions and the isoscalar (h 0 ) and isovector (h 1 ) quadrupole type separable forces restoring the broken symmetry by a deformed mean field. It has been shown that restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low lying 1 + states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. Agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 1 76Hf is rather good. For instance, distributions of the calculated B(M1) transition strengths in the 1 76 Hf isotopes with respect to K π =1 + excitations is represented in Figure. Thus, we see that the models which use the Hamiltonian with broken rotational symmetry strongly overestimate the M1 strength at low energy. These results indicate an importance of the models which are free from the low-energy spurious states. The marked differences between the results for 1 + states, calculated in rotational invariant (RI) and non-rotational invariant (NRI) model indicate the importance of the approaches which are free from spurious low-energy solutions. A separation of the rotational state from the 1 + states changes somewhat the distribution of the B(M1) strength in the spectroscopic energy region and increases the fragmentation of the scissors mode 1 + excitations in agreement with the experimental data
Boson models of quadrupole collective motion
International Nuclear Information System (INIS)
Zelevinskij, V.G.
1985-01-01
The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry
Quadrupole moments as measures of electron correlation in two-electron atoms
International Nuclear Information System (INIS)
Ceraulo, S.C.; Berry, R.S.
1991-01-01
We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments
Fiducialization of the small-aperture quadrupoles based on the vibrating wire method
Energy Technology Data Exchange (ETDEWEB)
Wang, Baichuan, E-mail: wangbaichuan@nint.ac.cn [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Tsinghua University, Beijing 100084 (China); Zheng, Shuxin, E-mail: zhengsx@tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Wu, Lin; Du, Changtong; Xing, Qingzi [Tsinghua University, Beijing 100084 (China); Wang, Zhongming; Qiu, Mengtong [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Wang, Xuewu [Tsinghua University, Beijing 100084 (China)
2016-03-11
A fiducialization method based on vibrating wire is described dedicated to the problem of locating the magnetic center relative to external fiducials for the small-aperture quadrupoles. The advantage of this method is that the measurement of the wire position, which may be the main error source, is no longer needed. The position of the magnetic center can be directly obtained by measuring the position shift of the magnet fiducials. This method has been validated on small Permanent Magnet Quadrupoles (PMQs). Experiments have confirmed its feasibility of measuring PMQs with good repeatability of about 10 μm, and shown its high sensitivity as well as convenience.
Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J
2000-01-01
The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-01-01
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
Jedidi, Abdesslem
2015-11-13
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4
International Nuclear Information System (INIS)
Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.
1987-01-01
Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-12-03
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
Vibration study of the APS magnet support assemblies
International Nuclear Information System (INIS)
Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.
1990-11-01
Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site
International Nuclear Information System (INIS)
Marumori, Toshio; Takada, Kenjiro; Sakata, Fumihiko.
1981-12-01
The history and the present status of the microscopic study of the low-lying collective excited states in spherical and transitional nuclei are discussed by putting emphasis on explaining the rather modern microscopic investigations of the concept of collective subspace. Importance of the dynamical interplay between the pairing and the quadrupole correlations is emphasized as a crucial element to mediate coupling between the collective and non-collective subspace. (author)
Vibrational spectroscopy of SnBr4 and CCl4 using Lie algebraic ...
Indian Academy of Sciences (India)
experimentalists because of the development of new laser spectroscopic techniques. Wulfman played a ... used Lie algebraic methods to study the spectra of molecules (vibron model) using. U(4) algebra. ..... to vibrations of gas molecules.
Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe
Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.
2015-04-01
The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.
Anharmonicities of coupled β and γ vibrations discussed in a simple model
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1984-01-01
The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method. (orig.)
Anharmonicities of coupled β and γ vibrations discussed in a simple model
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1983-11-01
The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method
Low-lying levels of 129Xe and 131Xe
International Nuclear Information System (INIS)
Palmer, D.C.; Irving, A.D.; Forsyth, P.D.; Hall, I.; Martin, D.G.E.; Maynard, M.J.
1978-01-01
The nuclei 129 Xe and 131 Xe have been studied by Coulomb excitation and by (α, n) reactions on 126 Te and 128 Te. Eleven new levels for 129 Xe and six for 131 Xe and B(E2) transition values for some of the low-lying states are reported. The present Coulomb excitation experiments together with published β-decay work enable some spin-parity assignments and restrictions to be made. The data are broadly consistent with the predictions of the particle-vibrator coupling model, although a thorough comparison requires further spectroscopic measurements and more detailed theoretical calculation. (author)
Low lying electric dipole excitations in nuclei of the rare earth region
International Nuclear Information System (INIS)
von Brentano, P.; Zilges, A.; Herzberg, R.D.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.
1992-01-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J π ,K)=(l - ,0) and (J π ,K)=(l - ,1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus 142 Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3--octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus 141 Pr and found first evidence for the existence of 3 - times 2+circle-times particle-states
Kinetic energy in the collective quadrupole Hamiltonian from the experimental data
Energy Technology Data Exchange (ETDEWEB)
Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)
2017-06-10
Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.
Collisional damping of giant monopole and quadrupole resonances
International Nuclear Information System (INIS)
Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.
2001-01-01
Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)
Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei
Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T
2010-01-01
Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.
Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes
International Nuclear Information System (INIS)
Antalik, R.
1989-01-01
M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs
Identification of the one-quadrupole phonon 21,ms+ state of 204Hg
Directory of Open Access Journals (Sweden)
R. Stegmann
2017-07-01
Full Text Available One-phonon states of vibrational nuclei with mixed proton–neutron symmetry have been observed throughout the nuclear chart besides the mass A≈200 region. Very recently, it has been proposed that the 22+ state of 212Po is of isovector nature. This nucleus has two valence protons and two valence neutrons outside the doubly-magic 208Pb nucleus. The stable isotope 204Hg, featuring two valence-proton and valence-neutron holes, with respect to 208Pb, is the particle-hole mirror of 212Po. In order to compare the properties of low-lying isovector excitations in these particle-hole mirror nuclei, we have studied 204Hg by using the projectile Coulomb-excitation technique. The measured absolute B(M1;22+→21+ strength of 0.20(2μN2 indicates that the 22+ level of 204Hg is at least the main fragment of the 21,ms+ state. For the first time in this mass region, both lowest-lying, one-quadrupole phonon excitations are established together with the complete set of their decay strengths. This allows for a microscopic description of their structures, achieved in the framework of the Quasi-particle Phonon Model.
Coulomb excitations of low lying levels in 127I and 197Au
International Nuclear Information System (INIS)
Singh, K.P.; Tayal, D.C.; Hans, H.S.
1988-01-01
The low-lying levels of 127 I and 197 Au were Coulomb excited with 3.54 to 4.2 MeV protons. The reduced quadrupole transition probabilities of the 203, 374.9, 418, 618.4, 628.7, 651.1 and 745.5 keV states of 127 I, and the 268.8, 278.9, 502, and 547.5 keV states of 197 Au was measured from Coulomb excitation by observing the de-excitation gamma rays with a high resolution Ge(Li) detector. The low-energy protons were used for the first time to Coulomb-excite the two levels at 618.4 and 651.1 keV of 127 I and one level at 502 keV of 197 Au. The present experimental results are found in agreement with the existing experimental data except the B(E2) value of the level at 268.8 keV of 197 Au. (author). 4 figs., 4 tabs., 32 refs
International Nuclear Information System (INIS)
Mandal, Subhasish; Dixit, Gopal; Majumder, Sonjoy; Sahoo, B K; Chaudhuri, R K
2008-01-01
The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d 2 D 5/2 state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge
MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration
International Nuclear Information System (INIS)
Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.
1980-01-01
MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size
Vibrational Stability of NLC Linac and Final Focus Components
Energy Technology Data Exchange (ETDEWEB)
Le Pimpec, Frederic
2002-09-25
Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structure and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. Design to properly decouple the structure vibrations from the linac quadrupoles is being pursued.
Physics at low spin in the mass 160 region: the search for tetrahedral shapes
International Nuclear Information System (INIS)
Bark, R.A.; Sharpey-Schafer, J.F.; Maliage, S.M.; Madiba, T.E.; Komati, F.S.; Lawrie, E.A.; Lawrie, J.J.; Lindasy, R.; Maine, P.; Mullins, S.M.; Murray, S.H.T.; Ncapayi, N.J.; Ramashidza, T.M.; Smit, F.D.; Vymers, P.
2010-01-01
The low-lying, odd-spin negative parity bands in the mass 160 region have been identified as candidates for the rotation of a tetrahedral shape, as they have very weak in-band E2 transitions. We report the observation of such bands in 160 Yb and 154 Gd. They are crossed by 2 quasiparticle bands which allow band mixing calculations to be carried out to derive relative quadrupole moments. However, those studied are not consistent with zero, as required for tetrahedral shape. The aligned angular momenta of the bands suggest an octupole vibrational assignment.
Low-frequency quadrupole impedance of undulators and wigglers
Directory of Open Access Journals (Sweden)
A. Blednykh
2016-10-01
Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.
Macroscopic description of normal quadrupole oscillations and shape of rotating nuclei (spheroids)
International Nuclear Information System (INIS)
Balbutsev, E.B.; Mikhailov, I.N.; Vaishvila, Z.
1981-01-01
The ''distorted-Fermi-surface'' model is generalized to study the rotating nuclei. The mathematical problems of the model are solved with the help of the tensor virial method by Chandrasekhar-Lebovitz. The parameters of a form and characteristic frequencies of the quadrupole oscillations are calculated as a function of angular velocity Ω for the rotating nuclei. The energy of Giant Quadrupole Resonance is in agreement with experiment for Ω=0. There are two low-lying modes of oscillations in the model. The critical angular momenta are calculated. The comparison with the liquid drop model is done [ru
On the low-lying states of TiC
Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.
1984-01-01
The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.
Low-dimensional filiform Lie algebras over finite fields
Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)
2011-01-01
In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...
International Nuclear Information System (INIS)
Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.
2011-01-01
Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.
Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB
Adil, Arsalan; Bunn, Emory
2018-01-01
Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.
B (E2) values of transitions from kπ= 0+→ 2+ vibrational bands in some well deformed heavy nuclei
International Nuclear Information System (INIS)
Singh, M.; Varshney, Mani; Gupta, D.K.; Bihari, Chhail; Singh, Yuvraj; Varshney, A.K.; Gupta, K.K
2009-01-01
There is simultaneous reduced B (E2) values of low-lying K π= 0 + → 2 + states, indicating a beta vibration like structure as well as the two particle transfer cross-section which suggest a pairing vibration like character and interpreted that low-lying k π= 0 + → 2 + resonance are classical beta vibrations. Recently, similar doubts about the origin of beta vibrations from surface oscillation have also been published
Application of the boson expansion theory to Se and Kr isotopes
International Nuclear Information System (INIS)
Pedrocchi, V.G.; Tamura, T.
1988-01-01
The boson expansion theory is applied to even Se and Kr isotopes with neutron number N = 38-48. Energy spectra, B(E2) values and quadrupole moments are calculated and fairly good agreement with experimental data is obtained. The coupling of collective quadrupole and monopole pairing vibrational modes is also included in order to fit low-lying O 2 + states in some of the nuclei. The calculated values of the quadrupole moments indicate that both Se and Kr nuclei are in a transitional region from a prolate to an oblate shape. (author)
Low-frequency characteristics extension for vibration sensors
Institute of Scientific and Technical Information of China (English)
杨学山; 高峰; 候兴民
2004-01-01
Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.
2011-01-01
Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15 - BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...
DEFF Research Database (Denmark)
Johannessen, Christian; Thulstrup, Peter W.
2007-01-01
. The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition...
Preliminary proposal of a Nb3Sn quadrupole model for the low β insertions of the LHC
International Nuclear Information System (INIS)
Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G.
1995-09-01
In recent years Nb 3 Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb 3 Sn technology is progressing fast, increasing both technical reliability and availability. The Nb 3 Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb 3 Sn cable for a second generation IR inner triplet low β quadrupoles, for the Large Hadron Collider at CERN. The low β quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: 1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; 2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC
Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration
Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira
2008-09-01
This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.
Generating Low Beta Regions with Quadrupoles for Final Muon Cooling
Energy Technology Data Exchange (ETDEWEB)
Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab
2017-05-01
Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.
International Nuclear Information System (INIS)
Feng, H.; Zheng, Y.; Ding, S.
2007-01-01
Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example
Odd - even staggering, a result of γ - band split
International Nuclear Information System (INIS)
Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Varshney, Mani
2011-01-01
The structure of low - lying K = 2+ gamma band in even - even nuclei represents quadrupole vibration breaking axial symmetry in unified collective model of Bohr-Mottelson. In the group theoretical approach of the Interacting boson model (IBM) the band structure can belong to one of the three limiting symmetries of U (6) algebra viz. U (5), SU (3) and O (6), corresponding to the anharmonic vibrator, deformed rotor and γ - unstable respectively
Preliminary proposal of a Nb{sub 3}Sn quadrupole model for the low {beta} insertions of the LHC
Energy Technology Data Exchange (ETDEWEB)
Ambrosio, G; Ametrano, F; Bellomo, G; Broggi, F; Rossi, L; Volpini, G [Milan Univ. (Italy). Dip. di Fisica; [INFN, Sezione di Milano (Italy). Laboratorio Acceleratori e Superconduttivita` Applicata
1995-09-01
In recent years Nb{sub 3}Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb{sub 3}Sn technology is progressing fast, increasing both technical reliability and availability. The Nb{sub 3}Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb{sub 3}Sn cable for a second generation IR inner triplet low {beta} quadrupoles, for the Large Hadron Collider at CERN. The low {beta} quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: (1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; (2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC.
Low Cost Digital Vibration Meter.
Payne, W Vance; Geist, Jon
2007-01-01
This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.
A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials
Denby, P M
2000-01-01
A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.
A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials
Energy Technology Data Exchange (ETDEWEB)
Denby, P.M.; Eastham, D.A. E-mail: d.a.eastham@dl.ac.uk
2000-03-01
A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.
A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials
International Nuclear Information System (INIS)
Denby, P.M.; Eastham, D.A.
2000-01-01
A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased
Collective Quadrupole Excitations of Transactinide Nuclei
Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J
2003-01-01
The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.
Superconducting magnetic quadrupole
Energy Technology Data Exchange (ETDEWEB)
Kim, J.W.; Shepard, K.W.; Nolen, J.A.
1995-08-01
A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.
International Nuclear Information System (INIS)
Mokhtarani, A.; Brown, B.C.; Hanft, R.; Oleck, A.R.; Peterson, T.; Turkot, F.
1991-05-01
Each of the Low Beta Systems for the Tevatron Collider requires 12 spool pieces; eight of the spool pieces contain superconducting quadrupoles as part of the low beta insertion as well as standard correction magnets. The remaining four provide correction magnets, beam position monitors, and current feeds for the neighboring low beta main quadrupoles. Thirty-two of these new spools have been fabricated. We describe here the mechanical, cryogenic and magnetic properties of these new spools as determined in the production test and measurement activities. 8 refs., 7 figs., 1 tab
High-precision and low-cost vibration generator for low-frequency calibration system
Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao
2018-03-01
Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.
Nearest neighbor spacing distributions of low-lying levels of vibrational nuclei
International Nuclear Information System (INIS)
Abul-Magd, A.Y.; Simbel, M.H.
1996-01-01
Energy-level statistics are considered for nuclei whose Hamiltonian is divided into intrinsic and collective-vibrational terms. The levels are described as a random superposition of independent sequences, each corresponding to a given number of phonons. The intrinsic motion is assumed chaotic. The level spacing distribution is found to be intermediate between the Wigner and Poisson distributions and similar in form to the spacing distribution of a system with classical phase space divided into separate regular and chaotic domains. We have obtained approximate expressions for the nearest neighbor spacing and cumulative spacing distribution valid when the level density is described by a constant-temperature formula and not involving additional free parameters. These expressions have been able to achieve good agreement with the experimental spacing distributions. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.
1978-01-01
The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de
Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes
Lee, Su Youn; Lee, J. H.; Lee, Young Jun
2018-05-01
The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.
Design, construction and commissioning of a simple, low cost permanent magnet quadrupole doublet
International Nuclear Information System (INIS)
Conard, E.M.; Parcell, S.K.; Arnott, D.W.
1999-01-01
In the framework of new beam line developments at the Australian National Medical Cyclotron, a permanent magnet quadrupole doublet was designed and built entirely in house. The design proceeded from the classical work by Halbach et al. but emphasised the 'low cost' aspect by using simple rectangular NdFeB blocks and simple assembly techniques. Numerical simulations using the (2-D) Gemini code were performed to check the field strength and homogeneity predictions of analytical calculations. This paper gives the reasons for the selection of a permanent magnet, the design and construction details of the quadrupole doublet and its field measurement results. (authors)
A united phenomenological description of quadrupole excitations in even-even nuclei
International Nuclear Information System (INIS)
Lipas, P.O.; Haapakoski, P.; Honkaranta, T.
1975-05-01
A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)
International Nuclear Information System (INIS)
Bush, E.D. Jr.
1976-01-01
A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime
Quadrupole shunt experiments at SPEAR
International Nuclear Information System (INIS)
Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.
1996-05-01
As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model
International Nuclear Information System (INIS)
Koopman, R.P.
1977-01-01
A series of experiments was performed in which gamma-ray spectra were measured, using a Ge(Li) detector, for incident 7 to 26-MeV protons on the even-even vibrational nuclei 56 Fe, 62 Ni, 64 Zn, 108 Pd, 110 Cd, 114 Cd, 116 Cd, 116 Sn, 120 Sn, and 206 Pb, and for incident 14-MeV neutrons on natural Fe, Ni, Zn, Cd, Sn, and Pb. These measurements yielded gamma-ray cross sections from which it was inferred that almost all of the gamma cascades from (p,p') and (n,n') reactions passed down through the first 2 + levels. Consequently, the strength of the 2 + → 0 + gamma transitions were found to be an indirect measure of the (p,p') or (n,n') cross sections. Several types of nuclear model calculations were performed and compared with experimental results. These calculations included coupled-channel calculations to reproduce the direct, collective excitation of the low-lying levels, and statistical plus pre-equilibrium model calculations to reproduce the (p,p') and the (n,n') cross sections for comparison with the 2 + → 0 + gamma measurements. The agreement between calculation and experiment was generally good except at high energies, where pre-equilibrium processes dominate (i.e. around 26-MeV). Here discrepancies between calculations from the two different pre-equilibrium models and between the data and the calculations were found. Significant isospin mixing of T/sub greater than/ into T/sub less than/ states was necessary in order to have the calculations match the data for the (p,p') reactions, up to about 18-MeV
Quadrupole shunt experiments at SPEAR
International Nuclear Information System (INIS)
Corbett, W.J.; Hettel, R.O.; Nuhn, H.
1997-01-01
As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics
MQXFS1 Quadrupole Design Report
Energy Technology Data Exchange (ETDEWEB)
Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.
2016-04-14
This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.
rf quadrupole linac: a new low-energy accelerator
International Nuclear Information System (INIS)
Hamm, R.W.; Crandall, K.R.; Fuller, C.W.
1980-01-01
A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed
Measurements of ground motion and magnet vibrations at the APS
International Nuclear Information System (INIS)
Shiltsev, V.
1996-01-01
This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators
Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO {sub 4}
Energy Technology Data Exchange (ETDEWEB)
Klobes, B., E-mail: b.klobes@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Arinicheva, Y., E-mail: y.arinicheva@fz-juelich.de; Neumeier, S., E-mail: s.neumeier@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Simon, R. E., E-mail: r.simon@fz-juelich.de; Jafari, A., E-mail: a.jafari@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Bosbach, D., E-mail: d.bosbach@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Hermann, R. P., E-mail: hermannrp@ornl.gov [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany)
2016-12-15
Hyperfine interactions in europium orthophosphate EuPO{sub 4} were investigated using {sup 151}Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.
Quench performance of superconducting quadrupole magnets for the new Fermilab low beta insertion
International Nuclear Information System (INIS)
Gourlay, S.A.; Carson, J.A.; Hanft, R.; Jaffery, T.S.; Koepke, K.; Lamm, M.J.; Mantsch, P.M.; McInturff, A.D.; Mokhtarani, A.; Orris, D.; Peterson, T.
1991-05-01
Construction and testing of the components for the new Tevatron D0/B0 low beta insertion has been nearly completed. The devices include superconducting cold iron quadrupoles utilizing a 2-shell, cos2θ coil geometry with a 7.6 cm aperture. The maximum design gradient is 1.41 T/cm at an operating current of 4832 A. They have the highest current density with the highest peak field on the winding of any quadrupole yet built. This paper summarizes the quench performance and ramp rate sensitivity of the 2-shell design and relates the performance characteristics to the relevant aspects of design and fabrication. 8 refs., 6 figs., 3 tabs
Analytic transfer maps for Lie algebraic design codes
International Nuclear Information System (INIS)
van Zeijts, J.; Neri, F.; Dragt, A.J.
1990-01-01
Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Remote alignment of Low beta quadrupoles with micrometric resolution
Acar, M; Herty, A; Mainaud-Durand, H; Marin, A; Quesnel, J P
2008-01-01
Considering their location in a high radiation environment and the alignment tolerancesrequested, the low beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.
Effect of low-frequency vibrations on speckle interferometry fringes
International Nuclear Information System (INIS)
Vikram, C.S.; Pechersky, M.J.
1998-01-01
The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers
Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model
International Nuclear Information System (INIS)
Strecker, M.; Lenske, H.; Minkov, N.
2013-01-01
A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)
Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion
Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Bianco, L.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Triambak, S.; Wong, J.; Wood, J. L.; Yates, S. W.
2011-10-01
The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam γ spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics β decay using the 8π spectrometer at the TRIUMF radioactive beam facility. The decays of 112In and 112Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0+ or 2+ three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0+ and 2+ states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.
Vibrational-rotational model of odd-odd nuclei
International Nuclear Information System (INIS)
Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.
1988-01-01
The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects
International Nuclear Information System (INIS)
Carmona, P Fernandez; Artoos, K; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Ballester, R Moron; Collette, C
2011-01-01
In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.
A strong focussing cylindrical electrostatic quadrupole
International Nuclear Information System (INIS)
Sheng Yaochang
1986-01-01
The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator
Low-lying level structure of 73Kr
International Nuclear Information System (INIS)
Moltz, D.M.; Robertson, J.D.; Norman, E.B.; Burde, J.; Beausang, C.W.
1993-01-01
We have used the 40 Ca( 36 Ar, 2pn) reaction to study the low-lying level structure of 73 Kr. By utilizing a bombarding energy at the Coulomb barrier, the relative cross section for this channel was enhanced to a few percent of the total reaction cross section. Levels in 73 Kr were assigned based primarily upon observed neutron-gamma-gamma coincidences and upon comparisons of these newly assigned transition cross sections with those from known nuclei. (orig.)
Low-frequency nuclear quadrupole resonance with a dc SQUID
International Nuclear Information System (INIS)
Chang, J.W.
1991-07-01
Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs
Quadrupole moment and a proton halo structure in 17F (Iπ = 5/2+)
International Nuclear Information System (INIS)
Zhou Dongmei; Zheng Yongnan; Yuan Daqing; Xizhen, Zhang; Zuo Yi; Minamisono, T; Matsuta, M; Fukuda, M; Mihara, M; Zhang Chunlei; Zhiqiang, Wang; Du Enpeng; Luo Hailong; Xu Guoji; Zhu Shengyun
2007-01-01
The quadrupole moment of light nuclei 17 F in the ground state (I π = 5/2 + ) is measured by the β-NMR method. The effective charge of the last proton in a d 5/2 orbit for 17 F is extracted from the measured quadrupole moment Q( 17 F) divided by the quadrupole moment Q sp calculated with a single particle model. A proton effective charge of e eff p = 1.12 ± 0.07e is obtained, which is in agreement with that given by a particle-vibration coupling model calculation within the experimental error. The present value of the proton effective charge is strong evidence for the existence of a proton skin in 17 F (I π = 5/2 + )
A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles
Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C
2010-01-01
In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...
Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate
International Nuclear Information System (INIS)
Guilleumas, M.; Pitaevskii, L.P.
2003-01-01
We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed
Properties of the low-lying levels of 122Sb
International Nuclear Information System (INIS)
Gunsteren, W.F. van; Rabenstein, D.
1977-01-01
Nanosecond lifetimes of low-lying levels in the doubly odd nucleus 122 Sb have been measured. On the basis of these results and of already published experimental material, spins and parities for most of the low-lying states are proposed. A simple theoretical description of this nucleus is presented. The model used is that of a proton coupled to a number projected neutron quasiparticle wave function, assuming a Z=N=50 core. The spectrum and transition rates were calculated in a shell model space consisting of eight subshells and using a renormalized Schiffer interaction. The shell model parameters were derived from adjadent nuclei. Good agreement with the experimental level scheme is found. Also the gamma decay properties can be accounted for rather well. Spectroscopic factors for the one-neutron transfer reactions leading to 122 Sb are predicted. Their measurement with high resolution techniques would be a helpful test for the interpretations given. (orig.) [de
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Collective vibrations as doorway states in the damping of nuclear motion
International Nuclear Information System (INIS)
Broglia, R.A.
1983-01-01
The damping of single-particle and giant resonances is studied. Doorway states containing low-lying surface vibrations are found to play a central role in this process. The coupling to these states lead to damping widths consistent with the empirical systematics. It is however not possible to directly relate these two quantities because of the central role played by the correlation between the particles and the hole in the vibration. (Auth.)
Low frequency vibration tests on a floating slab track in an underground laboratory
Institute of Scientific and Technical Information of China (English)
De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU
2011-01-01
Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.
Quadrupole moments of low-lying baryons with spin
Indian Academy of Sciences (India)
2015-11-27
Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.
The puzzle of the 6Li quadrupole moment: steps toward the solution
International Nuclear Information System (INIS)
Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.
2005-01-01
The problem of origin of the ground-state 6 Li quadrupole deformation has been investigated with account of the three-deuteron component of this nucleus wave function. two long-standing puzzles related to the tensor interaction in 6 Li are known. The first one lies in the anomalously small value of the 6 Li quadrupole moment which, being negative, is in absolute magnitude smaller by the factor of 5 than that of 6 Li. The second puzzle consists in the anomalous behavior of the tensor analyzing power T 2q in scattering of polarized 6 Li nuclei from various targets. It is shown that the large (in absolute magnitude) negative contribution to the 6 Li quadrupole moment resulting from the three-deuteron configuration cancels almost completely the direct positive contribution due to the folding αd-potential. As a result, the total quadrupole moment turns out to be close to zero and highly sensitive to fine details of the tensor NN interaction and of the 4 He wave function [ru
International Nuclear Information System (INIS)
Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.
1990-01-01
The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs
Chen, Peng; Wang, Ning; Li, Song; Chen, Shan-Jun
2017-11-01
Highly correlated ab initio calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the low-lying electronic states of the MgS+ cation. The potential energy curves for the four Λ-S states correlating to the lowest dissociation asymptote are studied for the first time. Four Λ-S states split into nine Ω states through the spin-orbit coupling effect. Accurate spectroscopic constants are deduced for all bound states. The spin-orbit couplings and the transition dipole moments, as well as the PECs, are utilized to calculate Franck-Condon factors and radiative lifetimes of the vibrational levels. To verify our computational accuracy, analogous calculations for the ground state of MgS are also carried out, and our derived results are in reasonable agreement with available experimental data. In addition, photoelectron spectrum of MgS has been simulated. The predictive results are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.
Low-lying states of 184W and 184Os nuclei
International Nuclear Information System (INIS)
Sharrad, F.I.; Abdullah, Hewa Y.; Al-Dahan, N.; Umran, N.M.; Okhunov, A.A.; Abu Kassim, H.
2013-01-01
The energy levels, transition energy, B(E2) values, intrinsic quadrupole moment Q 0 and potential energy surface for even-even 184 W and 184 Os nuclei were calculated using IBM-1. The predicted energy levels, transition energy, B(E2) values and intrinsic quadrupole moment Q 0 results are reasonably consistent with the experimental data. A contour plot of the potential energy surfaces shows that two interesting nuclei are deformed and have rotational characters. (authors)
Prototype Superconducting Quadrupole for the ISR high-luminosity (low beta)insertion:end view.
CERN PhotoLab
1977-01-01
In this picture, taken before the insertion of the inner vacuum chamber with inbedded 6-pole superconducting windings, one can see the main components of the magnet structure: (from inside outwards) the superconducting quadrupole coils surronded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702307, 7702688X, 7702690X.
Surface vibrational modes in disk-shaped resonators.
Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P
2014-03-01
The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.
A high gradient superconducting quadrupole for a low charge state ion linac
International Nuclear Information System (INIS)
Kim, J.W.; Shepard, K.W.; Nolen, J.A.
1995-01-01
A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described
Quadrupole interactions in pionic and muonic tantalum and rhenium
International Nuclear Information System (INIS)
Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.
1981-01-01
The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)
The scaling dimension of low lying Dirac eigenmodes and of the topological charge density
Aubin, C.; Gottlieb, Steven; Gregory, E.B.; Heller, Urs M.; Hetrick, J.E.; Osborn, J.; Sugar, R.; Toussaint, D.; de Forcrand, Ph.; Jahn, Oliver
2005-01-01
As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.
Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model
International Nuclear Information System (INIS)
Wang Baolin
1992-01-01
Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated
Core excitations to the low lying states of thallium isotopes
International Nuclear Information System (INIS)
Gruenbaum, L.; Tomaselli, M.; Herold, D.
1977-08-01
The admixture of core excitations to the low lying states of A = 203 and A = 205 thallium isotopes has been calculated. The wave functions obtained reproduce the electromagnetic properties as well as the hyperfine splittings and the isomershifts of both thallium isotopes. (orig.) [de
Microscopic study of low-lying yrast spectra and deformation ...
Indian Academy of Sciences (India)
73, No. 4. — journal of. October 2009 physics pp. 657–668. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich. 98−106Sr isotopes ... with a large and rigid moment of inertia. 98Sr is predicted to have a ... 2 energy as neutron number N changes from 58 to 60. The onset of deformation in ...
More evidence of localization in the low-lying Dirac spectrum
Bernard, C; Gottlieb, Steven; Levkova, L.; Heller, U.M.; Hetrick, J.E.; Jahn, O.; Maresca, F.; Renner, Dru Bryant; Toussaint, D.; Sugar, R.; Forcrand, Ph. de; Gottlieb, Steven
2006-01-01
We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.
Low-Lying Electronic States of AlZn Calculated by MRCI+Q Method
Zhang, Shudong; Wang, Mingxu; Wang, Zifan; Hu, Kun; Dong, Jingping
2017-07-01
Some low-lying electronic states of AlZn have been studied by the ab initio calculation method of multireference configuration interaction (MRCI). The complete potential energy curves (PECs) of the three lowest doublet states (X2Π, A2Σ+, and B2Π) and the two lowest quartet states (a4Σ- and b4Π) are computed in the range of R = 0.1-0.9 nm and these states are correlated to three dissociation limits, X2Π and A2Σ+ to Zn(4s2,1S) + Al(3s23p1,2P), a4Σ- and b4Π to Zn(4s2,1S) + Al(3s13p2,4P), and B2Π to Zn(4s14p1,3P) + Al(3s23p1,2P). The calculated PECs indicate that the A2Σ+ state has a very shallow potential well and the other states show significant binding-state characteristics. The equilibrium internuclear distances Re, dissociation energies De, and term energies Te for the electronic excited states were obtained. All the possible vibrational levels, rotational constants, and spectral constants for the four bound states were computed by solving the radial Schrödinger equation of nuclear motion with the Level8.0 program provided by Le Roy.
Quadrupole moments measured by nuclear orientation
International Nuclear Information System (INIS)
Bouchta, H.
1985-01-01
Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr
Study of low vibration 4 K pulse tube cryocoolers
Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki
2012-06-01
Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.
A density matrix renormalization group study of low-lying excitations ...
Indian Academy of Sciences (India)
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...
Active Low-frequency Vertical Vibration Isolation System for Precision Measurements
Institute of Scientific and Technical Information of China (English)
WU Kang; LI Gang; HU Hua; WANG Lijun
2017-01-01
Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.
ISABELLE insertion quadrupoles
International Nuclear Information System (INIS)
Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.
1979-01-01
Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented
Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi
2017-08-01
Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.
A low-frequency vibration energy harvester based on diamagnetic levitation
Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo
2017-04-01
This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.
Spectroscopic study of low-lying 16N levels
International Nuclear Information System (INIS)
Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott
2008-01-01
The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented
Finding a nonlinear lattice with improved integrability using Lie transform perturbation theory
International Nuclear Information System (INIS)
Sonnad, Kiran G.; Cary, John R.
2004-01-01
A condition for improved dynamic aperture for nonlinear, alternating gradient transport systems is derived using Lie transform perturbation theory. The Lie transform perturbation method is used here to perform averaging over fast oscillations by canonically transforming to slowly oscillating variables. This is first demonstrated for a linear sinusoidal focusing system. This method is then employed to average the dynamics over a lattice period for a nonlinear focusing system, provided by the use of higher order poles such as sextupoles and octupoles along with alternate gradient quadrupoles. Unlike the traditional approach, the higher order focusing is not treated as a perturbation. The Lie transform method is particularly advantageous for such a system where the form of the Hamiltonian is complex. This is because the method exploits the property of canonical invariance of Poisson brackets so that the change of variables is accomplished by just replacing the old ones with the new. The analysis shows the existence of a condition in which the system is azimuthally symmetric in the transformed, slowly oscillating frame. Such a symmetry in the time averaged frame renders the system nearly integrable in the laboratory frame. This condition leads to reduced chaos and improved confinement when compared to a system that is not close to integrability. Numerical calculations of single-particle trajectories and phase space projections of the dynamic aperture performed for a lattice with quadrupoles and sextupoles confirm that this is indeed the case
Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)
2006-11-15
The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Moshesh, Malana; Saldana, Tina; Deans, Elizabeth; Cooper, Tracy; Baird, Donna
2018-03-14
The object of this study is to examine factors and symptoms associated with low-lying IUDs as defined by ultrasound. This is a cross-sectional sub-study of participants in the Study of Environment, Life-style, and Fibroids (SELF). SELF participants had screening ultrasounds for fibroids at study enrollment; those with an IUD in place are included in this sub-study. Low-lying IUDs were identified and localized. Logistic regression was used to identify factors and symptoms associated with low-lying IUDs. Among 168 women with IUDs at ultrasound, 28 (17%) had a low-lying IUD. Having a low-lying IUD was associated with low education level (≤high school: aOR 3.1 95% CI 1.14-8.55) and with increased BMI (p=.002). Women with a low-lying IUD were more likely to report a "big problem" with dysmenorrhea (the highest option of the Likert scale) as compared to women with a normally-positioned IUD (OR 3.2 95% CI 1.07-9.54). Our study found that women with a low-lying IUD are more likely to be of lower education and higher BMI, and to report more dysmenorrhea. Women who are obese may benefit from additional counseling and closer follow-up after IUD placement. Future research is warranted to investigate IUD placement and possible IUD migration among women who are obese. Copyright © 2018 Elsevier Inc. All rights reserved.
Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H
2004-01-22
Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.
Low-lying isomeric levels in Cu75
Daugas, J. M.; Faul, T.; Grawe, H.; Pfützner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Angélique, J. C.; Baiborodin, D.; Bentida, R.; Béraud, R.; Borcea, C.; Bingham, C. R.; Catford, W. N.; Emsallem, A.; de France, G.; Grzywacz, K. L.; Lemmon, R. C.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, K.; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.
2010-03-01
Isomeric low-lying states were identified and investigated in the Cu75 nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as Cu75m1 and Cu75m2, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2-, 3/2-, and 5/2- states for the neutron-rich odd-mass Cu isotopes when filling the νg9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2- state coexists with more and more collective 3/2- and 1/2- levels at low excitation energies.
International Nuclear Information System (INIS)
Cheon, Sangheon; Cho, Minhaeng
2005-01-01
Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases
Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements
Energy Technology Data Exchange (ETDEWEB)
Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)
2017-06-21
Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.
Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes
Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.
2017-09-01
We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.
Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs
Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.
2002-10-01
Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.
Conceptual design study of Nb3Sn low-beta quadrupoles for 2nd generation LHC IRs
International Nuclear Information System (INIS)
Alexander V Zlobin et al.
2002-01-01
Conceptual designs of 90-mm aperture high-gradient quadrupoles based on the Nb 3 Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed
Yachmenev, Andrey; Küpper, Jochen
2017-10-01
A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3). The method extends the general variational approach TROVE [J. Mol. Spectrosc. 245, 126-140 (2007)] by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH143. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2 states and the rovibrational transitions in the ν1, ν3, 2ν4, and ν1 + ν3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation.
Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei
Kobayashi, Yoshihiko; Matsuo, Masayuki
2015-01-01
We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...
International Nuclear Information System (INIS)
Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.
1979-01-01
A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac
Low frequency vibrations disrupt left-right patterning in the Xenopus embryo.
Directory of Open Access Journals (Sweden)
Laura N Vandenberg
Full Text Available The development of consistent left-right (LR asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia. Investigating one frequency (7 Hz, we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS
International Nuclear Information System (INIS)
Chu Zhe; Lin, W. P.; Yang Xiaofeng
2013-01-01
Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.
Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation
We propose to study the evolution of nuclear structure in neutron-deficient $^{72}$Se by performing a low-energy Coulomb excitation measurement. Matrix elements will be determined for low-lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.
Obtaining and Estimating Low Noise Floors in Vibration Sensors
DEFF Research Database (Denmark)
Brincker, Rune; Larsen, Jesper Abildgaard
2007-01-01
For some applications like seismic applications and measuring ambient vibrations in structures, it is essential that the noise floors of the sensors and other system components are low and known to the user. Some of the most important noise sources are reviewed and it is discussed how the sensor...... can be designed in order to obtain a low noise floor. Techniques to estimate the noise floors for sensors are reviewed and are demonstrated on a commercial commonly used sensor for vibration testing. It is illustrated how the noise floor can be calculated using the coherence between simultaneous...
AA, shims and washers on quadrupole ends
CERN PhotoLab
1981-01-01
Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.
International Nuclear Information System (INIS)
Ansari, A.; Ring, P.
2006-01-01
The excitation energies and electric multipole decay rates of the lowest lying 2 + and 3 - vibrational states in Pb, Sn, and Ni nuclei are calculated following relativistic quasiparticle random-phase approximation formalism based on the relativistic Hartree-Bogoliubov mean field. Two sets of Lagrangian parameters, NL1 and NL3, are used to investigate the effect of the nuclear force. Overall there is good agreement with the available experimental data for a wide range of mass numbers considered here, and the NL3 set seems to be a better choice. However, strictly speaking, these studies point toward the need of a new set of force parameters that could produce more realistic single-particle levels, at least in vicinity of the Fermi surface, of a wide range of nuclear masses
Quasiparticle-phonon model and quadrupole mixed-symmetry states of 96Ru
Directory of Open Access Journals (Sweden)
Stoyanov Ch.
2016-01-01
Full Text Available The structure of low-lying quadrupole states of 96Ru was calculated within the Quasiparticle-Phonon Model. It is shown that symmetric and mixed-symmetry properties manifest themselves via the structure of the excited states. The first 2+ state is collective and neutron and proton transition matrix elements Mn and Mp are in-phase, while the neutron and proton transition matrix elements Mn and Mp have opposite signs for the third 2+ state. This property of the third 2+ state leads to a large M1 transition between the first and third 2+ states. It is an unambigous demonstration of the mixed-symmetry nature of the third 2+ state. The structure of the first 1+ state is calculated. The state is a member of the two-phonon multiplet generated by the coupling of the [21+]QRPA and the [22+]QRPA states.
CESAR, 2 MeV electron storage ring; construction period; quadrupole.
Service Photo; CERN PhotoLab
1962-01-01
One of the 24 quadrupoles. They were made of massive (non-laminated) soft iron, which at the low field-strength (35 G on the pole-tips) presented problems. Later they were fitted with shims on all 4 poles, to correct the quadrupole and sextupole components.
Energies and electric dipole transitions for low-lying levels of protactinium IV and uranium V
Energy Technology Data Exchange (ETDEWEB)
Uerer, Gueldem; Oezdemir, Leyla [Sakarya Univ. (Turkey). Physics Dept.
2012-01-15
We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z = 91) and uranium V (Z = 92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature. (orig.)
Fermion dynamical symmetry and the nuclear shell model
International Nuclear Information System (INIS)
Ginocchio, J.N.
1985-01-01
The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs
Low aperture magnetic elements measurements
International Nuclear Information System (INIS)
Aleksandrov, V.A.; Mikhajlichenko, A.A.; Parkhomchuk, V.V.; Seryj, A.A.; Shil'tsev, V.D.
1991-01-01
Two new methods of magnetic field measurements in low aperture elements are discussed. The first method uses thin magnetoresistive bismuth wire and the second-strained wire with AC. Principles of measuring used in the last technique are different from well known SLAC method of vibrating wire. Results of testing 0.38 T/mm quadrupole and VLEPP final focus test 3 T/mm lens are presented. Brief comparing of the lens axis determination precision of these methods is also discussed. 4 refs.; 8 figs
Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips
Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh
2018-01-30
The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.
Going, Going, Gone: The Fate of Low-Lying Islands and Estuaries
Cairns, John
2009-01-01
Garrett Hardin s lifeboat metaphor is used to illustrate the problems of overpopulation and finite resources. Sea levels are rising due to excess atmospheric greenhouse gases that melt glaciers and warm the oceans. With anthropogenic greenhouse gas emissions continuing to increase, humankind has placed human culture and individuals at serious risk. Rising sea levels will soon make some low-lying islands uninhabitable.
Prototype Superconducting Quadrupole for the ISR low-beta insertion
CERN PhotoLab
1977-01-01
The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Energy Technology Data Exchange (ETDEWEB)
Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
International Nuclear Information System (INIS)
Aspelund, O.
In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)
Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction
Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.
2014-11-01
States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.
Studies of interstellar vibrationally-excited molecules
International Nuclear Information System (INIS)
Ziurys, L.M.; Snell, R.L.; Erickson, N.R.
1986-01-01
Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam
International Nuclear Information System (INIS)
Ayoub, N.Y.
1980-02-01
The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)
International Nuclear Information System (INIS)
Ostojic, R.; Taylor, T.M.; Kirby, G.A.
1994-01-01
In order to achieve high field quality and low current rating of the 250 T/m quadrupoles for the LHC low-β insertions, a design based on a graded four-layer coil with an aperture of 70 mm, wound from NbTi conductor cooled at 1.8 K, has been proposed. Its mechanical structure is based on the collar-spacer concept, where a thin collar serves for coil assembly only. The iron yoke has both important magnetic and structural functions, since the magnetic forces are taken by the rigidity of the iron lamination pack. The coil and cable parameters are derived for this particular structure, and the results of the structural analysis of the magnet are presented. A one-meter model of the quadrupole is presently under construction; its features are described and some initial cable tests reported
The low frequency 2D vibration sensor based on flat coil element
Energy Technology Data Exchange (ETDEWEB)
Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)
2012-06-20
Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.
Low-lying 1/2-hidden strange pentaquark states in the constituent quark model
Institute of Scientific and Technical Information of China (English)
Hui Li; Zong-Xiu Wu; Chun-Sheng An; Hong Chen
2017-01-01
We investigate the spectrum of the low-lying 1/2-hidden strange pentaquark states,employing the constituent quark model,and looking at two ways within that model of mediating the hyperfine interaction between quarks-Goldstone boson exchange and one gluon exchange.Numerical results show that the lowest 1/2-hidden strange pentaquark state in the Goldstone boson exchange model lies at ～ 1570 MeV,so this pentaquark configuration may form a notable component in S11(1535) if the Goldstone boson exchange model is applied.This is consistent with the prediction that S11 (1535) couples very strongly to strangeness channels.
International Nuclear Information System (INIS)
Bush, E.D. Jr.
1976-01-01
A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)
Quantum Monte Carlo for vibrating molecules
International Nuclear Information System (INIS)
Brown, W.R.; Lawrence Berkeley National Lab., CA
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies
Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles
Energy Technology Data Exchange (ETDEWEB)
Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab
2016-11-15
Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.
International Nuclear Information System (INIS)
Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.
1983-01-01
The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)
A Sub-Hertz, Low-Frequency Vibration Isolation Platform
Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio
2011-01-01
One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The
Status of the LHC low-$\\beta$ insertion quadrupole magnet development at KEK
Ogitsu, T; Ohuchi, N; Ajima, Y; Burkhardt, E E; Higashi, N; Hirano, H; Lida, M; Kimura, N; Ohhata, H; Tanaka, K; Shintomi, T; Terashima, A; Tsuchiya, K; Yamamoto, A; Orikasa, T; Murai, S; Oosaki, O
2002-01-01
The development of the LHC low-beta insertion quadrupole magnets has been conducted at KEK since 1996. After the successful development of short model magnets, the first prototype magnet has been built by Toshiba and is tested at KEK. Although the quench performance and the field quality of the magnet are satisfactory, a design problem is found in one of the end spacers. The problem increases the risk of a turn-to-turn and in fact causes shorts in the second prototype magnet, and in the trial coil of the first production magnet. The design is modified and the problem appears to be resolved. The construction of the production magnets is now started and lasts till the summer of 2004. (9 refs).
Semirelativistic potential model for low-lying three-gluon glueballs
International Nuclear Information System (INIS)
Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard
2006-01-01
The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J PC states are computed and compared with recent lattice calculations. A good agreement is found for 1 -- and 3 -- states, but our model predicts a 2 -- state much higher in energy than the lattice result. The 0 -+ mass is also computed
A MEMS Energy Harvesting Device for Vibration with Low Acceleration
DEFF Research Database (Denmark)
Triches, Marco; Wang, Fei; Crovetto, Andrea
2012-01-01
We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material......, the proof mass could be successfully driven by an external vibrations with acceleration as low as 0.014g (∼0.14 m/s2). A root mean square (RMS) power output of 1.17μW under 0.014g RMS acceleration at 75Hz is measured when an optimal load of 20.3 MΩ is applied. The frequency response of the device is also...
Determination of low-frequency vibrational states in glasses
International Nuclear Information System (INIS)
Ahmad, N.; Hasan, M.M.
1996-01-01
It is shown that density of low frequency (v < 1 THz) vibrational states g(v) in glasses can be determined from heat capacities measured at low temperature. These g(v) are identical to those determined from inelastic neutron scattering studies. The form of g(v) is non quadratic and therefore the Debye density of states may not be used to interpret the Raman, and infrared absorption in glasses. (author)
Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting
International Nuclear Information System (INIS)
Su, L Y; Zhao, R Z; Liu, H; Meng, Z R
2013-01-01
Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade
Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718
Directory of Open Access Journals (Sweden)
Deepak Rajendra Unune
2017-02-01
Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.
Static quadrupole moment of the Kπ = 14+ isomer in 176W
International Nuclear Information System (INIS)
Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.
2001-01-01
The investigation of high-K isomeric states in the deformed nuclei of the A∼180 region has found renewed interest in recent years. Much experimental and theoretical work was devoted to understand the mechanisms which govern their decay to lower-lying states, particularly the anomalous strong decays to low-K states. Other questions of great importance are the quenching of the pairing correlations and the shape polarization effects in the high-seniority multi-quasiparticle excitations. Our interest focused on the 41 ns K π =14 + 3746 keV isomeric state with anomalous decay in 176 W. On the basis of a precise g-factor measurement we assigned to this isomer a pure four-quasiparticle configuration, composed by two protons in the 7/2 + [404] and 9/2 - [514] orbitals and two neutrons in the 7/2 + [633] and 5/2 - [512] orbitals. In the present work the measurement of its static quadrupole moment has been performed. Prior to our experiment, static quadrupole moments have been measured only for three high-K isomeric states of seniority ≥ 4 in the A∼180 region: 16 + in 178 Hf, 35/2 - in 179 W and 25 + in 182 Os. A deformation very similar to that of the ground state has been deduced for the 16 + isomer in 178 Hf, while for the high-K isomers in 179 W and 182 Os significantly smaller deformations were reported. The quadrupole interaction of the 14 + isomeric state in 176 W has been investigated in the electric field gradient (EFG) of the polycrystalline lattice of metallic Tl by applying the time-differential perturbed angular distribution method. For W impurities in Tl host the EFG strength and its temperature dependence have been recently reported. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction using a 83 MeV 16 O pulsed beam (pulse width 1.5 ns, repetition period 800 ns) delivered by the XTU-Tandem of Laboratori Nazionali di Legnaro. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Tl backing in which both the recoiling 176 W nuclei and
Low frequency torsional vibration gaps in the shaft with locally resonant structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing
2006-01-01
The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control
Quadrupole moments of low-lying baryons with spin- , spin- , and ...
Indian Academy of Sciences (India)
2013-02-03
Feb 3, 2013 ... boson (GB), successfully explains the 'proton spin crisis' [26], hyperon β decay parame- ters [27], strangeness content in the nucleon [28], and in the N ...... ment of India (SR/S2/HEP-0028/2008) and Department of Atomic Energy, Government of India (2010/37P/48/BRNS/1445). References. [1] R G Sachs ...
Theoretical investigation of flute modes in a magnetic quadrupole
International Nuclear Information System (INIS)
Wu, H.S.
1988-01-01
This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described
The first LHC insertion quadrupole
2004-01-01
An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.
Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement
Institute of Scientific and Technical Information of China (English)
Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou
2011-01-01
@@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.
Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2018-03-01
This work calculates the potential energy curves of 9 Λ-S and 28 Ω states of the NCl+ cation. The technique employed is the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. The Λ-S states are X2Π, 12Σ+, 14Π, 14Σ+, 14Σ-, 24Π, 14Δ, 16Σ+, and 16Π, which are yielded from the first two dissociation channels of NCl+ cation. The Ω states are generated from these Λ-S states. The 14Π, 14Δ, 16Σ+, and 16Π states are inverted with the spin-orbit coupling effect included. The 14Σ+, 16Σ+, and 16Π states are very weakly bound, whose well depths are only several-hundred cm- 1. One avoided crossing of PECs occurs between the 12Σ+ and 22Σ+ states. To improve the quality of potential energy curves, core-valence correlation and scalar relativistic corrections are included. The potential energies are extrapolated to the complete basis set limit. The spectroscopic parameters and vibrational levels are calculated. The transition dipole moments are computed. The Franck-Condon factors, Einstein coefficients, and radiative lifetimes of many transitions are determined. The spectroscopic approaches are proposed for observing these states according to the transition probabilities. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The spectroscopic parameters, vibrational levels, transition dipole moments, as well as transition probabilities reported in this paper could be considered to be very reliable.
Superconducting Quadrupole for the ISR High Luminosity insertion:end view
1977-01-01
Connection end view of the prototype quadrupole before insertion of the inner vacuum chamber with inbedded 6-pole windings. The main components of the structure can be seen: (from inside outwards) the superconducting quadrupole coils surrounded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702690X, 7702307, 7702308, 7812604X.
Search for low-lying opposite parity states from a simple perspective
International Nuclear Information System (INIS)
Hernandez de la Pena, L.; Hess, P.O.; Levai, G.
2003-01-01
The low-lying spectrum of many light nuclei can be described reasonably well by assigning SU(3) quantum numbers to the states. When one focuses on basic properties of nuclei in a wide mass range, however, simplified models with fewer parameters (and thus with less arbitrary nature) can be useful. The agreement to available experimental data was found to be reasonable, expect when the nucleus is near a shell closure and has small deformation. (R.P.)
Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S
2015-05-01
Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the
Application of the generator coordinate method to neutron-rich Se and Ge isotopes
Directory of Open Access Journals (Sweden)
Higashiyama Koji
2014-03-01
Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.
A surface-electrode quadrupole guide for electrons
Energy Technology Data Exchange (ETDEWEB)
Hoffrogge, Johannes Philipp
2012-12-19
This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical
A surface-electrode quadrupole guide for electrons
International Nuclear Information System (INIS)
Hoffrogge, Johannes Philipp
2012-01-01
This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical
Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques
International Nuclear Information System (INIS)
Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.
2011-01-01
The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.
Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Measurements of ground motion and magnets vibrations at the APS
International Nuclear Information System (INIS)
Shil'tsev, V.D.
1994-01-01
This article presents results of ground motion and magnets vibrations measurements at the Advanced Photon Source. The experiments were done over wide frequency range 0.05-100 Hz with use of SM-3KV type seismic probes from Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. There were also investigated magnets vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quads vibration at different sectors of the ring. Influence of personnel activity in the hall and traffic under the ring on slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators. 9 refs.; 10 figs.; 1 tab
International Nuclear Information System (INIS)
Krajcar-Bronic, I.; Kimura, M.
1995-01-01
Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics
Quasi-Lie algebras and Lie groups
International Nuclear Information System (INIS)
Momo Bangoura
2006-07-01
In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr
1999-01-01
This document concerns the award of a contract for the supply of 1000 tonnes of low-carbon steel sheets for the MQW quadrupole magnets. Following a market survey carried out among 53 firms in 16 Member States, a call for tenders (IT-2619/SL/LHC) was sent on 24 September 1999 to three firms in two Member States. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with COCKERILL-SAMBRE (BE) for the supply of 1000 tonnes of low-carbon steel sheets for the MQW quadrupole magnets for a total amount of 894 780 euros (1 423 870 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, with an option for the supply of up to 200 tonnes of additional low-carbon steel sheets, for a total amount of 178 956 euros (284 774 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, bringing the total amount to a maximum of 1 073 736 euros (1 708 644 Swiss francs). The above amounts in Swiss franc...
Yu, Hua-Gen; Han, Huixian; Guo, Hua
2016-04-14
Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).
International Nuclear Information System (INIS)
Li, C.T.; Klein, A.
1979-01-01
The theory of anharmonic nuclear vibrational motion (nonlinear equations-of-motion method) developed in the preceding paper is applied to atsup 60,62,64atNi, which exhibit one and two phonon quadrupole collective states. A model Hamiltonian consisting of a modified pairing plus quadrupole interaction is studied first by comparing the results of the nonlinear equations-of-motion method with those of an exact diagonalization. Contrary to popular opinion, the model chosen fails to produce a vibrational spectrum, except in the case of 60 Ni, and as a consequence, the nonlinear equations-of-motion method, designed specifically to describe vibrational spectra, accords well with the exact calculations only for this case. A simple method is then described, within the framework of the nonlinear equations-of-motion method, for refining the model Hamiltonian so as to bring it into accord with experiment. In practice, it is found that a simple additional parameter in the Hamiltonian suffices to yield descriptions of the quadrupole states in Ni isotopes comparable in precision to the most up-to-date versions (modified, adjusted, etc.) of the surface delta interaction model
SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT
Energy Technology Data Exchange (ETDEWEB)
Rainer Meinke
2003-10-01
The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed
International Nuclear Information System (INIS)
Geng, L. S.; Camalich, J. Martin; Vacas, M. J. Vicente
2009-01-01
We present a calculation of the leading SU(3)-breaking O(p 3 ) corrections to the electromagnetic moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment of the Ω - . We predict μ Δ ++ =6.04(13) and μ Δ + =2.84(2), which agree well with the current experimental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare our results with those reported in large N c , lattice QCD, heavy-baryon chiral perturbation theory, and other models.
Enhancing Bone Accretion Using Short Duration, Low-Level Mechanical Vibrations
National Research Council Canada - National Science Library
Judex, Stefan
2005-01-01
.... In this second annual report, data are presented that indicate that the efficacy of extremely low-level whole-body mechanical vibrations can be enhanced by altering the number of daily loading...
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-02
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...
The effect of vibrationally excited nitrogen on the low-latitude ionosphere
Directory of Open Access Journals (Sweden)
B. Jenkins
1997-11-01
Full Text Available The first five vibrationally excited states of molecular nitrogen have been included in the Sheffield University plasmasphere ionosphere model. Vibrationally excited molecular nitrogen reacts much more strongly with atomic oxygen ions than ground-state nitrogen; this means that more O+ ions are converted to NO+ ions, which in turn combine with the electrons to give reduced electron densities. Model calculations have been carried out to investigate the effect of including vibrationally excited molecular nitrogen on the low-latitude ionosphere. In contrast to mid-latitudes, a reduction in electron density is seen in all seasons during solar maximum, the greatest effect being at the location of the equatorial trough.
Intermediate energy electron impact excitation of composite vibrational modes in phenol
Energy Technology Data Exchange (ETDEWEB)
Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-05-21
We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.
Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion
Kirby, G A; Taylor, T M; Trinquart, G
1996-01-01
The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.
Energy Technology Data Exchange (ETDEWEB)
Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna (Italy); Kobayashi, Kaori [Department of Physics, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Fujita, Chiho; Ozeki, Hiroyuki, E-mail: ozeki@env.sci.toho-u.ac.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 (Japan)
2017-06-01
It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, while the third one was unperturbed. The partition function was evaluated considering these new results.
Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.
Campanelli, L; Cea, P; Tedesco, L
2006-09-29
The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.
A collective model description of the low lying and giant dipole resonant properties of 40424446Ca
International Nuclear Information System (INIS)
Weise, J.I.
1982-01-01
The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model
1974-01-01
A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.
Longitudinal capture in the radio-frequency-quadrupole structure
International Nuclear Information System (INIS)
Inagaki, S.
1980-03-01
The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described
Local vibrations and lift performance of low Reynolds number airfoil
Directory of Open Access Journals (Sweden)
TariqAmin Khan
2017-06-01
Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.
How do nuclei really vibrate or rotate
International Nuclear Information System (INIS)
Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.
1983-01-01
By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated
Low-lying 1/2- hidden strange pentaquark states in the constituent quark model
Li, Hui; Wu, Zong-Xiu; An, Chun-Sheng; Chen, Hong
2017-12-01
We investigate the spectrum of the low-lying 1/2- hidden strange pentaquark states, employing the constituent quark model, and looking at two ways within that model of mediating the hyperfine interaction between quarks - Goldstone boson exchange and one gluon exchange. Numerical results show that the lowest 1/2- hidden strange pentaquark state in the Goldstone boson exchange model lies at ˜1570 MeV, so this pentaquark configuration may form a notable component in S 11(1535) if the Goldstone boson exchange model is applied. This is consistent with the prediction that S 11(1535) couples very strongly to strangeness channels. Supported by National Natural Science Foundation of China (11675131, 11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades
Directory of Open Access Journals (Sweden)
G. Bernardini
2016-01-01
Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.
CLIC Quadrupole Module final report
Artoos, K; Mainaud-Durand, H
2013-01-01
Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.
Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory
Energy Technology Data Exchange (ETDEWEB)
Jendrzejczyk, J.A.; Wambsganss, M.W.
1991-01-01
The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs.
Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory
International Nuclear Information System (INIS)
Jendrzejczyk, J.A.; Wambsganss, M.W.
1991-01-01
The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs
Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei
Energy Technology Data Exchange (ETDEWEB)
Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others
1996-12-31
Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.
International Nuclear Information System (INIS)
Sukhovitskii, E.Sh.; Porodzinskii, Yu.V.; Iwamoto, Osamu; Chiba, Satoshi.
1997-09-01
A systematic analysis of nuclear structure and neutron interaction data for 12 C was carried out in the framework of the soft-rotator model. The model was firstly applied to analyze the low-lying collective level structure of the 12 C nucleus, which turned out to be very successful. The intrinsic wave function obtained in such an analysis was then used to construct the coupling potentials in the coupled-channels formalism to calculate the neutron total and scattering cross sections. The quadrupole deformation parameter obtained in the present analysis was 0.164, which was much smaller in the absolute sense than the value used in the symmetric-rotator, vibrator model employed frequently in the past, i.e., ≅0.6. When averaged over the β-vibration function, however, the present result yields an effective quadrupole strength of about the same scale as the previous studies due to softness of the 12 C wave function with respect to β 2 degree of freedom. The soft-rotator model was found to be very successful in reproducing both the structure and neutron scattering data consistently for the first time in this mass region. (author)
Lifetimes of low-lying states in 132Nd and 134Nd
International Nuclear Information System (INIS)
Kruecken, R.; Mullins, S.M.; Thornley, D.J.; Kirwan, A.J.; Nolan, P.J.; Regan, P.H.; Wadsworth, R.
1995-01-01
Lifetimes of low-lying states have been measured in 132 Nd and 134 Nd using the coincidence-plunger technique. The reaction 32 S+ 105 Pd was used at a bombarding energy of 152 MeV. The measurement has been performed at the NSF Daresbury using the ESSA 30 array. The differential decay-curve method (DDCM) was used to analyze the recoil-distance Doppler-shift (RDDS) data. The experimental B(E2) values in 132 Nd are well described by the predictions of the rotational model and the IBM in the O(6) limit. ((orig.))
Tuning and sensitivity of the human vestibular system to low-frequency vibration.
Todd, Neil P McAngus; Rosengren, Sally M; Colebatch, James G
2008-10-17
Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90 dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100 Hz. At the best frequency we obtained VOR responses at intensities of less than -70 dB re 1g, which was 15 dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.
Pygmy quadrupole resonance as a manifestation of the nuclear skin
Energy Technology Data Exchange (ETDEWEB)
Tsoneva, Nadia [Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)
2016-07-01
Recently, a new mode of nuclear excitation called pygmy quadrupole resonance (PQR) was theoretically predicted in the framework of energy-density functional (EDF) theory plus three-phonon quasiparticle-phonon model (QPM) in Sn isotopic chain. It is closely connected with higher order multipole vibrations of nuclear skin induced by the action of the electromagnetic and hadronic external fields. The predictions initiated new experiments using ({sup 17}O,{sup 17}O{sup '}γ), (α,α{sup '}γ) and (γ,γ{sup '}) reactions which were carried out in {sup 124}Sn nucleus. The aim was to probe for the first time experimentally, the possibility of existence of PQR. The detailed analysis of the obtained experimental results in comparison with the EDF+QPM theory indicates clearly the presence of a multitude of discrete low-energy 2{sup +} excitations of neutron type which can be addressed to PQR mode. The independent measurements of B(E2) values with different probes and the theory allow to identify the dominant isoscalar character of these states. Furthermore, newly determined γ-decay branching ratios exclude a statistical origin of the PQR strength. The latter are important to discriminate between PQR and multiphonon excitations.
Directory of Open Access Journals (Sweden)
Krzysztof Marycz
2016-02-01
Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2017-08-01
Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.
Classification and identification of Lie algebras
Snobl, Libor
2014-01-01
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...
Magnetic Measurement Results of the LCLS Undulator Quadrupoles
Energy Technology Data Exchange (ETDEWEB)
Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC
2011-08-18
This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.
Directory of Open Access Journals (Sweden)
Toshio Nakajima
2015-07-01
Full Text Available The imminent fear of water-related hazards such as flooding hangs over low-lying areas, in particular now because climate changes have led to increased hazards, like storm surges, that could result in serious harm. This paper aims to provide a novel solution—namely “the floating platform”—that can transform dangerous low-lying areas into those safeguarded against potential hazards. Additionally, by utilizing this solution as a secure base for society to build atop this new artificial reservoir, we offer a better future role for such areas. Meanwhile, we propose adoption of our concept soon at two low-lying areas in northeast Japan hard-hit by the huge 11 March 2011 tsunami: Sendai’s Arahama coastal district and the still-devastated residential harbor area of Kesennuma, both cities in need of a fresh perspective.
International Nuclear Information System (INIS)
Sy Savane, Y.
1995-12-01
The influence of the anharmonicity of the core vibration, on the magnetic transition 11/2 - 1 → 7/2 + 1 in 115 Sn have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a ''quasiparticle + two phonons'' component. The performed numerical calculations show that those effects cannot explain the strong reduction of the M2-transition observed in the experiment. A full agreement with the experimental value is obtained with g eff s = 0.42g free s . (author). 10 refs, 2 figs, 1 tab
Centering of quadrupole family
International Nuclear Information System (INIS)
Pinayev, Igor
2007-01-01
A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed
Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions
Rowe, D J
1998-01-01
Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)
Ion trajectories quadrupole mass filters
International Nuclear Information System (INIS)
Ursu, D.; Lupsa, N.; Muntean, F.
1994-01-01
The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs
Deformation dependent TUL multi-step direct model
International Nuclear Information System (INIS)
Wienke, H.; Capote, R.; Herman, M.; Sin, M.
2008-01-01
The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, 'deformed' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the 'spherical' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations. (authors)
Mechanical Design of a Second Generation LHC IR Quadrupole
International Nuclear Information System (INIS)
Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.
2003-01-01
One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS
Lie groups and Lie algebras for physicists
Das, Ashok
2015-01-01
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
The low-lying electronic states of BeP: a reliable and accurate quantum mechanical prediction
International Nuclear Information System (INIS)
Ornellas, Fernando R
2009-01-01
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X 4 Σ - ground state, with an equilibrium bond distance of 2.073 A, and a harmonic frequency of 516.2 cm -1 ; it is followed closely by the states 2 Π (R e = 2.081 A, ω e = 639.6 cm -1 ) and 2 Σ - (R e = 2.074 A, ω e = 536.5 cm -1 ), at 502 and 1976 cm -1 , respectively. The other quartets investigated, A 4 Π (R e = 1.991 A, ω e = 555.3 cm -1 ) and B 4 Σ - (R e = 2.758 A, ω e = 292.2 cm -1 ) lie at 13 291 and 24 394 cm -1 , respectively. The remaining doublets ( 2 Δ, 2 Σ + (2) and 2 Π(3)) all fall below 28 000 cm -1 . Avoided crossings between the 2 Σ + states and between the 2 Π states add an extra complexity to this manifold of states.
Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Ram, B.; Kriss, V.
1985-01-01
Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia
Theory and experiment research for ultra-low frequency maglev vibration sensor
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun
2015-10-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Theory and experiment research for ultra-low frequency maglev vibration sensor
International Nuclear Information System (INIS)
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng
2015-01-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements
Theory and experiment research for ultra-low frequency maglev vibration sensor
Energy Technology Data Exchange (ETDEWEB)
Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)
2015-10-15
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab
International Nuclear Information System (INIS)
Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.
2006-01-01
Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest
Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.; /Fermilab
2006-08-01
Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.
Deep-lying hole states in the optical model
International Nuclear Information System (INIS)
Klevansky, S.P.; Lemmer, R.H.
1982-01-01
The strength function for deep-lying hole states in an optical potential is studied by the method of Green's functions. The role of isospin is emphasized. It is shown that, while the main trends of the experimental data on hole states in isotopes of Sn and Pd can be described by an energy independent optical potential, intermediate structures in these data indicate the specific nuclear polarization effects have to be included. This is done by introducing doorway states of good isospin into the optical model potential. Such states consist of neutron hole plus proton core vibrations as well as more complicated excitations that are analog states of proton hole plus neutron core vibrations of the parent nuclear system. Specific calculations for 115 Sn and 103 Pd give satisfactory fits to the strength function data using optical model and doorway state parameters that are reasonable on physical grounds
Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry
International Nuclear Information System (INIS)
Thiamova, G.; Rowe, D. J.
2007-01-01
This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)
Directory of Open Access Journals (Sweden)
S KH Mousavi
2015-09-01
Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results
Directory of Open Access Journals (Sweden)
Pao-Chiang Chao
2013-10-01
Full Text Available Noise, vibration, and low temperature render specific occupational hazards to labor employees. The purpose of this research was to investigate the combined effects of these three physical hazards on employees' physiological parameters. The Taguchi experimental method was used to simulate different exposure conditions caused by noise, vibration, and low temperature, and their effects on the physiological parameters of the test takers were measured. The data were then analyzed using statistical methods to evaluate the combined effects of these three factors on human health. Results showed that the factor that influenced the finger skin temperature, manual dexterity, and mean artery pressure (MAP most was air temperature, and exposure time was the second most influential factor. Noise was found to be the major factor responsible for hearing loss; in this case, hand–arm vibration and temperature had no effect at all. During the study, the temperature was confined in the 5–25°C range (which was not sufficient to study the effects at extremely high- and low-temperature working conditions because the combined effects of even two factors were very complicated. For example, the combined effects of hand–arm vibration and low temperature might lead to occupational hazards such as vibration-induced white finger syndrome in working labors. Further studies concerning the occupational damage caused by the combined effects of hazardous factors need to be conducted in the future.
Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?
Directory of Open Access Journals (Sweden)
Matej Supej
2018-03-01
Full Text Available Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS, crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back
Interventions for chronic low back pain: whole body vibration and ...
African Journals Online (AJOL)
Objectives. This study explored, described and compared the effects of whole body vibration (WBV) therapy and conventional spinal stabilisation exercises in persons with chronic low back pain (CLBP). Design. A non-randomised sampling technique was used to delineate the base of volunteers gathered by a combination ...
International Nuclear Information System (INIS)
Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H
2017-01-01
This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)
Torres del Castillo, G.F; Méndez Garrido, A
2006-01-01
Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...
Study of lifetimes of low-lying levels in {sup 53}Mn
Energy Technology Data Exchange (ETDEWEB)
Singh, K.P.; Oswal, Mumtaz; Behera, B.R.; Kumar, Ashok; Singh, Gulzar [Panjab University, Cyclotron Laboratory, Department of Physics, Centre of Advance Study in Physics, Chandigarh (India)
2015-05-15
The properties of low-lying states of {sup 53}Mn were investigated via the {sup 53}Cr(p, n γ){sup 53}Mn reaction using 4.3 MeV proton beam energy. The lifetimes of the levels at 1289.5, 1440.8, 1620.0 and 2273.8 keV excitation energies were measured using the Doppler Shift Attenuation Method (DSAM). The reduced transition probabilities B(M1) and B(E2) were extracted using the measured values of lifetimes for these levels and the mixing ratios from the literature. These values are compared with already known experimental values as well as the shell model calculations using an effective interaction. (orig.)
ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA
International Nuclear Information System (INIS)
Wang, Lanfa
2010-01-01
The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.
Directory of Open Access Journals (Sweden)
Lan Zhang
2014-01-01
Full Text Available Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V and currents (<1 mA with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki; Maeda, Ryutaro [Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8564 (Japan)
2014-01-15
Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.
DEFF Research Database (Denmark)
Zhang, N.G.; Henley, C.L.; Rischel, C.
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...
Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions
International Nuclear Information System (INIS)
Zhang Yong-Hu; Zhang Xian-Zhou; Tang Li-Yan; Shi Ting-Yun; Mitroy Jim
2012-01-01
The static quadrupole polarizabilities for hydrogen-like ions from Z = 1 to Z = 100 in the 1S 1/2 ground state are calculated to high precision by solving the Dirac equation using the B-spline Galerkin method. The results are consistent with the expression of Kaneko [J. Phys. B 10 (1977) 3347] at low Z. The quadrupole oscillator strength sum Σ n f (2) gn is computed to be zero to a very high degree of precision. (atomic and molecular physics)
Surface hopping simulation of vibrational predissociation of methanol dimer
Jiang, Ruomu; Sibert, Edwin L.
2012-06-01
The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.
Energy Technology Data Exchange (ETDEWEB)
Hauschild, K.; Bernstein, L.A.; Becker, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others
1996-12-31
The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.
On Deformations and Contractions of Lie Algebras
Directory of Open Access Journals (Sweden)
Marc de Montigny
2006-05-01
Full Text Available In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.
Experimental study of the low-lying structure of 94Zr with the (n,n'γ) reaction
International Nuclear Information System (INIS)
Elhami, E.; Orce, J. N.; Scheck, M.; Mukhopadhyay, S.; Choudry, S. N.; McEllistrem, M. T.; Yates, S. W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Parpottas, Y.; Tonchev, A. P.; Tornow, W.; Kelley, J. H.
2008-01-01
The low-lying structure of 40 94 Zr was studied with the (n,n ' γ) reaction, and a level scheme was established based on excitation function and γγ coincidence measurements. Branching ratios, multipole mixing ratios, and spin assignments were determined from angular distribution measurements. Lifetimes of levels up to 3.4 MeV were measured by the Doppler-shift attenuation method, and for many transitions the reduced transition probabilities were determined. In addition to the anomalous 2 2 + state, which has a larger B(E2;2 2 + →0 1 + ) value than the B(E2;2 1 + →0 1 + ), the experimental results revealed interesting and unusual properties of the low-lying states in 94 Zr. In a simple interpretation, the excited states are classified in two distinct categories, i.e., those populating the 2 2 + state and those decaying to the 2 1 + state
Transition quadrupole moments in the superdeformed band of 40Ca
International Nuclear Information System (INIS)
Chiara, C.J.; Ideguchi, E.; Devlin, M.; LaFosse, D.R.; Lerma, F.; Reviol, W.; Ryu, S.K.; Sarantites, D.G.; Baktash, C.; Galindo-Uribarri, A.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Reiter, P.; Seweryniak, D.; Fallon, P.; Goergen, A.; Macchiavelli, A.O.; Rudolph, D.
2003-01-01
The transition quadrupole moments Q t for the superdeformed band in 40 Ca have been determined through thin-target Doppler-shift attenuation analyses. A best-fit value of Q t =1.30±0.05 e b is obtained when a single value is assumed for the entire band. Fitting separate quadrupole moments for in-band transitions decaying from the high-spin states and the presumably admixed low-spin states results in Q t (high)=1.81 -0.26 +0.41 e b and Q t (low)=1.18 -0.05 +0.06 e b, respectively. Q t values extracted for individual transitions in a Doppler-broadened line-shape analysis also indicate smaller Q t values at lower spins. These results are consistent with the interpretation of this band as an eight-particle-eight-hole superdeformed band with a significant admixture of less-collective configurations at low spins
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1985-01-01
In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model
Topology optimization and fabrication of low frequency vibration energy harvesting microdevices
International Nuclear Information System (INIS)
Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei
2015-01-01
Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response
Laced permanent magnet quadrupole drift tube magnets
International Nuclear Information System (INIS)
Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.
1988-10-01
A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs
Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets
International Nuclear Information System (INIS)
Wang, L.
2011-01-01
The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the
Calculations of energy levels and lifetimes of low-lying states of barium and radium
International Nuclear Information System (INIS)
Dzuba, V. A.; Ginges, J. S. M.
2006-01-01
We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations
Low-lying excited states by constrained DFT
Ramos, Pablo; Pavanello, Michele
2018-04-01
Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.
Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface
International Nuclear Information System (INIS)
Hamann, D.R.; Feibelman, P.J.
1988-01-01
The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni
Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime
Cheng, Tin Kei; Lau, Denvid
2014-04-01
As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.
Lie Quasi-Bialgebras and Cohomology of Lie algebra
International Nuclear Information System (INIS)
Bangoura, Momo
2010-05-01
Lie quasi-bialgebras are natural generalisations of Lie bialgebras introduced by Drinfeld. To any Lie quasi-bialgebra structure of finite-dimensional (G, μ, γ, φ), corresponds one Lie algebra structure on D = G + G*, called the double of the given Lie quasi-bialgebra. We show that there exist on ΛG, the exterior algebra of G, a D-module structure and we establish an isomorphism of D-modules between ΛD and End(ΛG), D acting on ΛD by the adjoint action. (author) [fr
Seniority four admixures in the low-lying 0+ states of even-mass tin and lead nuclei
International Nuclear Information System (INIS)
Quesne, C.; Salmon, Y.; Spitz, S.
1977-01-01
New statistical measures of symmetry breaking are used to evaluate the total seniority four admixtures in the low-lying 0 + states of even-mass tin and lead nuclei. This approach is based on the centroid energies and partial widths of fixed total seniority and parity spectral distributions. Some seniority four states are found to be surprisingly low. However, the ground state is always a very pure seniority zero state
Quadrupole to BPM offset determination in Indus-2
International Nuclear Information System (INIS)
Jena, Saroj; Ghodke, A.D.; Singh, G.
2009-01-01
A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)
International Nuclear Information System (INIS)
Gu, Lei; Livermore, Carol
2011-01-01
This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone
Glauber amplitudes for transitions from low lying states in hydrogen atom by charged particle impact
Energy Technology Data Exchange (ETDEWEB)
Kumar, S; Srivastava, M K [Roorkee Univ. (India). Dept. of Physics
1977-07-01
The Glauber amplitudes for the general transition nlm ..-->.. n'1'm' in charged particle - hydrogen atom collisions have been obtained in the form of a one-dimensional integral. The final expression involves only a few hypergeometric functions if n is not too large and is particularly suited to study excitation to highly excited states from a low lying state.
International Nuclear Information System (INIS)
Wu Ming-Zhong; Bai Cheng-Ming
2015-01-01
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
International Nuclear Information System (INIS)
Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.
2015-01-01
We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states
International Nuclear Information System (INIS)
Hasse, R.W.; Ghosh, G.
1982-01-01
The long-mean-free-path nuclear fluid dynamics is extended to include damping. First the damping stress is derived from the solution of the Boltzmann equation for a breathing spherical container filled with a Fermi gas. Then the corresponding damping force is incorporated into Euler equations of motion and energies and widths of low lying collective resonances are computed as eigenfrequencies of a vibrating nucleus under surface tension and Coulomb potential as well as the high lying isoscalar giant resonances as eigenfrequencies of an elastic nucleus. Maximum damping is obtained if the particle frequency approximately resonates with the wall frequency. Theoretical results are compared with experimental data and future improvements are indicated
Low-lying level structure of the neutron-rich nucleus {sup 109}Nb: A possible oblate-shape isomer
Energy Technology Data Exchange (ETDEWEB)
Watanabe, H., E-mail: hiroshi@ribf.riken.j [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Yamaguchi, K. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hinke, C. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Ideguchi, E. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2011-01-31
The neutron-rich nuclei {sup 109}Nb and {sup 109}Zr have been populated using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. A T{sub 1/2}=150(30) ns isomer at 313 keV has been identified in {sup 109}Nb for the first time. The low-lying levels in {sup 109}Nb have been also populated following the {beta}-decay of {sup 109}Zr. Based on the difference in feeding pattern between the isomeric and {beta} decays, the decay scheme from the isomeric state in {sup 109}Nb was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in {sup 109}Nb.
Fringe fields modeling for the high luminosity LHC large aperture quadrupoles
Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M
2014-01-01
The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.
Radio-frequency quadrupole linear accelerator
International Nuclear Information System (INIS)
Wangler, T.P.; Stokes, R.H.
1980-01-01
The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented
DEFORMATION DEPENDENT TUL MULTI-STEP DIRECT MODEL
International Nuclear Information System (INIS)
WIENKE, H.; CAPOTE, R.; HERMAN, M.; SIN, M.
2007-01-01
The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended in order to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, ''deformed'' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the ''spherical'' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations
Low-lying eigenmodes of the Wilson-Dirac operator and correlations with topological objects
International Nuclear Information System (INIS)
Kusterer, Daniel-Jens; Hedditch, John; Kamleh, Waseem; Leinweber, D.B.; Williams, Anthony G.
2002-01-01
The probability density of low-lying eigenvectors of the hermitian Wilson-Dirac operator H(κ)=γ 5 D W (κ) is examined. Comparisons in position and size between eigenvectors, topological charge and action density are made. We do this for standard Monte-Carlo generated SU(3) background fields and for single instanton background fields. Both hot and cooled SU(3) background fields are considered. An instanton model is fitted to eigenmodes and topological charge density and the sizes and positions of these are compared
Three-dimensional quadrupole lenses made with permanent magnets
International Nuclear Information System (INIS)
Ivanov, A.S.
1984-01-01
The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged
Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations
Zhu, Jin; Zhang, Wei
2015-04-01
Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever
Design and construction of superconducting quadrupole magnets for ion beam fusion
International Nuclear Information System (INIS)
Wang, S.T.; Ludwig, H.; Turner, L.R.
1978-01-01
A high gradient superconducting quadrupole has been designed and developed as the heavy ion beam focussing element in the low velocity portions of an rf linac for the Argonne Ion Beam Fusion Reactor. The quadrupole magnets will require an extremely short magnet coil length (approximately 20 cm to 30 cm) and extremely high central gradients (approximately 100 T/m to 200 T/m). The useful warm bore will be about 4 to 6 cm and the integral gradient homogeneity should be constant to +-5% over the useful warm bore. Special techniques have been developed which are especially suitable for multilayer coil winding and coil assembly with high average current density over the coil cross section. A 5-layer quadrupole with 9 cm winding bore has been built and tested to the full performance of about 100 T/m with little training. The achieved average current density is 22,000 A/cm 2 at a peak field in conductor of about 5.0 T. An 8-layer quadrupole is under construction for a design gradient of 140 T/m over 9 cm winding bore. The peak field will be about 7.2 T
Hydrogen isotope analysis by quadrupole mass spectrometry
International Nuclear Information System (INIS)
Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.
1981-03-01
The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2
Nuclear collective vibrations in extended mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2003-07-01
The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)
Design of an electrostatic magnetic quadrupole accelerator
International Nuclear Information System (INIS)
Mizuno, M.; Ohara, Y.
1993-01-01
A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field
MQXFS1 Quadrupole Fabrication Report
Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M
2017-01-01
This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.
MQXFS1 Quadrupole Fabrication Report
Energy Technology Data Exchange (ETDEWEB)
Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2017-07-16
This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.
Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact
International Nuclear Information System (INIS)
Krutein, J.; Linder, F.
1979-01-01
Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system
Low CMB quadrupole from dark energy isocurvature perturbations
International Nuclear Information System (INIS)
Gordon, Christopher; Hu, Wayne
2004-01-01
We explicate the origin of the temperature quadrupole in the adiabatic dark energy model and explore the mechanism by which scale invariant isocurvature dark energy perturbations can lead to its sharp suppression. The model requires anticorrelated curvature and isocurvature fluctuations and is favored by the Wilkinson Microwave Anisotropy Probe data at about the 95% confidence level in a flat scale invariant model. In an inflationary context, the anticorrelation may be established if the curvature fluctuations originate from a variable decay rate of the inflaton; such models however tend to overpredict gravitational waves. This isocurvature model can in the future be distinguished from alternatives involving a reduction in large scale power or modifications to the sound speed of the dark energy through the polarization and its cross correlation with the temperature. The isocurvature model retains the same polarization fluctuations as its adiabatic counterpart but reduces the correlated temperature fluctuations. We present a pedagogical discussion of dark energy fluctuations in a quintessence and k-essence context in the Appendix
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
2005-01-01
This document concerns the award of a contract for the supply of 134 motor units for the jacks for the LHC low-beta quadrupoles. The Finance Committee is invited to agree to the negotiation of a contract with ZTS VVU KOSICE (SK), the lowest bidder, for the supply of 134 motor units for a total amount of 1 266 674 Swiss francs, not subject to revision.
Electrostatic quadrupoles for heavy-ion fusion
International Nuclear Information System (INIS)
Seidl, P.; Faltens, A.
1993-05-01
Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed
Is there a low-lying 1{sup −} state in {sup 10}He?
Energy Technology Data Exchange (ETDEWEB)
Chulkov, L.V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Aumann, T. [Institut für Kernphysik, Technische Universität, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany); Jonson, B., E-mail: Bjorn.Jonson@chalmers.se [Fundamental Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg (Sweden); Nilsson, T. [Fundamental Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg (Sweden); Simon, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany)
2013-03-26
In a recent paper by S.I. Sidorchuk et al., Phys. Rev. Lett. 108 (2012) 202502, angular correlations in the decay of {sup 10}He were interpreted as a coherent superposition of a 0{sup +}, 1{sup −} and 2{sup +} states. It was concluded that it is the 1{sup −} state that dominates in the energy region 4.5–6 MeV. It is here demonstrated here that the experimental data might be understood without assuming the presence of a low-lying 1{sup −} state.
Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.
Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji
2014-01-16
The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
Directory of Open Access Journals (Sweden)
Shanshan Li
2016-01-01
Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
International Nuclear Information System (INIS)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.; Kunold, A.
2015-01-01
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas
De, B. R.; Srnka, L. J.
1978-01-01
Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.
Characterization of the low-lying 0$^{+}$ and 2$^{+}$ states of $^{68}$ Ni
Recently, a number of low-lying low-spin states have been firmly identified in $^{68}$Ni; the position of the first excited state (which is a 0$^{+}$ state), the spin and parity of the second excited 0$^{+}$ state and the spin and parity of the second and third 2$^+$ states have been fixed. The identification of these three pairs of 0$^+$ and 2$^+$ states in $^{68}$Ni (Z=28 and N=40) forms ideal tests to validate shell-model calculations and the effective interactions developed for the nickel region but also hints to triple shape coexistence including even strongly deformed structures. The aim of this proposal is to collect detailed spectroscopic data of the low-spin states of $^{68}$Ni (Z=28, N=40) in order to characterize these triple pairs of 0$^+$ and 2$^+$ states. $\\gamma$-branching ratios of the 0$^+$ and 2$^+$ states and the E0 transition strengths as well as the E2 transition rate of the 0$_3^+$ will be obtained using the new ISOLDE decay station that is constructed from an efficient array of germaniu...
Low temperature nuclear orientation studies of nuclei far from stability
International Nuclear Information System (INIS)
Brown, D.E.
1990-01-01
One of the major current interests in nuclear physics is to study transitional nuclei which lie between well known regions of spherical and deformed nuclei. The neutron deficient Tellurium and Iodine isotopes are examples of such nuclei. In both cases, the influence of a πg 9/2 intruder orbital is expected to be strong at low excitation energies and at A ∼120. The 120 Te decay scheme has been investigated in detail by LTNO supported by γ-γ coincidences and conversion electron spectroscopy. An interaction of the level scheme using an IBM-2 calculation which allows for mixing between the ground state and a (4p-2h) intruder state is made. The success of this calculation provides strong evidence for the existence of the intruder configuration in 120 Te. In addition, the relative electric quadrupole moments of the ground states in 120-123 I have been measured. The light Platinum isotopes are also transitional nuclei. The ground state magnetic dipole and electric quadrupole moments have been measured for 185,187 Pt which lie inside the region in which the shape transition is known to occur. An interpretation of nuclear moments and level structures in the range 179≤A≤193 using a particle plus triaxial core shows that the shape change takes place gradually via a broad region in which the nuclear shape is triaxial. (author)
Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules
International Nuclear Information System (INIS)
Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.
1986-01-01
This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +
Wang, Chen; Zhang, Qichang; Wang, Wei
2017-07-01
This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.
Lackner, F; Ambrosio, G; Todesco, E; Duret, M; Triquet, S; Pozzobon, M; Luzieux, S; Perez, J C; Scheuerlein, C; Sahner, T; Michels, M; Semeraro, M; Bourcey, N; Cavanna, E; Revilak, P; Genestier, T; Axensalva, J; Principe, R; Prin, H; Savary, F
2017-01-01
The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb$_{3}$Sn technology. The coils with a length of 7281 mm will be the longest Nb$_{3}$Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.
RF quadrupole beam dynamics design studies
International Nuclear Information System (INIS)
Crandall, K.R.; Stokes, R.H.; Wangler, T.P.
1979-01-01
The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz
Low-Vibration Oscillating Compressor
Studer, P. A.
1984-01-01
Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.
Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio
Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping
2017-12-01
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
Directory of Open Access Journals (Sweden)
Rutwig Campoamor-Stursberg
2016-03-01
Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
Double-photoionization of helium including quadrupole radiation effects
Energy Technology Data Exchange (ETDEWEB)
Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV
2009-01-01
Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.
International Nuclear Information System (INIS)
Oshtrakh, M. I.; Semionkin, V. A.
2004-01-01
Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.
Mirmiran, Roya; Squire, Chad; Wassell, Daniel
2015-01-01
A low lying peroneus brevis muscle belly is a rare anomaly. There are few published studies that support presence of this anomaly as an etiology for peroneal tendon tear. However, the association between a low lying peroneus muscle belly (LLMB) and tendon subluxation is not well explored. In this retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing a primary peroneal tendon surgery, in a five year period, were assessed. Th...
Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect
International Nuclear Information System (INIS)
Ju, S; Chae, S H; Choi, Y; Jun, S; Park, S M; Lee, S; Ji, C-H; Lee, H W
2013-01-01
This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken
Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect
Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.
2013-12-01
This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.
Oscillator strengths and lifetimes for low-lying terms in the Al isoelectronic sequence
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Aashamar, K.
1988-11-01
Using the Multiconfiguration Optimized Potential Model, calculations of oscillator strengths in the length, and velocity formulation for a large number of transitions in the Aluminium isoelectronic sequence from Si II through K VII, have been performed. The results have been used to determine the lifetimes of 14 low-lying excited terms along the sequence. Comparison is made with experiment and with other theory where results are available. The agreement between the obtained values and other theoretical results is generally good, although deviations do occur near level crossings. Some significant discrepancies between theory and experiment persist concerning lifetimes for S IV
Low-lying S-wave and P-wave dibaryons in a nodal structure analysis
International Nuclear Information System (INIS)
Liu Yuxin; Li Jingsheng; Bao Chengguang
2003-01-01
The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons
Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.
Gibson, E. K., Jr.; Johnson, S. M.
1972-01-01
Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.
Rubio Martí, Vicente
2016-01-01
En el presente proyecto definimos lo que es un grupo de Lie, así como su respectiva álgebra de Lie canónica como aproximación lineal a dicho grupo de Lie. El proceso de linealización, que es hallar el algebra de Lie de un grupo de Lie dado, tiene su
Vibration of liquid-filled thin shells
International Nuclear Information System (INIS)
Kalnins, A.
1979-01-01
This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)
Design of permanent magnet quadrupole for LEHIPA DTL
International Nuclear Information System (INIS)
Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.
2011-01-01
The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)
Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines
International Nuclear Information System (INIS)
Kim, H. S.; Kwon, H. J.; Cho, Y. S.
2014-01-01
In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented
Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin
2018-04-01
We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.
Low frequency vibration approach for assessing performance of wood floor systems
Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman
2005-01-01
The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...
Directory of Open Access Journals (Sweden)
Laura N Vandenberg
Full Text Available Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs and Danio rerio (zebrafish, specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.
Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying
Directory of Open Access Journals (Sweden)
Oshin eVartanian
2013-10-01
Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.
Right inferior frontal gyrus activation as a neural marker of successful lying.
Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan
2013-01-01
There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.
Low-lying intruder state of the unbound nucleus {sup 13}Be
Energy Technology Data Exchange (ETDEWEB)
Kondo, Y., E-mail: kondo@phys.titech.ac.j [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Nakamura, T.; Satou, Y. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Matsumoto, T.; Aoi, N. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Endo, N. [Department of Physics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Fukuda, N.; Gomi, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, Y. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Ishihara, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawai, S. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Kitayama, M.; Kobayashi, T.; Matsuda, Y. [Department of Physics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Matsui, N. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Motobayashi, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakabayashi, T.; Okumura, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Ong, H.J.; Onishi, T.K. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)
2010-06-21
An experimental study for the unbound nucleus {sup 13}Be has been performed by means of the invariant mass method via the one-neutron removal reaction {sup 1}H({sup 14}Be,{sup 12}Be+n). A resonance has been observed at 0.51(1) MeV in the relative energy (E{sub rel}) spectrum of the {sup 12}Be+n system. The transverse momentum distribution of the {sup 12}Be+n system as well as the resonance width of 0.45(3) MeV gives evidence for the p-wave nature of the resonance. A d-wave resonance has also been observed at 2.39(5) MeV in the E{sub rel} spectrum. The observation of the low-lying p-wave resonance indicates the disappearance of the N=8 magicity in the vicinity of the neutron drip line region.
All systems go for LHC quadrupoles
2003-01-01
The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...
Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas
International Nuclear Information System (INIS)
Perelomova, A.
2010-01-01
Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)
Nonuniform radiation damage in permanent magnet quadrupoles.
Danly, C R; Merrill, F E; Barlow, D; Mariam, F G
2014-08-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Nonuniform radiation damage in permanent magnet quadrupoles
International Nuclear Information System (INIS)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.
2014-01-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components
Nonuniform radiation damage in permanent magnet quadrupoles
Energy Technology Data Exchange (ETDEWEB)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)
2014-08-15
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Radio-frequency quadrupole: general properties and specific applications
International Nuclear Information System (INIS)
Stokes, R.H.; Crandall, K.R.; Hamm, R.W.
1980-01-01
The radio-frequency quadrupole (RFQ) linac structure is being developed for the acceleration of low-velocity ions. Recent experimental tests have confirmed its expected performance and have led to an increased interest in a wide range of possible applications. The general properties of RFQ accelerators are reviewed and beam dynamics simulation results are presented for their use in a variety of accelerating systems. These include the low-beta sections of the Fusion Materials Irradiation Test Accelerator, a 200-MHz proton linear accelerator, and a xenon accelerator for heavy ion fusion
Microscopic analysis of wobbling excitations in 156Dy and 162Yb
International Nuclear Information System (INIS)
Nazmitdinov, R. G.; Kvasil, J.
2007-01-01
In the cranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole excitations of positive parity and negative signature in 156 Dy and 162 Yb at high spins. Special attention is paid to a consistent description of wobbling excitations and their identification among excited states. A good agreement between the available experimental data and the results of calculations is obtained. We find that the lowest odd-spin γ-vibrational states in 156 Dy transform into wobbling excitations after the backbending associated with the transition from an axially symmetric shape to a nonaxial shape. Similar results are predicted for 162 Yb. The analysis of electromagnetic transitions uniquely determines the sign of the γ deformation in both nuclei after the transition point
Ion-storage in radiofrequency electric quadrupole field
International Nuclear Information System (INIS)
Gheorghe, V.
1976-01-01
The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)
On the equivalence of quadrupole phonon model and interacting boson model
International Nuclear Information System (INIS)
Kyrchev, G.
1980-01-01
A rigorous proof of the quadrupole phonon model (QPM) and the interacting boson model (IBM) equivalence (the Hamiltonians and the relevant operators of both models are identical) is presented. Within the theory of classical Lie algebras the Schwinger representation (SR) construction of SU(6)-algebra, generated by QPM collective coordinates, conjugated momenta and their commutators, is given. Having the explicit form of SU(6) generators in SR, we get the QPM collective Hamiltonian in SR (previously Holstein-Primakoff infinite Boson expansion has been applied for this Hamiltonian). The Hamiltonian of QPM thus obtained contains all Boson structures, which are present in the Hamiltonian of IBM and under definite relations between their parameters, both Hamiltonians coincide identically. The relevant operators are identical too. Thus, though QPM and IBM, being advanced independently, have been developed in a different fashion, they are essentially equivalent
International Nuclear Information System (INIS)
Chang, C.R.; Horowitz, E.; Reiser, M.
1989-01-01
Transport of low-energy, high-brightness H - beams from the ion source to the radio-frequency quadrupole (RFQ) accelerator requires the solution of several physics and engineering problems to avoid particle losses and emittance growth. The authors developed a conceptual design of an electrostatic quadrupole channel for transport of a 120 keV, 120 mA, H - beam into a 425 MHz RFQ with low emittance growth and high transmission efficiency. This design satisfies several constraints imposed by voltage breakdown and beam optics considerations. The system will consist entirely of electrostatic lenses which prevent plasma build-up and eliminate possible emittance growth from plasma fluctuations. Pertinent design features a worst case non-linear analysis for the electrostatic quadrupole channel, and first results of a particle simulation code used to study beam loss and emittance growth are reported. As an alternative to the electrostatic quadrupole concept, gas focusing is being investigated for transporting low-energy H - beams. Recent results from the numerical simulations of such a gas focussing channel are presented
Construction and calibration of a low cost and fully automated vibrating sample magnetometer
International Nuclear Information System (INIS)
El-Alaily, T.M.; El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M.; Assar, S.T.
2015-01-01
A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability
Construction and calibration of a low cost and fully automated vibrating sample magnetometer
Energy Technology Data Exchange (ETDEWEB)
El-Alaily, T.M., E-mail: toson_alaily@yahoo.com [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Assar, S.T. [Engineering Physics and Mathematics Department, Faculty of Engineering, Tanta University, Tanta (Egypt)
2015-07-15
A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability.
International Nuclear Information System (INIS)
Zhang Da-Li; Ding Bin-Gang
2013-01-01
We investigate properties of the low-lying energy states for 76 Ge within the framework of the proton-neutron interacting model IBM2, considering the validity of the Z = 38 subshell closure 88 Sr 50 as a doubly magic core. By introducing the quadrupole interactions among like bosons to the IBM2 Hamiltonian, the energy levels for both the ground state and γ bands are reproduced well. Particularly, the doublet structure of the γ band and the energy staggering signature fit the experimental data correctly. The ratios of B(E2) transition strengths for some states of the γ band, and the g factors of the 2 1 + , 2 2 + states are very close to the experimental data. The calculation result indicates that the nucleus exhibiting rigid triaxial deformation in the low-lying states can be described rather well by the IBM2
Grigoryey, N. V.; Fedorovich, M. A.
1973-01-01
The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.
1978-01-01
Proposal for the Purchase, Without a New Call for Tenders, of Four Additional Superconducting Quadrupole Magnets for the Duplication of the Low-Beta Insertion of the CERN Intersecting Storage Rings (ISR)
Electric Monopole Transition Strengths in 62Ni
Directory of Open Access Journals (Sweden)
Evitts L. J.
2016-01-01
Full Text Available Excited states in 62Ni were populated with a (p, p’ reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0, were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77−34+23 × 10−3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0 value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0 values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0 value for the 22+ to 21+ transition.
Electric Monopole Transition Strengths in 62Ni
Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.
2016-09-01
Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.
Directory of Open Access Journals (Sweden)
Yukio Takahashi
2011-01-01
Full Text Available To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL tone and a 50-Hz, 100-dB(SPL tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL and that of another one was either 90, 95, or 100 dB(SPL. Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen, the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative
Trainor, Thomas A.
2017-04-01
According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.
Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative
Directory of Open Access Journals (Sweden)
Trainor Thomas A.
2017-01-01
Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.
Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication
Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Modena, M; Payn, A; Rossi, L; Sanfilippo, S; Schellong, B; Schirm, KM; Schmidt, P; Simon, F; Todesco, E; Wildner, E
2006-01-01
The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the...
Indian Academy of Sciences (India)
to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.
International Nuclear Information System (INIS)
Yuan, J.; Zhang, Z.
1993-01-01
Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba
Energy Technology Data Exchange (ETDEWEB)
Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)
2014-05-28
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.
Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)
1996-12-31
Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.
SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT
International Nuclear Information System (INIS)
Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter
2003-01-01
The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed
(14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.
Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane
2015-06-01
A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
A low cost support post for SSC quadrupole magnets and other cryogenic applications
International Nuclear Information System (INIS)
Hiller, M.W.; Kunz, R.J.; Lehmann, G.A.; Nilles, M.J.
1994-01-01
An injection molded support post has been designed and tested for use in the cryostat of the 5.4 meter long SSC Collider Quadrupole Magnet (CQM). This glass reinforced thermoplastic support is less costly than the complex alternative post designs that consist of filament wound tubes with thermal shrink fit metallic end pieces. The near net shape injection molding process delivers customized components at production rates suitable for present and proposed large scale cryogenic projects such as large accelerators, SMES, and Maglev. In addition, standard shapes (plates, tubes, threaded rods, and fasteners) comprised of this composite are available as catalog items. This paper presents the design considerations, material testing, and validation of predicted structural performance through component testing. Test results reported herein include compressive strength validations as well as previously unreported creep, thermal conductivity, and thermal contraction data. A delineated reliability method is discussed for verifying compliance with apportioned reliability targets using a synthesis of the FEA and test data. Also the design approach and data presented here can be extended toward the design of low cost mass produced supports for other cryogenic applications
Quadrupole decay strength of the M1 scissors mode of {sup 156}Gd
Energy Technology Data Exchange (ETDEWEB)
Beck, T.; Beller, J.; Gayer, U.; Mertes, L.; Pai, H.; Pietralla, N.; Ries, P.; Romig, C.; Werner, V.; Zweidinger, M. [IKP, TU Darmstadt (Germany); Derya, V. [IKP, Universitaet zu Koeln (Germany); Isaak, J.; Loeher, B.; Savran, D. [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Scheck, M. [IKP, TU Darmstadt (Germany); School of Engineering, UWS, Paisley (United Kingdom); SUPA, Glasgow (United Kingdom); Tornow, W.; Weller, H.R. [Duke University, Durham (United States)
2015-07-01
The isovector low-lying J{sup π}{sub K}=1{sup +}{sub 1} scissors mode of deformed nuclei has been studied extensively in (e,e{sup '}) and (γ,γ{sup '}) experiments over the last 30 years with the main focus on strong M1 transitions to the ground state band. In the framework of the semiclassical two-rotor-model it has its origin in quadrupole deformation. A considerable E2 matrix element between the rotational band of the scissors mode and the ground band is predicted which has not been addressed experimentally. A photon-scattering experiment with linearly-polarized quasi monoenergetic vector (γ)-rays has been performed at the High Intensity vector (γ)-ray Source (HIvector (γ)S) at Duke University, Durham, NC, exploiting the γ{sup 3} setup. We have measured an E2/M1-multipole mixing ratio for the 1{sup +}{sub sc}→2{sup +}{sub 1} transition for the first time. The Alaga rule is applicable and delivers a first estimate of the transition strength B(E2:2{sup +}{sub sc}→0{sup +}{sub 1}). A candidate for a 2{sup +}{sub sc}→2{sup +}{sub 1} transition is discussed.
AA, wide quadrupole on measurement stand
CERN PhotoLab
1981-01-01
Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.
Popliger, Mina; Talwar, Victoria; Crossman, Angela
2011-11-01
Children tell prosocial lies for self- and other-oriented reasons. However, it is unclear how motivational and socialization factors affect their lying. Furthermore, it is unclear whether children's moral understanding and evaluations of prosocial lie scenarios (including perceptions of vignette characters' feelings) predict their actual prosocial behaviors. These were explored in two studies. In Study 1, 72 children (36 second graders and 36 fourth graders) participated in a disappointing gift paradigm in either a high-cost condition (lost a good gift for a disappointing one) or a low-cost condition (received a disappointing gift). More children lied in the low-cost condition (94%) than in the high-cost condition (72%), with no age difference. In Study 2, 117 children (42 preschoolers, 41 early elementary school age, and 34 late elementary school age) participated in either a high- or low-cost disappointing gift paradigm and responded to prosocial vignette scenarios. Parents reported on their parenting practices and family emotional expressivity. Again, more children lied in the low-cost condition (68%) than in the high-cost condition (40%); however, there was an age effect among children in the high-cost condition. Preschoolers were less likely than older children to lie when there was a high personal cost. In addition, compared with truth-tellers, prosocial liars had parents who were more authoritative but expressed less positive emotion within the family. Finally, there was an interaction between children's prosocial lie-telling behavior and their evaluations of the protagonist's and recipient's feelings. Findings contribute to understanding the trajectory of children's prosocial lie-telling, their reasons for telling such lies, and their knowledge about interpersonal communication. Copyright © 2011 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Berezin, F.A.
1977-01-01
Generalization of the Laplace-Casimir operator theory on the Lie supergroups is considered. The main result is the formula for radial parts of the Laplace operators under some general assumptions about the Lie supergroup. In particular these assumptions are valid for the Lie suppergroups U(p,g) and C (m,n). The first one is the analogue of the unitary group, the second one is the analogue of the linear group of canonical transformations
"Lie to me"-Oxytocin impairs lie detection between sexes.
Pfundmair, Michaela; Erk, Wiebke; Reinelt, Annika
2017-10-01
The hormone oxytocin modulates various aspects of social behaviors and even seems to lead to a tendency for gullibility. The aim of the current study was to investigate the effect of oxytocin on lie detection. We hypothesized that people under oxytocin would be particularly susceptible to lies told by people of the opposite sex. After administration of oxytocin or a placebo, male and female participants were asked to judge the veracity of statements from same- vs. other-sex actors who either lied or told the truth. Results showed that oxytocin decreased the ability of both male and female participants to correctly classify other-sex statements as truths or lies compared to placebo. This effect was based on a lower ability to detect lies and not a stronger bias to regard truth statements as false. Revealing a new effect of oxytocin, the findings may support assumptions about the hormone working as a catalyst for social adaption. Copyright © 2017. Published by Elsevier Ltd.
DEFF Research Database (Denmark)
Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng
2016-01-01
and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...
Vibrational excitation of D2 by low energy electrons
International Nuclear Information System (INIS)
Buckman, S.J.; Phelps, A.V.
1985-01-01
Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions
Magnetic performance of new Fermilab high gradient quadrupoles
International Nuclear Information System (INIS)
Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.
1991-05-01
For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2θ coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs
Three-body hadronic structure of low-lying 1/2+ Σ and Λ resonances
International Nuclear Information System (INIS)
Martinez Torres, A.; Khemchandani, K.P.; Oset, E.
2008-01-01
We discuss the dynamical generation of some low-lying 1/2 + Σ's and Λ's in two-meson one-baryon systems. These systems have been constructed by adding a pion in the S-wave to the anti KN pair and its coupled channels, where the 1/2 - Λ(1405)-resonance gets dynamically generated. We solve Faddeev equations in the coupled-channel approach to calculate the T-matrix for these systems as a function of the total energy and the invariant mass of one of the meson-baryon pairs. This squared T-matrix shows peaks at the energies very close to the masses of the strangeness -1,1/2 + resonances listed in the particle data book. (orig.)
Lie construction affects information storage under high memory load condition.
Directory of Open Access Journals (Sweden)
Yuqiu Liu
Full Text Available Previous studies indicate that lying consumes cognitive resources, especially working memory (WM resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA, a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
Lie construction affects information storage under high memory load condition.
Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan
2017-01-01
Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
Flow induced vibrations in gas tube assembly of centrifuge
International Nuclear Information System (INIS)
Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.
1986-01-01
A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)
Measurements of quadrupole magnets
International Nuclear Information System (INIS)
Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.
1987-01-01
Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)
International Nuclear Information System (INIS)
Siddique, Abu Raihan Mohammad; Mahmud, Shohel; Van Heyst, Bill
2017-01-01
Highlights: • A T-shaped cantilever type electromagnetic vibration based MPG has been described. • The designed EVMPG is useful for low frequency based vibration sources. • Both experimental tests and theoretical analysis have been performed. • The final compact prototype was tested at different conditions of human movements. • The prototype can generate 35.2 mV and 0.22 mW at 7 Hz with 5.6 Ω. - Abstract: The design, development, and analyses of low-frequency vibration based T-shaped cantilever type electromagnetic micro power generators (EVMPGs) are presented in this paper. Four different configurations (Configurations A to D) of EVMPGs were designed and fabricated and subsequently characterized using detailed experimental and limited analytical techniques. Configuration A and B consisted of a single and a double cylindrical moving magnets (NdFeB), respectively, while Configuration C consisted of four rectangular moving magnets with respect to a fixed copper coil. In contrast, Configuration D used a moving coil between four rectangular magnets with a back-iron bar. The open circuit RMS voltage output was observed to be a maximum from Configuration D (98.2 mV at 6.29 Hz) with a base vibration acceleration of 0.8 m s"−"2. Therefore, Configuration D was selected for further experimental investigations, which included changing the back-iron bar thickness, changing the base acceleration level, and changing the air gap separation between the magnets in order to optimize this configuration. The maximum load RMS voltage and power outputs of Configuration D were 105.4 mV and 1.35 mW at 6.29 Hz for load resistance 8.2 Ω and a base acceleration of 0.8 m s"−"2 with a 4.2 mm back-iron bar when the air gap between the magnets was 20 mm. Finally, a small portable EVMPG prototype was developed based on the Configuration D and was tested at different human movement conditions (i.e., walking, quick walking, and running). The developed EVMPG prototype was capable of
Scheme to funnel ion beams with a radio-frequency quadrupole
International Nuclear Information System (INIS)
Stokes, R.H.; Minerbo, G.N.
1985-01-01
We describe a proposed method to funnel ion beams using a new form of the radio-frequency quadrupole (RFQ) structure. This RFQ accepts two bunched ion beams and combines them into a single final beam with interlaced microstructure pulses. It also provides uninterrupted periodic transverse focusing to facilitate the funneling of beams with high current and low emittance
Low Frequency Vibration approach to asess the Performance of wood structural Systems
Xiping Wang; Robert J. Ross; Michael O. Hunt
2004-01-01
The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...
LHC interaction region quadrupole cryostat design
International Nuclear Information System (INIS)
Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.
2002-01-01
The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems
Power supplies for the injector synchrotron quadrupoles and sextupoles
International Nuclear Information System (INIS)
Fathizadeh, M.
1995-01-01
This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets
The vibrational behaviour of a cracked turbine rotor
International Nuclear Information System (INIS)
Grabowski, B.
1978-01-01
In order to detect an incipient crack on a turbine rotor with the aid of measurement of the shaft vibrations, these must be known in the first place the effects of a crack on the vibrational behavior of a rotor. For this purpose a method using the modal analysis is presented here. The rigidity depending on the angle of rotation at the position of the crack is accounted for by means of a model. Because of the composition of the computer code there may also be worked with measured values for the rigidity. The results of the calculations show that within the range of speeds, in which for many turbines the operating speed lies, a crack will cause distinct variations of the shaft vibrations. The crack stimulates vibrations with frequencies of rotation and frequencies of double-rotation. Both may be used for crack detection. Because of the strong dependence of the size of the amplitudes of vibration on the design of the rotor and the position of the crack each rotor should be subject to a detailed crack calculation for a better judgement of the measured values. (orig.) [de
Design of the PEP-II Interaction Region Septum Quadrupole
Osborn, J.; Tanabe, J.; Yee, D.; Younger, F.
1997-05-01
The PEP-II QF2 magnet is one of the final focus quadrupoles for the Low-Energy Ring (LER) and utilizes a septum aperture to accommodate the adjacent High-Energy Ring (HER) beamline. The LER lattice design specification calls for an extremely high field quality for this magnet. A conventional water-cooled copper coil and laminated steel core design was selected to allow adjustment in the excitation. The close proximity between the LER and HER beamlines and the required integrated quadrupole strength result in a moderately high current density septum design. The QF2 magnets are imbedded in a confined region at each end of the BaBar detector, thus requiring a small magnet core cross section. Pole face windings are included in the QF2 design to buck the skew octupole term induced by the solenoidal fringe field that leaks out of the detector. Back-leg windings are included to buck a small dipole component induced by the lack of perfect quadrupole symmetry in this septum design. 2D pole contour optimization and 3D end chamfers are used to minimize harmonic errors; a separate permanent-magnet Harmonic Corrector Ring compensates for remaining field errors. The design methods and approach, 2D and 3D analyses, and the resulting expected magnet performance are described in this paper.
Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade
Directory of Open Access Journals (Sweden)
W. Lou
1998-06-01
Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.
Papi, Paolo; Advances in Lie Superalgebras
2014-01-01
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.
Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN
Energy Technology Data Exchange (ETDEWEB)
Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)
2007-07-01
An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)
Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G
2011-09-02
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.
Motivation and Consequences of Lying. A Qualitative Analysis of Everyday Lying
Directory of Open Access Journals (Sweden)
Beata Arcimowicz
2015-09-01
Full Text Available This article presents findings of qualitative analysis of semi-structured interviews with a group of "frequent liars" and another of "rare liars" who provided their subjective perspectives on the phenomenon of lying. Participants in this study previously had maintained a diary of their social interactions and lies over the course of one week, which allowed to assign them to one of the two groups: frequent or rare liars. Thematic analysis of the material followed by elements of theory formulation resulted in an extended lying typology that includes not only the target of the lie (the liar vs. other but also the motivation (protection vs. bringing benefits. We offer an analysis of what prevents from telling the truth, i.e. penalties, relationship losses, distress of the lied-to, and anticipated lack of criticism for telling the truth. We also focus on understanding moderatorsof consequences of lying (significance of the area of life, the type of lie and capacity to understand the liar that can be useful in future studies. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1503318
Variable Permanent Magnet Quadrupole
International Nuclear Information System (INIS)
Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC
2007-01-01
A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments
Charge transfer and relativistic effects in the low-lying electronic states of CuCl, CuBr and CuI
Sousa, C; de Jong, W.A.; Broer, R.; Nieuwpoort, WC
1997-01-01
The spectral transitions and the character of the low-lying excited states of the copper halides, CuX (X = Cl, Br, I) are studied by means of two different relativistic computational approaches. One is based on the CASSCF/CASPT2 approach with operators accounting for scalar relativistic effects
Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J
2012-05-28
A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies
The giant quadrupole resonance in highly excited rotating nuclei
International Nuclear Information System (INIS)
Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.
1983-01-01
The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)
Electromagnetic design of superconducting quadrupoles
Directory of Open Access Journals (Sweden)
L. Rossi
2006-10-01
Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.
International Nuclear Information System (INIS)
Piskunov, V.A.
1981-01-01
The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors
Quadrupole deflector of the double Penning trap system MLLTRAP
Energy Technology Data Exchange (ETDEWEB)
Gartzke, Eva; Kolhinen, Veli; Habs, Dietrich; Neumayr, Juergen; Schuermann, Christian; Szerypo, Jerzy; Thirolf, Peter [Fakultaet fuer Physik, LMU Muenchen, Garching (Germany); Maier-Leibnitz Laboratory, Garching (Germany)
2009-07-01
A cylindrical double Penning trap has been installed and successfully commissioned at the Maier-Leibnitz Laboratory in Garching. This trap system has been designed to isobarically purify low energy ion beams and perform highly accurate mass measurements. An electrostatic quadrupole deflector has been designed and installed at the injection line of the Penning trap system enabling a simultaneous use of an online ion beam with reference ions from an offline ion source. Alternatively two offline sources can be used concurrently e.g. an {alpha} recoil sources providing heavy radioactive species (e.g {sup 240}U) together with reference mass ions (which in the future will be e.g. a carbon cluster ion source). The bender has been designed for beam energies up to 1 keV with q/A ratios 1/1-1/250. This presentation shows the technical design and the operating parameters of the quadrupole beam bender and its implementation at the MLLTRAP system.
Lie-Nambu and Lie-Poisson structures in linear and nonlinear quantum mechanics
International Nuclear Information System (INIS)
Czachor, M.
1996-01-01
Space of density matrices in quantum mechanics can be regarded as a Poisson manifold with the dynamics given by certain Lie-Poisson bracket corresponding to an infinite dimensional Lie algebra. The metric structure associated with this Lie algebra is given by a metric tensor which is not equivalent to the Cartan-Killing metric. The Lie-Poisson bracket can be written in a form involving a generalized (Lie-)Nambu bracket. This bracket can be used to generate a generalized, nonlinear and completely integrable dynamics of density matrices. (author)
Nuclear electric quadrupole interactions in liquids entrapped in cavities
Energy Technology Data Exchange (ETDEWEB)
Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)
2016-12-15
Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.
Lie groups, Lie algebras, and some of their applications
Gilmore, Robert
1974-01-01
Lie group theory plays an increasingly important role in modern physical theories. Many of its calculations remain fundamentally unchanged from one field of physics to another, altering only in terms of symbols and the language. Using the theory of Lie groups as a unifying vehicle, concepts and results from several fields of physics can be expressed in an extremely economical way. With rigor and clarity, this text introduces upper-level undergraduate students to Lie group theory and its physical applications.An opening discussion of introductory concepts leads to explorations of the classical
Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I
2002-01-01
Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.
PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING
International Nuclear Information System (INIS)
LUO, Y.; PILAT, F.; ROSER, T.
2004-01-01
The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed
SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS
International Nuclear Information System (INIS)
Parker, B.
2001-01-01
In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
International Nuclear Information System (INIS)
Dudka, A; Galayko, D; Basset, P; Cottone, F; Blokhina, E
2013-01-01
This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback – two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110–170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs
Beam-based alignment of C-shaped quadrupole magnets
International Nuclear Information System (INIS)
Portmann, G.; Robin, D.
1998-06-01
Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm
Identification of low-lying proton-based intruder states in 189-193Pb
International Nuclear Information System (INIS)
Vel, K. van de; Andreyev, A.N.; Huyse, M.; Duppen, P. van; Cocks, J.F.C.; Dorvaux, O.; Greenlees, P.T.; Helariutta, K.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.; Eskola, K.; Wyss, R.
2002-01-01
Low-lying proton-based intruder states have been observed in the odd-mass isotopes 189,191,193 Pb in experiments at the RITU gas-filled recoil separator. The identification has been performed by observing the fine structure in the α decay of the parent 193,195,197 Po nuclei in prompt coincidence with conversion electrons and γ rays in the daughter lead isotopes. Along with the literature data these results establish a systematics of intruder states in the odd-mass lead isotopes from 197 Pb down to 185 Pb. Interpretation of these states involves the coupling of the 1i 13/2 or 3p 3/2 odd neutron to the 0 + state in the oblate minimum in the even-mass lead core. Conversion coefficients have been determined for some of the transitions, revealing mixing between the coexisting states. The experimental results are compared to potential energy surface calculations
Nuclei quadrupole coupling constants in diatomic molecule
International Nuclear Information System (INIS)
Ivanov, A.I.; Rebane, T.K.
1993-01-01
An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab
Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister
2016-04-01
To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo.
He, Shengwei; Zhao, Wenzhi; Zhang, Lu; Mi, Lidong; Du, Guangyu; Sun, Chuanxiu; Sun, Xuegang
2017-01-01
To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo . Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Low frequency (25-50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.
Hsiang, Wu-Yi
2017-01-01
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartans' theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie t...
Variable-field permanent-magnet quadrupole for the SSC
International Nuclear Information System (INIS)
Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.
1994-01-01
A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use in the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum of 4.3 T by a 90 degree rotation of the outer ring of iron and magnet material
Variable-field permanent magnet quadrupole for the SSC
International Nuclear Information System (INIS)
Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.
1993-01-01
A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90 degrees rotation of the outer ring of iron and magnet material
Studies on flow induced vibration of reactivity devices of 700 MWe Indian PHWR
Energy Technology Data Exchange (ETDEWEB)
Prabhakaran, K.M., E-mail: kmprabha@yahoo.com [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Goyal, P.; Dutta, Anu; Bhasin, V.; Vaze, K.K.; Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Pillai, Ajith V.; Mathew, Jimmy [Nuclear Power Corporation of India Ltd., Mumbai 400 094 (India)
2012-03-15
Highlights: Black-Right-Pointing-Pointer FIV studies on internals of heavy water filled calandria of 700 MWe Indian PHWR is presented. Black-Right-Pointing-Pointer This includes CFD and structural dynamic analysis to predict the dynamic behavior of component lying inside calandria. Black-Right-Pointing-Pointer Results of these calculations as well as conclusions from this investigation are presented. Black-Right-Pointing-Pointer It is established that FIV is not a concern in the present design of calandria internals. - Abstract: Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of nuclear power stations. Tube failures due to fretting-wear in nuclear steam generators, and vibration related damage of reactor internals are of particular concern. In the Indian nuclear industry, flow induced vibrations are assessed early in the design process and the results are incorporated in the design procedures. In this paper the details of flow induced vibration studies on internals like liquid zone control unit and poison injection units of heavy water filled calandria of 700 MWe Indian pressurized heavy water reactor is given. This includes computational fluid dynamics studies from which the velocities are extracted for the components lying inside the calandria. With these velocities as input, further studies are performed to predict the dynamic behavior of these components. Results of these calculations as well as conclusions derived from this investigation are presented. Based on the studies it has been established that flow induced vibration is not a concern in the present design of 700 MWe calandria internals.
Electric quadrupole interaction in cubic BCC α-Fe
International Nuclear Information System (INIS)
Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.
2016-01-01
Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers
Energy Technology Data Exchange (ETDEWEB)
Martovetsky, N; Manahan, R; Lietzke, A F
2001-09-10
Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.
Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming
Directory of Open Access Journals (Sweden)
De’an Meng
2018-05-01
Full Text Available A vibration-assisted plastic-forming method was proposed, and its influence on clutch hub forming process was investigated. The experiments were conducted on a vibration-assisted hydraulic extrusion press with adjustable frequency and amplitude. Vibration frequency and amplitude were considered in investigating the effect of vibration on forming load and surface quality. Results showed that applying vibration can effectively reduce forming force and improve surface quality. The drop in forming load was proportional to the vibration frequency and amplitude, and the load decreased by up to 25%. Such reduction in forming load raised with amplitude increase because the increase in amplitude would accelerate punch relative speed, which then weakened the adhesion between workpiece and dies. By increasing the vibration frequency, the punch movement was enhanced, and the number of attempts to drag the lubricant out of the pits was increased. In this manner, the lubrication condition was improved greatly. The 3D surface topography testing confirmed the assumption. Moreover, vibration frequency exerted a more significant effect on the forming load reduction than vibration amplitude.
Nondipole effects in the photoionization of Xe 4d: Evidence for quadrupole satellites
International Nuclear Information System (INIS)
Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D.W.; Rolles, D.; Cheng, K.T.; Johnson, W.R.; Zhou, H.L.; Manson, S.T.
2004-01-01
Full text: We measured the nondipole parameters for the spin-orbit depletes Xe 4d 5/2 and Xe 4d 3/2 over a photonenergy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory
ISR Superconducting Quadrupoles
1977-01-01
Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.
Low-lying baryon spectrum with two dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Cyprus Institute, Nicosia (Cyprus); Baron, R.; Guichon, P. [CEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Carbonell, J.; Drach, V. [UJF/CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et Cosmologie; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Korzec, T. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique
2009-10-15
The masses of the low lying baryons are evaluated using two degenerate flavors of twisted mass sea quarks corresponding to pseudo scalar masses in the range of about 270 MeV to 500 MeV. The strange valence quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik improved gauge action is employed. We use lattices of spatial size 2.1 fm and 2.7 fm at two values of the lattice spacing with r{sub 0}/a=5.22(2) and r{sub 0}/a=6.61(3). We check for both finite volume and cut-off effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and decuplet masses using SU(2) {chi}PT. The lattice spacings determined using the nucleon mass at the physical point are consistent with the values extracted using the pion decay constant. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon masses that we find after taking the continuum limit and extrapolating to the physical limit are in good agreement with experiment. (orig.)
Random errors in the magnetic field coefficients of superconducting quadrupole magnets
International Nuclear Information System (INIS)
Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.
1987-01-01
The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider
Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Wang, Huakun; Zhao, Dongliang; Yang, Wenyu; Yu, Guoliang, E-mail: yugl@sjtu.edu.cn [State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China (China)
2015-02-01
Flow-induced vibration (FIV) of a triangular cylinder is numerically investigated at a Reynolds number of Re = 100. The four-step fractional finite element method is employed to solve the two-dimensional (2D) incompressible Navier–Stokes equations. The cylinder is endowed with a two-degree-of-freedom motion with the reduced mass ratio of M{sub r} = 2. Three typical flow incidence angles, α = 0°, 30° and 60°, are examined to identify the effect of incidence angle on the vibration characteristics of the cylinder. For each α, computations are conducted in a wide range of reduced velocities 2 U{sub r} ≤ 18. The numerical results show that at α = 0° and 30°, the responses of the cylinder are dominated by vortex-induced vibration which resembles that of a circular cylinder. At α = 0°, the peak amplitude of transverse vibration is the smallest among the three investigated α, and most of the cylinder motions exhibit a regular figure-eight trajectory. Some single-loop trajectories are observed at α = 30°, where the vibration frequency in the in-line direction is always identical to that in the transverse direction. At α = 60°, the triangular cylinder undergoes a typical transverse galloping with large amplitude and low frequency, and the vibration trajectories appear to be regular or irregular figure-eight patterns, which are strongly affected by the reduced velocity. (paper)
International Nuclear Information System (INIS)
Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.; Rosas-Velez, P.
1993-08-01
To ensure successful operation of the APS, vibration of the storage ring quadrupole magnets must be limited to very low levels for frequencies >10 Hz. There will be many sources of vibration, such as pumps, fans, compressors, generators, and other rotating and reciprocating machinery when the APS is operational. In general, such vibration sources are isolated from the structural components and base foundations by vibration dampers and isolators. Pumps are typically mounted on seismic isolators, which are massive bases with response frequencies of <10 Hz, and fans are mounted with elastic-type isolators to minimize vibration coupling. The attenuation of expansion/isolation joints is a very important factor in predicting the response of the storage ring basemat to the various excitation sources. Several 75-hp pumps are located on the balcony of the rf extraction wing, which is close to the storage ring basemat. The pumps per se may prove to be a vibration excitation source of concern. Additional pumps will be placed in the RF extraction building and could add to the vibration levels. If the dynamic unbalance force of the pump motor, and the efficiency of the associated expansion joints were known, one could predict the response of the storage ring basemat. This information would also be useful in determining the placement of additional pumps. This report discusses vibration tests and measurements that were performed on July 28, 1993, in the rf extraction building. The purpose of the investigation was to study the efficiency of two specific expansion joints: (1) the joint that separates a structural column pad from the extraction wing floor, and (2) the joint that separates the extraction wing floor from the roof of the storage ring tunnel. A small electrodynamic exciter, with a maximum RMS force output of ∼0.5 lb at the frequencies of interest, was used
Tunable high-gradient permanent magnet quadrupoles
Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A
2014-01-01
A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.
Initial value gravitational quadrupole radiation theorem
International Nuclear Information System (INIS)
Winicour, J.
1987-01-01
A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment
Precise calculations of the deuteron quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Effect of cooling water on stability of NLC linac components
Energy Technology Data Exchange (ETDEWEB)
F. Le Pimpec et al.
2003-02-11
Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.
Effect of Cooling Water on Stability of NLC Linac Components
Energy Technology Data Exchange (ETDEWEB)
Le Pimpec, Frederic
2002-11-01
Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.
Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling
Toosizadeh, Nima; Mohler, Jane
2018-01-01
In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098
Table of Nuclear Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2013-12-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)
Fifth-order aberrations in magnetic quadrupole-octupole systems
International Nuclear Information System (INIS)
Ling, K.M.
1990-01-01
Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs
International Nuclear Information System (INIS)
Appoloni, C.R.
1983-01-01
The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142 Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author) [pt
Leclerc, Arnaud; Thomas, Phillip S.; Carrington, Tucker
2017-08-01
Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analysed and the numerical results are compared with those obtained with the reduced rank block power method. Relative merits of the different algorithms are presented, showing that the advantage of using a more sophisticated method, although mitigated by the use of reduced-rank SOP functions, is noticeable in terms of CPU time.
Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Directory of Open Access Journals (Sweden)
Shengwei He
2017-01-01
Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.
Lying in business : Insights from Hanna Arendt's 'Lying in Politics'
Eenkhoorn, P.; Graafland, J.J.
2011-01-01
The political philosopher Hannah Arendt develops several arguments regarding why truthfulness cannot be counted among the political virtues. This article shows that similar arguments apply to lying in business. Based on Hannah Arendt's theory, we distinguish five reasons why lying is a structural
Progress in the development of superconducting quadrupoles for heavy ion fusion
International Nuclear Information System (INIS)
Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.
2002-01-01
The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported
Progress in the development of superconducting quadrupoles for heavy ion fusion
Energy Technology Data Exchange (ETDEWEB)
Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.
2002-05-24
The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.
Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion
Energy Technology Data Exchange (ETDEWEB)
Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.
2002-08-19
The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.
1983-01-01
There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.
Liu, Ya-Jun; Cheng, Xin-Lu; Chen, Hua-Jun; Cheng, Jun-Xia; Song, Xiao-Shu
2018-02-01
Since the 2Π state in HCl+ is an inverted doublet, the energy of the 2Π1/2 state is higher than the 2Π3/2. Therefore, the larger value of intensity correspond to the transition of 2Π3/2. We calculated the Einstein A coefficients and radiation lifetimes for the A2Σ+-X2Π transition. Our results are in good agreement with the experimental data and theoretical values. Then the ro-vibrational line intensities of the 1-0 band were calculated for the 2Π3/2 and 2Π1/2 states of HCl+. Employing the RKR potential, the predicted band origins for Δν=1-0 are 2569.3 and 2568.55 cm-1 for 2Π3/2 and 2Π1/2, respectively.
Hierarchy of the low-lying excitations for the (2+1-dimensional q=3 Potts model in the ordered phase
Directory of Open Access Journals (Sweden)
Yoshihiro Nishiyama
2017-03-01
Full Text Available The (2+1-dimensional q=3 Potts model was simulated with the exact diagonalization method. In the ordered phase, the elementary excitations (magnons are attractive, forming a series of bound states in the low-energy spectrum. We investigate the low-lying spectrum through a dynamical susceptibility, which is readily tractable with the exact diagonalization method via the continued-fraction expansion. As a result, we estimate the series of (scaled mass gaps, m2,3,4/m1 (m1: single-magnon mass, in proximity to the transition point.
Global study of quadrupole correlation effects
International Nuclear Information System (INIS)
Bender, M.; Bertsch, G.F.; Heenen, P.-H.
2006-01-01
We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain
Fe/sup 57/ polarimetry based on quadrupole interaction
Energy Technology Data Exchange (ETDEWEB)
Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik
1976-01-01
A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.
Systematics on the low-lying spectra in N = 78 ~ 80 isotones
International Nuclear Information System (INIS)
Cheng, Y.Y.; Zhang, S.Q.; Li, X.Q.
2014-01-01
Combining the new spectroscopy results of 144 Tb and previous spectroscopy studies of neighboring nuclei, a systematic investigation on the low-lying spectra in N = 78 ~ 80 isotones is performed. Good systematics have been found for the coupling patterns which couple the odd nucleon(s), such as πh 11/2 , νh 11/2 —1 , νh 11/2 2 , νh 11/2 —2 , νh 11/2 —1 , to the 2 + , 4 + , 6 + and 3 - core excitations. It is found that the relative excitation energies of the states formed by coupling h 11/2 proton(s) to the 2 + , 4 + core excitations are pushed up, in contrast with those formed by coupling h 11/2 neutron hole(s) to the 2 + , 4 + core excitations, which are pulled down. According to the systematics, the interpretation that the 17/2 + states observed in 141 Sm and 143 Gd are the fully aligned member of coupling the odd h 11/2 neutron hole to the octupole 3 - core excitation, is explored to the isotones 145 Dy, 142 Eu, and 144 Tb. (author)
Celse, Jérémy; Chang, Kirk
2017-11-30
This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liars) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (including general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e., bigger lies) and frequency (i.e., lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights into organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior.
Decay modes of high-lying single-particle states in [sup 209]Pb
Energy Technology Data Exchange (ETDEWEB)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))
1994-05-01
The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus
Superconducting Quadrupoles for the ISR High Luminosity insertion Coil cross section
1978-01-01
This picture shows a cut out section of an ISR High Luminosity (low beta) Quadrupole. One can clearly see the distribution of conductors and spacers which produces the wanted quadrupolar field. The spacers are made of pure copper and the central pole of stainless steel.The superconducting wire may be seen in photo 8008591X. See also pictures 7702690X, 8008591X, 7702698X.
Systematically too low values of the cranking model collective inertia parameters
International Nuclear Information System (INIS)
Dudek, I.; Dudek, W.; Lukasiak-Ruchowska, E.; Skalski, I.
1980-01-01
Deformed Nilsson and Woods-Saxon potentials were employed for generating single particle states used henceforth for calculating the inertia tensor (cranking model and monopole pairing) and the collective energy surfaces (Strutinsky method). The deformation was parametrized in terms of quadrupole and hexadecapole degrees of freedom. The classical energy expression obtained from the inertia tensor and energy surfaces was quantized and the resulting stationary Schroedinger equation was solved using the approximate method. The second Isup(π) = 0 + 2 collective level energies were calculated for the Rare Earth and Actinide nuclei and the results compared with the experimental data. The vibrational level energies agree with the experimental ones much better for spherical nuclei for both single particle potentials; the discrepancies for deformed nuclei overestimate the experimental results by roughly a factor of two. It is argued that coupling of the axially symmetric quadrupole degrees of freedom to non-axial and hexadecapole ones does not affect the conclusions about systematically too low mass parameter values. The alternative explanation of the systematic deviations from the 0 + 2 level energies could be a systematically too high stiffness of the energy surfaces obrained with the Strutinsky method. (orig.)
SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL
Directory of Open Access Journals (Sweden)
I. A. Vakulenko
2015-08-01
Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound
Semimicroscopic description of the giant quadrupole resonances in deformed nuclei
International Nuclear Information System (INIS)
Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.
1976-01-01
The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances
Norbury, John W.
1992-01-01
Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.
Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches
International Nuclear Information System (INIS)
Wu, K.C.
1993-01-01
The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found
Directory of Open Access Journals (Sweden)
Boris Bellesia
2007-06-01
Full Text Available A possible scenario for the luminosity upgrade of the Large Hadron Collider is based on large aperture quadrupoles to lower β^{*} in the interaction regions. Here we analyze the measurements relative to the field quality of the RHIC and LHC superconducting quadrupoles to find out the dependence of field errors on the size of the magnet aperture. Data are interpreted in the framework of a Monte Carlo analysis giving the reproducibility in the coil positioning reached in each production. We show that this precision is likely to be independent of the magnet aperture. Using this result, we can carry out an estimate of the impact of the field quality on the beam dynamics for the collision optics.
Quadrupole magnets for IR-FEL at RRCAT
International Nuclear Information System (INIS)
Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar
2013-01-01
The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)
TOUTATIS: A radio frequency quadrupole code
Directory of Open Access Journals (Sweden)
Romuald Duperrier
2000-12-01
Full Text Available A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine description of the forces without being time consuming. The field is calculated through a Poisson solver and the vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities. Theoretical and experimental tests are also described and show a good agreement between simulations and reference cases.
New sensor and non-contact geometrical survey for the vibrating wire technique
Energy Technology Data Exchange (ETDEWEB)
Geraldes, Renan [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Junqueira Leão, Rodrigo, E-mail: rodrigo.leao@lnls.br [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Cernicchiaro, Geraldo [Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, RJ (Brazil); Terenzi Neuenschwander, Regis; Citadini, James Francisco; Droher Rodrigues, Antônio Ricardo [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil)
2016-03-01
The tolerances for the alignment of the magnets in the girders of the next machine of the Brazilian Synchrotron Light Laboratory (LNLS), Sirius, are as small as 40 µm for translations and 0.2 mrad for rotations. Therefore, a novel approach to the well-known vibrating wire technique has been developed and tested for the precise fiducialization of magnets. The alignment bench consists of four commercial linear stages, a stretched wire, a commercial lock-in amplifier working with phase-locked loop (PLL), a coordinate measuring machine (CMM) and a vibration sensor for the wire. This novel sensor has been designed for a larger linear region of operation. For the mechanical metrology step of the fiducialization of quadrupoles an innovative technique, using the vision system of the CMM, is presented. While the work with pitch and yaw orientations is still ongoing with promising partial results, the system already presents an uncertainty level below 10 µm for translational alignment.
The low-lying electronic states of pentacene and their roles in singlet fission.
Zeng, Tao; Hoffmann, Roald; Ananth, Nandini
2014-04-16
We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.
Design of the LINAC4 Transfer Line Quadrupole Electromagnets
Vanherpe, L
2013-01-01
Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.
Directory of Open Access Journals (Sweden)
Susan A Novotny
Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies
International Nuclear Information System (INIS)
Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas
2016-01-01
At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)
Algebraic formulation of collective models. I. The mass quadrupole collective model
International Nuclear Information System (INIS)
Rosensteel, G.; Rowe, D.J.
1979-01-01
This paper is the first in a series of three which together present a microscopic formulation of the Bohr--Mottelson (BM) collective model of the nucleus. In this article the mass quadrupole collective (MQC) model is defined and shown to be a generalization of the BM model. The MQC model eliminates the small oscillation assumption of BM and also yields the rotational and CM (3) submodels by holonomic constraints on the MQC configuration space. In addition, the MQC model is demonstrated to be an algebraic model, so that the state space of the MQC model carries an irrep of a Lie algebra of microscopic observables, the MQC algebra. An infinite class of new collective models is then given by the various inequivalent irreps of this algebra. A microscopic embedding of the BM model is achieved by decomposing the representation of the MQC algebra on many-particle state space into its irreducible components. In the second paper this decomposition is studied in detail. The third paper presents the symplectic model, which provides the realization of the collective model in the harmonic oscillator shell model
Medicine, lies and deceptions.
Benn, P
2001-04-01
This article offers a qualified defence of the view that there is a moral difference between telling lies to one's patients, and deceiving them without lying. However, I take issue with certain arguments offered by Jennifer Jackson in support of the same conclusion. In particular, I challenge her claim that to deny that there is such a moral difference makes sense only within a utilitarian framework, and I cast doubt on the aptness of some of her examples of non-lying deception. But I argue that lies have a greater tendency to damage trust than does non-lying deception, and suggest that since many doctors do believe there is a moral boundary between the two types of deception, encouraging them to violate that boundary may have adverse general effects on their moral sensibilities.
Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames
Directory of Open Access Journals (Sweden)
C. Kanthasamy
2012-03-01
Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Bastin, B; Kruecken, R; Larsen, A; Rahkila, P J; Srebrny, J; Clement, E; Wadsworth, R; Syed naeemul, H; Peura, P J; Siem, S; Hadynska-klek, K; Habs, D; Napiorkowski, P J; Diriken, J V J; Iwanicki, J S
Coulomb excitation measurements to study the shape coexistence and quadrupole collectivity of the low-lying levels in neutron-deficient Pb nuclei are proposed. Even-mass $^{188−192}$Pb nuclei will be post-accelerated at REX-ISOLDE in order to measure transition probabilities and quadrupole moments for the first excited states. In combination with results obtained in lifetime measurements, this will allow the sign of the quadrupole deformation parameter to be extracted for the first time for 2$^{+}$ states in the even-mass $^{188−192}$Pb nuclei.
Directory of Open Access Journals (Sweden)
Avraham eMerzel
2015-10-01
Full Text Available Do we feel bound by our own misrepresentations? Does one act of cheating compel the cheater to make subsequent choices that maintain the false image even at a cost? To answer these questions we employed a two-task paradigm such that in the first task the participants could benefit from false reporting of private observations whereas in the second they could benefit from making a prediction in line with their actual, rather than their previously reported observations. Thus, for those participants who inflated their report during the first task, sticking with that report for the second task was likely to lead to a loss, whereas deviating from it would imply that they had lied. Data from three experiments (total N=116 indicate that, having lied, participants were ready to suffer future loss rather than admit, even if implicitly, that they had lied.
Superconducting Panofsky quadrupoles
International Nuclear Information System (INIS)
Harwood, L.H.
1981-01-01
A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described
When is a lie acceptable? Work and private life lying acceptance depends on its beneficiary.
Cantarero, Katarzyna; Szarota, Piotr; Stamkou, Eftychia; Navas, Marisol; Dominguez Espinosa, Alejandra Del Carmen
2018-01-01
In this article we show that when analyzing attitude towards lying in a cross-cultural setting, both the beneficiary of the lie (self vs other) and the context (private life vs. professional domain) should be considered. In a study conducted in Estonia, Ireland, Mexico, The Netherlands, Poland, Spain, and Sweden (N = 1345), in which participants evaluated stories presenting various types of lies, we found usefulness of relying on the dimensions. Results showed that in the joint sample the most acceptable were other-oriented lies concerning private life, then other-oriented lies in the professional domain, followed by egoistic lies in the professional domain; and the least acceptance was shown for egoistic lies regarding one's private life. We found a negative correlation between acceptance of a behavior and the evaluation of its deceitfulness.
Quadrupole photoionization of endohedral Xe-C60
International Nuclear Information System (INIS)
Govil, Karan; Deshmukh, P C
2009-01-01
The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.
High and ulta-high gradient quadrupole magnets
International Nuclear Information System (INIS)
Brunk, W.O.; Walz, D.R.
1985-05-01
Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%
Quadrupole formula for Kaluza-Klein modes in the braneworld
International Nuclear Information System (INIS)
Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko
2005-01-01
The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources
Sensitivity of (α,α') cross sections to excited-state quadrupole moments
International Nuclear Information System (INIS)
Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.
1977-01-01
Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2
Optimization of an electrostatic quadrupole doublet focusing systems
Energy Technology Data Exchange (ETDEWEB)
Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)
2017-05-15
Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.
Possible quadrupole-first options with $\\beta^* \\leq$ 0.25M
Koutchouk, Jean-Pierre
2006-01-01
A global model of an LHC insertion was prepared for the Arcidosso workshop. Its objective is to evaluate in a consistent way the potential of a class of solutions for the LHC low-β upgrades and help identifying what should be the R&D lines. The solutions studied are those of the present LHC baseline layout, namely quadrupole first and small crossing angle. Provision for dipole first solutions is included. The model tackles to the magnet layout, the beam optics, the beam-beam effect, the superconductor capabilities and the peak heat deposition in the coils. The approach is simplified to allow a gain by 6 orders of magnitude in the design/calculation time. The accuracy should be sufficient for the identification of the important features of the parameter space. The main results are: 1) a required quadrupole inner coil aperture larger than previously assumed, 2) the necessity to find simultaneously solutions for the upgrade of the triplet and for the minimization of the luminosity geometrical loss factor 3)...
Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim
2018-02-01
Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.
Lie bialgebras with triangular decomposition
International Nuclear Information System (INIS)
Andruskiewitsch, N.; Levstein, F.
1992-06-01
Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula for the universal R-matrix. (author). 17 refs
A quadrupole ion trap as low-energy cluster ion beam source
Uchida, N; Kanayama, T
2003-01-01
Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)
Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations
Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.
2018-02-01
Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.
Large permanent magnet quadrupoles for an electron storage ring
International Nuclear Information System (INIS)
Herb, S.W.
1987-01-01
We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)
Vibrational states in deformed nuclei. Chaos, order and individual nature of nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.
1993-01-01
General properties of the vibrational states in doubly-even well-deformed are formulated. The large many-quasiparticle components of the wave functions of the neutron resonance state are responsible for enhance E1- and M1-transitions rates from the neutron resonances states to the levels lying 1-2 MeV below them. 44 refs.; 4 tabs
Low-lying dipole strength of the open-shell nucleus 94Mo
Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.
Vrij, Aldert; Taylor, Paul J.; Picornell, Isabel; Oxburgh, Gavin; Myklebust, Trond; Grant, Tim; Milne, Rebecca
2015-01-01
In this chapter, we discuss verbal lie detection and will argue that speech content can be revealing about deception. Starting with a section discussing the, in our view, myth that non-verbal behaviour would be more revealing about deception than speech, we then provide an overview of verbal lie
Electric quadrupole interaction in cubic BCC α-Fe
Energy Technology Data Exchange (ETDEWEB)
Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)
2016-07-15
Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge
Lying to patients with dementia: Attitudes versus behaviours in nurses.
Cantone, Daniela; Attena, Francesco; Cerrone, Sabrina; Fabozzi, Antonio; Rossiello, Riccardo; Spagnoli, Laura; Pelullo, Concetta Paola
2017-01-01
Using lies, in dementia care, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. In this article, we report results about the attitude and the behaviour of nurses towards the use of lies to patients with dementia. An epidemiological cross-sectional study was conducted between September 2016 and February 2017 in 12 elderly residential facilities and in the geriatric, psychiatric and neurological wards of six specialised hospitals of Italy's Campania Region. In all, 106 nurses compiled an attitude questionnaire (A) where the main question was 'Do you think it is ethically acceptable to use lies to patients with dementia?', instead 106 nurses compiled a behaviour questionnaire (B), where the main question was 'Have you ever used lies to patients with dementia?' Ethical considerations: Using lies in dementia care, although topic ethically still controversial, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. Only a small percentage of the interviewed nurses stated that they never used lies/that it is never acceptable to use lies (behaviour 10.4% and attitude 12.3%; p = 0.66). The situation in which nurses were more oriented to use lies was 'to prevent or reduce aggressive behaviors'. Indeed, only the 6.7% in the attitude group and 3.8% in the behaviour group were against using lies. On the contrary, the case in which the nurses were less oriented to use lies was 'to avoid wasting time giving explanations', in this situation were against using lies the 51.0% of the behaviour group and the 44.6% of the attitude group. Our results, according to other studies, support the hypothesis of a low propensity of nurses to ethical reflection about use of lies. In our country, the implementation of guidelines about a correct use of lie in the relationship between health operators and patients would be desirable.
Excitation of giant monopole and quadrupole resonances
Energy Technology Data Exchange (ETDEWEB)
Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics
1980-01-01
Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.
Biyogmam, Guy Roger
2011-01-01
In this paper, we introduce the category of Lie $n$-racks and generalize several results known on racks. In particular, we show that the tangent space of a Lie $n$-Rack at the neutral element has a Leibniz $n$-algebra structure. We also define a cohomology theory of $n$-racks..
Puzzle of the 6Li Quadrupole Moment: Steps toward Solving It
International Nuclear Information System (INIS)
Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.
2005-01-01
The problem of the origin of the quadrupole deformation in the 6 Li ground state is investigated with allowance for the three-deuteron component of the 6 Li wave function. Two long-standing puzzles related to the tensor interaction in the 6 Li nucleus are known: that of an anomalous smallness of the 6 Li quadrupole moment (being negative, it is smaller in magnitude than the 7 Li quadrupole moment by a factor of 5) and that of an anomalous behavior of the tensor analyzing power T 2q in the scattering of polarized 6 Li nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the 6 Li quadrupole moment from the three-deuteron configuration cancels almost completely the 'direct' positive contribution due to the αd folding potential. As a result, the total quadrupole moment proves to be close to zero and highly sensitive to fine details of the tensor nucleon-nucleon interaction in the 4 He nucleus and of its wave function
International Nuclear Information System (INIS)
Yurtsever, E.; Brickmann, J.
1990-01-01
A two dimensional strongly nonharmonic vibrational system with nonlinear intermode coupling is studied both classically and quantum mechanically. The system was chosen such that there is a low lying transition (in energy) from a region where almost all trajectories move regularly to a region where chaotic dynamics strongly dominates. The corresponding quantum system is far away from the semiclassical limit. The eigenfunctions are calculated with high precision according to a linear variational scheme using conveniently chosen basis functions. It is the aim of this paper to check whether the prediction from semiclassical theory, namely that the measure of classically chaotic trajectories in phase space approaches the measure of irregular states in corresponding energy ranges, holds when the system is not close to the classical limit. It is also the aim to identify individual eigenfunctions with respect to regularity and to differentiate between local and normal vibrational states. It is found that there are quantitative and also qualitative differences between the quantum results and the semiclassical predictions. (orig./HK)
Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.
2011-01-01
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance
Does the small CMB quadrupole moment suggest new physics?
Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien
2003-01-01
Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.
Quadrupole moment of the 7/21- isomer state in 43S. Shell model study of sulfur isotopes around N=28
International Nuclear Information System (INIS)
Chevrier, Raphael
2013-01-01
The goal of this work consists in providing new insights in the shape coexistence expected in neutron-rich nuclei around the N=28 shell closure. In 43 S, recent experimental data as well as their interpretation in the shell model framework were used to predict the coexistence between a J π =3/2 1 - prolate deformed ground state and a 7/2 1 - rather spherical isomer state. We report on the quadrupole moment measurement Q s of the 7/2 1 - isomer state [E*=320.5(5) keV, T 1/2 =415(3) ns] in 43 S. The TDPAD method was applied on 43 S nuclei produced by the fragmentation of a 48 Ca primary beam at 345 A.MeV, and selected in-flight through the BigRIPS spectrometer at RIKEN (Japan). The measured value, |Q s |=23(3) efm 2 , is in remarkable agreement with that calculated in the shell model framework, although it is significantly larger than that expected for a single-particle state. In order to understand the nature of the correlations responsible for the departure of the isomer state from a pure spherical shape, we report on the results of a shell model study using the modern SDPF-U interaction of the neighbors sulfur isotopes 42,44,46 S. Those calculations allowed to identify a slight triaxial degree of freedom in the structure of these nuclei, although the latter happens to be highly hindered at N=28 in 44 S. Spectroscopic factor calculations show that this slight triaxial degree of freedom also impacts the low-lying structure in 43 S. It allows to better understand the deviation of the spectroscopic quadrupole moment value of the isomer state from the limit case of a pure spherical state. (author) [fr
Decay modes of high-lying single-particle states in 209Pb
International Nuclear Information System (INIS)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.
1993-01-01
The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs
Jurco, Branislav
2011-01-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, which is simply connected in each simplicial level. We use the 1-jet of the classifying space of G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The res...
Decay of quadrupole-octupole 1- states in 40Ca and 140Ce
Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.
2016-03-01
Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.
Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator
Directory of Open Access Journals (Sweden)
C. Zhang
2004-10-01
Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.
Nuclear quadrupole interactions in ferroelectric compounds of HF181
International Nuclear Information System (INIS)
Kunzler, J.V.
1971-01-01
Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
Quench Protection of SC Quadrupole Magnets
Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.
1997-05-01
The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.
Detailed spectroscopy in the superdeformed second minimum of 240Pu
International Nuclear Information System (INIS)
Thirolf, P.G.; Gassmann, D.; Habs, D.; Chromik, M.J.; Eisermann, Y.; Graw, G.; Hertenberger, R.; Maier, H.J.; Metz, A.; Reiter, P.
2000-01-01
Complete text of publication follows. Superdeformed prolate nuclei, having an axis ratio of about 2:1, have first been discovered in fission isomers in the actinide region almost 40 years ago by Polikanov et al.. Their interpretation of being the result of microscopic shell corrections on top of the macroscopic liquid drop potential leading to a second minimum in the nuclear potential energy surface is well established. 240 Pu with its 3.7 ns fission isomer may be regarded as the prototype nucleus for spectroscopic studies of superdeformed actinide nuclei since the identification of the ground state rotational band in conversion electron measurements [1]. Though from the knowledge on excited states in the first minimum and previous measurements in the second minimum low-lying collective excitations in the second minimum low-lying collective excitations in the second well of 240 Pu can be expected, none of them has been experimentally identified so far. Quite surprisingly, no low-lying collective quadrupole excitations could be observed in a recent detailed high-resolution and high-efficiency γ-spectroscopy experiment [2]. Complementary information could be obtained in conversion electron measurements in coincidence with isomeric fission performed at the Garching Accelerator Laboratory, resulting in the first identification of the lowest β-vibrational band [3]. In a combined analysis of the γ-spectroscopic and conversion electron data conversion coefficients α K or limits on α K could be deduced, thus allowing to determine the multipolarities of the transitions. A predominant population of negative parity states in the second well could be observed that can be explained by the filtering function of the inner and outer fission barrier. Complementary transmission resonance measurements have been performed, yielding new information on the fine structure of (β-)vibrational multi-phonon states. A new method could be established to determine the excitation energy of
Isomorphism of Intransitive Linear Lie Equations
Directory of Open Access Journals (Sweden)
Jose Miguel Martins Veloso
2009-11-01
Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.
Directory of Open Access Journals (Sweden)
Cantarero Katarzyna
2017-06-01
Full Text Available Lay perceptions of lying are argued to consist of a lie prototype. The latter was found to entail the intention to deceive, belief in falsity and falsity (Coleman & Kay, 1981. We proposed and found that the perceptions of the benefits of others are also an important factor that influences the extent, to which an act of intentional misleading someone to foster a false belief is labeled as a lie. Drawing from the intuitionist model of moral judgments (Haidt, 2001 we assumed that moral judgment of the behaviour would mediate the relationship. In Study 1 we analyzed data coming from a crosscultural project and found that perceived intention to benefit others was negatively related to lie labeling and that this relationship was mediated by the moral judgment of that act. In Study 2 we found that manipulating the benefits of others influenced the extent, to which an act of intentional misleading in order to foster a false belief is labeled as a lie and that, again, this relationship is mediated by the moral judgment of that act.
Takács, Gergely
2012-01-01
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of ...
Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof
2017-10-01
At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the
Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach
Energy Technology Data Exchange (ETDEWEB)
Feinberg, B. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.
Lie Algebras and Integrable Systems
International Nuclear Information System (INIS)
Zhang Yufeng; Mei Jianqin
2012-01-01
A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)
Dynamical quadrupole structure factor of frustrated ferromagnetic chain
Onishi, Hiroaki
2018-05-01
We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.
Filiform Lie algebras of order 3
International Nuclear Information System (INIS)
Navarro, R. M.
2014-01-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases
Quadrupole moment of the superdeformed band in 131Ce
International Nuclear Information System (INIS)
He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.
1990-01-01
A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)
Low back pain in drivers exposed to whole body vibration: analysis of a dose-response pattern
Tiemessen, I. J. H.; Hulshof, C. T. J.; Frings-Dresen, M. H. W.
2008-01-01
Analysis of a dose-response pattern between exposure to whole body vibration (WBV) and low back pain (LBP) in a group of drivers. This study assessed individual factors, work-related risk factors, various LBP outcome measures and LBP disability in a group of drivers (n = 571) approached at baseline
Computation of a quadrupole magnet for the APS storage ring
Energy Technology Data Exchange (ETDEWEB)
Turner, L.R.; Kim, S.H.; Thompson, K.M.
1990-01-01
The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.
Transport properties of a discrete helical electrostatic quadrupole
International Nuclear Information System (INIS)
Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.
1991-01-01
The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs
Bakhurst, D
1992-01-01
This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrue...
Drobyshev, V A; Loseva, M I; Sukharevskaia, T M; Michurin, A I
2001-01-01
The authors present results concerning use of low-frequency magnetic fields and HF-therapy for correction of vegetative homeostasis in workers with variable length of service, exposed to vibration, having early forms of arterial hypertension. The most positive changes of vegetative status and central hemodynamics are seen in workers with low length of service.