Core excitations to the low lying states of thallium isotopes
International Nuclear Information System (INIS)
Gruenbaum, L.; Tomaselli, M.; Herold, D.
1977-08-01
The admixture of core excitations to the low lying states of A = 203 and A = 205 thallium isotopes has been calculated. The wave functions obtained reproduce the electromagnetic properties as well as the hyperfine splittings and the isomershifts of both thallium isotopes. (orig.) [de
Low-lying excited states by constrained DFT
Ramos, Pablo; Pavanello, Michele
2018-04-01
Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.
Structure of the nucleon's low-lying excitations
Chen, Chen; El-Bennich, Bruno; Roberts, Craig D.; Schmidt, Sebastian M.; Segovia, Jorge; Wan, Shaolong
2018-02-01
A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest (I =1 /2 ,JP=1 /2±) baryon isospin doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest (1 /2 ,1 /2+) doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely S -wave in nature; and the first excited state in this 1 /2+ channel has the appearance of a radial excitation of the ground state. The two lightest (1 /2 ,1 /2-) doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly P -wave in nature, but possess measurable S -wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest (1 /2 ,1 /2±) doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
A density matrix renormalization group study of low-lying excitations ...
Indian Academy of Sciences (India)
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...
Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)
2006-11-15
The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Coulomb excitations of low lying levels in 127I and 197Au
International Nuclear Information System (INIS)
Singh, K.P.; Tayal, D.C.; Hans, H.S.
1988-01-01
The low-lying levels of 127 I and 197 Au were Coulomb excited with 3.54 to 4.2 MeV protons. The reduced quadrupole transition probabilities of the 203, 374.9, 418, 618.4, 628.7, 651.1 and 745.5 keV states of 127 I, and the 268.8, 278.9, 502, and 547.5 keV states of 197 Au was measured from Coulomb excitation by observing the de-excitation gamma rays with a high resolution Ge(Li) detector. The low-energy protons were used for the first time to Coulomb-excite the two levels at 618.4 and 651.1 keV of 127 I and one level at 502 keV of 197 Au. The present experimental results are found in agreement with the existing experimental data except the B(E2) value of the level at 268.8 keV of 197 Au. (author). 4 figs., 4 tabs., 32 refs
Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei
Energy Technology Data Exchange (ETDEWEB)
Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)
2017-01-15
A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.
The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus
International Nuclear Information System (INIS)
Dakhl, Z.A.; Salih, L.; Al-Qazaz, B.S.
2010-01-01
The transverse electron scattering form factors have been studied for low -lying excited states of 7 L i nucleus. These states are specified by JπT= (0.478MeV),(4.63MeV) and(6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter b r ms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such as the 2p-shell, enhances the form factors for q-values and reproduces the data. The present results are compared with other theoretical models. PACS: 25.30.Bf Elastic electron scattering - 25.30.Dh Inelastic electron scattering to specific states - 21.60.Cs Shell model - 27.20. +n 5≤ A ≥19
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
Energy Technology Data Exchange (ETDEWEB)
Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2017-03-15
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-02
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...
Low lying electric dipole excitations in nuclei of the rare earth region
International Nuclear Information System (INIS)
von Brentano, P.; Zilges, A.; Herzberg, R.D.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.
1992-01-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J π ,K)=(l - ,0) and (J π ,K)=(l - ,1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus 142 Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3--octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus 141 Pr and found first evidence for the existence of 3 - times 2+circle-times particle-states
Lifetimes of low-lying excited states in 50 36 86Kr
Henderson, J.; Chester, A.; Ball, G. C.; Caballero-Folch, R.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Moukaddam, M.; Ruotsalainen, P.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Williams, J.
2018-04-01
Background: The evolution of nuclear magic numbers at extremes of isospin is a topic at the forefront of contemporary nuclear physics. N =50 is a prime example, with increasing experimental data coming to light on potentially doubly magic 100Sn and 78Ni at the proton-rich and proton-deficient extremes, respectively; however, experimental discrepancies exist in the data for less exotic systems. Purpose: In 86Kr the B (E 2 ;21+→01+) value—a key indicator of shell evolution—has been experimentally determined by two different methodologies, with the results deviating by 3 σ . Here, we report on a new high-precision measurement of this value, as well as the first measured lifetimes and hence transition strengths for the 22+ and 3(2) - states in the nucleus. Methods: The Doppler-shift attenuation method was implemented using the TRIUMF-ISAC γ -ray escape-suppressed spectrometer (TIGRESS) γ -ray spectrometer and the TIGRESS integrated plunger device. High-statistics Monte Carlo simulations were utilized to extract lifetimes in accordance with state-of-the-art methodologies. Results: Lifetimes of τ (21+)=336 ±4 (stat.)±20 (sys.) fs, τ (22+)=263 ±9 (stat.)±19 (sys.) fs, and τ (3(2) -)=73 ±6 (stat.)±32 (sys.) fs were extracted. This yields a transition strength for the first-excited state of B (E 2 ;21+→01+)=259 ±3 (stat.)±16 (sys.) e2 fm4. Conclusions: The measured lifetime disagrees with the previous Doppler-shift attenuation method measurement by more than 3 σ , while agreeing well with a previous value extracted from Coulomb excitation. The newly extracted B (E 2 ;21+→01+) value indicates a more significant reduction in the N =50 isotones approaching Z =40 .
Dielectronic recombination into excited levels of Ne-like titanium from F-like low-lying states
International Nuclear Information System (INIS)
Qiu Yanghui; Li Shichang; Sun Yongsheng
1993-01-01
The energy levels, wavelengths, oscillator strengths, Auger rates and level-to-level dielectronic recombination rate coefficients describing dielectronic recombination into excited levels of Ne-like titanium from F-like low-lying states are calculated. Our calculations are based on Dr. R.D. Cowan's semi-relativistic mass-velocity and Darwin corrections are included in the Hamiltonian, and the distorted-wave model is used for the calculation of free electron wavefunctions. In order to set the recombination rate coefficients on a level by level basis, in a manner compatible with detailed level population kinetics modelling of highly-stripped ions in plasma, the dielectronic recombination rate coefficients as a function of free electron temperatures are given in an analytical form, which is not only very convenient in practice, but also hopefully accurate compared with the exactly calculated numerical results. (orig.)
Ab initio calculation on the low-lying excited states of Si2+ cation including spin–orbit coupling
International Nuclear Information System (INIS)
Liu, Yanlei; Zhai, Hongsheng; Zhang, Xiaomei; Liu, Yufang
2013-01-01
Highlights: • 24 Λ–S states are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ) are first reported. • The dissociation energies of the calculated electronic states are predicted in our work. • It is first time that the entire 54 Ω states generated from the 24 Λ–S states have been studied. • PECs of Λ–S and Ω states are depicted with the aid of avoided crossing rule between the same symmetry. - Abstract: Ab initio all-electron relativistic calculations of the low-lying excited states of Si 2 + have been performed at MRCI+Q/AVQZ level. The calculated electronic states, including 12 doublet and 12 quartet Λ–S states, are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ). Spin–orbit interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian, which causes the entire 24 Λ–S states to split into 54 Ω states. This is the first time that spin–orbit coupling (SOC) calculation has been performed on Si 2 + . The obtained potential energy curves (PECs) of Λ–S and Ω states are respectively depicted with the aid of the avoided crossing rule between the same symmetry. The spectroscopic constants of the bound Λ–S and Ω states are determined, and excellent agreements with the latest theoretical results are achieved
Hierarchy of the low-lying excitations for the (2+1-dimensional q=3 Potts model in the ordered phase
Directory of Open Access Journals (Sweden)
Yoshihiro Nishiyama
2017-03-01
Full Text Available The (2+1-dimensional q=3 Potts model was simulated with the exact diagonalization method. In the ordered phase, the elementary excitations (magnons are attractive, forming a series of bound states in the low-energy spectrum. We investigate the low-lying spectrum through a dynamical susceptibility, which is readily tractable with the exact diagonalization method via the continued-fraction expansion. As a result, we estimate the series of (scaled mass gaps, m2,3,4/m1 (m1: single-magnon mass, in proximity to the transition point.
International Nuclear Information System (INIS)
Ayoub, N.Y.
1980-02-01
The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)
Prodhan, Suryoday; Ramasesha, S.
2018-05-01
The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.
International Nuclear Information System (INIS)
Stuchbery, A.E.; Ryan, C.G.; Morrison, I.; Bolotin, H.H.
1981-01-01
The gyromagnetic ratios of the 2 2 + and 4 1 + states in 196 Pt were measured relative to that of its 2 1 + level. The thin-foil IMPAC technique was employed utilizing the enhanced transient hyperfine magnetic field present at the nuclei of swiftly recoiling ions traversing magnetized ferromagetic materials. The states of interest were populated by Coulomb excitation using beams of 220-MeV 58 Ni ions. For g(2 1 + ) taken as 0.326+-0.014, the present measurements yielded g(2 2 + ) = 0.30+-0.06 and g(4 1 + ) 0.30+-0.05. These results and those reported by prior workers for the g-factors of corresponding levels in 192 Pt, 194 Pt, 198 Pt are used to trace the systematics of the magnetic moments of these low-lying levels in the even 192 - 198 Pt isotopes. Interacting Boson Approximation model-based calculations of the g-factors of these states were also carried out. The experimental theoretical results are compared
International Nuclear Information System (INIS)
Koopman, R.P.
1977-01-01
A series of experiments was performed in which gamma-ray spectra were measured, using a Ge(Li) detector, for incident 7 to 26-MeV protons on the even-even vibrational nuclei 56 Fe, 62 Ni, 64 Zn, 108 Pd, 110 Cd, 114 Cd, 116 Cd, 116 Sn, 120 Sn, and 206 Pb, and for incident 14-MeV neutrons on natural Fe, Ni, Zn, Cd, Sn, and Pb. These measurements yielded gamma-ray cross sections from which it was inferred that almost all of the gamma cascades from (p,p') and (n,n') reactions passed down through the first 2 + levels. Consequently, the strength of the 2 + → 0 + gamma transitions were found to be an indirect measure of the (p,p') or (n,n') cross sections. Several types of nuclear model calculations were performed and compared with experimental results. These calculations included coupled-channel calculations to reproduce the direct, collective excitation of the low-lying levels, and statistical plus pre-equilibrium model calculations to reproduce the (p,p') and the (n,n') cross sections for comparison with the 2 + → 0 + gamma measurements. The agreement between calculation and experiment was generally good except at high energies, where pre-equilibrium processes dominate (i.e. around 26-MeV). Here discrepancies between calculations from the two different pre-equilibrium models and between the data and the calculations were found. Significant isospin mixing of T/sub greater than/ into T/sub less than/ states was necessary in order to have the calculations match the data for the (p,p') reactions, up to about 18-MeV
International Nuclear Information System (INIS)
Ohtomi, S; Matsui, M; Mochizuki, Y; Suga, A; Kato, H; Hoshino, M; Tanaka, H; Duflot, D; Limão-Vieira, P
2015-01-01
We report on the measurements of the electron impact electronic excitation cross sections for XF 4 (X = C, Si and Ge) molecules at 100 eV, 5° scattering angle and 30 eV, 30° in the electron energy loss range 8.0 - 18 eV. For a target of GeF 4 molecule, the optically-forbidden behavior has been observed in the lower electron energy loss range. (paper)
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to
On the low-lying states of TiC
Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.
1984-01-01
The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.
Low lying magnetic dipole strength distribution in 176Hf
International Nuclear Information System (INIS)
Kuliev, A. A.; Ertugral, F.; Yakut, H.; Bektasoglu, M.; Guliyev, E.
2006-01-01
In this study the scissors mode 1 + states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 1 76Hf isotopes. We consider the 1 + vibrations generated by the isovector spin-spin interactions and the isoscalar (h 0 ) and isovector (h 1 ) quadrupole type separable forces restoring the broken symmetry by a deformed mean field. It has been shown that restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low lying 1 + states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. Agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 1 76Hf is rather good. For instance, distributions of the calculated B(M1) transition strengths in the 1 76 Hf isotopes with respect to K π =1 + excitations is represented in Figure. Thus, we see that the models which use the Hamiltonian with broken rotational symmetry strongly overestimate the M1 strength at low energy. These results indicate an importance of the models which are free from the low-energy spurious states. The marked differences between the results for 1 + states, calculated in rotational invariant (RI) and non-rotational invariant (NRI) model indicate the importance of the approaches which are free from spurious low-energy solutions. A separation of the rotational state from the 1 + states changes somewhat the distribution of the B(M1) strength in the spectroscopic energy region and increases the fragmentation of the scissors mode 1 + excitations in agreement with the experimental data
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
New mode of magnetic excitation in praseodymium
DEFF Research Database (Denmark)
Clausen, K.N.; McEwen, K.A.; Jensen, J.
1994-01-01
A novel propagating mode of magnetic excitation has been observed in Pr. It takes the form of low-energy satellites to the crystal-field excitations on both the hexagonal and cubic sites which are very broad at long wavelengths, rise in energy and rapidly narrow with increasing q, and disappear...... beyond the point at which the two excitations would cross. The broadening may be abruptly quenched by a magnetic field. The satellite excitations are believed to be associated with the dynamics of the conduction electrons....
Low-lying levels of 129Xe and 131Xe
International Nuclear Information System (INIS)
Palmer, D.C.; Irving, A.D.; Forsyth, P.D.; Hall, I.; Martin, D.G.E.; Maynard, M.J.
1978-01-01
The nuclei 129 Xe and 131 Xe have been studied by Coulomb excitation and by (α, n) reactions on 126 Te and 128 Te. Eleven new levels for 129 Xe and six for 131 Xe and B(E2) transition values for some of the low-lying states are reported. The present Coulomb excitation experiments together with published β-decay work enable some spin-parity assignments and restrictions to be made. The data are broadly consistent with the predictions of the particle-vibrator coupling model, although a thorough comparison requires further spectroscopic measurements and more detailed theoretical calculation. (author)
Excitation mechanisms for Jovian seismic modes
Markham, Steve; Stevenson, Dave
2018-05-01
Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.
Intermediate energy electron impact excitation of composite vibrational modes in phenol
Energy Technology Data Exchange (ETDEWEB)
Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-05-21
We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.
Spectroscopic study of low-lying 16N levels
International Nuclear Information System (INIS)
Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott
2008-01-01
The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented
Energy Technology Data Exchange (ETDEWEB)
Kowalski, Karol; Olson, Ryan M.; Krishnamoorthy, Sriram; Tipparaju, Vinod; Apra, Edoardo
2011-07-12
The unusual photophysical properties of the pi-conjugated chrompohores makes them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocabrons (PAHs). In this paper we present equation-of-motion coupled cluster calculations for vertical excitation energies of several functionalized forms of porphyrins. The results of free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for the anthracene fused zinc porphyrin. The impact of various-type correlation effects is illustrated on several benchmark models where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with the experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120,000 cores.
Energy Technology Data Exchange (ETDEWEB)
Kowalski, Karol [Pacific Northwest National Laboratory (PNNL); Olson, Ryan M [Cray, Inc.; Krishnamoorthy, Sriram [Pacific Northwest National Laboratory (PNNL); Tipparaju, Vinod [ORNL; Apra, Edoardo [ORNL
2011-01-01
The unusual photophysical properties of the {pi}-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAHs). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc-porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120000 cores.
Low-lying magnetic dipole strength distribution in the γ-soft even-even 130-136Ba
International Nuclear Information System (INIS)
Guliyev, E.; Ertugral, F.; Kuliev, A.A.
2006-01-01
In this study the scissors mode 1 + states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 130-136 Ba isotopes. We consider the 1 + vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole-type separable forces restoring the broken symmetry by a deformed mean field according to A.A. Kuliev et al. (Int. J. Mod. Phys. E 9, 249 (2000)). It has been shown that the restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low-lying 1 + states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. The agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 134 Ba and 136 Ba is rather good. A destructive interference between the orbit and spin part of the M1 strength has been found for barium isotopes near the shell closer. For all the nuclei under investigation, the low-lying M1 transitions have ΔK=1 character as it is the case for the well-deformed nuclei. (orig.)
Glauber amplitudes for transitions from low lying states in hydrogen atom by charged particle impact
Energy Technology Data Exchange (ETDEWEB)
Kumar, S; Srivastava, M K [Roorkee Univ. (India). Dept. of Physics
1977-07-01
The Glauber amplitudes for the general transition nlm ..-->.. n'1'm' in charged particle - hydrogen atom collisions have been obtained in the form of a one-dimensional integral. The final expression involves only a few hypergeometric functions if n is not too large and is particularly suited to study excitation to highly excited states from a low lying state.
International Nuclear Information System (INIS)
Mayhall, Nicholas J.; Head-Gordon, Martin
2014-01-01
An approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S) 1 . These two approaches take the SF-CAS wavefunction as the reference, and then perturbatively includes the effect of single excitations. For the quasidegenerate perturbation theory method, SF-CAS(S) 1 , the subscripted “1” in the acronym indicates that a truncated denominator expansion is used to obtain an energy-independent down-folded Hamiltonian. We also show how this can alternatively be formulated in terms of an extended Lagrangian, by introducing an orthonormality constraint on the first-order wavefunction. Several numerical examples are provided, which demonstrate the ability of SF-CAS(S) and SF-CAS(S) 1 to describe bond dissociations, singlet-triplet gaps of organic molecules, and exchange coupling parameters for binuclear transition metal complexes
Low-lying isomeric levels in Cu75
Daugas, J. M.; Faul, T.; Grawe, H.; Pfützner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Angélique, J. C.; Baiborodin, D.; Bentida, R.; Béraud, R.; Borcea, C.; Bingham, C. R.; Catford, W. N.; Emsallem, A.; de France, G.; Grzywacz, K. L.; Lemmon, R. C.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, K.; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.
2010-03-01
Isomeric low-lying states were identified and investigated in the Cu75 nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as Cu75m1 and Cu75m2, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2-, 3/2-, and 5/2- states for the neutron-rich odd-mass Cu isotopes when filling the νg9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2- state coexists with more and more collective 3/2- and 1/2- levels at low excitation energies.
Energies and electric dipole transitions for low-lying levels of protactinium IV and uranium V
Energy Technology Data Exchange (ETDEWEB)
Uerer, Gueldem; Oezdemir, Leyla [Sakarya Univ. (Turkey). Physics Dept.
2012-01-15
We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z = 91) and uranium V (Z = 92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature. (orig.)
International Nuclear Information System (INIS)
Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.
2010-01-01
In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.
The low-lying collective multipole response of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Spieker, Mark; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Prill, Sarah; Vielmetter, Vera; Weinert, Michael; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)
2016-07-01
We present experimental results on the low-lying multipole response, which were obtained with the recently established DSA-method in Cologne. Nuclear level lifetimes in the sub-ps regime are extracted by means of centroid-shifts utilizing the (p,p{sup '}γ) reaction at the 10 MV FN-Tandem accelerator in Cologne. The scattered protons are coincidently detected with the deexciting γ rays using the SONIC rate at HORUS detector array, which allows for a precise determination of the reaction kinematics. In addition to the pioneering results on octupole and hexadecapole mixed-symmetry states of {sup 96}Ru, this contribution will feature new results on low-lying quadrupole-octupole coupled states and on the low-lying E2 strength of {sup 112,114}Sn, which was recently discussed to be generated due to a quadrupole-type oscillation of the neutron skin against the isospin-saturated core.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.
Extremely confined gap surface-plasmon modes excited by electrons
DEFF Research Database (Denmark)
Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus
2014-01-01
High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....
Properties of the low-lying levels of 122Sb
International Nuclear Information System (INIS)
Gunsteren, W.F. van; Rabenstein, D.
1977-01-01
Nanosecond lifetimes of low-lying levels in the doubly odd nucleus 122 Sb have been measured. On the basis of these results and of already published experimental material, spins and parities for most of the low-lying states are proposed. A simple theoretical description of this nucleus is presented. The model used is that of a proton coupled to a number projected neutron quasiparticle wave function, assuming a Z=N=50 core. The spectrum and transition rates were calculated in a shell model space consisting of eight subshells and using a renormalized Schiffer interaction. The shell model parameters were derived from adjadent nuclei. Good agreement with the experimental level scheme is found. Also the gamma decay properties can be accounted for rather well. Spectroscopic factors for the one-neutron transfer reactions leading to 122 Sb are predicted. Their measurement with high resolution techniques would be a helpful test for the interpretations given. (orig.) [de
Geodesic acoustic modes excited by finite beta drift waves
DEFF Research Database (Denmark)
Chakrabarti, Nikhil Kumar; Guzdar, P.N.; Kleva, R.G.
2008-01-01
Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by finite beta drift waves. The finite beta effects give rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta...... effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic field is also excited at the GAM frequency. However, it does not contribute to the overall stability...... of the three-wave process for parameters of relevance to the edge region of tokamaks....
Microscopic study of low-lying yrast spectra and deformation ...
Indian Academy of Sciences (India)
73, No. 4. — journal of. October 2009 physics pp. 657–668. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich. 98−106Sr isotopes ... with a large and rigid moment of inertia. 98Sr is predicted to have a ... 2 energy as neutron number N changes from 58 to 60. The onset of deformation in ...
Low-lying level structure of 73Kr
International Nuclear Information System (INIS)
Moltz, D.M.; Robertson, J.D.; Norman, E.B.; Burde, J.; Beausang, C.W.
1993-01-01
We have used the 40 Ca( 36 Ar, 2pn) reaction to study the low-lying level structure of 73 Kr. By utilizing a bombarding energy at the Coulomb barrier, the relative cross section for this channel was enhanced to a few percent of the total reaction cross section. Levels in 73 Kr were assigned based primarily upon observed neutron-gamma-gamma coincidences and upon comparisons of these newly assigned transition cross sections with those from known nuclei. (orig.)
Oscillator strengths and lifetimes for low-lying terms in the Al isoelectronic sequence
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Aashamar, K.
1988-11-01
Using the Multiconfiguration Optimized Potential Model, calculations of oscillator strengths in the length, and velocity formulation for a large number of transitions in the Aluminium isoelectronic sequence from Si II through K VII, have been performed. The results have been used to determine the lifetimes of 14 low-lying excited terms along the sequence. Comparison is made with experiment and with other theory where results are available. The agreement between the obtained values and other theoretical results is generally good, although deviations do occur near level crossings. Some significant discrepancies between theory and experiment persist concerning lifetimes for S IV
DEFF Research Database (Denmark)
Zhang, N.G.; Henley, C.L.; Rischel, C.
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...
New modes of halo excitation in the 6He nucleus
International Nuclear Information System (INIS)
Danilin, B.V.; Rogde, T.; Ershov, S.N.; Heiberg-Andersen, H.; Vaagen, J.S.; Danilin, B.V.; Ershov, S.N.; Vaagen, J.S.; Thompson, I.J.; Zhukov, M.V.
1997-01-01
Predictions are made for the structure of a second 2 + resonance, the soft dipole mode and unnatural parity modes in the 6 He continuum. We use a structure model which describes the system as a three-body α+N+N cluster structure, giving the experimentally known properties of 6 He and 6 Li, and use the distorted-wave impulse approximation (DWIA) reaction theory appropriate for dilute matter. The presence of both resonant and nonresonant structures in the halo excitation continuum is shown to be manifest in charge-exchange reactions as well as inelastic scattering with single nucleons. copyright 1997 The American Physical Society
Nonlinear excitation of geodesic acoustic modes by drift waves
International Nuclear Information System (INIS)
Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.
2007-01-01
In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.
2016-02-19
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.
2016-01-01
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
The quest for novel modes of excitation in exotic nuclei
Paar, N.
2010-06-01
This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.
Interpretation of the nonlinear mode excitation in the ITER gyrotron
International Nuclear Information System (INIS)
Nusinovich, G. S.; Sinitsyn, O. V.
2007-01-01
This study was motivated by an interesting physical effect observed in experiments with a 1 MW, 170 GHz, continuous-wave gyrotron developed at the Japan Atomic Energy Agency for plasma heating and current drive in ITER [see, e.g., Fusion Eng. Des. 55, issues 2-3 (2001)]. In these experiments, the gyrotron switching from a parasitic mode to the operating one was observed with the increase in external magnetic field in the region of hard self-excitation of the operating mode where it cannot be excited from the noise level in the absence of other modes. Below, the theory describing this effect is developed. The switching mechanism caused by merging and disappearance of two (one stable and another unstable) equilibrium states with nonzero amplitudes of both modes is proposed. It is found that the present theory can correctly interpret experimental results qualitatively, but the lack of experimental data does not let the authors carry out some simulations more adequate to experimental conditions
Collective excitations in deformed alkali metal clusters
International Nuclear Information System (INIS)
Lipparini, E.; Stringari, S.; Istituto Nazionale di Fisica Nucleare, Povo
1991-01-01
A theoretical study of collective excitations in deformed metal clusters is presented. Sum rules are used to study the splittings of the dipole surface plasma resonance originating from the cluster deformation. The vibrating potential model is developed and used to predict the occurrence of a low lying collective mode of orbital magnetic nature. (orig.)
Higher Order Modes Excitation of Micro Cantilever Beams
Jaber, Nizar
2014-05-01
In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.
Electron plasma dynamics during autoresonant excitation of the diocotron mode
Energy Technology Data Exchange (ETDEWEB)
Baker, C. J., E-mail: cbaker@physics.ucsd.edu; Danielson, J. R., E-mail: jrdanielson@ucsd.edu; Hurst, N. C., E-mail: nhurst@physics.ucsd.edu; Surko, C. M., E-mail: csurko@ucsd.edu [Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)
2015-02-15
Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.
Low-lying (K ) states of gadolinium isotopes
Indian Academy of Sciences (India)
excitation on energy levels as possible as determined has become a research field ... exist and it is clearly interesting to determine how many such excitations ..... states may be common near and above the pairing gap in deformed nuclei.
International Nuclear Information System (INIS)
Zhang Hai-Yan; Yu Jian-Bo
2011-01-01
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Experimental study of the low-lying structure of 94Zr with the (n,n'γ) reaction
International Nuclear Information System (INIS)
Elhami, E.; Orce, J. N.; Scheck, M.; Mukhopadhyay, S.; Choudry, S. N.; McEllistrem, M. T.; Yates, S. W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Parpottas, Y.; Tonchev, A. P.; Tornow, W.; Kelley, J. H.
2008-01-01
The low-lying structure of 40 94 Zr was studied with the (n,n ' γ) reaction, and a level scheme was established based on excitation function and γγ coincidence measurements. Branching ratios, multipole mixing ratios, and spin assignments were determined from angular distribution measurements. Lifetimes of levels up to 3.4 MeV were measured by the Doppler-shift attenuation method, and for many transitions the reduced transition probabilities were determined. In addition to the anomalous 2 2 + state, which has a larger B(E2;2 2 + →0 1 + ) value than the B(E2;2 1 + →0 1 + ), the experimental results revealed interesting and unusual properties of the low-lying states in 94 Zr. In a simple interpretation, the excited states are classified in two distinct categories, i.e., those populating the 2 2 + state and those decaying to the 2 1 + state
Low-lying dipole strength of the open-shell nucleus 94Mo
Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.
Systematics on the low-lying spectra in N = 78 ~ 80 isotones
International Nuclear Information System (INIS)
Cheng, Y.Y.; Zhang, S.Q.; Li, X.Q.
2014-01-01
Combining the new spectroscopy results of 144 Tb and previous spectroscopy studies of neighboring nuclei, a systematic investigation on the low-lying spectra in N = 78 ~ 80 isotones is performed. Good systematics have been found for the coupling patterns which couple the odd nucleon(s), such as πh 11/2 , νh 11/2 —1 , νh 11/2 2 , νh 11/2 —2 , νh 11/2 —1 , to the 2 + , 4 + , 6 + and 3 - core excitations. It is found that the relative excitation energies of the states formed by coupling h 11/2 proton(s) to the 2 + , 4 + core excitations are pushed up, in contrast with those formed by coupling h 11/2 neutron hole(s) to the 2 + , 4 + core excitations, which are pulled down. According to the systematics, the interpretation that the 17/2 + states observed in 141 Sm and 143 Gd are the fully aligned member of coupling the odd h 11/2 neutron hole to the octupole 3 - core excitation, is explored to the isotones 145 Dy, 142 Eu, and 144 Tb. (author)
International Nuclear Information System (INIS)
Marumori, Toshio; Takada, Kenjiro; Sakata, Fumihiko.
1981-12-01
The history and the present status of the microscopic study of the low-lying collective excited states in spherical and transitional nuclei are discussed by putting emphasis on explaining the rather modern microscopic investigations of the concept of collective subspace. Importance of the dynamical interplay between the pairing and the quadrupole correlations is emphasized as a crucial element to mediate coupling between the collective and non-collective subspace. (author)
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
Study of lifetimes of low-lying levels in {sup 53}Mn
Energy Technology Data Exchange (ETDEWEB)
Singh, K.P.; Oswal, Mumtaz; Behera, B.R.; Kumar, Ashok; Singh, Gulzar [Panjab University, Cyclotron Laboratory, Department of Physics, Centre of Advance Study in Physics, Chandigarh (India)
2015-05-15
The properties of low-lying states of {sup 53}Mn were investigated via the {sup 53}Cr(p, n γ){sup 53}Mn reaction using 4.3 MeV proton beam energy. The lifetimes of the levels at 1289.5, 1440.8, 1620.0 and 2273.8 keV excitation energies were measured using the Doppler Shift Attenuation Method (DSAM). The reduced transition probabilities B(M1) and B(E2) were extracted using the measured values of lifetimes for these levels and the mixing ratios from the literature. These values are compared with already known experimental values as well as the shell model calculations using an effective interaction. (orig.)
RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg
Energy Technology Data Exchange (ETDEWEB)
Kuehn, R.; Dewald, A.; Kruecken, R. [Universitaet Koeln (Germany)] [and others
1996-12-31
The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.
The low-lying electronic states of pentacene and their roles in singlet fission.
Zeng, Tao; Hoffmann, Roald; Ananth, Nandini
2014-04-16
We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.
Relativistic Energy Density Functionals: Exotic modes of excitation
International Nuclear Information System (INIS)
Vretenar, D.; Paar, N.; Marketin, T.
2008-01-01
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber
Burdin, V.; Bourdine, A.
2018-04-01
This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.
Collective 0+, 1+ and 2+ excitations in rotating nuclei
International Nuclear Information System (INIS)
Balbutsev, E.B.; Piperova, J.
1988-01-01
The energies and B(Eγ) factors of the isoscalar and isovector 0 + and 2 + resonances are calculated with Skyrme interaction. A satisfactory agreement with experimental data is obtained. It is shown that in rotating nuclei the 2 + excitations split into five branches and also 5 low-lying excitations appear. Two of these low-lying modes are angular resonances and the theory reproduces their energies and B(M1) factors. The experimentally observed splitting of giant monopole resonance in deformed nuclei is confirmed. 34 refs.; 10 figs.; 1 tab
Plasmon mode excitation and photoluminescence enhancement on silver nanoring
Kuchmizhak, Aleksandr A.; Gurbatov, Stanislav O.; Kulchin, Yuri N.; Vitrik, Oleg B.
2015-12-01
We demonstrate a simple and high-performance laser-assisted technique for silver nanoring fabrication, which includes the ablation of the Ag film by focused nanosecond pulses and subsequent reactive ion polishing. The nanoring diameter and thickness can be controlled by optimizing both the pulse energy and the metal film thickness at laser ablation step, while the subsequent reactive ion polishing provides the ability to fabricate the nanoring with desirable height. Scattering patterns of s-polarized collimated laser beam obliquely illuminating the nanoring demonstrate the focal spot inside the nanoring shifted from its center at a distance of ~0.57Rring. Five-fold enhancement of the photoluminescence signal from the Rhodamine 6G organic dye near the Ag nanoring was demonstrated. This enhancement was attributed to the increase of the electromagnetic field amplitude near the nanoring surface arising from excitation of the multipole plasmon modes traveling along the nanoring. This assumption was confirmed by dark-field back-scattering spectrum of the nanoring measured under white-light illumination, as well as by supporting finite-difference time-domain simulations.
Characterization of the low-lying 0$^{+}$ and 2$^{+}$ states of $^{68}$ Ni
Recently, a number of low-lying low-spin states have been firmly identified in $^{68}$Ni; the position of the first excited state (which is a 0$^{+}$ state), the spin and parity of the second excited 0$^{+}$ state and the spin and parity of the second and third 2$^+$ states have been fixed. The identification of these three pairs of 0$^+$ and 2$^+$ states in $^{68}$Ni (Z=28 and N=40) forms ideal tests to validate shell-model calculations and the effective interactions developed for the nickel region but also hints to triple shape coexistence including even strongly deformed structures. The aim of this proposal is to collect detailed spectroscopic data of the low-spin states of $^{68}$Ni (Z=28, N=40) in order to characterize these triple pairs of 0$^+$ and 2$^+$ states. $\\gamma$-branching ratios of the 0$^+$ and 2$^+$ states and the E0 transition strengths as well as the E2 transition rate of the 0$_3^+$ will be obtained using the new ISOLDE decay station that is constructed from an efficient array of germaniu...
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2017-08-01
Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.
Charge transfer and relativistic effects in the low-lying electronic states of CuCl, CuBr and CuI
Sousa, C; de Jong, W.A.; Broer, R.; Nieuwpoort, WC
1997-01-01
The spectral transitions and the character of the low-lying excited states of the copper halides, CuX (X = Cl, Br, I) are studied by means of two different relativistic computational approaches. One is based on the CASSCF/CASPT2 approach with operators accounting for scalar relativistic effects
Excited-state lifetimes of far-infrared collective modes in proteins
Xie, A.; van der Meer, L.; Austin, R. H.
2002-01-01
Vibrational excitations of low frequency collective modes are essential for functionally important conformational transitions in proteins. Here we report the first direct measurement on the lifetime of vibrational excitations of the collective modes at 87 pm (115 cm(-1)) in bacteriorhodopsin, a
International Nuclear Information System (INIS)
Mandal, Subhasish; Dixit, Gopal; Majumder, Sonjoy; Sahoo, B K; Chaudhuri, R K
2008-01-01
The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d 2 D 5/2 state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge
Low-Lying Electronic States of AlZn Calculated by MRCI+Q Method
Zhang, Shudong; Wang, Mingxu; Wang, Zifan; Hu, Kun; Dong, Jingping
2017-07-01
Some low-lying electronic states of AlZn have been studied by the ab initio calculation method of multireference configuration interaction (MRCI). The complete potential energy curves (PECs) of the three lowest doublet states (X2Π, A2Σ+, and B2Π) and the two lowest quartet states (a4Σ- and b4Π) are computed in the range of R = 0.1-0.9 nm and these states are correlated to three dissociation limits, X2Π and A2Σ+ to Zn(4s2,1S) + Al(3s23p1,2P), a4Σ- and b4Π to Zn(4s2,1S) + Al(3s13p2,4P), and B2Π to Zn(4s14p1,3P) + Al(3s23p1,2P). The calculated PECs indicate that the A2Σ+ state has a very shallow potential well and the other states show significant binding-state characteristics. The equilibrium internuclear distances Re, dissociation energies De, and term energies Te for the electronic excited states were obtained. All the possible vibrational levels, rotational constants, and spectral constants for the four bound states were computed by solving the radial Schrödinger equation of nuclear motion with the Level8.0 program provided by Le Roy.
Low-lying charmed and charmed-strange baryon states
Energy Technology Data Exchange (ETDEWEB)
Chen, Bing [Anyang Normal University, Department of Physics, Anyang (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Wei, Ke-Wei [Anyang Normal University, Department of Physics, Anyang (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Saitama (Japan)
2017-03-15
In this work, we systematically study the mass spectra and strong decays of 1P and 2S charmed and charmed-strange baryons in the framework of non-relativistic constituent quark models. With the light quark cluster-heavy quark picture, the masses are simply calculated by a potential model. The strong decays are studied by the Eichten-Hill-Quigg decay formula. Masses and decay properties of the well-established 1S and 1P states can be reproduced by our method. Σ{sub c}(2800){sup 0,+,++} can be assigned as a Σ{sub c2}(3/2{sup -}) or Σ{sub c2}(5/2{sup -}) state. We prefer to interpret the signal Σ{sub c}(2850){sup 0} as a 2S(1/2{sup +}) state although at present we cannot thoroughly exclude the possibility that this is the same state as Σ{sub c}(2800){sup 0}. Λ{sub c}(2765){sup +} or Σ{sub c}(2765){sup +} could be explained as the Λ{sub c}{sup +}(2S) state or Σ{sup +}{sub c1}(1/2{sup -}) state, respectively. We propose to measure the branching ratio of B(Σ{sub c}(2455)π)/B(Σ{sub c}(2520)π) in the future, which may disentangle the puzzle of this state. Our results support Ξ{sub c}(2980){sup 0,+} as the first radial excited state of Ξ{sub c}(2470){sup 0,+} with J{sup P} = 1/2{sup +}. The assignment of Ξ{sub c}(2930){sup 0} is analogous to Σ{sub c}(2800){sup 0,+,++}, i.e., a Ξ{sup '}{sub c2}(3/2{sup -}) or Ξ{sup '}{sub c2}(5/2{sup -}) state. In addition, we predict some typical ratios among partial decay widths, which are valuable for experimental search for these missing charmed and charmed-strange baryons. (orig.)
Low power excitation of gyrotron-type modes in cylindrical waveguide using quasi-optical techniques
International Nuclear Information System (INIS)
Alexandrov, N.L.; Whaley, D.R.; Tran, M.Q.; Denisov, D.R.
1995-03-01
Experimental results of low power excitation of a 118 GHz TE 22,6 rotating mode are presented. A rectangular mode is converted to a TE 22,6 circular waveguide using quasi-optical techniques. A good conversion efficiency is measured and the experimentally observed field intensity profiles show the percentage of unwanted modes to be small. (author) 10 figs., 10 refs
Testing the tetraquark structure for the X resonances in the low-lying region
Energy Technology Data Exchange (ETDEWEB)
Kim, Hungchong [Kookmin University, Department of General Education, Seoul (Korea, Republic of); Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Jido, Daisuke [Tokyo Metropolitan University, Department of Physics, Hachioji, Tokyo (Japan); Oka, Makoto [Tokyo Institute of Technology, Department of Physics, Meguro (Japan); Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan)
2016-07-15
Assuming the four-quark structure for the X resonances in the low-lying region, we calculate their masses using the color-spin interaction. Specifically, the hyperfine masses of the color-spin interaction are calculated for the possible states in spin-0, spin-1, spin-2 channels. The two states in spin-0 channel as well as the two states in spin-1 channel are diagonalized in order to generate the physical hyperfine masses. By matching the difference in hyperfine masses with the splitting in corresponding hadron masses and using the X(3872) mass as an input, we estimate the masses corresponding to the states J{sup PC} = 0{sup ++}, 1{sup +-}, 2{sup ++}. We find that the masses of two states in 1{sup +-} are close to those of X(3823), X(3900), and the mass of the 2{sup ++} state is close to that of X(3940). For them, the discrepancies are about ∝ 10 MeV. This may suggest that the quantum numbers of the controversial states are X(3823) = 1{sup +-}, X(3900) = 1{sup +-}, X(3940) = 2{sup ++}. In this work, we use the same inputs parameters, the constituent quark masses and the strength of the color-spin interaction, that have been adopted in the previous work on the D- or B-meson excited states. There, it was shown that the four-quark structure can be manifested in their excited states. Thus, our results in this work provide a consistent treatment on open- and hidden-charm mesons as far as the four-quark model is concerned. (orig.)
Automatic vibration mode selection and excitation; combining modal filtering with autoresonance
Davis, Solomon; Bucher, Izhak
2018-02-01
Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.
Numerical study of ground state and low lying excitations of quantum antiferromagnets
International Nuclear Information System (INIS)
Trivedi, N.; Ceperley, D.M.
1989-01-01
The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves
A density matrix renormalization group study of low-lying excitations ...
Indian Academy of Sciences (India)
Unknown
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 e-mail: ... has been successfully used as an active semicon- .... ing Ohno parametrization.43 The value of zC for carbon ... gated organic polymers without any heteroatoms has ..... mers can lead to addition (removal) of two electrons.
Effect translational invariance in low-lying electric dipole excitations in 236U and 238U
International Nuclear Information System (INIS)
Ertugral, F.
2005-01-01
In this paper the translational invariant QRPA approach suggested by Pyatov [1] for the spherical nuclei has been extended to describe the 1 - states in deformed nuclei. The role of spurious centre-of-motion state on the Pygmy dipole resonance (PDR) has been investigated in the deformed 236 U and 238 U nuclei. It has been shown that the effect of taking into account the translational invariance of the Hamiltonians in the QRPA with separation of zero energy spurious solutions are noticeable in both the low energy density of 1 - states and in the PDR. Present investigation demonstrates the advantage of the translational invariant QRPA over the non translational invariant one. Within the translational invariant model the effect of removing spurious states on the E1 strength distribution is stronger than in none invariant QRPA (∼20%) for the states up to the neutron binding energy. It is found that the spurious state is spread over many levels, the largest admixture being situated in the region of the energy spacing between nuclear shells o w h . The giant resonance states contain, as a rule, very small admixtures of the spurious state
Decay modes of high-lying excitations in nuclei
International Nuclear Information System (INIS)
Gales, S.
1993-01-01
Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Jaber, Nizar; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.
2016-01-01
© 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using
Multiple excitation modes in ^{163}Hf
DEFF Research Database (Denmark)
Yadav, Rachita; Ma, J.C.; Marsh, J.C.
2014-01-01
Excited states of Hf163 were populated using the Zr94(Ge74,5n) reaction and the decay γ rays were measured with the Gammasphere spectrometer. Two previously known bands were extended to higher spins, and nine new bands were identified. In addition to bands associated with three- and five-quasiparticle...
The scaling dimension of low lying Dirac eigenmodes and of the topological charge density
Aubin, C.; Gottlieb, Steven; Gregory, E.B.; Heller, Urs M.; Hetrick, J.E.; Osborn, J.; Sugar, R.; Toussaint, D.; de Forcrand, Ph.; Jahn, Oliver
2005-01-01
As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.
Optimization of orthotropic distributed-mode loudspeaker using attached masses and multi-exciters.
Lu, Guochao; Shen, Yong; Liu, Ziyun
2012-02-01
Based on the orthotropic model of the plate, the method to optimize the sound response of the distributed-mode loudspeaker (DML) using the attached masses and the multi-exciters has been investigated. The attached masses method will rebuild the modes distribution of the plate, based on which multi-exciter method will smooth the sound response. The results indicate that the method can be used to optimize the sound response of the DML. © 2012 Acoustical Society of America
Excitation of internal kink modes by trapped energetic beam ions
International Nuclear Information System (INIS)
Chen, L.; White, R.B.; Rosenbluth, M.N.
1983-10-01
Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX
Noise induced multidecadal variability in the North Atlantic: excitation of normal modes
Frankcombe, L.M.; Dijkstra, H.A.; von der Heydt, A.S.
2009-01-01
In this paper it is proposed that the stochastic excitation of a multidecadal internal ocean mode is at the origin of the multidecadal sea surface temperature variability in the North Atlantic. The excitation processes of the spatial sea surface temperature pattern associated with this multidecadal
Excitation of giant modes and decay of hot nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1992-01-01
Several phenomena are discussed which can affect the properties of the Giant Dipole Resonance (GDR) built on excited states. The effect of the N over Z ratio is proposed in the entrance channel to test the hypothesis that the saturation of the GDR strength is due to preequilibrium effects. The important role of the compression is discussed both for the calculation of the temperature and for the other parameters of the Hot GDR. (K.A.) 15 refs.; 9 figs
selective excitation of vibrational modes of polyatomic molecule
Indian Academy of Sciences (India)
Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...
Energy Technology Data Exchange (ETDEWEB)
Hauschild, K.; Bernstein, L.A.; Becker, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others
1996-12-31
The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.
Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves
DEFF Research Database (Denmark)
Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.
2009-01-01
The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...... of the edge region of tokamaks is presented in this paper. The continuum GAM modes with coupling to the drift waves can create discrete "global" unstable eigenmodes localized in the edge "pedestal" region of the plasma. Multiple resonantly driven unstable radial eigenmodes can coexist on the edge pedestal....
Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma
International Nuclear Information System (INIS)
Shukla, P.K.; Stenflo, L.
2002-01-01
The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
Transverse instability excited by rf deflecting modes for PEP
International Nuclear Information System (INIS)
Chao, A.W.; Yao, C.Y.
1979-11-01
We have looked at the possible transverse instability effects which are caused by the deflecting modes of the rf cavities in PEP. The results are obtained by applying the expression of the instability damping rate. We have assumed that there equal bunches equally spaced in PEP. We have worked out the equivalent for a single bunch beam. The effect of chromaticity ξ is included as a frequency shift in the bunch mode spectra. We rewrite this result in terms of the transverse wake field instead of the impedance. We include an application of the Sacherer formalism to the case of resistive wall. The resulting expression of the damping rate contains two terms. The first term corresponds to the effect of the short wake fields; it agrees with the result of the head-tail instability as derived by Sands. A numerical estimate of this resistive-wall head tail case for PEP is given. It re-confirms that the resistive wall instability is not a serious problem for PEP. The second term gives the effect of long wake fields and it agrees with the result of Courant and Sessler. 10 refs., 2 figs
van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.
2016-01-01
By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.
Excitation of Neutron Star f-mode in Low Mass X-ray Binaries
International Nuclear Information System (INIS)
Araujo, J C N de; Miranda, O D; Aguiar, O D
2006-01-01
Neutron Stars (NSs) present a host of pulsation modes. Only a few of them, however, is of relevance from the gravitational wave (GW) point of view. Among the various possible modes the pulsation energy is mostly stored in the f-mode in which the fluid parameters undergo the largest changes. An important question is how the pulsation modes are excited in NSs. Here we consider the excitation of the f-mode in the accreting NSs belonging to Low Mass X-ray Binaries (LMXBs), which may well be a recurrent source of GWs, since the NSs are continuously receiving matter from their companion stars. We also discuss the detectability of the GWs for the scenario considered here
International Nuclear Information System (INIS)
Kobayashi, Takanori; Yuki, Kenta; Matsuoka, Leo
2016-01-01
Using multireference configuration interaction (MRCI) calculations with single and double excitation levels, Davidson correction, and a spin-orbit (SO) effective core potential, we have developed a series of four low-lying electronic potential energy curves (PECs) for the pairs formed between a cesium atom (Cs) and a rare gas (Rg = He, Ne, Ar, Kr, and Xe). The results obtained at the MRCI level were compared with those generated at the SOCI level, which were recently reported by Blank et al. The shapes of the PECs were essentially the same when the same basis set was used. Based on this agreement, more precise PECs for Cs-Rg pairs were calculated using a larger basis set for Rg. (author)
Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes
International Nuclear Information System (INIS)
Sato, Koichi; Hinohara, Nobuo
2011-01-01
We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.
Energy Technology Data Exchange (ETDEWEB)
Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel
2009-05-07
Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.
Goldstone mode and pair-breaking excitations in atomic Fermi superfluids
Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.
2017-10-01
Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
Role of the low-lying isoscalar dipole modes in the polarization potential
International Nuclear Information System (INIS)
Bal'butsev, E.B.; Unzhakova, A.V.; Lanza, E.G.; Catania Univ.
1994-01-01
An analysis of the real and imaginary parts of the polarization potential in terms of the relative contributions of the single collective states for the 208 Pb + 208 Pb system has been done. The polarization potential has been calculated within the Feshbach formalism taking into account the collective states calculated with the Wigner function moments method. The contribution of the isoscalar giant dipole resonance states has been estimated being of the order of 10-20% of the total at relatively low incident energy. 14 refs., 4 figs., 1 tab
2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate
Tai, Po-Tse; Yu, Pyng; Tang, Jau
2010-08-01
In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.
A study of quasi-mode parametric excitations in lower-hybrid heating of tokamak plasmas
International Nuclear Information System (INIS)
Villalon, E.; Bers, A.
1980-01-01
A detailed linear and non-linear analysis of quasi-mode parametric excitations relevant to experiments in supplementary heating of tokamak plasmas is presented. The linear analysis includes the full ion-cyclotron harmonic quasi-mode spectrum. The non-linear analysis, considering depletion of the pump electric field, is applied to the recent Alcator A heating experiment. Because of the very different characteristics of a tokamak plasma near the wall (in the shadow of the limiter) and inside, the quasi-mode excitations are studied independently for the plasma edge and the main bulk of the plasma, and for two typical regimes in overall density, the low (peak in density, n 0 =1.5x10 14 cm -3 ) and high (n 0 =5x10 14 cm -3 ) density regimes. At the edge of the plasma and for the low-density regime, it is found that higher nsub(z)(nsub(z)=cksub(z)/ω) than those predicted by the linear theory are strongly excited. Inside the plasma, the excitation of higher wave numbers is also significant. These results indicate that a large amount of the RF-power may not penetrate to the plasma centre, but will rather be either Landau-damped on the electrons or mode-converted into thermal modes, close to the plasma edge. Moreover, for sufficiently high peaks in density, it is found that all the RF-power is mode-converted before reaching the plasma centre. Inside the plasma, the power density of the excited sideband fields is shown to be always very small in comparison with their excitation at the plasma edge. (author)
Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei
International Nuclear Information System (INIS)
Toke, J.
2012-01-01
Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization
Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms
International Nuclear Information System (INIS)
Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.
1985-01-01
A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible
Jaber, Nizar
2016-01-06
© 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler-Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.
Erratum to: Quadrupole moments of low-lying baryons with spin ...
Indian Academy of Sciences (India)
physics pp. 1083. Erratum to: Quadrupole moments of low-lying baryons with spin-. 1. 2. +. , spin-. 3. 2. +. , and spin-. 3. 2. +. → 1. 2. + transitions. NEETIKA SHARMA and HARLEEN DAHIYA. ∗. Department of Physics, Dr. B.R. Ambedkar National Institute of Technology,. Jalandhar 144 011, India. ∗. Corresponding author.
More evidence of localization in the low-lying Dirac spectrum
Bernard, C; Gottlieb, Steven; Levkova, L.; Heller, U.M.; Hetrick, J.E.; Jahn, O.; Maresca, F.; Renner, Dru Bryant; Toussaint, D.; Sugar, R.; Forcrand, Ph. de; Gottlieb, Steven
2006-01-01
We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.
Going, Going, Gone: The Fate of Low-Lying Islands and Estuaries
Cairns, John
2009-01-01
Garrett Hardin s lifeboat metaphor is used to illustrate the problems of overpopulation and finite resources. Sea levels are rising due to excess atmospheric greenhouse gases that melt glaciers and warm the oceans. With anthropogenic greenhouse gas emissions continuing to increase, humankind has placed human culture and individuals at serious risk. Rising sea levels will soon make some low-lying islands uninhabitable.
A collective model description of the low lying and giant dipole resonant properties of 40424446Ca
International Nuclear Information System (INIS)
Weise, J.I.
1982-01-01
The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model
2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate
International Nuclear Information System (INIS)
Tai, Po-Tse; Yu, Pyng; Tang, Jau
2010-01-01
Graphical abstract: Modeling the lattice dynamics of a triangular plate with the arrows indicating the direction of impulsive thermal stress. We investigated ultrafast structural dynamics of triangular nanoplates based on 2-D Fermi-Pasta-Ulam model to explain coherent acoustic phonon excitation in nanoprisms. - Abstract: In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.
Resonance Excitation of Longitudinal High Order Modes in Project X Linac
Energy Technology Data Exchange (ETDEWEB)
Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab
2012-05-01
Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.
Resonance Excitation of Longitudinal High Order Modes in Project X Linac
International Nuclear Information System (INIS)
Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.
2012-01-01
Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.
Parametric excitation of the J=2+ modes by zero sound in superfluid 3He-B
International Nuclear Information System (INIS)
Sauls, J.A.; McKenzie, R.H.
1991-01-01
We discuss order-parameter collective modes in weakly inhomogeneous states of superfluid 3 He-B, i.e., states in which the scale of the inhomogeneities is considerably longer than the coherence length ξ 0 =v t /2πTc and the energy associated with the inhomogeneity is small compared to the condensation energy. The theory describes resonance phenomena between order-parameter modes and zero sound. We discuss two specific cases, both of which involve excitation of the J=2 + modes via a parametric field that lifts the selection rule due to particle-hole symmetry. In the case of a static superflow the modes with J=2 + , M=±1 couple to sound for qparallelH, and should be observable as Zeeman states with a maximum absorption that scales as the square of the superflow velocity. The J=2 + modes may also be excited parametrically in a three-wave resonance process involving two zero-sound phonons. We summarize the nonlinear response theory for two-phonon excitation of these modes. (orig.)
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
Energy Technology Data Exchange (ETDEWEB)
Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu [Astronomy Department, University of California, Berkeley, CA 94720 (United States)
2017-02-01
We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.
Warren, Gary
1988-01-01
The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.
International Nuclear Information System (INIS)
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-01-01
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power
Ren, Baiyang; Lissenden, Cliff J.
2018-04-01
Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.
Discrete excitation of mode pulses using a diode-pumped solid-state digital laser
CSIR Research Space (South Africa)
Ngcobo, Sandile
2016-02-01
Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...
ZONES OF STEADY CAPACITOR EXCITATION IN A MODE OF GENERATION OF TYPICAL ASYNCHRONOUS MACHINES
Directory of Open Access Journals (Sweden)
Postoronca Sv.
2009-12-01
Full Text Available In work some features of a mode of capacitor excitation of industrial asynchronous electric motors, and also generators made on their base which can be used in wind installations of low power are considered. Borders of zones of steady capacitor excitation of asynchronous electric motors in rated power of 0,25-22,0 kW and generators made on their base, and also character of influence of own losses and active capacity of loading of the equivalent circuit of the asynchronous machine resulted in parameters have been determined. Some recommendations after maintenance of stability of capacitor excitation of asynchronous machines for work in a mode of generation of electric energy are given.
Scissors and unique-parity modes of M1 excitation in deformed nuclei
International Nuclear Information System (INIS)
Otsuka, T.
1989-01-01
In this paper the possible modes of M1 excitation in deformed even-even nuclei are studied in terms of the particle-number-conserved Nilsson + BCS formalism with the standard parameters. The spurious motion with respect to the rotation is removed. In addition to the Scissors mode, the Unique-Parity Spin and Normal-Parity Spin modes are suggested, although the latter may be fragmented to a large extent. The Scissors mode carries most of the orbital strength, while the others the spin strength. The proton Unique-Parity (i.e. Oh 11/12 ) Spin mode for 164 Dy is obtained just below Ex = 3 MeV with B(M1) ∼ 0.2 μ 2 N ) in the sum rule limit. This is in a good agreement to the recent experimental data
E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state
Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.
2017-05-01
The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.
E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.
Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M
2017-05-26
The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.
Vibration mode and vibration shape under excitation of a three phase model transformer core
Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi
2018-04-01
Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.
Search for low-lying opposite parity states from a simple perspective
International Nuclear Information System (INIS)
Hernandez de la Pena, L.; Hess, P.O.; Levai, G.
2003-01-01
The low-lying spectrum of many light nuclei can be described reasonably well by assigning SU(3) quantum numbers to the states. When one focuses on basic properties of nuclei in a wide mass range, however, simplified models with fewer parameters (and thus with less arbitrary nature) can be useful. The agreement to available experimental data was found to be reasonable, expect when the nucleus is near a shell closure and has small deformation. (R.P.)
Calculations of energy levels and lifetimes of low-lying states of barium and radium
International Nuclear Information System (INIS)
Dzuba, V. A.; Ginges, J. S. M.
2006-01-01
We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations
Portnov, Alexander; Epshtein, Michael; Bar, Ilana
2017-06-01
Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.
Sutherland, B. R.
2016-02-01
It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.
International Nuclear Information System (INIS)
Artz, B.E.; Short, M.A.
1976-01-01
A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix
Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate
International Nuclear Information System (INIS)
Ma Yongli; Huang, Guoxiang; Hu Bambi
2005-01-01
We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC
Electron bunch train excited higher-order modes in a superconducting RF cavity
Gao, Yong-Feng; Huang, Sen-Lin; Wang, Fang; Feng, Li-Wen; Zhuang, De-Hao; Lin, Lin; Zhu, Feng; Hao, Jian-Kui; Quan, Sheng-Wen; Liu, Ke-Xin
2017-04-01
Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effective and convenient in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including a theoretical model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University. Supported by National Natural Science Foundation of China (11275014)
Lin, Ya-Li; Gong, Ling-Li; Che, Kai-Jun; Li, Sen-Sen; Chu, Cheng-Xu; Cai, Zhi-Ping; Yang, Chaoyong James; Chen, Lu-Jian
2017-05-01
We examined the end-pumped lasing behaviors of dye doped cholesteric liquid crystal (DDCLC) microshells which were fabricated by glass capillary microfluidics. Several kinds of mode resonances, including distributed feedback, Fabry-Pérot (FP), and whispering gallery (WG) modes, can be robustly constructed in each individual DDCLC microshell by varying the beam diameter, namely, tuning the DDCLC gain area. The FP and WG modes were further confirmed experimentally, and the corresponding lasing mechanisms are clearly revealed from the unique material characteristics of DDCLC and the geometrical structure of the microshell. Additionally, we demonstrated that the osmotic pressure can be used to shrink/expand the microshell, productively tuning the excitation of lasing modes in a controlled manner. We wish our findings can provide a new insight into the design of DDCLC microlasers with tunable optical properties.
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
International Nuclear Information System (INIS)
Stenzel, R. L.; Urrutia, J. M.
2016-01-01
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2016-08-15
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.
Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons
Kang, Eunji E.; Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2012-10-01
Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg2 + and K+ of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).
Numerical study of the quasinormal mode excitation of Kerr black holes
International Nuclear Information System (INIS)
Dorband, Ernst Nils; Diener, Peter; Tiglio, Manuel; Berti, Emanuele; Schnetter, Erik
2006-01-01
We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multiblock code which naturally allows for adapted grids and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The detection of a single mode in a ringdown waveform allows for a measurement of the mass and spin of a black hole; a multimode detection would allow a test of the Kerr nature of the source. Since the possibility of a multimode detection depends on the relative mode amplitude, we study this topic in some detail. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode, and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. For rapidly rotating black holes (of spin j=0.98) we can extract the quasinormal frequencies of not only the fundamental mode, but also of the first two overtones. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our
Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing
2005-01-01
Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths....... The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering....
Phase space interrogation of the empirical response modes for seismically excited structures
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Lifetimes of low-lying states in 132Nd and 134Nd
International Nuclear Information System (INIS)
Kruecken, R.; Mullins, S.M.; Thornley, D.J.; Kirwan, A.J.; Nolan, P.J.; Regan, P.H.; Wadsworth, R.
1995-01-01
Lifetimes of low-lying states have been measured in 132 Nd and 134 Nd using the coincidence-plunger technique. The reaction 32 S+ 105 Pd was used at a bombarding energy of 152 MeV. The measurement has been performed at the NSF Daresbury using the ESSA 30 array. The differential decay-curve method (DDCM) was used to analyze the recoil-distance Doppler-shift (RDDS) data. The experimental B(E2) values in 132 Nd are well described by the predictions of the rotational model and the IBM in the O(6) limit. ((orig.))
Low-lying 1/2-hidden strange pentaquark states in the constituent quark model
Institute of Scientific and Technical Information of China (English)
Hui Li; Zong-Xiu Wu; Chun-Sheng An; Hong Chen
2017-01-01
We investigate the spectrum of the low-lying 1/2-hidden strange pentaquark states,employing the constituent quark model,and looking at two ways within that model of mediating the hyperfine interaction between quarks-Goldstone boson exchange and one gluon exchange.Numerical results show that the lowest 1/2-hidden strange pentaquark state in the Goldstone boson exchange model lies at ～ 1570 MeV,so this pentaquark configuration may form a notable component in S11(1535) if the Goldstone boson exchange model is applied.This is consistent with the prediction that S11 (1535) couples very strongly to strangeness channels.
Semirelativistic potential model for low-lying three-gluon glueballs
International Nuclear Information System (INIS)
Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard
2006-01-01
The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J PC states are computed and compared with recent lattice calculations. A good agreement is found for 1 -- and 3 -- states, but our model predicts a 2 -- state much higher in energy than the lattice result. The 0 -+ mass is also computed
Is there a low-lying 1{sup −} state in {sup 10}He?
Energy Technology Data Exchange (ETDEWEB)
Chulkov, L.V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Aumann, T. [Institut für Kernphysik, Technische Universität, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany); Jonson, B., E-mail: Bjorn.Jonson@chalmers.se [Fundamental Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg (Sweden); Nilsson, T. [Fundamental Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg (Sweden); Simon, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH/ExtreMe Matter Institute, EMMI, D-64291 Darmstadt (Germany)
2013-03-26
In a recent paper by S.I. Sidorchuk et al., Phys. Rev. Lett. 108 (2012) 202502, angular correlations in the decay of {sup 10}He were interpreted as a coherent superposition of a 0{sup +}, 1{sup −} and 2{sup +} states. It was concluded that it is the 1{sup −} state that dominates in the energy region 4.5–6 MeV. It is here demonstrated here that the experimental data might be understood without assuming the presence of a low-lying 1{sup −} state.
Low-lying eigenmodes of the Wilson-Dirac operator and correlations with topological objects
International Nuclear Information System (INIS)
Kusterer, Daniel-Jens; Hedditch, John; Kamleh, Waseem; Leinweber, D.B.; Williams, Anthony G.
2002-01-01
The probability density of low-lying eigenvectors of the hermitian Wilson-Dirac operator H(κ)=γ 5 D W (κ) is examined. Comparisons in position and size between eigenvectors, topological charge and action density are made. We do this for standard Monte-Carlo generated SU(3) background fields and for single instanton background fields. Both hot and cooled SU(3) background fields are considered. An instanton model is fitted to eigenmodes and topological charge density and the sizes and positions of these are compared
Low-lying S-wave and P-wave dibaryons in a nodal structure analysis
International Nuclear Information System (INIS)
Liu Yuxin; Li Jingsheng; Bao Chengguang
2003-01-01
The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons
Elementary excitations and quasi-two-dimensional behaviour in a GaAs field effect transistor
International Nuclear Information System (INIS)
Tomak, M.; Sernelius, B.E.; Berggren, K.F.
1983-09-01
The elementary excitation modes in a narrow channel of conducting electrons in a special GaAs FET are evaluated within the RPA-approximation. The system is found to be quasi-two-dimensional when the width of the channel is small, i.e. there are collective excitations with a dispersion very close to the strictly 2D form. In addition to the low-lying quasi-2D-mode there are higher collective modes associated with the sub-band structure of the device. (author)
Directory of Open Access Journals (Sweden)
V. S. Malyar
2017-08-01
Full Text Available Purpose. Development of a mathematical model that enables to detect resonance modes during asynchronous startup of salient-pole synchronous motors, in which capacitors are switched on to increase the electromagnetic moment in the circuit of the excitation winding. Methodology. The asynchronous mode is described by a system of differential equations of the electric equilibrium of motor circuits written in orthogonal coordinate axes. The basis of the developed algorithm is the mathematical model of the high-level adequacy motor and the projection method for solving the boundary value problem for the equations of the electric equilibrium of the circuits written in orthogonal coordinate axes, taking into account the presence of capacitors in the excitation winding. The coefficients of differential equations are the differential inductances of the motor circuits, which are determined on the basis of the calculation of its magnetic circuit. As a result of the asymmetry of the rotor windings in the asynchronous mode, the current coupling and currents change according to the periodic law. The problem of its definition is solved as a boundary one. Results. A mathematical model for studying the asynchronous characteristics of synchronous motors with capacitors in an excitation winding is developed, by means of which it is possible to investigate the influence of the size of the capacity on the motor's starting properties and the resonance processes which may arise in this case. Scientific novelty. The developed method of mathematical modeling is based on a fundamentally new mathematical basis for the calculation of stationary dynamic modes of nonlinear electromagnetic circuits, which enables to obtain periodic coordinate dependencies, without resorting to the calculation of the transients. The basis of the developed algorithm is based on the approximation of state variables by cubic splines, the projection method of decomposition for the boundary value
Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode
International Nuclear Information System (INIS)
Braginskiy, O V; Vasilieva, A N; Klopovskiy, K S; Kovalev, A S; Lopaev, D V; Proshina, O V; Rakhimova, T V; Rakhimov, A T
2005-01-01
The production and transport dynamics of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms has been studied in an O 2 flow excited by a 13.56 MHz RF discharge in a quartz tube at pressures of 1-20 Torr. It has been shown that the densities of O 2 (a 1 Δ g ) and O( 3 P) are saturated with increasing energy input into the discharge. The maximum yield of singlet oxygen (SO) and the O 2 dissociation degree drops with pressure. It is demonstrated that depending on the energy input the RF discharge can exist in three modes: I-in the spatially homogeneous mode or α-mode; III-in the substantially inhomogeneous mode, when plasma jets are present outside the discharge; and II-in the transient mode between modes I and III. In this paper only the homogeneous mode of RF discharge in the O 2 flow is considered in detail. A self-consistent model of the α-mode is developed, that allows us to analyse elementary processes responsible for the production and loss of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms in detail. To verify both the kinetic scheme of the model and the conclusions, some experiments have been carried out at lower flow velocities and higher pressures (≥10 Torr), when the stationary densities of O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ) and O( 3 P) in the discharge area were established not by the escape of particles but by the losses due to the volumetric and surface reactions. The O 2 (b 1 Σ g + ) density under these conditions is determined by the balance of O 2 (b 1 Σ g + ) production by both direct electron impact and electronic excitation transfer from metastable O( 1 D) atoms and deactivation by oxygen atoms and tube walls, including quenching by ozone in the afterglow. The O( 3 P) density is determined by the balance between the production through O 2 dissociation by electron impact and heterogeneous loss at the wall recombination. The stationary density of O 2 (a 1 Δ g ) is provided by the processes of O
Anda, André; De Vico, Luca; Hansen, Thorsten
2017-06-08
Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.
Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.
Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2015-11-10
A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57 pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56 pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.
Directory of Open Access Journals (Sweden)
Fuhong Min
2016-08-01
Full Text Available The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.
Multi-mode excitation of a clamped–clamped microbeam resonator
Younis, Mohammad I.
2015-02-18
We present modeling and simulation of the nonlinear dynamics of a microresonator subjected to two-source electrostatic excitation. The resonator is composed of a clamped–clamped beam excited by a DC voltage load superimposed to two AC voltage loads of different frequencies. One frequency is tuned close to the first natural frequency of the beam and the other is close to the third (second symmetric) natural frequency. A multi-mode Galerkin procedure is applied to extract a reduced-order model, which forms the basis of the numerical simulations. Time history response, Poincare’ sections, Fast Fourier Transforms FFT, and bifurcation diagrams are used to reveal the dynamics of the system. The results indicate complex nonlinear phenomena, which include quasiperiodic motion, torus bifurcations, and modulated chaotic attractors.
Energy Technology Data Exchange (ETDEWEB)
Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya; Wang, Enrong [School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, 210042 (China)
2016-08-15
The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.
Near-field interference for the unidirectional excitation of electromagnetic guided modes.
Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V
2013-04-19
Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.
Energy Technology Data Exchange (ETDEWEB)
Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The energy exchange between a plasma and a source of excitation J(r)sin(w{sub 0}t) is investigated. In order to include the case of growing waves associated with connective instabilities, this problem is treated in the context of the wave-packet theory, by writing the field as a double integral in two complex planes. the paths of the integration are defined after a separation into two classes of the root k(w) of the dispersion equation. We find that - at even in the absence of collisions - there is still a power exchange exchange, due to the spatial dispersion. Thus a connexion can be established with the kinematic theories of growing waves [1][2] and the modes generating power can be found. Moreover, the power dissipated by spatial dispersion is found to be critical with that due to Landau's effect for long waves. This confirms the kinematic character of the latter and bridges a gap between macroscopic and microscopic theories. (author) [French] On etudie les echanges d'energie entre un plasma et une source d'excitation J(r)sin(w{sub 0}t). Pour inclure le cas des ondes croissantes associees aux instabilites convectives, on traite ce probleme dans le cadre de la theorie du paquet d'ondes en definissant le champ par une integrale double dans deux plans complexes; les parcours d'integration sont precises apres avoir separe en deux classes les racines k(w) de l'equation de dispersion. On trouve que meme en l'absence de collisions, la puissance echangee n'est pas nulle, a cause de la dispersion spatiale. Ceci permet d'etablir une connexion avec les theories cinematiques des ondes croissantes [1][2], tout en precisant quels sont les modes generateurs d'energie. Par ailleurs, la puissance dissipee par dispersion spatiale se revele identique a la dissipation par effet Landau pour les grandes ondes, ce qui confirme le caractere cinematique de ce dernier et fait la jonction entre les theories microscopique et macroscopique. (auteur)
Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch
2009-01-01
In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...
Sound-like collective mode excitation with pion absorption in nuclear matter
International Nuclear Information System (INIS)
Qiu Xijiun; Shen Jianguo; Huang Lingfang
1985-01-01
The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found
Resonant Coulomb excitation of atomic nuclei propagating through a crystal in the channeling mode
International Nuclear Information System (INIS)
Stepanov, A.V.
1996-01-01
The Coulomb-excitation total cross section and the distribution of decay products originating from a resonant state of a nucleus interacting with a crystal lattice has been calculated for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). These observables have been expressed in terms of time-dependent correlators which describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus propagating across a crystal target in the channelling mode. An expression generalizing the spectrum of equivalent photons calculated by the Weizsaecker-Williams method is given
Low-lying collective quadrupole and octupole strengths in even-even nuclei
International Nuclear Information System (INIS)
Raman, S.; Nestor, C.W. Jr.; Kahane, S.; Bhatt, K.H.
1991-01-01
The B(E2)↑ values for the first 2 + state of even-even nuclei in the Z≥50 region are compared with the predictions of several theoretical models. Comparative estimates of the overall agreement with the data are provided. Gaps and discrepancies in the data and examples that show interesting features such as shape changes are discussed. The B(E2)↑ values are examined critically to search for the dynamical Pauli effects predicted by the fermion dynamic symmetry model. The empirical B(E2)↑ and B(E3)↑ systematics are employed to obtain a measure of the harmonicity of the quadrupole and octupole vibrations. The fraction of the energy-weighted sum-rule strength exhausted by the sum of all known low-lying 2 + states below 2.3 MeV is found to be surprisingly constant in the 60< A<250 region except near closed shells
Low-lying intruder state of the unbound nucleus {sup 13}Be
Energy Technology Data Exchange (ETDEWEB)
Kondo, Y., E-mail: kondo@phys.titech.ac.j [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Nakamura, T.; Satou, Y. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Matsumoto, T.; Aoi, N. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Endo, N. [Department of Physics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Fukuda, N.; Gomi, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, Y. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Ishihara, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawai, S. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Kitayama, M.; Kobayashi, T.; Matsuda, Y. [Department of Physics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Matsui, N. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Motobayashi, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakabayashi, T.; Okumura, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 (Japan); Ong, H.J.; Onishi, T.K. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)
2010-06-21
An experimental study for the unbound nucleus {sup 13}Be has been performed by means of the invariant mass method via the one-neutron removal reaction {sup 1}H({sup 14}Be,{sup 12}Be+n). A resonance has been observed at 0.51(1) MeV in the relative energy (E{sub rel}) spectrum of the {sup 12}Be+n system. The transverse momentum distribution of the {sup 12}Be+n system as well as the resonance width of 0.45(3) MeV gives evidence for the p-wave nature of the resonance. A d-wave resonance has also been observed at 2.39(5) MeV in the E{sub rel} spectrum. The observation of the low-lying p-wave resonance indicates the disappearance of the N=8 magicity in the vicinity of the neutron drip line region.
Low-lying 1/2- hidden strange pentaquark states in the constituent quark model
Li, Hui; Wu, Zong-Xiu; An, Chun-Sheng; Chen, Hong
2017-12-01
We investigate the spectrum of the low-lying 1/2- hidden strange pentaquark states, employing the constituent quark model, and looking at two ways within that model of mediating the hyperfine interaction between quarks - Goldstone boson exchange and one gluon exchange. Numerical results show that the lowest 1/2- hidden strange pentaquark state in the Goldstone boson exchange model lies at ˜1570 MeV, so this pentaquark configuration may form a notable component in S 11(1535) if the Goldstone boson exchange model is applied. This is consistent with the prediction that S 11(1535) couples very strongly to strangeness channels. Supported by National Natural Science Foundation of China (11675131, 11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
Identification of low-lying proton-based intruder states in 189-193Pb
International Nuclear Information System (INIS)
Vel, K. van de; Andreyev, A.N.; Huyse, M.; Duppen, P. van; Cocks, J.F.C.; Dorvaux, O.; Greenlees, P.T.; Helariutta, K.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.; Eskola, K.; Wyss, R.
2002-01-01
Low-lying proton-based intruder states have been observed in the odd-mass isotopes 189,191,193 Pb in experiments at the RITU gas-filled recoil separator. The identification has been performed by observing the fine structure in the α decay of the parent 193,195,197 Po nuclei in prompt coincidence with conversion electrons and γ rays in the daughter lead isotopes. Along with the literature data these results establish a systematics of intruder states in the odd-mass lead isotopes from 197 Pb down to 185 Pb. Interpretation of these states involves the coupling of the 1i 13/2 or 3p 3/2 odd neutron to the 0 + state in the oblate minimum in the even-mass lead core. Conversion coefficients have been determined for some of the transitions, revealing mixing between the coexisting states. The experimental results are compared to potential energy surface calculations
Three-body hadronic structure of low-lying 1/2+ Σ and Λ resonances
International Nuclear Information System (INIS)
Martinez Torres, A.; Khemchandani, K.P.; Oset, E.
2008-01-01
We discuss the dynamical generation of some low-lying 1/2 + Σ's and Λ's in two-meson one-baryon systems. These systems have been constructed by adding a pion in the S-wave to the anti KN pair and its coupled channels, where the 1/2 - Λ(1405)-resonance gets dynamically generated. We solve Faddeev equations in the coupled-channel approach to calculate the T-matrix for these systems as a function of the total energy and the invariant mass of one of the meson-baryon pairs. This squared T-matrix shows peaks at the energies very close to the masses of the strangeness -1,1/2 + resonances listed in the particle data book. (orig.)
Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma
Bezbaruah, P.; Das, N.
2018-05-01
The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)
2017-06-15
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran; Murchikova, Elena
2017-01-01
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
Directory of Open Access Journals (Sweden)
Tigran Kalaydzhyan
2017-06-01
Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators
International Nuclear Information System (INIS)
Pastells, Carme; Marco, M.-Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Lunelli, Lorenzo; Pederzolli, Cecilia; Daldosso, Nicola; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Quercioli, Franco; Nunzi Conti, Gualtiero; Soria, Silvia
2016-01-01
We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.
Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators
Energy Technology Data Exchange (ETDEWEB)
Pastells, Carme; Marco, M.-Pilar [Nanobiotechnology for Diagnostics Group (Nb4Dg), IQAC-CSIC, 08034 Barcelona (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, 08034 Barcelona (Spain); Merino, David; Loza-Alvarez, Pablo [ICFO-Institut de Ciències Fotòniques, Castelldefels, 08860 Barcelona (Spain); Pasquardini, Laura [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Lunelli, Lorenzo [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); IBF-CNR, 38123 Povo, TN (Italy); Pederzolli, Cecilia [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Daldosso, Nicola [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy); Farnesi, Daniele [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Berneschi, Simone [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Righini, Giancarlo C. [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Quercioli, Franco [CNR-INO National Institute of Optics, Sesto Fiorentino, FI (Italy); Nunzi Conti, Gualtiero [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Soria, Silvia, E-mail: s.soria@ifac.cnr.it [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy)
2016-02-15
We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.
Yb3+,Er3+,Eu3+-codoped YVO4 material for bioimaging with dual mode excitation
International Nuclear Information System (INIS)
Thao, Chu Thi Bich; Huy, Bui The; Sharipov, Mirkomil; Kim, Jin-Ik.; Dao, Van-Duong; Moon, Ja-Young; Lee, Yong-Ill
2017-01-01
We propose an efficient bioimaging strategy using Yb 3+ ,Er 3+ ,Eu 3+ -triplet doped YVO 4 nanoparticles which were synthesized with polymer as a template. The obtained particles possess nanoscale, uniform, and flexible excitation. The effect of Eu 3+ ions on the luminescence properties of YVO 4 :Yb 3+ ,Er 3+ ,Eu 3+ was investigated. The upconversion mechanism of the prepared material was also discussed. The structure and optical properties of the prepared material were characterized by using X-ray diffraction (XRD), Fourier-transform IR spectroscopy (FTIR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) upconversion and photoluminescence spectra. The Commission International de I′Eclairage (CIE) chromaticity coordinates was investigated to confirm the performance of color luminescent emission. The prepared YVO 4 :Yb 3+ ,Er 3+ ,Eu 3+ nanoparticles could be easily dispersed in water by surface modification with cysteine (Cys) and glutathione (GSH). The aqueous dispersion of the modified YVO 4 :Yb 3+ ,Er 3+ ,Eu 3+ exhibits bright upconversion and downconversion luminescence and has been applied for bioimaging of HeLa cells. Our developed material with dual excitation offers a promising advance in bioimaging. - Highlights: • Prepared particles possess nanoscale size, uniform, and larger scale. • The material exhibits strong emission under dual mode excitations. • The surface material has been applied for bioimaging of HeLa cell. • Low cytotoxicity, no auto-fluorescence
Energy Technology Data Exchange (ETDEWEB)
Motobayashi, Kenta, E-mail: kmotobayashi@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Kim, Yousoo [Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Arafune, Ryuichi [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Ohara, Michiaki; Ueba, Hiromu; Kawai, Maki, E-mail: maki@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan)
2014-05-21
We present a novel reaction mechanism for a single adsorbed molecule that proceeds via simultaneous excitation of two different vibrational modes excited by inelastic tunneling electrons from a scanning tunneling microscope. Specifically, we analyze the dissociation of a single dimethyl disulfide (DMDS, (CH{sub 3}S){sub 2}) molecule on Cu(111) by using a versatile theoretical method, which permits us to simulate reaction rates as a function of sample bias voltage. The reaction is induced by the excitation of C-H stretch and S-S stretch modes by a two-electron process at low positive bias voltages. However, at increased voltages, the dissociation becomes a single-electron process that excites a combination mode of these stretches, where excitation of the C-H stretch is the energy source and excitation of the S-S stretch mode enhances the anharmonic coupling rate. A much smaller dissociation yield (few orders of magnitude) at negative bias voltages is understood in terms of the projected density of states of a single DMDS on Cu(111), which reflects resonant excitation through the molecular orbitals.
International Nuclear Information System (INIS)
Kumar, Shailesh; Lausen, Jens L; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Bozhevolnyi, Sergey I; Garcia-Ortiz, Cesar E; Smith, Cameron L C; Kristensen, Anders
2016-01-01
Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes. (paper)
Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.
2016-02-01
Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.
Accretion-induced quasinormal mode excitation of a Schwarzschild black hole
International Nuclear Information System (INIS)
Nagar, Alessandro; Zanotti, Olindo; Font, Jose A.; Rezzolla, Luciano
2007-01-01
By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a simple superposition of quasinormal modes, although the fundamental mode is usually present and often dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving the accretion of extended distributions of matter
Excitation of contained modes by high energy nuclei and correlated cyclotron emission
International Nuclear Information System (INIS)
Coppi, B.; Penn, G.; Riconda, C.
1997-01-01
In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete
Properties study of LiNbO3 lateral field excited device working on thickness extension mode
International Nuclear Information System (INIS)
Zhi-Tian, Zhang; Ting-Feng, Ma; Chao, Zhang; Wen-Yan, Wang; Yan, Liu; Guan-Ping, Feng
2010-01-01
This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO 3 by using the extended Christoffel–Bechmann method. It finds that the lateral field excitation coupling factor for a-mode (quasi-extensional mode) reaches its maximum value of 28% on X-cut LiNbO 3 . The characteristics of a lateral field excitation device made of X-cut LiNbO 3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO 3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz–Leedom–Matthae model and tested using traditional pulse/echo method. A LiNbO 3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the −6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz–Leedom–Matthae model. Further analysis suggests that the LiNbO 3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Bell, T.F.; Ngo, H.D.
1990-01-01
Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength
Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries
International Nuclear Information System (INIS)
Chirenti, Cecilia; Gold, Roman; Miller, M. Coleman
2017-01-01
As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tens per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.
Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries
Energy Technology Data Exchange (ETDEWEB)
Chirenti, Cecilia [Centro de Matemática, Computação e Cognição, UFABC, 09210-170 Santo André-SP (Brazil); Gold, Roman [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States)
2017-03-01
As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tens per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.
Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane
DEFF Research Database (Denmark)
Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng
. Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors....... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...
Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei
Broglia, R A; Idini, A; Barranco, F; Vigezzi, E
2015-01-01
Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus $^7$Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed $d \\sigma(^7$Li(t,p)$^9$Li)/d$\\Omega$.
Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina
Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.
2010-01-01
Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.
Low-lying baryon spectrum with two dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Cyprus Institute, Nicosia (Cyprus); Baron, R.; Guichon, P. [CEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Carbonell, J.; Drach, V. [UJF/CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et Cosmologie; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Korzec, T. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique
2009-10-15
The masses of the low lying baryons are evaluated using two degenerate flavors of twisted mass sea quarks corresponding to pseudo scalar masses in the range of about 270 MeV to 500 MeV. The strange valence quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik improved gauge action is employed. We use lattices of spatial size 2.1 fm and 2.7 fm at two values of the lattice spacing with r{sub 0}/a=5.22(2) and r{sub 0}/a=6.61(3). We check for both finite volume and cut-off effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and decuplet masses using SU(2) {chi}PT. The lattice spacings determined using the nucleon mass at the physical point are consistent with the values extracted using the pion decay constant. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon masses that we find after taking the continuum limit and extrapolating to the physical limit are in good agreement with experiment. (orig.)
Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-07-15
Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental
Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity
International Nuclear Information System (INIS)
Stenzel, R. L.; Urrutia, J. M.
2015-01-01
Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of
International Nuclear Information System (INIS)
Parkin, E. R.; Bicknell, G. V.
2013-01-01
Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions—perhaps triggered by the onset of turbulence—upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure P >bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).
Theoretical study of the low lying states of AmO{sub 2}{sup n+}, n = 1, 2, 3
Energy Technology Data Exchange (ETDEWEB)
Notter, F.P.; Dubillard, S.; Bolvin, H. [Institut de Chimie de Strasbourg, (France)
2007-07-01
the valence space and when possible, Fock-space coupled-cluster method. For each molecule, equilibrium distance is evaluated and the spectrum of low lying excited states is calculated. Furthermore, the results are discussed in terms of ligand field theory. References [1] R. G. Denning, T.R. Snellgrove, and D.R. Woodwark. Molec. Phys., 37, 1109, (1979); [2] Z. Zhang and R.M. Pitzer. J. Phys. Chem. A, 103, 6880, (1999); [3] S. Matsika and R.M. Pitzer. J. Phys. Chem. A, 105, 637, (2001); [4] C. Clavaguera-Sarrio, V. Vallet, D. Maynau, and C.J. Marsden. J. Chem. Phys., 123, 204309, (2005); [5] L. Gagliardi, B.O. Roos, P.A. Malmqvist, and J. M. Dyke. J. Phys. Chem. A, 105, 10602, (2001); [6] S. Matsika and R. M. Pitzer. J. Phys. Chem. A, 104, 4064, (2000); [7] L. Maron, T. Leininger, B. Schimmelpfennig, V. Vallet, J.L. Heully, C. Teichtel, O. Gropen, and U. Wahlgren. Chem. Phys., 244, 195, (1999); [8] C. Clavaguera-Sarrio, V. Vallet, D. Maynau, and C.J. Marsden. J. Chem. Phys., 121, 5312, (2004); [9] I. Invante, A. Severo Perera Gomes, and L. Visscher. J. Chem. Phys., 125, 074301, (2006)
Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing
2016-01-01
The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E1 and M1. The lifetime of transition (2)0+-X10+ is evaluated at the level of millisecond, much smaller than that of the transition (2)0+-X21.
Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.
Ikemura, Kenichiro; Mukai, Masahiro; Shimada, Hideo; Tsukihara, Tomitake; Yamaguchi, Satoru; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Ogura, Takashi
2008-11-05
The Raman excitation profile of the nuFe O mode of horseradish peroxidase compound II exhibits a maximum at 580 nm. This maximum is located within an absorption band with a shoulder assignable to an oxygen-to-iron charge transfer band on the longer wavelength side of the alpha-band. Resonance Raman bands of the nuFe O mode of various ferryl-oxo type hemoproteins measured at 590 nm excitation indicate that many hemoproteins in the ferryl-oxo state have an oxygen-to-iron charge transfer band in the visible region. Since this red-excited resonance Raman technique causes much less photochemical damage in the proteins relative to blue-excited resonance Raman spectroscopy, it produces a higher signal-to-noise ratio and thus represents a powerful tool for investigations of ferryl-oxo intermediates of hemoproteins.
Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.
2018-01-01
We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.
Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA
Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.
2016-05-01
Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.
Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei
Kobayashi, Yoshihiko; Matsuo, Masayuki
2015-01-01
We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...
Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong
2017-07-01
A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.
International Nuclear Information System (INIS)
Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana
2010-01-01
Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.
Directory of Open Access Journals (Sweden)
Yunpeng Wang
2017-11-01
Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.
International Nuclear Information System (INIS)
Sarswat, S.P.; Bharti, Arun; Khosa, S.K.
1996-01-01
The yrast spectra has been obtained in the variation-after-projection framework using pairing-plus-quadrupole- quadrupole model for the two body interaction. Besides the low-lying yrast spectra, the calculated values of intrinsic quadrupole moments of some of the barium isotopes i.e. 124-134 Ba are presented
Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Ram, B.; Kriss, V.
1985-01-01
Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia
Directory of Open Access Journals (Sweden)
Yingxiang Liu
2017-06-01
Full Text Available A novel exciting method for a sandwich type piezoelectric transducer operating in longitudinal-bending hybrid vibration modes is proposed and discussed, in which the piezoelectric elements for the excitations of the longitudinal and bending vibrations share the same axial location, but correspond to different partitions. Whole-piece type piezoelectric plates with three separated partitions are used, in which the center partitions generate the first longitudinal vibration, while the upper and lower partitions produce the second bending vibration. Detailed comparisons between the proposed exciting method and the traditional one were accomplished by finite element method (FEM calculations, which were further verified by experiments. Compared with the traditional exciting method using independent longitudinal ceramics and bending ceramics, the proposed method achieves higher electromechanical coupling factors and larger vibration amplitudes, especially for the bending vibration mode. This novel exciting method for longitudinal-bending hybrid vibrations has not changed the structural dimensions of the sandwich transducer, but markedly improves the mechanical output ability, which makes it very helpful and meaningful in designing new piezoelectric actuators operated in longitudinal-bending hybrid vibration modes.
International Nuclear Information System (INIS)
Goree, J.A.; Morfill, G.; Tsytovich, V.N.
1998-01-01
Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization
International Nuclear Information System (INIS)
Dorner, B.
1996-01-01
A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs
International Nuclear Information System (INIS)
Eremeev, Grigory; Geng, Rongli; Palczewski, Ari
2011-01-01
We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM 010 passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B peak = 173 mT, in 89 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities
An Overlook to Low-Lying 2+ States of Rare Earth Region Nuclei With QRPA Approach
International Nuclear Information System (INIS)
Ganioglu, E.
2008-01-01
As much as known about the nuclear wave function, as much as known about the nuclear structure. Beyond the mean field to get a better wave function it is a way to introduce correlations on top of the mean field solution by means of random phase approximation. Since QRPA is a useful tool for the collective excitations in this study we studied the first 2 + states by means of QRPA and we examine the limits of QRPA description of nuclear excitation in the rare earth region
Directory of Open Access Journals (Sweden)
Tzu-Chien Hsiao
2013-11-01
Full Text Available Excitation-emission matrix (EEM fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes.
Microscopic analysis of low-lying states in odd-A Tm isotopes
Czech Academy of Sciences Publication Activity Database
Alexa, P.; Hons, Zdeněk; Kvasil, J.
2009-01-01
Roč. 36, č. 4 (2009), 045103 /1-045103/16 ISSN 0954-3899 Institutional research plan: CEZ:AV0Z10480505 Keywords : RARE-EARTH * NUCLEI * EXCITATIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.124, year: 2009
Study of the anharmonic effects on low-lying states of odd-mass nuclei in 1g sub(9/2)+ shell region
International Nuclear Information System (INIS)
Nakano, Masahiro
1980-01-01
Anharmonic effects on the low-lying states of the odd-mass nuclei in 1g sub(9/2)sup(+) shell region are investigated by introduction of 1, 3, 5 and 7 quasiparticle modes. Special attention is paid to the energy-lowering of anomalous coupling states in N = 41 nuclei and to the spin sequence of so-called ''one-quasiparticle-two-phonon multiplet''. It is shown that one cannot attribute the special-lowering of the energies of the anomalous coupling (j - 2) states to the dynamical effects due to the coupling between the 3-quasiparticle mode and the 5-quasiparticle mode, and is also shown that not only the kinematical effect but also the dynamical effect plays an important role in the energy-lowering of the anomalous coupling (j - 1) states in N = 41 nuclei. The second (j - 2) state is predicted to be the lowest member of one-quasiparticle-two-phonon multiplet by taking account of the kinematical effect for the 5-quasiparticle mode, which corresponds to the experimental fact. (author)
Investigation of low-lying dipole strength in {sup 124}Sn
Energy Technology Data Exchange (ETDEWEB)
Symochko, D.; Aumann, T.; Duchene, M.; Knoerzer, M.; Pietralla, N.; Scheit, H. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Bhike, M.; Kelley, J.; Tornow, W. [Department for Physics, Duke University (United States); Derya, V.; Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Isaak, J.; Loeher, B.; Savran, D. [ExtreMe Matter Institute EMMI and Research Division, Darmstadt (Germany); Tonchev, A. [Lawrence Livermore National Laboratory (United States); Werner, V. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); WNSL, Yale University (United States)
2014-07-01
Dipole excitations in the semi-magic {sup 124}Sn nucleus were studied in (γ,γ') reactions using the γ{sup 3}-high-efficiency detector setup. The experiment was carried out with quasimonoenergetic photon beams provided by the HIγS facility at the TUNL in the energy range from 5.2 to 8.6 MeV at 15 different energies. Measurements allowed to identify near 80 new transitions to the ground state, obtain reduced transition probabilities and assign parity quantum numbers to the observed excited states. Besides, the γ-γ coincidence technique gave access to the γ-decay pattern of the Pygmy Dipole Resonance, e.g. it was possible to analyse the branching ratios to the first excited 2{sup +} state. Investigations were made as a part of the experimental campaign aimed to obtain a complete picture of dipole strength function evolution in Sn isotopes - from stable {sup 112}Sn to short-lived {sup 134}Sn.
Low-lying level structure of the neutron-rich nucleus {sup 109}Nb: A possible oblate-shape isomer
Energy Technology Data Exchange (ETDEWEB)
Watanabe, H., E-mail: hiroshi@ribf.riken.j [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Yamaguchi, K. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hinke, C. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Ideguchi, E. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2011-01-31
The neutron-rich nuclei {sup 109}Nb and {sup 109}Zr have been populated using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. A T{sub 1/2}=150(30) ns isomer at 313 keV has been identified in {sup 109}Nb for the first time. The low-lying levels in {sup 109}Nb have been also populated following the {beta}-decay of {sup 109}Zr. Based on the difference in feeding pattern between the isomeric and {beta} decays, the decay scheme from the isomeric state in {sup 109}Nb was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in {sup 109}Nb.
Seniority four admixures in the low-lying 0+ states of even-mass tin and lead nuclei
International Nuclear Information System (INIS)
Quesne, C.; Salmon, Y.; Spitz, S.
1977-01-01
New statistical measures of symmetry breaking are used to evaluate the total seniority four admixtures in the low-lying 0 + states of even-mass tin and lead nuclei. This approach is based on the centroid energies and partial widths of fixed total seniority and parity spectral distributions. Some seniority four states are found to be surprisingly low. However, the ground state is always a very pure seniority zero state
A low-lying long-lived (26±1 ms) isomer in $^{34}$Al has been observed recently and assigned as 1$^{+}$ state of intruder character. It was populated in $^{36}$S fragmentation and feeds, in $\\beta$-decay, the 0$_{2}^{+}$ state in $^{34}$Si whose excitation energy and lifetime were determined in an electron-positron pairs spectroscopy experiment. In the present experiment we intend to measure for the first time the $\\gamma$-rays following the $\\beta$-decay of $^{34}$Mg. Despite the interest for $^{34}$Mg, the up-right corner of the “N$\\thicksim$20 island of inversion”, the only information on its $\\beta$-decay is the lifetime of 20±10 ms, determined from $\\beta$-neutron coincidences. As a result of the proposed experiment, we expect to place the first transitions in the level scheme of $^{34}$Al and to strongly populate the newly observed isomer, measuring its excitation energy, if the branching ratio to 4$^{−}$ ground state is significant. Theoretical estimations for the $\\beta$-decay of the new isome...
Properties of the low-lying negative parity states in 45Sc
International Nuclear Information System (INIS)
Chevallier, J.; Haas, B.; Schulz, N.; Toulemonde, M.
1975-01-01
The electromagnetic decay of negative parity states in 45 Sc up to an excitation energy of 2107keV have been investigated via the 42 Ca(α,pγ) 45 Sc reaction at a bombarding energy of 10.5MeV. Spin and lifetime of the levels as well as branching and mixing ratios of their decay γ-rays have been obtained from proton-gamma angular correlation measurements. Calculations based on the strong coupling model have been performed. The results are compared with experiment [fr
Observation of a low-lying neutron-unbound state in 19C
International Nuclear Information System (INIS)
Thoennessen, M.; Mosby, S.; Badger, N.S.; Baumann, T.; Bazin, D.; Bennett, M.; Brown, J.; Christian, G.; DeYoung, P.A.; Finck, J.E.; Gardner, M.; Hook, E.A.; Luther, B.; Meyer, D.A.; Mosby, M.; Rogers, W.F.
2013-01-01
Proton removal reactions from a secondary 22 N beam were utilized to populate unbound states in neutron-rich carbon isotopes. Neutrons were measured with the Modular Neutron Array (MoNA) in coincidence with carbon fragments. A resonance with a decay energy of 76(14) keV was observed in the system 18 C+n corresponding to a state in 19 C at an excitation energy of 653(95) keV. This resonance could correspond to the first 5/2 + state which was recently speculated to be unbound in order to describe 1n and 2n removal cross section measurements from 20 C
Energetic ion excited long-lasting ``sword'' modes in tokamak plasmas with low magnetic shear
Wang, Xiaogang; Zhang, Ruibin; Deng, Wei; Liu, Yi
2013-10-01
An m/ n = 1 mode driven by trapped fast ions with a sword-shape envelope of long-lasting (for hundreds of milliseconds) magnetic perturbation signals, other than conventional fishbones, is studied in this paper. The mode is usually observed in low shear plasmas. Frequency and growth rate of the mode and its harmonics are calculated and in good agreements with observations. The radial mode structure is also obtained and compared with that of fishbones. It is found that due to fast ion driven the mode differs from magnetohydrodynamic long lived modes (LLMs) observed in MAST and NSTX. On the other hand, due to the feature of weak magnetic shear, the mode is also significantly different from fishbones. The nonlinear evolution of the mode and its comparison with fishbones are further investigated to analyze the effect of the mode on energetic particle transport and confinement.
Energy Technology Data Exchange (ETDEWEB)
Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)
2013-11-18
We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.
Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle
Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P.
2009-02-01
Wurtzite structural ZnO microneedles with hexagonal cross section were fabricated by vapor-phase transport method and an individual microneedle was employed as a lasing microcavity. Under excitation of a femtosecond pulse laser with 800 nm wavelength, the ultraviolet (UV) laser emission was obtained, which presented narrow linewidth and high Q value. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail. The results demonstrated that the UV laser originated from the whispering-gallery mode induced by two-photon absorption assisted by Rabi oscillation.
International Nuclear Information System (INIS)
Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.
1987-01-01
Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement
Murray, Eamonn; Fahy, Stephen
2014-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.
Search for low lying dipole strength in the neutron rich nucleus Ne{sup 26}
Energy Technology Data Exchange (ETDEWEB)
Gibelin, J
2005-11-15
We carried out the Coulomb excitation, on a lead target, of an exotic beam of neutron-rich nucleus Ne{sup 26} at 58 MeV/n, in order to study the possible existence of a pygmy dipole resonance above the neutron emission threshold. The experiment was performed at the Riken Research Facility, in Tokyo (Japan) and included a gamma-ray detector, a charged fragment hodoscope and a neutron detector. Using the invariant mass method in the Ne{sup 25} + n decay channel, and by comparing the reaction cross section on the lead target and a light target of aluminum, we observe a sizable amount of E1 strength between the one neutron and the two neutron emission thresholds. The corresponding Ne{sup 26} angular distribution confirms its nature and we deduce its reduced dipole transition probability value of B(E1) = 0.54 {+-} 0.18 e{sup 2}fm{sup 2}. Our method also enables us to extract for the first time the decay pattern of a pygmy resonance. By detecting the decay photons from the excited states below the neutron emission threshold and by analyzing the angular distribution of the inelastically scattered Ne{sup 26} we deduce the reduced transition probability of the first 2{sup +} state, from the ground state. The value obtained of B(E2) = 87 {+-} 13 e{sup 2}fm{sup 4} being in disagreement with a previous result. (author)
Energy Technology Data Exchange (ETDEWEB)
Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in [Department of Physics, National Institute of Technology Sikkim, Ravangla, Sikkim 737139 (India)
2015-12-15
We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.
Fayache, M. S.; Sharma, S. Shelley; Zamick, L.
1996-10-01
Shell model calculations are performed for magnetic dipole excitations in8Be and10Be, first with a quadrupole-quadrupole interaction (Q·Q) and then with a realistic interaction. The calculations are performed both in a 0pspace and in a large space which includes all 2ℏωexcitations. In the 0pwithQ·Qwe have an analytic expression for the energies of all states. In this limit we find that in10Be theL=1S=0 scissors mode with isospinT=1 is degenerate with that ofT=2. By projection from an intrinsic state we can obtain simple expressions forB(M1) to the scissors modes in8Be and10Be. We plot cumulative sums for energy-weighted isovector orbital transitions fromJ=0+ground states to the 1+excited states. These have the structure of a low-energy plateau and a steep rise to a high-energy plateau. The relative magnitudes of these plateaux are discussed. By comparing8Be and10Be we find that contrary to the behaviour in heavy deformed nuclei,B(M1)orbitalis not proportional toB(E2). On the other hand, a sum rule which relatesB(M1) to the difference (B(E2)isoscalar-B(E2)isovector) succeeds in describing the difference in behaviours in the two nuclei. The results forQ·Qand the realistic interactions are compared, as are the results in the 0pspace and the large (0p+2ℏω) space. The Wigner supermultiplet scheme is a very useful guide in analyzing the shell model results.
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Clinical use and evaluation of coded excitation in B-mode images
DEFF Research Database (Denmark)
Misaridis, Athanasios; Pedersen, M. H.; Jensen, Jørgen Arendt
2000-01-01
on a predistorted FM excitation and a mismatched compression filter designed for medical ultrasonic applications. The attenuation effect, analyzed in this paper using the ambiguity function and simulations, dictated the choice of the coded waveform. In this study clinical images, images of wire phantoms......Use of long encoded waveforms can be advantageous in ultrasound imaging, as long as the pulse compression mechanism ensures low range sidelobes and preserves both axial resolution and contrast. A coded excitation/compression scheme was previously presented by our group, which is based...... was programmed to allow alternating excitation on every second frame. That offers the possibility of direct comparison of the same set of image pairs; one with pulsed and one with encoded excitation. Abdominal clinical images from healthy volunteers were acquired and statistically analyzed by means of the auto...
Pionic modes of excitation in continuum from the (p,n) reaction
International Nuclear Information System (INIS)
Izumoto, T.; Ichimura, M.; Ko, C.M.; Siemens, P.J.; Texas A and M Univ., College Station
1982-01-01
The continuum spectra of the 90 Zr(p, n) reaction at Esub(p) = 200 MeV are studied in the DWBA up to high excitation hω(approx. <= 60 MeV) and large momentum transfer q(approx. <= 3 μsub(π)). The response function is obtained in a local-density approximation, taking into account p-h and Δ-h excitations and the short-range correlation g' between them. For small g' approx. <= 0.5, a broad bump due to the opalescence effect can be seen in the calculated cross section at rather low excitation and near q approx. equal to 2.2 μsub(π). However, for larger g', this effect is suppressed, and a broader bump in cross section is located at higher excitation. (orig.)
Chattopadhyay, Anjan
2011-08-01
Configuration interaction studies on MHe and MHe2 (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 12Π1/2, 3/2 states in MHe systems are found to be lower than the values of 12Πu (1/2, 3/2) states in the He-M-He systems by a margin of more than 200 cm-1, indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe2 (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm-1 in KHe and 19 cm-1 in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He2 exciplexes with relatively high radiative lifetimes. The repulsive excited state of 2Σ+1/2 (or 2Σ+g,1/2) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, which eventually may give rise to the np2P1/2 → ns2S1/2 lasing transition.
Energy Technology Data Exchange (ETDEWEB)
Chattopadhyay, Anjan, E-mail: anjan@bits-goa.ac.in, E-mail: anjan_chattopadhyay@yahoo.com [Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani -K.K. Birla Goa Campus, Goa, 403 726 (India)
2011-08-28
Configuration interaction studies on MHe and MHe{sub 2} (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 1{sup 2}{Pi}{sub 1/2,3/2} states in MHe systems are found to be lower than the values of 1{sup 2}{Pi}{sub u(1/2,3/2)} states in the He-M-He systems by a margin of more than 200 cm{sup -1}, indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe{sub 2} (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm{sup -1} in KHe and 19 cm{sup -1} in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He{sub 2} exciplexes with relatively high radiative lifetimes. The repulsive excited state of {sup 2}{Sigma}{sup +}{sub 1/2} (or {sup 2}{Sigma}{sup +}{sub g,1/2}) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns{sup 2}S{sub 1/2} {yields} np{sup 2}P{sub 3/2} transition, which eventually may give rise to the np{sup 2}P{sub 1/2} {yields} ns{sup 2}S{sub 1/2} lasing transition.
International Nuclear Information System (INIS)
Chattopadhyay, Anjan
2011-01-01
Configuration interaction studies on MHe and MHe 2 (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 1 2 Π 1/2,3/2 states in MHe systems are found to be lower than the values of 1 2 Π u(1/2,3/2) states in the He-M-He systems by a margin of more than 200 cm -1 , indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe 2 (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm -1 in KHe and 19 cm -1 in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He 2 exciplexes with relatively high radiative lifetimes. The repulsive excited state of 2 Σ + 1/2 (or 2 Σ + g,1/2 ) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns 2 S 1/2 → np 2 P 3/2 transition, which eventually may give rise to the np 2 P 1/2 → ns 2 S 1/2 lasing transition.
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
International Nuclear Information System (INIS)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-01-01
The low-lying dipole strength distributions of 40 CaCa and 48 Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle −2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle −1 hole nature and its transition densities.
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-01
The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
Study of the β- decay of 116m1In: A new interpretation of low-lying 0+ states in 116Sn
Pore, J. L.; Cross, D. S.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Diaz Varela, A.; Demand, G. A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Noakes, B.; Petrache, C. M.; Rajabali, M. M.; Starosta, K.; Svensson, C. E.; Voss, P. J.; Wang, Z. M.; Wood, J. L.; Yates, S. W.
2017-02-01
The 116Sn nucleus contains a collective rotational band originating from proton π 2 p-2 h excitations across the proton Z=50 shell gap. Even though this nucleus has been extensively investigated in the past, there was still missing information on the low-energy interband transitions connecting the intruder and normal structures. The low-lying structure of 116Sn was investigated through a high-statistics study of the β- decay of 116m1In with the 8π spectrometer and its ancillary detectors at TRIUMF. These measurements are critical in order to properly characterize the π 2 p-2 h rotational band. Weak γ-decay branches are observed utilizing γ-γ coincidence spectroscopy methods, leading to the first direct observation of the 85 keV 22+→ 03+ γ ray with a transition strength of B(E2) = 99.7(84) W.u. The analysis of these results strongly suggests that the 2027 keV 03+ state should replace the previously assigned 1757 keV 02+ state as the band-head of the π 2 p-2 h rotational band.
Energy Technology Data Exchange (ETDEWEB)
Pore, J.L.; Cross, D.S.; Andreoiu, C.; Ashley, R.; Chester, A.S.; Noakes, B.; Starosta, K.; Voss, P.J. [Simon Fraser University, Department of Chemistry, Burnaby BC (Canada); Ball, G.C.; Bender, P.C.; Garnsworthy, A.B.; Hackman, G.; Rajabali, M.M. [TRIUMF, Vancouver BC (Canada); Diaz Varela, A.; Demand, G.A.; Dunlop, R.; Garrett, P.E.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A.T.; Liblong, A.; Svensson, C.E. [University of Guelph, Department of Physics, Guelph ON (Canada); Kanungo, R. [Saint Mary' s University, Department of Astronomy and Physics, Halifax NS (Canada); Petrache, C.M. [Universite Paris-Saclay, CSNSM, CNRS-IN2P3, Orsay Cedex (France); Wang, Z.M. [Simon Fraser University, Department of Chemistry, Burnaby BC (Canada); TRIUMF, Vancouver BC (Canada); Wood, J.L. [Georgia Institute of Technology, School of Physics, Atlanta, GA (United States); Yates, S.W. [University of Kentucky, Departments of Chemistry and Physics and Astronomy, Lexington, KY (United States)
2017-02-15
The {sup 116}Sn nucleus contains a collective rotational band originating from proton π 2p-2h excitations across the proton Z = 50 shell gap. Even though this nucleus has been extensively investigated in the past, there was still missing information on the low-energy interband transitions connecting the intruder and normal structures. The low-lying structure of {sup 116}Sn was investigated through a high-statistics study of the β{sup -} decay of {sup 116m1}In with the 8π spectrometer and its ancillary detectors at TRIUMF. These measurements are critical in order to properly characterize the π 2p-2h rotational band. Weak γ-decay branches are observed utilizing γ-γ coincidence spectroscopy methods, leading to the first direct observation of the 85 keV 2{sub 2}{sup +} → 0{sub 3}{sup +} γ ray with a transition strength of B(E2) = 99.7(84) W.u. The analysis of these results strongly suggests that the 2027 keV 0{sub 3}{sup +} state should replace the previously assigned 1757 keV 0{sub 2}{sup +} state as the band-head of the π 2p-2h rotational band. (orig.)
Moshesh, Malana; Saldana, Tina; Deans, Elizabeth; Cooper, Tracy; Baird, Donna
2018-03-14
The object of this study is to examine factors and symptoms associated with low-lying IUDs as defined by ultrasound. This is a cross-sectional sub-study of participants in the Study of Environment, Life-style, and Fibroids (SELF). SELF participants had screening ultrasounds for fibroids at study enrollment; those with an IUD in place are included in this sub-study. Low-lying IUDs were identified and localized. Logistic regression was used to identify factors and symptoms associated with low-lying IUDs. Among 168 women with IUDs at ultrasound, 28 (17%) had a low-lying IUD. Having a low-lying IUD was associated with low education level (≤high school: aOR 3.1 95% CI 1.14-8.55) and with increased BMI (p=.002). Women with a low-lying IUD were more likely to report a "big problem" with dysmenorrhea (the highest option of the Likert scale) as compared to women with a normally-positioned IUD (OR 3.2 95% CI 1.07-9.54). Our study found that women with a low-lying IUD are more likely to be of lower education and higher BMI, and to report more dysmenorrhea. Women who are obese may benefit from additional counseling and closer follow-up after IUD placement. Future research is warranted to investigate IUD placement and possible IUD migration among women who are obese. Copyright © 2018 Elsevier Inc. All rights reserved.
Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2017-11-01
In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.
DEFF Research Database (Denmark)
Thorsen, R. O.; Arslanagic, Samel
2015-01-01
We examine the excitation of resonant modes inside eccentrically layered cylindrical active nano-particles. The nano-particle is a three-layer structure comprised of a silica core, a free-space middle layer, and an outer shell of silver. It is shown that a concentric configuration, initially desi...... of the gain constant, is shown to be controlled by the direction of the core displacement. The present eccentric active nano-particles may provide alternative strategies for directive near-field radiation relative to the existing designs....
Virtual excitation of the GDR mode in the subbarrier /sup 23/Na(p,. gamma. )/sup 24/Mg reaction
Energy Technology Data Exchange (ETDEWEB)
Kicinska-Habior, M; Dabrowska, M; Decowski, P; Matulewicz, T; Sikora, B; Toke, J; Cseh, J; Somorjai, E
1984-10-01
Differential cross sections for nonresonant radiative capture of low energy protons (Esub(p)=1,348 keV and 1,370 keV) by /sup 23/Na nuclei exhibit features pointing to the virtual excitation of the giant dipole resonance (GDR) mode. Theoretical analysis carried out within the framework of the direct - semidirect capture model reveals an enhanced coupling of the GDR with the incident proton f-wave consistent with the microscopic structure of the GDR in the s-d shell nuclei.
Excitation and photon decay of giant resonances excited by intermediate energy heavy ions
International Nuclear Information System (INIS)
Bertrand, F.E.; Beene, J.R.
1987-01-01
Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab
Global MHD modes excited by energetic ions in heliotron/torsatron plasmas
International Nuclear Information System (INIS)
Toi, K.; Takechi, M.; Takagi, S.
1999-01-01
In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes(TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs(m,n:poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)
Global MHD modes excited by energetic ions in heliotron/torsatron plasmas
International Nuclear Information System (INIS)
Toi, K.; Takechi, M.; Takagi, S.
2001-01-01
In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes (TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs (m,n: poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)
International Nuclear Information System (INIS)
Gu Anna; Liang Xianting
2011-01-01
In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Mirmiran, Roya; Squire, Chad; Wassell, Daniel
2015-01-01
A low lying peroneus brevis muscle belly is a rare anomaly. There are few published studies that support presence of this anomaly as an etiology for peroneal tendon tear. However, the association between a low lying peroneus muscle belly (LLMB) and tendon subluxation is not well explored. In this retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing a primary peroneal tendon surgery, in a five year period, were assessed. Th...
Predictions for Excited Strange Baryons
Energy Technology Data Exchange (ETDEWEB)
Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
International Nuclear Information System (INIS)
Pena Arteaga, D.; Khan, E.; Ring, P.
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Hartree Bogoliubov (HFB) and Relativistic Quasiparticle Random Phase approximation (RQRPA), is for the first time applied to axially deformed nuclei [1]. The fully self-consistent RHB+RQRPA equations are posed for the case of axial symmetry and different energy functionals, and solved with the help of a new parallel code. As a sample application, the El strength is systematically analyzed in very neutron-rich Sn nuclei, beyond 1 32S n until 1 66S n [2]. The great neutron excess favors the appearance of a deformed ground state for 1 42-162S n. The evolution of the low-lying strength in deformed nuclei is discussed, and in particular its dependence on the interplay of two major and competing factors, isospin asymmetry and deformation.(author)
Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes
Lee, Su Youn; Lee, J. H.; Lee, Young Jun
2018-05-01
The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.
Energy Technology Data Exchange (ETDEWEB)
Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)
2015-01-22
The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.
Longitudinal Losses Due to Breathing Mode Excitation in Radiofrequency Linear Accelerators
Channell, Paul J.
2010-01-01
Transverse breathing mode oscillations in a particle beam can couple energy into longitudinal oscillations in a bunch of finite length and cause significant losses. We develop a model that illustrates this effect and explore the dependence on mismatch size, space-charge tune depression, longitudinal focusing strength, bunch length, and RF bucket length.
Energy Technology Data Exchange (ETDEWEB)
Da Lio, Cristina, E-mail: cristina.dalio@ve.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Arsenale — Tesa 104, Castello 2737/F, 30122 Venezia (Italy); Carol, Eleonora, E-mail: eleocarol@fcnym.unlp.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata 64 n" o3 La Plata (Argentina); Kruse, Eduardo, E-mail: kruse@fcnym.unlp.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata 64 n" o3 La Plata (Argentina); Teatini, Pietro, E-mail: pietro.teatini@unipd.it [Institute of Marine Sciences, National Research Council, Arsenale — Tesa 104, Castello 2737/F, 30122 Venezia (Italy); Dept. of Civil, Architectural and Environmental Engineering, University of Padova, Via Trieste 63, 35121 Padova (Italy); Tosi, Luigi, E-mail: luigi.tosi@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Arsenale — Tesa 104, Castello 2737/F, 30122 Venezia (Italy)
2015-11-15
The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater–surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20 km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. - Highlights: • Land reclamation shapes the present saltwater contamination in the Venice coastland. • Natural and anthropogenic forcings drive the seawater flow in shallow aquifers. • Hydro-geophysical–geochemical investigations highlight the groundwater origin. • The vulnerability of the farmland to salt contamination extents up to 20
International Nuclear Information System (INIS)
Da Lio, Cristina; o3 La Plata (Argentina))" data-affiliation=" (Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata 64 no3 La Plata (Argentina))" >Carol, Eleonora; o3 La Plata (Argentina))" data-affiliation=" (Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata 64 no3 La Plata (Argentina))" >Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi
2015-01-01
The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater–surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20 km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. - Highlights: • Land reclamation shapes the present saltwater contamination in the Venice coastland. • Natural and anthropogenic forcings drive the seawater flow in shallow aquifers. • Hydro-geophysical–geochemical investigations highlight the groundwater origin. • The vulnerability of the farmland to salt contamination extents up to 20
Adiabatic tapered optical fiber fabrication for exciting whispering gallery modes in microcavities
Chenari, Z.; Latifi, H.; Hashemi, R. S.; Doroudmand, F.
2014-05-01
This article demonstrates an investigation and analysis of a tapered fiber fabrication using an etchant droplet method. To achieve precise control on process, a two-step etching method is proposed (using 48% concentration of HF acid and Buffered HF) which results in low-loss adiabatic tapered fiber. A spectrum analysis monitoring in addition to a microscopy system was used to verify the etching progress. Tapers with losses less than 0.4 dB in air and 4.5 dB in water are demonstrated. A biconical fiber taper fabricated using this method was used to excite the WGMs on a microsphere surface in aquatic environment.
Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd
2013-01-01
Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....
Energy Technology Data Exchange (ETDEWEB)
Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-05-01
The character, stable or unstable, of a medium can be deduced from the behavior of an ideal model of a semi-infinite medium which is subjected to an excitation only at the boundary. A new analytic method is used to solve this problem. The results obtained show a connection between the character of the medium and certain properties of the dispersion equation, and agree with those derived from other methods. Then, the energy exchange between a medium and a source of excitation is investigated. In order to include the case of growing waves associated with convective instabilities, this problem is treated in the context of the wave packet theory. We find that - even in the absence of collisions - there still is a power exchange. Thus a connexion can be established with the kinematic theories of growing waves and the modes generating power can be found. Moreover, the power absorbed by spatial dispersion is found to be identical with that due to Landau's effect for long waves. This confirms the kinematic character of the latter and bridges a gap between macroscopic and microscopic theories. (author) [French] Le caractere, stable ou instable, d'un milieu peut etre deduit du comportement d'un milieu semi-indefini soumis a une excitation a la frontiere. Une nouvelle methode analytique est developpee pour resoudre ce probleme. Les resultats obtenus montrent une connexion entre le comportement du milieu et certaines proprietes de l'equation de dispersion, et generalisent les resultats obtenus par d'autres methodes. On etudie ensuite les echanges d'energie entre un milieu et une source d'excitation. Pour inclure le cas des ondes croissantes associees aux instabilites convectives, on traite ce probleme dans le cadre de la theorie du paquet d'ondes. On trouve que meme en l'absence de collisions, la puissance echangee n'est pas nulle. Ceci permet d'etablir une connexion avec les theories cinematiques des ondes croissantes, tout en precisant quels sont les modes generateurs d
Goehring, Jenny L; Neff, Donna L; Baudhuin, Jacquelyn L; Hughes, Michelle L
2014-08-01
This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d' scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs.
International Nuclear Information System (INIS)
Bernard, Remi
2012-01-01
Fission is a complex process which highlights many nuclear properties. A major challenge in theoretical nuclear physics nowadays is the development of a consistent approach able to describe on the same footing the whole fission process, i.e. properties of the fissioning system, fission dynamics and fission fragment distributions. As a first step, a microscopic time-dependent and quantum mechanical formalism has been developed based on the Gaussian Overlap Approximation of the Generator Coordinate Method with the adiabatic approximation. Pioneering results obtained for the low-energy fission of 238 U encouraged us to perform new studies of fission along these lines with some additional improvements. For instance, at higher energies, a few MeV above the barrier, the adiabatic approximation doesn't seem valid anymore, and intrinsic excitations have to be taken into account. For that purpose, a new theoretical framework called the Schroedinger Collective Intrinsic Model (SCIM) has been developed, which allows in a microscopic way a simultaneous coupling of single particle and collective degrees of freedom. Such an approach is based on a generalized Generator Coordinate Method (GCM), where the general GCM ansatz of the nuclear wave function is extended by a few excited configurations. Indeed, one considers as generating wave functions not only Hartree Fock Bogolyubov ground-state configurations with different values for the collective generator coordinate but also two quasi particle excited states. Such an approach has the advantage of describing in a completely quantum-mechanical fashion and without phenomenological parameters the coupling of quasi-particle degrees of freedom to the collective motion of the nucleons. In this talk, I will focus on the derivation of the newly developed SCIM formalism. I will first discuss the generalized Hill and Wheeler equation and its transformation into a non local Schroedinger equation by inverting the expansion of the overlap
Siegle, Tobias; Kellerer, Jonas; Bonenberger, Marielle; Krämmer, Sarah; Klusmann, Carolin; Müller, Marius; Kalt, Heinz
2018-02-05
We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude. When using fibers for detection, the collection efficiency is enhanced by four orders of magnitude compared to a free-space read-out perpendicular to the resonator plane. By enhancing the collection efficiency we are able to record a pronounced modulation of the dye fluorescence under continuous wave (cw) pumping conditions evoked by coupling to the WGMs. Alternatively to fibers as a collection tool, we present a read-out technique based on the detection of in-plane radiated light. We show that this method is especially beneficial in an aqueous environment as well as for size-reduced micro-lasers where radiation is strongly pronounced. Furthermore, we show that this technique allows for the assignment of transverse electric (TE) and transverse magnetic (TM) polarization to the observed fundamental modes in a water environment by performing polarization-dependent photoluminescence (PL) spectroscopy. We emphasize the importance of the polarization determination for sensing applications and verify expected differences in the bulk refractive index sensitivity for TE and TM WGMs experimentally.
International Nuclear Information System (INIS)
Chattopadhyay, Anjan
2012-01-01
Ab initio-based configuration interaction studies on RbHe and He–Rb–He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (∼20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin–orbit calculations of RbHe have predicted a potential barrier of the 1 2 Π 1/2 state with a height of 15 cm −1 and width of 2.57 Å. The 2 Π u state of the triatomic molecule shows a conical intersection of its Renner–Teller components (1 2 A 1 and 1 2 B 2 ) near a 99° bond angle along the bending path. Their unstable higher excited states (1 2 Σ + 1/2 or 1 2 Σ + g, 1/2 ) can trigger the pumping of the blue side of the ns 2 S 1/2 → np 2 P 3/2 transition, and this may eventually lead to the np 2 P 1/2 →ns 2 S 1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm −1 is found to arise from the 1 2 Π 3/2 –X 2 Σ + 1/2 transition of RbHe. (paper)
Analysis of some modes of multibody decays of low excited actinide nuclei
International Nuclear Information System (INIS)
Pyatkov, Yu V; Lavrova, J E; Kamanin, D V; Alexandrov, A A; Alexandrova, I A; Goryainova, Z I; Kuznetsova, E A; Strekalovsky, A O; Strekalovsky, O V; Zhuchko, V E; Mkaza, N; Malaza, V
2017-01-01
Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past. (paper)
Fast color flow mode imaging using plane wave excitation and temporal encoding
DEFF Research Database (Denmark)
Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt
2005-01-01
In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete ve...... deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male....
Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka
2012-10-12
Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.
International Nuclear Information System (INIS)
Girka, V O; Puzyrkov, S Yu; Shpagina, V O; Shpagina, L O
2012-01-01
The application of an external alternating electric field in the range of ion cyclotron frequencies is a well-known method for the excitation of surface electromagnetic waves. The present paper is devoted to the development of a kinetic theory of parametric excitation of these eigenwaves propagating across an external steady magnetic field along the plasma boundary at the second harmonic of the ion cyclotron frequency. Unlike previous papers on this subject, parametric excitation of surface ion cyclotron X-modes is studied here under the condition of non-monochromaticity of an external alternating electric field. Non-monochromaticity of the external alternating electric field is modeled by the superposition of two uniform and monochromatic electric fields with different amplitudes and frequencies. The nonlinear boundary condition is formulated for a tangential magnetic field of the studied surface waves. An infinite set of equations for the harmonics of a tangential electric field is solved using the approximation of the wave packet consisting of the main harmonic and two nearest satellite harmonics. Two different regimes of instability have been considered. If one of the applied generators has an operation frequency that is close to the ion cyclotron frequency, then changing the amplitude of the second generator allows one to enhance the growth rate of the parametric instability or to diminish it. But if the operation frequencies of the both generators are not close to the ion cyclotron frequency, then changing the amplitudes of their fields allows one to decrease the growth rate of the instability and even to suppress its development. The problem is studied both analytically and numerically.
International Nuclear Information System (INIS)
Lee, Jae-Kwang; Fujiwara, Takashige; Kofron, William G.; Zgierski, Marek Z.; Lim, Edward C.
2008-01-01
Electronic absorption spectra of the low-lying ππ* and πσ* states of several aminobenzonitriles and 4-dimethylaminobenzethyne have been studied by time-resolved transient absorption and time-dependent density functional theory calculation. In acetonitrile, the lifetime of the πσ*-state absorption is very short (picoseconds or subpicosecond) for molecules that exhibit intramolecular charge transfer (ICT), and very long (nanoseconds) for those that do not. Where direct comparison of the temporal characteristics of the πσ*-state and the ICT-state transients could be made, the formation rate of the ICT state is identical to the decay rate of the πσ* state within the experimental uncertainty. These results are consistent with the πσ*-mediated ICT mechanism, L a (ππ*)→πσ*→ICT, in which the decay rate of the πσ* state is determined by the rate of the solvent-controlled πσ*→ICT charge-shift reaction. The ππ*→πσ* state crossing does not occur in 3-dimethylaminobenzonitrile or 2-dimethylaminobenzonitrile, as predicted by the calculation, and 4-aminobenzonitrile and 4-dimethylaminobenzethyne does not exhibit the ICT reaction, consistent with the higher energy of the ICT state relative to the πσ* state
Chen, Peng; Wang, Ning; Li, Song; Chen, Shan-Jun
2017-11-01
Highly correlated ab initio calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the low-lying electronic states of the MgS+ cation. The potential energy curves for the four Λ-S states correlating to the lowest dissociation asymptote are studied for the first time. Four Λ-S states split into nine Ω states through the spin-orbit coupling effect. Accurate spectroscopic constants are deduced for all bound states. The spin-orbit couplings and the transition dipole moments, as well as the PECs, are utilized to calculate Franck-Condon factors and radiative lifetimes of the vibrational levels. To verify our computational accuracy, analogous calculations for the ground state of MgS are also carried out, and our derived results are in reasonable agreement with available experimental data. In addition, photoelectron spectrum of MgS has been simulated. The predictive results are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum.
Structure and bonding of ScCN and ScNC: Ground and low-lying states
International Nuclear Information System (INIS)
Kalemos, Apostolos; Metropoulos, Aristophanes; Mavridis, Aristides
2012-01-01
Graphical abstract: The experimentally unknown systems ScCN and ScNC have been studied through single reference CISD and CCSD(T) methods. A total of 20 = 10 (ScCN) + 10 (ScNC) states were examined. All states are quite ionic whereas ScNC(X ∼3 Δ) is stabler than ScCN(X ∼3 Δ) by ∼5 kcal/mol. Display Omitted Highlights: ► We have studied through ab initio methods the polytopic system Sc[CN]. ► A series of low lying states for both isomeric forms have been examined. ► Around equilibrium the system displays a pronounced Sc + [CN] − ionic character. - Abstract: We have studied the experimentally unknown Sc[CN] molecular system in both its isomeric forms, scandium cyanide (ScCN) and isocyanide (ScNC), through ab initio computations. We report energetics, geometries, harmonic frequencies, and dipole moments for the first 20 Sc[CN] states correlating diabatically to Sc + ( 3 D, 1 D, 3 F) + CN − (X 1 Σ + ). Both isomers have a pronounced ionic character around equilibrium due to the high electron affinity of the CN group and the low ionization energy of the Sc atom. According to our calculations the ScNC isomer (X ∼3 Δ) is stabler than the ScCN(X ∼3 Δ) by ∼5 kcal/mol.
Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi
2015-11-15
The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source
Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.
2018-02-01
Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.
Directory of Open Access Journals (Sweden)
Toshio Nakajima
2015-07-01
Full Text Available The imminent fear of water-related hazards such as flooding hangs over low-lying areas, in particular now because climate changes have led to increased hazards, like storm surges, that could result in serious harm. This paper aims to provide a novel solution—namely “the floating platform”—that can transform dangerous low-lying areas into those safeguarded against potential hazards. Additionally, by utilizing this solution as a secure base for society to build atop this new artificial reservoir, we offer a better future role for such areas. Meanwhile, we propose adoption of our concept soon at two low-lying areas in northeast Japan hard-hit by the huge 11 March 2011 tsunami: Sendai’s Arahama coastal district and the still-devastated residential harbor area of Kesennuma, both cities in need of a fresh perspective.
Energy Technology Data Exchange (ETDEWEB)
Kumagai, Tsutaru, E-mail: kumagai.t.af@m.titech.ac.jp; Kishi, Tetsuo; Yano, Tetsuji [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)
2015-03-21
Bubble-containing Nd{sup 3+}-doped tellurite glass microspheres were fabricated by localized laser heating technique to investigate their optical properties for use as microresonators. Fluorescence and excitation spectra measurements were performed by pumping with a tunable CW-Ti:Sapphire laser. The excitation spectra manifested several sharp peaks due to the conventional whispering gallery mode (WGM) when the pumping laser was irradiated to the edge part of the microsphere. However, when the excitation light was irradiated on the bubble position inside the microsphere, “non-WGM excitation” was induced, giving rise to numerous peaks at a broad wavelength range in the excitation spectra. Thus, efficient excitation was achieved over a wide wavelength range. Lasing threshold excited at the bubble position was much lower than that for the excitation at the edges of the microsphere. The lowest value of the laser threshold was 34 μW for a 4 μm sphere containing a 0.5 μm bubble. Efficiency of the excitation at the bubble position with broadband light was calculated to be 5 times higher than that for the edge of the microsphere. The bubble-containing microsphere enables efficient utilization of broadband light excitation from light-emitting diodes and solar light.
Fission fragment excited laser system
McArthur, David A.; Tollefsrud, Philip B.
1976-01-01
A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
Directory of Open Access Journals (Sweden)
Qinghua Luan
2017-06-01
Full Text Available Urban flooding occurs frequently in many regions of China. To reduce the losses caused by urban flooding, sponge city (SPC and low-impact development (LID have been carried out in many Chinese cities. However, urban flooding is influenced by various factors, such as climate, land cover characteristics and nearby river networks, so it is necessary to evaluate the effectiveness of LID measures. In this study, the Storm Water Management Model (SWMM was adopted to simulate historical urban storm processes in the mountainous Fragrance Hills region of Beijing, China. Subsequently, numerical simulations were performed to evaluate how various LID measures (concave greenbelt, permeable pavement, bio-retention, vegetative swales, and comprehensive measures influenced urban runoff reduction. The results showed that the LID measures are effective in controlling the surface runoff of the storm events with return periods shorter than five years, in particular, for one-year events. Furthermore, the effectiveness on traffic congestion mitigation of several LID measures (concave greenbelt, vegetative swales, and comprehensive measures was evaluated. However, the effective return periods of storm events are shorter than two years if the effectiveness on traffic congestion relief is considered. In all evaluated aspects, comprehensive measures and concave greenbelts are the most effective, and vegetative swale is the least effective. This indicated that LID measures are less effective for removing ponding from most storm events in a mountainous, low-lying and backward pipeline infrastructure region with pressures from interval flooding and urban waterlogging. The engineering measures including water conservancy projects and pipeline infrastructure construction combined with the non-engineering measures were suggested to effectively control severe urban storms.
Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.
2017-08-01
An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island's main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10-20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands. With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island's hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer use of
Properties of a new magnetic dipole mode discovered in low energy electron scattering
International Nuclear Information System (INIS)
Bohle, D.; Guhr, T.; Hartmann, U.; Hummel, K.D.; Kilgus, G.; Milkau, U.; Richter, A.
1986-01-01
In a large range of nuclei low lying J π =1 + states have been found that are excited predominantly by a new M1 mode. Four properties of the new mode will be discussed in detail. Firstly, from the excitation energy systematics observed the strength of the Majorana force of the interacting boson model (IBA) is deduced. Secondly, through the comparison of electron scattering and proton scattering experiments it is shown that the new mode is largely due to the orbital motion of protons with respect to neutrons. Thirdly, taking the nucleus 164 Dy as an example, g-factors and effective boson charges of the M1-, E2- and M3 IBA transition operators, respectively, are studied. The F-scalar magnetic octupol g-factor Ω S is derived for the first time. Finally, the distribution of M1 strength in 156 Gd will be discussed in the light of recent theoretical calculations. (orig.)
Tsekrekos, C.P.; Smink, R.W.; Hon, de B.P.; Tijhuis, A.G.; Koonen, A.M.J.
2007-01-01
Abstract: Selective excitation of graded-index multimode fibers (GIMMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels
DEFF Research Database (Denmark)
Johannessen, Christian; Thulstrup, Peter W.
2007-01-01
. The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition...
International Nuclear Information System (INIS)
Xu, Z.; Fauchet, M.; Rella, C.W.
1995-01-01
Hydrogen in amorphous and crystalline silicon has been the topic of intense theoretical and experimental investigations for more than one decade. To better understand how the Si-H bonds interact with the Si matrix and how they can be broken, it would be useful to excite selectively these bonds and monitor the energy flow from the Si-H bonds into the bulk Si modes. One attractive way of exciting the Si-H modes selectively is with an infrared laser tuned to a Si-H vibrational mode. Unfortunately, up to now, this type of experiment had not been possible because of the lack of a laser producing intense, ultrashort pulses that are tunable in the mid infrared. In this presentation, we report the first measurement where a 1 picosecond long laser pulse was used to excite the Si-H stretching modes near 2000 cm -1 and another identical laser pulse was used to measure the deexcitation from that specific vibrational mode. The laser was the Stanford free electron laser generating ∼1 ps-long pulses, tunable in the 5 μm region and focussed to an intensity of ∼1 GW/cm 2 . The pump-probe measurements were performed in transmission at room temperature on several 2 μm thick a-Si:H films deposited on c-Si. Samples with predominant Si-H 1 modes, predominant Si-H n>1 modes and with a mixture of modes were prepared. The laser was tuned on resonance with either of these modes. Immediately after excitation, we observe a bleaching of the infrared absorption, which can be attributed to excitation of the Si-H mode. Beaching is expected since, as a result of anharmonicity, the detuning between the (E 3 - E 2 ) resonance and the (E 2 - E 1 ) resonance is larger than the laser bandwidth. Note that despite the anharmonicity, it should be possible to climb the vibrational ladder due to power broadening
International Nuclear Information System (INIS)
Kryzhanovskii, Boris V; Sokolov, G B
2000-01-01
The quasi-energy wave functions of a two-level atom in an electromagnetic field, the state of which represents a superposition of coherent states, were found. The fluorescence spectrum of an atom excited by such a field was investigated. It was shown that a spectral fluorescence mode corresponds to each mode of the quantum-statistical distribution of the field incident on the atom. This means that the number of statistical modes of the incident field may be recorded as the number of data bits of the information carried by the light pulse. (laser applications and other topics in quantum electronics)
Energy Technology Data Exchange (ETDEWEB)
Sokolov, V I; Marusin, N V; Panchenko, V Ya; Savelyev, A G; Seminogov, V N; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)
2013-12-31
We propose a method for measuring simultaneously the refractive index n{sub f}, extinction coefficient m{sub f} and thickness H{sub f} of thin films. The method is based on the resonant excitation of waveguide modes in the film by a TE- or a TM-polarised laser beam in the geometry of frustrated total internal reflection. The values of n{sub f}, m{sub f} and H{sub f} are found by minimising the functional φ = [N{sup -1}Σ{sup N}{sub i=1}(R{sub exp}(θ{sub i}) – R{sub thr}(θ{sub i})){sup 2}]{sup 1/2}, where R{sub exp}(θ{sub i}) and R{sub thr}(θ{sub i}) are the experimental and theoretical coefficients of reflection of the light beam from the interface between the measuring prism and the film at an angle of incidence θ{sub i}. The errors in determining n{sub f}, m{sub f} and H{sub f} by this method are ±2 × 10{sup -4}, ±1 × 10{sup -3} and ±0.5%, respectively. (fiber and integrated optics)
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.
Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach
Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar
2016-06-01
Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica adjacent to the coast exhibit a history of major human interventions
Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.
2017-01-01
An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island’s main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10–20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands.With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island’s hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiumei; Jin, Zuanming; Lin, Xian; Ma, Guohong [Department of Physics, Shanghai University (China); Cheng, Zhenxiang [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Balakrishnan, Geetha [Department of Physics, University of Warwick, Coventry (United Kingdom)
2017-09-15
A low-energy collective excitation mode in charge-ordered multiferroic LuFe{sub 2}O{sub 4} is reported via terahertz time-domain spectroscopy. Upon cooling from 300 to 40 K, the central resonance frequency showed a pronounced hardening from 0.85 to 1.15 THz. In analogy to the well-known low-energy optical properties of LuFe{sub 2}O{sub 4}, this emerging resonance was attributed to the charge-density-wave (CDW) collective excitations. By using the Drude-Lorentz model fitting, the CDW collective mode becomes increasingly damped with the increasing temperature. Furthermore, the kinks of the CDW collective mode at the magnetic transition temperature are analyzed, which indicate the coupling of spin order with electric polarization. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)
2012-08-15
We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.
Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W
2012-01-01
We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.
International Nuclear Information System (INIS)
Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.
1994-01-01
We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI
Liu, Ya-Jun; Cheng, Xin-Lu; Chen, Hua-Jun; Cheng, Jun-Xia; Song, Xiao-Shu
2018-02-01
Since the 2Π state in HCl+ is an inverted doublet, the energy of the 2Π1/2 state is higher than the 2Π3/2. Therefore, the larger value of intensity correspond to the transition of 2Π3/2. We calculated the Einstein A coefficients and radiation lifetimes for the A2Σ+-X2Π transition. Our results are in good agreement with the experimental data and theoretical values. Then the ro-vibrational line intensities of the 1-0 band were calculated for the 2Π3/2 and 2Π1/2 states of HCl+. Employing the RKR potential, the predicted band origins for Δν=1-0 are 2569.3 and 2568.55 cm-1 for 2Π3/2 and 2Π1/2, respectively.
DEFF Research Database (Denmark)
Knecht, Stefan; Sørensen, Lasse Kragh; Jensen, Hans Jørgen Aagaard
2010-01-01
Collisions of ultracold Ba+ ions on a Rb Bose–Einstein condensate have been suggested as a possible benchmark system for ultracold ion-neutral collision experiments. However, a priori knowledge of the possible processes is desirable. For this purpose, we here present high-level four-component cou...
International Nuclear Information System (INIS)
Skibsted, L.H.
1987-01-01
cis to trans Photoisomerization quantum yields are increased by a factor of approximately two by deuteriation of co-ordinated water in tetra-amminediaquarhodium, but are almost insensitive to deuteriation of co-ordinated water in tetra-ammineaquachlororhodium and to deuteriation of co-ordinated ammonia in either complex; this identifies the dominating nonradiative deactivation mode (competing with the excited-state rearrangement) as a hydrogen-oxygen vibration in an excited-state intermediate of reduced co-ordination number. (author)
Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom
2004-01-01
shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.
Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.
1993-12-01
High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded
Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.
Crespi, F C L; Bracco, A; Nicolini, R; Mengoni, D; Pellegri, L; Lanza, E G; Leoni, S; Maj, A; Kmiecik, M; Avigo, R; Benzoni, G; Blasi, N; Boiano, C; Bottoni, S; Brambilla, S; Camera, F; Ceruti, S; Giaz, A; Million, B; Morales, A I; Vandone, V; Wieland, O; Bednarczyk, P; Ciemała, M; Grebosz, J; Krzysiek, M; Mazurek, K; Zieblinski, M; Bazzacco, D; Bellato, M; Birkenbach, B; Bortolato, D; Calore, E; Cederwall, B; Charles, L; de Angelis, G; Désesquelles, P; Eberth, J; Farnea, E; Gadea, A; Görgen, A; Gottardo, A; Isocrate, R; Jolie, J; Jungclaus, A; Karkour, N; Korten, W; Menegazzo, R; Michelagnoli, C; Molini, P; Napoli, D R; Pullia, A; Recchia, F; Reiter, P; Rosso, D; Sahin, E; Salsac, M D; Siebeck, B; Siem, S; Simpson, J; Söderström, P-A; Stezowski, O; Theisen, Ch; Ur, C; Valiente-Dobón, J J
2014-07-04
The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.
Energy Technology Data Exchange (ETDEWEB)
Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)
2014-10-27
Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.
Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki
2014-02-01
We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11-13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.
Energy Technology Data Exchange (ETDEWEB)
Kimura, Daiju, E-mail: kimura@nf.eie.eng.osaka-u.ac.jp; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)
2014-02-15
We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11–13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.
International Nuclear Information System (INIS)
Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.
2017-01-01
We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.
International Nuclear Information System (INIS)
Yuan, J.; Zhang, Z.
1993-01-01
Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba
Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface
International Nuclear Information System (INIS)
Hamann, D.R.; Feibelman, P.J.
1988-01-01
The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni
Directory of Open Access Journals (Sweden)
M. Ali Asgarian
2018-04-01
Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.
Ali Asgarian, M.; Abbasi, M.
2018-04-01
Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.
Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang
2018-05-01
We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.
E0 and E2 decay of low-lying 0+ states in the even-even nuclei 206Pb, 208Po, 112-120 Sn and 112114Cd
International Nuclear Information System (INIS)
Julin, Rauno.
1979-04-01
Several new methods of in-beam conversion-electron and γ-ray spectrometry, applicable in the determination of E0 and E2 decay properties of low-lying 0 + states in even-mass nuclei, have been developed. The main attention has been paid to direct lifetime-measurement and coincidence methods based on the use of the natural pulsing of a cyclotron beam. With the aid of these methods, the similarity of the absolute decay rates of the two-neutron-hole 0 + 2 states in the N = 124 nuclei 206 Pb and 208 Po has been shown. A systematic investigation of the de-excitation of the 0 + 2 and 0 + 3 states in 112 , 11 4 , 116 , 118 , 120 Sn has been carried out. Twelve E0 transitions connecting the 0 + states have been observed, including very strong low-energy E0 transitions between the excited 0 + states, and several absolute transition probabilities have been determined. Furthermore, the new techniques have been applied successfully in determining the absolute E0 and E2 transition rates from the 0 + 2 and 0 + 3 states in 112 Cd and 114 Cd. The use of isotope-shift data in the calculation of the monopole strengths in 206 Pb and 208 Po is discussed. The results on even Sn and Cd nuclei are discussed within the framework of the coexistence of different shapes and of configuration mixing. (author)
Low-lying states and structure of the exotic 8He via direct reactions on the proton
International Nuclear Information System (INIS)
Skaza, F.; Lapoux, V.; Keeley, N.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Khan, E.; Nalpas, L.; Pakou, A.; Pollacco, E.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.
2007-01-01
The structure of the light exotic nucleus 8 He was investigated using direct reactions of the 8 He SPIRAL beam on a proton-rich target. The (p,p') scattering to the 2 1 + state, the (p,d) 7 He and (p,t) 6 He transfer reactions, were measured at the energy E lab =15.7 A.MeV. The light charged particles (p,d,t) were detected in the MUST Si-strip telescope array. The excitation spectrum of 8 He was extracted from the (p,p') reaction. Above the known 2 1 + excited state at 3.6 MeV, a second resonance was found around 5.4 MeV. The cross sections were analyzed within the coupled-reaction channels framework, using microscopic potentials. It is inferred that the 8 He ground state has a more complex neutron-skin structure than suggested by previous α+4n models assuming a pure (1p 3/2 ) 4 configuration
Excitation mechanisms in singly ionized krypton laser
International Nuclear Information System (INIS)
El-Sherbini, Th.M.
1982-01-01
Lifetimes for the low lying 4p 4 4d and 4p 4 5s levels of singly ionized krypton laser are calculated, taking into account configuration interaction effects. The results show that some of these levels are metastable. They also suggest a two step excitation from the ground state of the ion (or the atom) to the upper 4p 4 5p laser levels involving some intermediate metastable states as a possible excitation mechanism. (author)
Velocity fields and transition densities in nuclear collective modes
Energy Technology Data Exchange (ETDEWEB)
Stringari, S [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy
1979-08-13
The shape of the deformations occurring in nuclear collective modes is investigated by means of a microscopic approach. Analytical solutions of the equations of motion are obtained by using simplified nuclear potentials. It is found that the structure of the velocity field and of the transition density of low-lying modes is considerably different from the predictions of irrotational hydrodynamic models. The low-lying octupole state is studied in particular detail by using the Skyrme force.
International Nuclear Information System (INIS)
Chen, F. Q.; Sun, Y.
2013-01-01
Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited K π = 0 + states in the Gd isotopes have characters of shape vibration. (authors)
Surface vibrational modes in disk-shaped resonators.
Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P
2014-03-01
The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2007-01-01
This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium
Low-lying dipole strength of neutron-rich 'island of inversion' nuclei around n ∼ 20
International Nuclear Information System (INIS)
Datta Pramanik, U.; Chakraborty, S.; Ray, I.
2009-01-01
Magic numbers are the basic building blocks of nuclear structure since last fifty years. Recently, through various experimental results using Radioactive Ion Beam (RIB) facilities, it has been observed that those long cherished magic numbers are not valid anymore in the neutron rich nuclei like 32 Mg etc. The breakdown of magic number was hinted in the late 1980 's by Thibault et. al. in sodium nuclei ( 31,32 Na). Motobayashi et. al. showed large deformation for 32 Mg which leads to the failure of magic number at N = 20. Exploration into the cause of this breakdown shows the filling of higher pf orbitals rather than the pure lower sd orbitals in the ground state of the neutron-rich nuclei like Ne, Na, Mg in the region N∼20. Thus there is obviously an inversion in nuclear orbitals and hence the so called name 'island of inversion'. This year, we have performed an experiment at GSI, Darmstadt. The measurement of dipole threshold strength of neutron-rich nucleus (N∼20) through electromagnetic excitation was done using LAND-FRS setup. Through this dipole strength, we would like to probe directly the quantum numbers of the valence neutrons in neutron rich nuclei like 31-33 Mg, 33-35 Al, 29-30 Na, 25-27 Ne, 24 F etc.
Energy Technology Data Exchange (ETDEWEB)
Qin, X.; Zhang, S. D. [Qufu Normal University, Qufu (China)
2014-12-15
The six doublet and the two quartet electronic states ({sup 2}Σ{sup +}(2), {sup 2}Σ{sup -}, {sup 2}Π(2), {sup 2}Δ, {sup 4}Σ{sup -}, and {sup 4}Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X{sup 2}Π and A{sup 2}Σ{sup +} of OH are predicted by numerical solving the radial Schroedinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X{sup 2}Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A{sup 2}Σ{sup +} - X{sup 2}Π transition are discussed and compared with existing experimental values.
International Nuclear Information System (INIS)
Gascoyne, A.; Jain, R.; Hindman, B. W.
2014-01-01
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).
Energy Technology Data Exchange (ETDEWEB)
Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)
2014-07-10
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).
Zou, Wenli; Liu, Wenjian
2009-03-01
The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gambacurta, D.; Grasso, M.; Catara, F. [GANIL,CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Dipartimento di Fisica e Astronomia dell' Universita di and INFN Catania (Italy)
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
International Nuclear Information System (INIS)
Eliasson, G.L.
1987-01-01
The theory of collective excitations in semiconductor superlattices is formulated by using linear response theory. Different kinds of collective excitations in type I (GaAs-GaAlAs) and type II (GaSb-InAs) superlattices are surveyed. Special attention is paid to the presence of surface and finite-size effects. In calculating the dielectric matrix, the effect of different approximations of the system is discussed. The theory for inelastic length scattering (Raman scattering), and for Electron Energy Loss (EEL) due to collective excitations, is formulated. Calculations for several model systems are presented and the main features of the spectra are discussed. In part II the theory of collective excitations of a two-dimensional electron gas with a spatially periodic equilibrium density is formulated. As a first example a periodic array of two-dimensional electron gas strips with constant equilibrium density is studied. The integral equation that describes the charge fluctuations on the strips is derived and solved numerically. The spatial dependence of the density fluctuation across a single strip can be in the form of either propagating or evanescent waves
International Nuclear Information System (INIS)
Kuriyama, Atsushi; Okamoto, Ryoji; Marumori, Toshio; Matsuyanagi, Kenichi.
1975-01-01
With the aid of microscopic theory of collective excitations in spherical odd-mass nuclei proposed by Kuriyama, Marumori and Matsuyanagi, structures of low-lying collective 5/2 + states in odd-mass I, Cs and La isotopes and of collective 3/2 + states in odd-mass Mo and Ru isotopes are investigated. These collective 5/2 + and 3/2 + states, which are hard to understand within the framework of the conventional quasi-particle-phonon-coupling theory, are identified as a new kind of fermion-type collective excitation mode. The change in microscopic structure of these states depending on the mass number is also investigated in relation with the shell structure. (auth.)
Collective excitations in a superfluid of color-flavor locked quark matter
International Nuclear Information System (INIS)
Fukushima, Kenji; Iida, Kei
2005-01-01
We investigate collective excitations coupled with baryon density in a system of massless three-flavor quarks in the collisionless regime. By using the Nambu-Jona-Lasinio (NJL) model in the mean-field approximation, we field-theoretically derive the spectra both for the normal and color-flavor locked (CFL) superfluid phases at zero temperature. In the normal phase, we obtain usual zero sound as a low-lying collective mode in the particle-hole (vector) channel. In the CFL phase, the nature of collective excitations varies in a way dependent on whether the excitation energy, ω, is larger or smaller than the threshold given by twice the pairing gap Δ, at which pair excitations with nonzero total momentum become allowed to break up into two quasiparticles. For ω H =1/√(3) in the low momentum regime; the decay constant f H obtained in the NJL model is identical with the QCD result obtained in the mean-field approximation. We also find that, as the momentum of the phonon increases, the excitation energy goes up and asymptotically approaches ω=2Δ. Above the threshold for pair excitations (ω>2Δ), zero sound manifests itself in the vector channel. By locating the zero sound pole of the vector propagator in the complex energy plane, we investigate the attenuation and energy dispersion relation of zero sound. In the long wavelength limit, the phonon mode, the only low-lying excitation, has its spectral weight in the H channel alone, while the spectral function vanishes in the vector channel. This is due to nontrivial mixing between the H and vector channels in the superfluid medium. We finally extend our study to the case of nonzero temperature. We demonstrate how Landau damping smears the phonon peak in the finite temperature spectral function. We find a pure imaginary pole of the H propagator in the complex energy plane, which can be identified as a diffusive mode responsible for the Landau damping. From the pole position we derive the thermal diffusion constant
International Nuclear Information System (INIS)
Cros, Brigitte
1989-01-01
This research thesis reports the study of the non linear evolution of plasma waves excited by mode conversion in a non homogeneous, non collisional, and free-of-external-magnetic-field plasma. Experiments performed in the microwave domain in a plasma created by means of a multi-polar device show that the evolution of plasma waves displays a transition between a non linear quasi-steady regime and a stochastic regime when the power of incident electromagnetic waves or plasma gradient length is increased. These regimes are characterized through a numerical resolution of Zakharov equations which describe the coupled evolution of plasma wave envelope and low frequency density perturbations [fr
Mahmood, A.; Hossain, F.
2016-12-01
Low-lying deltas of Asian region are usually densely populated and located in developing countries situated at the downstream end of major rivers. Extensive dam construction by the upstream countries has now caused water scarcity in large portions of low-lying deltas. Most inhabitants depend on shallow tube well for safe drinking water that tend to suffer from water quality issues (e.g. Arsenic contamination). In addition, people also get infected from water borne diseases like Cholera and Typhoid due to lack of safe drinking water. Developing a centralized piped network based water supply system is often not a feasible option in rural regions. Due to social acceptability, environment friendliness, lower capital and maintenance cost, rainwater harvesting can be the most sustainable option to supply safe drinking water in rural areas. In this study, first we estimate the monthly rainfall variability using long precipitation climatology from satellite precipitation data. The upper and lower bounds of monthly harvestable rainwater were estimated for each satellite precipitation grid. Taking this lower bound of monthly harvestable rainwater as input, we use quantitative water management concept to determine the percent of the time of the year potable water demand can be fulfilled. Analysis indicates that a 6 m³ reservoir tank can fulfill the potable water demand of a 6 person family throughout a year in almost all parts of this region.
Sun, Jin; Li, Guang; Liang, WanZhen
2015-07-14
A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.
Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.
2017-10-01
We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.
Energy Technology Data Exchange (ETDEWEB)
Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.; Wang, Hua [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Koppell, Stewart [University of Texas at Austin, Austin, Texas 78712 (United States); Talley, Matthew [Brigham Young University, Provo, Utah 84602 (United States)
2013-05-15
Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodes were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.
Jedidi, Abdesslem
2015-11-13
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-01-01
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
International Nuclear Information System (INIS)
Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.
1978-01-01
The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de
Excitation of quasi-electrostatic modes in a magnetized plasma by a modulated hollow E-beam
International Nuclear Information System (INIS)
Ezzeddine, A.; Smullin, L.D.
1982-01-01
The power radiated into the modes of an infinite magnetized plasma by a modulated hollow electron beam is calculated for the cases of cold and warm plasmas. The beam is assumed to be sinusoidally density modulated and the induced fluctuating electric field is strong enough to quench any beam plasma interaction. Numerical results are presented for the power deposited into the plasma at frequencies near the lower hybrid frequency for different beam plasma parameters
Ab initio study of small He cluster ions Hen+, n=2, 3, 4, 5, and low-lying Rydberg states of He4
International Nuclear Information System (INIS)
Staemmler, V.
1990-01-01
SCF and CEPA calculations are applied to study the structure of small He cluster ions, He n 3 , n=2, 3, 4, 5 and some low-lying Rydberg states of He 4 . The effect of electron correlation upon the equilibrium structures and binding energies is discussed. He 3 + has a linear symmetric equilibrium geometry with a bond length of 2.35 a 0 and a binding energy D e =0.165 eV with respect to He 2 + +He (experimentally: D 0 =0.17 eV which corresponds to D e ≅0.20 eV). He 4 + is a very floppy molecular ion with several energetically very similar geometrical configurations. Our CEPA calculations yield a T-shaped form with a He 3 + centre (R e =2.35 a 0 ) and one inductively bound He atom (4.39 a 0 from the central He atom of He 3 + ) as equilibrium structure. Its binding energy with respect to He 3 + +He is 0.031 eV. A linear symmetric configuration consisting of a He 2 + centre with a bond length of 2.10 a 0 and two inductively bound He atoms (4.20 a 0 from the centre of He 2 + ) is only 0.02-0.03 eV higher in energy. We expect that in larger He cluster ions structures with He 2 + and He 3 + centres and n-2 or n-3 inductively bound He atoms have nearly the same energies. In He 4 a low-lying metastable Rydberg state ( 3 π symmetry for linear He 4 * , 3 B 1 for the T-shaped form) exists which is slightly stronger bound with respect to He 3 * +He than the corresponding ion. (orig.)
Collective excitations in the Penson-Kolb model: A generalized random-phase-approximation study
International Nuclear Information System (INIS)
Roy, G.K.; Bhattacharyya, B.
1997-01-01
The evolution of the superconducting ground state of the half-filled Penson-Kolb model is examined as a function of the coupling constant using a mean-field approach and the generalized random phase approximation (RPA) in two and three dimensions. On-site singlet pairs hop to compete against single-particle motion in this model, giving the coupling constant a strong momentum dependence. There is a pronounced bandwidth enhancement effect that converges smoothly to a finite value in the strong-coupling (Bose) regime. The low-lying collective excitations evaluated in generalized RPA show a linear dispersion and a gradual crossover from the weak-coupling (BCS) limit to the Bose regime; the mode velocity increases monotonically in sharp contrast to the attractive Hubbard model. Analytical results are derived in the asymptotic limits. copyright 1997 The American Physical Society
Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo
2011-07-18
A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.
International Nuclear Information System (INIS)
Chandler, D.W.; Farneth, W.E.; Zare, R.N.
1982-01-01
The use of optoacoustic spectroscopy permits both the monitoring of the overtone excitation of t-butylhydroperoxide (t-BuOOH) and the in situ detection of the resulting reaction product t-butanol (t-BuOH). The sample is contained in a reaction cell, equipped with a microphone, in which all surfaces have been specially passivated. The cell is placed inside the cavity of a dye laser tuned to excite the 5--0 O--H stretch of the t-BuOOH at 619.0 nm. The dissociation process yields directly xOH and t-BuOx, and the latter readily abstracts a hydrogen atom from a parent molecule to form t-butanol (t-BuOH). The appearance rate of t-BuOH is obtained by ratioing the area under the 5--0 O--H stretch of t-BuOH to that of a combination band of t-BuOOH. At low pressures, below 40 Torr, a plot of the reciprocal of the t-BuOH appearance rate versus total pressure shows near linear behavior. This linearlity can be well described by a statistical model (RRKM) when careful averaging of the dissociation rate over the thermal energy distribution of the photoactivated molecules is included. At pressures above 40 Torr, a marked deviation from linearity appears. This deviation is fit to a kinetic model in which the dissociation rate of an energy nonrandomized molecule competes with the rate of intramolecular energy relaxation. This places a lower bound of > or =5.0 x 10 11 s -1 on the rate of energy randomization. A discussion of this model in the context of other possible kinetic schemes as well as other photoactivated and chemically activated systems is presented
International Nuclear Information System (INIS)
Biglari, H.; Chen, L.
1991-10-01
A complete theory of wave-particle interactions is presented whereby both circulating and trapped energetic ions can destabilize kinetic ballooning modes in tokamaks. Four qualitatively different types of resonances, involving wave-precessional drift, wave-transit, wave-bounce, and precessional drift-bounce interactions, are identified, and the destabilization potential of each is assessed. For a characteristic slowing-down distribution function, the dominant interaction is that which taps those resonant ions with the highest energy. Implications of the theory for present and future generation fusion experiments are discussed. 16 refs
Energy Technology Data Exchange (ETDEWEB)
Thao, Chu Thi Bich [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Da Nang (Viet Nam); Sharipov, Mirkomil [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Kim, Jin-Ik. [Department of Biochemistry and Health Science, Changwon National University, Changwon 641-773 (Korea, Republic of); Dao, Van-Duong [Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Moon, Ja-Young [Department of Biochemistry and Health Science, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)
2017-06-01
We propose an efficient bioimaging strategy using Yb{sup 3+},Er{sup 3+},Eu{sup 3+}-triplet doped YVO{sub 4} nanoparticles which were synthesized with polymer as a template. The obtained particles possess nanoscale, uniform, and flexible excitation. The effect of Eu{sup 3+} ions on the luminescence properties of YVO{sub 4}:Yb{sup 3+},Er{sup 3+},Eu{sup 3+} was investigated. The upconversion mechanism of the prepared material was also discussed. The structure and optical properties of the prepared material were characterized by using X-ray diffraction (XRD), Fourier-transform IR spectroscopy (FTIR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) upconversion and photoluminescence spectra. The Commission International de I′Eclairage (CIE) chromaticity coordinates was investigated to confirm the performance of color luminescent emission. The prepared YVO{sub 4}:Yb{sup 3+},Er{sup 3+},Eu{sup 3+} nanoparticles could be easily dispersed in water by surface modification with cysteine (Cys) and glutathione (GSH). The aqueous dispersion of the modified YVO{sub 4}:Yb{sup 3+},Er{sup 3+},Eu{sup 3+} exhibits bright upconversion and downconversion luminescence and has been applied for bioimaging of HeLa cells. Our developed material with dual excitation offers a promising advance in bioimaging. - Highlights: • Prepared particles possess nanoscale size, uniform, and larger scale. • The material exhibits strong emission under dual mode excitations. • The surface material has been applied for bioimaging of HeLa cell. • Low cytotoxicity, no auto-fluorescence.
Fahy, Stephen; Murray, Eamonn
2015-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).
Magnetic dipole excitations of the 163Dy nucleus
Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber
2014-03-01
In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.
Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source
Directory of Open Access Journals (Sweden)
A. Lunin
2018-02-01
Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.
Raman Scattering from Higgs Mode Oscillations in the Two-Dimensional Antiferromagnet Ca_{2}RuO_{4}.
Souliou, Sofia-Michaela; Chaloupka, Jiří; Khaliullin, Giniyat; Ryu, Gihun; Jain, Anil; Kim, B J; Le Tacon, Matthieu; Keimer, Bernhard
2017-08-11
We present and analyze Raman spectra of the Mott insulator Ca_{2}RuO_{4}, whose quasi-two-dimensional antiferromagnetic order has been described as a condensate of low-lying spin-orbit excitons with angular momentum J_{eff}=1. In the A_{g} polarization geometry, the amplitude (Higgs) mode of the spin-orbit condensate is directly probed in the scalar channel, thus avoiding infrared-singular magnon contributions. In the B_{1g} geometry, we observe a single-magnon peak as well as two-magnon and two-Higgs excitations. Model calculations using exact diagonalization quantitatively agree with the observations. Together with recent neutron scattering data, our study provides strong evidence for excitonic magnetism in Ca_{2}RuO_{4} and points out new perspectives for research on the Higgs mode in two dimensions.
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Nuclear scissors modes and hidden angular momenta
Energy Technology Data Exchange (ETDEWEB)
Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)
2017-01-15
The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.
Dispersion and decay of collective modes in neutron star cores
Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.
2017-01-01
We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and prot...
The MRCI studies of low-lying electronic states of Al.sub.3./sub. and Al.sup.-./sup.3
Czech Academy of Sciences Publication Activity Database
Czernek, Jiří; Živný, Oldřich
2011-01-01
Roč. 512, 1-3 (2011), s. 40-43 ISSN 0009-2614 R&D Projects: GA ČR GAP205/11/2070 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z20430508 Keywords : Al3 * excitations * MRCI Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.337, year: 2011
International Nuclear Information System (INIS)
Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai
2014-01-01
The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
Coupled-reaction-channel analysis of the (d,6Li) reaction on 24Mg and 26Mg to low-lying states
International Nuclear Information System (INIS)
Oelert, W.
1986-01-01
Experimental spectroscopic factors of the alpha-transfer reaction on nuclei of the sd-shell show rather strong inconsistencies and scatter much more strongly than explainable by the quoted errors. The poorer the quality of agreement between experimental and theoretical angular distribution shapes, the more inconsistent the comparison of spectroscopic factors either between different experiments or between theory and experiment. In view of the strong deformation of nuclei in the lower part of the sd-shell, higher-order reaction mechanisms are expected. A coupled-reaction-channel analysis for the transitions to the 0 + , 2 + , and 4 + states of the ground-state bands in 20 Ne and 22 Ne excited via the (d, 6 Li) reaction yields good agreement between experimental and theoretical angular distribution shapes as well as spectroscopic information. (orig.)
International Nuclear Information System (INIS)
Ho, Yew Kam; Lin, Chien-Hao
2015-01-01
In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)
International Nuclear Information System (INIS)
Zhang, P.; Baboi, N.; Lorbeer, B.; Wamsat, T.; Eddy, N.; Fellenz, B.; Wendt, M.; Jones, R.M.
2012-08-01
Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.
Energy Technology Data Exchange (ETDEWEB)
Zhang, P. [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, N.; Lorbeer, B.; Wamsat, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Eddy, N.; Fellenz, B.; Wendt, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Jones, R.M. [Manchester Univ. (United Kingdom); The Cockcroft Institute, Daresbury (United Kingdom)
2012-08-15
Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.
Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases
Al Khawaja, U.; Stoof, H.T.C.
2000-01-01
We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate
Dinamical polarizability of highly excited hydrogen-like states
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.
1982-01-01
Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered
Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr
Zhang, J.-Y.; Babb, J. F.; Mitroy, J.; Sadeghpour, H. R.; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.
Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr
Zhang, J.-Y.
2013-04-05
Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices
Mistakidis, Simeon; Schmelcher, Peter
2016-05-01
The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Energy Technology Data Exchange (ETDEWEB)
Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Safari, S. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Heidari-Semiromi, E. [Department of Condense Matter, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)
2016-06-15
The dispersion relation of electromagnetic waves propagating in an elliptical plasma waveguide with a cold collisionless unmagnetized plasma column and a dielectric rod is studied analytically. The frequency spectrum of the hybrid waves and the growth rate for excitation of the waves by a thin annular relativistic elliptical electron beam (TAREEB) is obtained. The effects of relative permittivity constant of dielectric rod, geometrical dimensions, plasma frequency, accelerating voltage, and current density of TAREEB on the growth rate and frequency spectra of the waveguide will be investigated.
Dispersion and decay of collective modes in neutron star cores
Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.
2017-08-01
We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.
Excitation of solar and stellar oscillations
International Nuclear Information System (INIS)
Baudin, Frederic
2009-01-01
In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)
Energy Technology Data Exchange (ETDEWEB)
Sala, Matthieu; Egorova, Dassia
2016-12-20
The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.
International Nuclear Information System (INIS)
McGowan, F.K.; Stelson, P.H.
1974-01-01
The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Excitation of giant resonances in heavy ion collisions
International Nuclear Information System (INIS)
Kuehn, W.
1991-01-01
Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)
International Nuclear Information System (INIS)
Lautesse, Ph.
2005-11-01
The progress made in particle detection, particularly the design of multi-detectors, like INDRA, that cover a solid angle of almost 4π, have given a new impetus to heavy ion collisions. These detectors are demanding for an efficient way of selecting events that have a common history or similar features, for instance the events representing the de-excitation of a unique emitter. The problem is to find the adequate variable on which the discrimination can be based. Different methods are proposed in this work, the common point is that they require efficient models to reproduce and analyse experimental data in order to apprehend the equation of state of nuclear matter. Most of these models are based on the numerically solving of the nuclear Boltzmann equation. The application to the Ni + Ni reaction with an energy ranging from a few A.MeV to more than 50 A.MeV illustrates this work. (A.C.)
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-12-03
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
DEFF Research Database (Denmark)
Andersen, Torkild; Maack Bisgård, K.; Hansen, P.Gregers
1961-01-01
The decay of 1.6 × 105y U233 has been studied by means of a six gap beta-ray spectrometer, a xenon filled proportional counter and scintillation spectrometers. Internal conversion electrons having energies below 100 keV were measured. The mixing ratios for the 42 keV and the 55 keV transitions ag...... agree with the assumed rotational character of the 42 keV and 97 keV states. Results concerning the 163 keV state indicate that this state is also a member of the ground state rotational band.......The decay of 1.6 × 105y U233 has been studied by means of a six gap beta-ray spectrometer, a xenon filled proportional counter and scintillation spectrometers. Internal conversion electrons having energies below 100 keV were measured. The mixing ratios for the 42 keV and the 55 keV transitions...
International Nuclear Information System (INIS)
Sherr, R.; Fortune, H.T.
2004-01-01
We present calculations for the energies and widths of the lowest 1/2 + , 1/2 - , and 5/2 + levels of 9 B, taking into account the information known for the mirror levels in 9 Be. Comparison is made with the experimental data
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists
International Nuclear Information System (INIS)
Amusa, A.
1991-02-01
The effects of intruder states arising from general positive deformations on the excitation energies, the two-neutron transfer spectroscopic amplitudes for the reaction 18 O(t,p) 20 O, and some electric quadrupole transition amplitudes between some low-lying positive parity states in 20 O are presented. The Hamiltonian matrix elements that reproduce experimental data best are also presented along with a general comparison of the results with experiment and with pure (sd) 4 shell model results. (author). 19 refs, 2 figs, 5 tabs
Voss, C. I.; Gingerich, S. B.
2015-12-01
Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the
Decay modes of high-lying single-particle states in 209Pb
International Nuclear Information System (INIS)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.
1993-01-01
The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs
Excitation spectrum of Heisenberg spin ladders
International Nuclear Information System (INIS)
Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.
1993-01-01
Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed
National Research Council Canada - National Science Library
Holzricher, John
2004-01-01
To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...
Packaged mode multiplexer based on silicon photonics
Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.
2012-01-01
A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.
2016-11-01
A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.
International Nuclear Information System (INIS)
Chomaz, P.
1984-01-01
Kinetic energy spectra of heavy fragments from the 36Ar+208Pb reaction at 11 MeV/n and 20 Ne+ 208 Pb at 30 MeV/n have been measured with a time of flight spectrometer. Numerous structures ranging up to 100 MeV excitation energy are observed in the inelastic and few nucleon transfer channels. These structures are shown to be due to an excitation of the 208 Pb target nucleus and not to decay products of excited ejectiles. Positions of low lying structures (E* 208 Pb. The linear response of the target nucleus to the external field created by the projectile is calculated microscopically in the Random Phase Approximation resolved using the Green's function method in coordinate space with a Skyrme interaction. In the independant quasi-boson approximation multiple phonon excitations reproduce the main features of the experimental data and appear as a plausible interpretation of the observed structures. The theoretical calculations and experimental observations suggest that multiphonon excitations play an important role in heavy ion reactions and contribute strongly to the kinetic energy dissipation [fr
International Nuclear Information System (INIS)
Boudjema, F.; Djouadi, A.; Kneur, J.L.
1992-01-01
The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs
Bastin, B; Kruecken, R; Larsen, A; Rahkila, P J; Srebrny, J; Clement, E; Wadsworth, R; Syed naeemul, H; Peura, P J; Siem, S; Hadynska-klek, K; Habs, D; Napiorkowski, P J; Diriken, J V J; Iwanicki, J S
Coulomb excitation measurements to study the shape coexistence and quadrupole collectivity of the low-lying levels in neutron-deficient Pb nuclei are proposed. Even-mass $^{188−192}$Pb nuclei will be post-accelerated at REX-ISOLDE in order to measure transition probabilities and quadrupole moments for the first excited states. In combination with results obtained in lifetime measurements, this will allow the sign of the quadrupole deformation parameter to be extracted for the first time for 2$^{+}$ states in the even-mass $^{188−192}$Pb nuclei.
International Nuclear Information System (INIS)
Suo, Bingbing; Yu, Yan-Mei; Han, Huixian
2015-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths
New excitation modes in halo nuclei
International Nuclear Information System (INIS)
Sagawa, H.
1992-01-01
Multipole resonances in exotic neutron-rich nuclei are addressed on the basis of microscopic calculations, i.e., in the framework of the self-consistent H-F + RPA theory. A bunch of resonances with multipoles J π = 0 + , 1 - and 2 + is found near the particle threshold E x ∼ 1 MeV in 10 He having significant portions of the sum rule values and narrow widths. The long tail of the loosely-bound neutrons is the cause of the threshold anomaly of these resonances
International Nuclear Information System (INIS)
Boneva, S.T.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.
1990-01-01
Intensities of two-quanta cascades are obtained for 2-3 final low-lying levels of the following nuclei 146 Nd, 174 Yb and 183 W. These measured intensities are compared with the intensities calculated in the frame of various models at primary transition energies ranging from 0.5 MeV to the neutron binding energy. Some excitation energy intervals are revealed, experimentally obtained intensities of cascade are inconsistent with model calculations. 15 refs.; 7 figs
Damping of unbound single-particle modes
International Nuclear Information System (INIS)
Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.
1995-01-01
The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical
Decay modes of high-lying single-particle states in [sup 209]Pb
Energy Technology Data Exchange (ETDEWEB)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))
1994-05-01
The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus
International Nuclear Information System (INIS)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Impact self-excited vibrations of linear motor
Zhuravlev, V. Ph.
2010-08-01
Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Shigeta, M.; Sato, T.; Dasgupta, B.
1985-01-01
The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.
Photodissociation of CS from Excited Rovibrational Levels
Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.
2018-05-01
Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.
DEFF Research Database (Denmark)
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Microscopic analysis of wobbling excitations in 156Dy and 162Yb
International Nuclear Information System (INIS)
Nazmitdinov, R. G.; Kvasil, J.
2007-01-01
In the cranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole excitations of positive parity and negative signature in 156 Dy and 162 Yb at high spins. Special attention is paid to a consistent description of wobbling excitations and their identification among excited states. A good agreement between the available experimental data and the results of calculations is obtained. We find that the lowest odd-spin γ-vibrational states in 156 Dy transform into wobbling excitations after the backbending associated with the transition from an axially symmetric shape to a nonaxial shape. Similar results are predicted for 162 Yb. The analysis of electromagnetic transitions uniquely determines the sign of the γ deformation in both nuclei after the transition point
Coulomb excitation of the odd-odd isotopes {sup 106,108}In
Energy Technology Data Exchange (ETDEWEB)
Ekstroem, A.; Fahlander, C. [University of Lund, Physics Department, Box 118, Lund (Sweden); Cederkaell, J. [University of Lund, Physics Department, Box 118, Lund (Sweden); CERN, PH Department, Geneva 23 (Switzerland); Hjorth-Jensen, M.; Engeland, T. [University of Oslo, Physics Department and Center of Mathematics for Applications, Oslo (Norway); Blazhev, A.; Eberth, J.; Finke, F.; Reiter, P.; Warr, N.; Weisshaar, D. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Butler, P.A.; Hurst, A.M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Goergen, A. [Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Ivanov, O.; Stefanescu, I. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Koester, U. [CERN, PH Department, Geneva 23 (Switzerland); Institut Laue Langevin, Grenoble (France); Marsh, B.A. [University of Manchester, Department of Physics, Manchester (United Kingdom); CERN, AB Department, Geneva 23 (Switzerland); Mierzejewski, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Siem, S. [University of Oslo, Department of Physics, Oslo (Norway); Sletten, G. [University of Copenhagen, Physics Department, Copenhagen (Denmark); Tveten, G.M. [CERN, PH Department, Geneva 23 (Switzerland); University of Oslo, Department of Physics, Oslo (Norway); Van de Walle, J. [CERN, PH Department, Geneva 23 (Switzerland); Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Voulot, D.; Wenander, F. [CERN, AB Department, Geneva 23 (Switzerland)
2010-06-15
The low-lying states in the odd-odd and unstable isotopes {sup 106,108}In have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the {pi}g{sub 9/2}{sup -1} x {nu}d{sub 5/2} and {pi}g{sub 9/2}{sup -1} x {nu} g{sub 7/2} multiplets have been re-analyzed and are modified compared to previous results. The observed {gamma} -ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6{sup +} ground state in {sup 106}In. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in {sup 108}In is inverted compared to the shell model prediction. Limits on B(E2) values have been extracted where possible. A previously unknown low-lying state at 367keV in {sup 106}In is also reported. (orig.)
Experimental investigation of particle-hole excitations in 91Nb
International Nuclear Information System (INIS)
Singh, Purnima; Palit, R.; Choudhury, D.
2014-01-01
Investigation of high-spin states in nuclei near N = 50 shell closure have attracted considerable attention in recent years. These nuclei provide a suitable laboratory for testing the residual interactions of the spherical shell model. Studies of N = 50, Z ∼ 40 nuclei, revealed that the low-lying states in these nuclei arise from proton excitations within the f 5/2 , p 3/2 , p 1/2 , and g 9/2 orbits. The higher angular momentum states were observed to have dominant contribution of 1p - 1h configurations involving a single g 9/2 neutron excitation across the N = 50 shell gap into the d 5/2 orbit. A comprehensive study of multiparticle-multihole (mp-mh) excitations in these nuclei may provide necessary insight into the evolution of shell structure above N = 50 shell gap. However, till date there is no experimental evidence of states involving two or more neutron excitations across the N = 50 shell gap in N = 50, Z ∼ 40 nuclei. The present work investigates high-spin states in the N = 50 nucleus, 91 Nb, with the purpose to search for states involving 2p - 2h excitations across the N = 50 shell closure
It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.
Aoki, Yoshiaki; Matsuki, Nobuo; Mori, Tadashi; Ikeda, Hiroshi; Inoue, Yoshihisa
2014-09-19
Solvent, temperature, and excitation wavelength significantly affected the photochemical outcomes of a naphthalene-dicyanoethene system tethered by different number (n) of methylene groups (1-3). The effect of irradiation wavelength was almost negligible for 2a but pronounced for 3a. The temperature dependence and theoretical calculations indicated the diversity of exciplex conformations, an ensemble of which can be effectively altered by changing excitation wavelength to eventually switch the regioselectivity of photoreactions.
Energy Technology Data Exchange (ETDEWEB)
Boo, Bong Hyun; Kwak, Hae Ran; Hong, Seung Ki [Chungnam National University, Daejeon (Korea, Republic of); Park, Chan Jo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); No, Kwang Hyun [Sookmyung Womens University, Seoul (Korea, Republic of)
2010-08-15
We have searched low-lying conformers of calix[4]arene and found one global minimum having a cone shape, together with three conformers such as partial cone-shape conformers. We then elucidated the thermodynamics for the conformational changes by performing density-functional theory (DFT) calculations. The time-dependent DFT calculation enabled us to assign the absorption spectrum and to reveal a variation of the excitation energies with geometry.
Wideband MEMS Resonator Using Multifrequency Excitation
Jaber, Nizar; Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.
2016-01-01
We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.
Wideband MEMS Resonator Using Multifrequency Excitation
Jaber, Nizar
2016-03-09
We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.
Electronic structure and the mechanism of autoionization for doubly excited states
International Nuclear Information System (INIS)
Komninos, Y.; Makri, N.; Nicolaides, C.A.
1986-01-01
Apart from pure phenomenology, the rigorous and quantitative study of many-electron autoionizing states presents intriguing questions as regards their structure and dynamics. In this paper we present an analysis of such states within a state specific theory with application to five low-lying doubly excited states (DES) of He. The zeroth order description is multiconfigurational and is obtained numerically at the MCHF level. In this way, major radial and angular correlations are accounted for accurately, and reliable predictions can be made without the requirement of large computations. The additional localized correlation is obtained by optimizing variationally analytic virtual orbitals. (orig./WL)
All-fiber Raman Probe using Higher Order Modes
DEFF Research Database (Denmark)
Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten
2013-01-01
We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....
Magnetic dipole excitations of 50Cr
Pai, H.; Beck, T.; Beller, J.; Beyer, R.; Bhike, M.; Derya, V.; Gayer, U.; Isaak, J.; Krishichayan, Kvasil, J.; Löher, B.; Nesterenko, V. O.; Pietralla, N.; Martínez-Pinedo, G.; Mertes, L.; Ponomarev, V. Yu.; Reinhard, P.-G.; Repko, A.; Ries, P. C.; Romig, C.; Savran, D.; Schwengner, R.; Tornow, W.; Werner, V.; Wilhelmy, J.; Zilges, A.; Zweidinger, M.
2016-01-01
The low-lying M 1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ -ray Source (HI γ S ) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M 1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the f p shell.
Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A
2015-04-15
A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.
Hadron excitation of giant resonances
International Nuclear Information System (INIS)
Morsch, H.-P.
1985-01-01
A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)
Collective and single-particle states at high excitation energy
International Nuclear Information System (INIS)
Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.
2000-01-01
Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)
Finite temperature effects on monopole and dipole excitations
International Nuclear Information System (INIS)
Niu, Y F; Paar, N; Vretenar, D; Meng, J
2011-01-01
The relativistic random phase approximation based on effective Lagrangian with density dependent meson-nucleon couplings has been extended to finite temperature and employed in studies of multipole excitations within the temperature range T = 1 - 2 MeV. The model calculations showed that isoscalar giant monopole and isovector giant dipole resonances are only slightly modified with temperature, but additional transition strength appears at low energies because of thermal unblocking of single-particle orbitals close to the Fermi level. The analysis of low-lying states shows that isoscalar monopole response in 132 Sn results from single particle transitions, while the isovector dipole strength for 60 Ni, located around 10 MeV, is composed of several single particle transitions, accumulating a small degree of collectivity.
Isobar excitations and low energy spectra of light nuclei
International Nuclear Information System (INIS)
Czerski, P.
1984-01-01
The aim of this investigation is to study the possible influence of inner excitations of nucleons into the Δ(3,3)-resonance on the low lying spectra of light nuclei like 12 C and 16 O. Before we can study the effect of such exotic configurations one has to perform a reliable investigation within the normal nuclear model, which is based on a microscopic theory. This is achieved by performing RPA (Random Phase Approximation) calculations using a realistic residual interaction derived from the Brueckner G-matrix. An efficient parametrisation of the residual interaction is introduced and the reliability of the more phenomenological parametrisations which are generally used is discussed. Within such realistic calculations, the isobar effects are small. (orig.) [de
Probing intruder configurations in $^{186, 188}$Pb using Coulomb excitation
Columb excitation measurements to study the shape coexistence, mixing and quadrupole collectivity of the low-lying levels in neutron-deficient $^{188}$Pb nuclei are proposed with a view to extending similar studies to the $^{186}$Pb midshell nucleus. The HIE-ISOLDE beam of $^{186,188}$Pb nuclei will be delivered to MINIBALL+SPEDE set-up for simultaneous in-beam $\\gamma$-ray and conversion electron spectroscopy. The proposed experiment will allow the sign of the quadrupole deformation parameter to be extracted for the two lowest 2$^{+}$ states in $^{188}$Pb. Moreover, the advent of SPEDE will allow probing of the bandhead 0$^{+}$ states via direct measurements of E0 transitions. Beam development is requested to provide pure and instense $^{186}$Pb beam.
Statistical decay of dipole-excited states of Zr isotopes
Energy Technology Data Exchange (ETDEWEB)
Gayer, Udo; Zweidinger, Markus; Beck, Tobias; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker [IKP, TU Darmstadt (Germany); Cooper, Nathan [University of Richmond, Richmond (United States); Isaak, Johann [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Loeher, Bastian; Savran, Deniz [GSI, Darmstadt (Germany); Scheck, Marcus [School of Engineering, UWS, Paisley (United Kingdom); SUPA, Glasgow (United Kingdom); Tornow, Werner [Duke University, Durham (United States)
2016-07-01
Decay properties of electric dipole excitations below the neutron separation threshold of {sup 92,94,96}Zr have been determined in several (γ,γ') and (vector γ,γ') experiments at the Darmstadt High Intensity Photon Setup and the High-Intensity Gamma-Ray Source in Durham, USA. The model of statistical decay is used to guide an interpretation of this low-lying dipole strength which is frequently discussed to arise from the low-energy tail of the giant dipole resonance and potentially an additional resonance structure often referred to as the pygmy dipole resonance. The availability of three complete data sets in the Zr isotopic chain allowed for a precise test of these extrapolations to low energies using different models for the level density and the photon strength function. In the talk, data and calculations are presented, and the suitability of photon scattering data for this kind of analysis is discussed.
Gutzwiller approach for elementary excitations in S = 1 antiferromagnetic chains
International Nuclear Information System (INIS)
Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai
2014-01-01
In a previous paper (Liu et al 2012 Phys. Rev. B 85 195144), a variational Monte Carlo method (based on Gutzwiller projected states) was generalized to S = 1 systems. This method provided very good trial ground states for the gapped phases of an S = 1 bilinear-biquadratic (BLBQ) Heisenberg chain. In this paper, we extend the approach to study the low-lying elementary excitations in S = 1 chains. We calculate the one-magnon and two-magnon excitation spectra of the BLBQ Heisenberg chain and the results agree very well with recent data in the literature. In our approach, the difference of the excitation spectrum between the Haldane phase and the dimer phase (such as the even/odd size effect) can be understood from their different topologies of the corresponding mean field theory. We especially study the Takhtajan–Babujian critical point. Despite the fact that the ‘elementary excitations’ are spin-1 magnons, which are different from the spin-1/2 spinons in Bethe solution, we show that the excitation spectrum, critical exponent (η=0.74) and central charge (c = 1.45) calculated from our theory agree well with the Bethe ansatz solution and conformal field theory predictions. (paper)
International Nuclear Information System (INIS)
Richards, J.D.; Breinig, M.; Gaither, C.C.; Berryman, J.W.; Hasson, B.F.
1993-01-01
Two electrons, excited just above the double-ionization threshold of an Ag q+ (q=5,6) core in a single collision of a 0.1-MeV/u Ag 4+ projectile ion with an Ar atom, are detected. The electron detector consists of electrically isolated anode segments located behind a microchannel-plate electron multiplier. A large electrostatic 30 degree parallel-plate analyzer is used to deflect the two free electrons, which move with approximately the projectile velocity, into the detector. The cross sections for producing final states consisting of a positively charged ionic core and two electrons just above the threshold for double ionization in ion-atom collisions have been measured. The cross sections for producing states with one electron moving with a kinetic energy less than 0.13 eV in the projectile frame and the other moving with somewhat higher kinetic energy are presented
What are the advantages of a three body model with core excitation for 21Ne and 21Na?
International Nuclear Information System (INIS)
Nunes, F.M.; Thompson, I.J.
2004-01-01
21 Ne and 21 Na are well bound nuclei and there is a large amount of data available up to considerable excitation energy, and this imposes a severe test on the structure models. Preliminary results for the structure of these nuclei based on three body models ( 21 Ne= 16 O+α+n and 21 Na= 16 O+α+p) are presented. Three-body calculations without core excitation produce the positive parity states in fair agreement with experiment, while slightly overbinding the systems. As expected, these models fail to reproduce the low lying negative parity states, which are predicted by shell model to have mainly core excited configurations. As a first step we have included the 3 - state of 16 O in our model. Convergence issues will be discussed. Results suggest that more excited states may be required to describe the system
International Nuclear Information System (INIS)
Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.
1987-01-01
The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential
Language identification using excitation source features
Rao, K Sreenivasa
2015-01-01
This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivatio...
Collective excitations in itinerant spiral magnets
International Nuclear Information System (INIS)
Kampf, A.P.
1996-01-01
We investigate the coupled charge and spin collective excitations in the spiral phases of the two-dimensional Hubbard model using a generalized random-phase approximation. Already for small doping the spin-wave excitations are strongly renormalized due to low-energy particle-hole excitations. Besides the three Goldstone modes of the spiral state the dynamical susceptibility reveals an extra zero mode for low doping and strong coupling values signaling an intrinsic instability of the homogeneous spiral state. In addition, near-zero modes are found in the vicinity of the spiral pitch wave number for out-of-plane spin fluctuations. Their origin is found to be the near degeneracy with staggered noncoplanar spiral states which, however, are not the lowest energy Hartree-Fock solutions among the homogeneous spiral states. copyright 1996 The American Physical Society
Studies of interstellar vibrationally-excited molecules
International Nuclear Information System (INIS)
Ziurys, L.M.; Snell, R.L.; Erickson, N.R.
1986-01-01
Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam
Microstructure ion Nuclear Spectra at High Excitation
International Nuclear Information System (INIS)
Ericson, T.E.O.
1969-01-01
The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)
Collective nuclear excitations with Skyrme-second random-phase approximation
International Nuclear Information System (INIS)
Gambacurta, D.; Catara, F.; Grasso, M.
2010-01-01
Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both high- and low-lying excited states in 16 O. The coupling between one particle-one hole and two particle-two hole as well as that between two particle-two hole configurations among themselves are fully taken into account, and the residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided by the second RPA owing to the huge number of two particle-two hole configurations. A better description of the excitation energies of the low-lying 0 + and 2 + states is obtained with the second RPA than with the RPA.
Many-body excitations and deexcitations in trapped ultracold bosonic clouds
Theisen, Marcus; Streltsov, Alexej I.
2016-11-01
We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.
Magnetic excitations in thulium metal
International Nuclear Information System (INIS)
Fernandez-Baca, J.A.; Nicklow, R.M.; Rhyne, J.J.
1989-01-01
We have performed inelastic neutron scattering measurements on a single crystal specimen of Tm at wavevectors rvec κ = (1,1, ζ) and (0,0,2 + ζ) (ζ = 0, hor-ellipsis, 1). Most of the measurements have been made at T = 5K, where Tm exhibits a seven layer ferrimagnetic-antiphase-domain structure (four moments up, parallel to the c-axis, followed by three moments down). At this temperature the excitation spectra consist of three peaks. The two lower energy excitations have been identified as originating from magneto-vibrational scattering from the TA phonon, while the higher energy excitation is magnetic and exhibits only a weak dispersion (between 8.3 and 9.6 meV). At T = 50K, a temperature at which the system exhibits a c-axis sinusoidally modulated structure, the magnetic mode shows significant softening and broadening. The magneto-vibrational scattering vanishes above the Neel temperature (T N = 58.5K) while the magnetic mode persists at least up to T = 70K. These results suggest that the Hamiltonian in this system is dominated by the crystal-field-anistropy energy, and that the exchange interaction is relatively weak. 9 refs., 2 figs
Surface and bulk excitations in condensed matter
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs
Nuclear spin and isospin excitations
International Nuclear Information System (INIS)
Osterfeld, F.
1992-01-01
A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton
Creation of skyrmion through resonance excitation
Energy Technology Data Exchange (ETDEWEB)
Li, Zhi-xiong; Chen, Yi-fu; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Wang, Dao-wei; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn
2017-07-01
Highlights: • Intrinsic oscillation modes of skyrmion are studied by using micromagnetic simulation. • Creation of skyrmion through resonant excitation is proposed. • The number of generated skyrmions can be effectively controlled by manipulating the driving field. • Skyrmion lattice in extended film is generated via resonant excitation. - Abstract: Controllable creation of magnetic skyrmions in nanostructures is a prerequisite for the application of skyrmions in spintronics. Here, we propose a new method for the creation of skyrmions. We show by using micromagnetic simulations that the skyrmions can be nucleated by resonantly exciting one of the skyrmion intrinsic oscillation modes. We first studied the dynamics of skyrmion in a ferromagnetic nanodisk with perpendicular anisotropy. One breathing mode and two non-degenerate gyrotropic modes are identified. Then we applied a circular-polarized microwave field to excite the uniformly magnetized nanodisk. When the frequency of the driving field is equal to the eigenfrequency of the skyrmion gyrotropic mode, stable skyrmions can be created from the initial uniform state. The number of skyrmions can be effectively controlled by appropriately choosing the duration of the driving field or tuning the field amplitude.
Competition and transformation of modes of unidirectional air waveguide
Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan
2016-10-01
In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.
Dynamical analysis of highly excited molecular spectra
Energy Technology Data Exchange (ETDEWEB)
Kellman, M.E. [Univ. of Oregon, Eugene (United States)
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
Uniform magnetic excitations in nanoparticles
DEFF Research Database (Denmark)
Mørup, Steen; Hansen, Britt Rosendahl
2005-01-01
We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...
Constraining nuclear photon strength functions by the decay properties of photo-excited states
Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.
2013-12-01
A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
International Nuclear Information System (INIS)
Butler, J.N.; Shukla, S.
1995-05-01
The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Younis, Mohammad I.
2016-01-01
Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected
Amplitude-Mode Dynamics of Polariton Condensates
International Nuclear Information System (INIS)
Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.
2011-01-01
We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.
Collective excitations with chiral NN+3N interactions from coupled-cluster and in-medium SRG
International Nuclear Information System (INIS)
Trippel, Richard
2016-01-01
A broad variety of many-body methods exists for the investigation of ground-state properties, ranging from sophisticated ab initio approaches to traditional, phenomenological models. The description of low-lying excited states of medium-mass nuclei with ab initio methods has also become possible through recent progress in many-body theory. For collective modes at higher energies, however, these methods usually cannot be applied. Therefore, when describing collective excitations either completely phenomenological, macroscopic models are employed or microscopic models using phenomenological interactions. One of the microscopic models well suited for the calculation of collective properties is the random-phase approximation (RPA). In the past, the use of phenomenological interactions for RPA has shown promising results. However, the application of chiral NN interactions yielded transitions at significantly too high energies, far from agreement with experimental data. This thesis focuses on the description of collective modes using both RPA and its second-order extension, SRPA. In contrast to previous research endeavors, we employ chiral NN+3N interactions. The use of chiral interactions is an important first step for describing ground-state, excitation and collective properties on an equal foundation. We find that the inclusion of 3N terms is crucial for RPA calculations and the prediction for collective modes is drastically improved through the 3N terms. For SRPA we show first-ever results with chiral interactions, again leading to an improvement in the predictions. For a successful ab initio description of ground-state properties the inclusion of correlations is of paramount importance. Past RPA calculations have been performed using the quasi-boson approximation, effectively neglecting ground-state correlations. Using RPA, the next step along the path towards an ab initio description of collective properties will, therefore, be the inclusion of correlations. To
Collective excitations with chiral NN+3N interactions from coupled-cluster and in-medium SRG
Energy Technology Data Exchange (ETDEWEB)
Trippel, Richard
2016-12-19
A broad variety of many-body methods exists for the investigation of ground-state properties, ranging from sophisticated ab initio approaches to traditional, phenomenological models. The description of low-lying excited states of medium-mass nuclei with ab initio methods has also become possible through recent progress in many-body theory. For collective modes at higher energies, however, these methods usually cannot be applied. Therefore, when describing collective excitations either completely phenomenological, macroscopic models are employed or microscopic models using phenomenological interactions. One of the microscopic models well suited for the calculation of collective properties is the random-phase approximation (RPA). In the past, the use of phenomenological interactions for RPA has shown promising results. However, the application of chiral NN interactions yielded transitions at significantly too high energies, far from agreement with experimental data. This thesis focuses on the description of collective modes using both RPA and its second-order extension, SRPA. In contrast to previous research endeavors, we employ chiral NN+3N interactions. The use of chiral interactions is an important first step for describing ground-state, excitation and collective properties on an equal foundation. We find that the inclusion of 3N terms is crucial for RPA calculations and the prediction for collective modes is drastically improved through the 3N terms. For SRPA we show first-ever results with chiral interactions, again leading to an improvement in the predictions. For a successful ab initio description of ground-state properties the inclusion of correlations is of paramount importance. Past RPA calculations have been performed using the quasi-boson approximation, effectively neglecting ground-state correlations. Using RPA, the next step along the path towards an ab initio description of collective properties will, therefore, be the inclusion of correlations. To
Magnetic excitations in ferromagnetic semiconductors
International Nuclear Information System (INIS)
Furdyna, J.K.; Liu, X.; Zhou, Y.Y.
2009-01-01
Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors
International Nuclear Information System (INIS)
Odegaard, S.W.; Tjoem, P.O.; Hagemann, G.B.; Jensen, D.R.; Bergstroem, M.; Herskind, B.; Sletten, G.; Toermaenen, S.; Wilson, J.N.; Hamamoto, I.; Spohr, K.; Huebel, H.; Goergen, A.; Schoenwasser, G.; Bracco, A.; Leoni, S.; Maj, A.; Petrache, C.M.; Bednarczyk, P.; Curien, D.
2002-01-01
The wobbling mode is a direct consequence of rotational motion of a triaxial body. The wobbling degree of freedom introduces sequences of bands with increasing number of wobbling quanta and a characteristic ΔI=1 decay pattern between the bands in competition with the in-band decay. A favorable candidate for establishing this exotic excitation mode is found for the first time in one of the Lu-isotopes for which stable triaxial superdeformed shapes are expected
Strange diquarks and orbital excitations of hyperons
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Ralchenko, Yu.V.; Vasilets, A.V.
1987-01-01
Using the model of the QCD string with spin-orbital interaction the masses of strange diquarks are determined. The spectra of orbital excitations of the Λ and Σ hyperons are calculated and discussed. Also the decay modes for Λ's and Σ's are considered
Collective excitations of harmonically trapped ideal gases
Van Schaeybroeck, B.; Lazarides, A.
2009-01-01
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show
Elementary excitations in nuclei
International Nuclear Information System (INIS)
Lemmer, R.H.
1987-01-01
The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited
Bando, T.; Ohdachi, S.; Suzuki, Y.; Sakamoto, R.; Narushima, Y.; Takemura, Y.; Watanabe, K. Y.; Sakakibara, S.; Du, X. D.; Motojima, G.; Tanaka, K.; Morisaki, T.; LHD Experiment Group
2018-01-01
Two types of oscillation phenomena are found just after hydrogen ice pellet injections in the Large Helical Device (LHD). Oscillation phenomena appear when the deposition profile of a hydrogen ice pellet is localized around the rotational transform ι = 1 rational surface. At first, damping oscillations (type-I) appear only in the soft X-ray (SX) emission. They are followed by the second type of oscillations (type-II) where the magnetic fluctuations and density fluctuations synchronized to the SX fluctuations are observed. Both oscillations have poloidal/toroidal mode number, m/n = 1/1. Since the type-II oscillations appear when the local pressure is large and/or the local magnetic Reynold's number is small, it is reasonable that type-II oscillations are caused by the resistive interchange modes. Because both types of oscillations appear simultaneously at slightly different locations and with slightly different frequencies, it is certain that type-I oscillations are different from type-II oscillations, which we believe is the MHD instability. It is possible that type-I oscillations are caused by the asymmetric concentration of the impurities. The type-I oscillations are similar to the impurity snake phenomena observed in tokamaks though type-I oscillations survive only several tens of milliseconds in LHD.
Damping of unbound single-particle modes
Energy Technology Data Exchange (ETDEWEB)
Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)
1995-11-01
The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.
Younis, Mohammad I.
2016-03-10
Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.
Czech Academy of Sciences Publication Activity Database
Záliš, Stanislav; Vlček, Antonín; Daniel, CH.
2003-01-01
Roč. 68, č. 1 (2003), s. 89-104 ISSN 0010-0765 R&D Projects: GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : time dependent density functional * UV-VIS spectroscopy * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003
Shape determination in Coulomb excitation of $^{72}$Kr
Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P
Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...
a simple a simple excitation control excitation control excitation
African Journals Online (AJOL)
eobe
field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...
Energy Technology Data Exchange (ETDEWEB)
Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp
2015-06-01
This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of
Excitation of giant resonances through inelastic scattering
International Nuclear Information System (INIS)
Kailas, S.
1981-01-01
In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)
Peter, Simon; Leine, Remco I.
2017-11-01
Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.
Nonlinear surface elastic modes in crystals
Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.
1990-03-01
The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.
PLC-based mode multi/demultiplexers for mode division multiplexing
Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide
2017-02-01
Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.
Anomalous normal mode oscillations in semiconductor microcavities
Energy Technology Data Exchange (ETDEWEB)
Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)
1997-04-01
Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.
Efficient channel-plasmon excitation by nano-mirrors
DEFF Research Database (Denmark)
Radko, Ilya; Holmgaard Stær, Tobias; Han, Zhanghua
2011-01-01
We demonstrate a configuration for efficient channel-plasmon mode excitation using tapered terminations of V-shaped groove waveguides. The plasmon excitation is achieved by directly illuminating tapers of gold V-grooves with a focused laser beam, incident normally onto the sample surface. For nea...
Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.
2014-09-01
We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.
Comparative study of spectroscopic properties of the low-lying ...
Indian Academy of Sciences (India)
due to the substitutions by methyl (II), isopropyl (III) and fluoromethyl (IV) groups on nitrogen. Some theo- retical studies on PSB (I) have been earlier reported at different level of calculations. AM1/CISD, MP4, MRCI calculations have been carried out by Dobado and. Nonella,25 while MNDO-CI method has been applied.
Xanadu Is Old, Rugged And Low-lying
Wood, Charles; Kirk, R. L.; Stofan, E.; Stiles, B.; Zebker, H.; Ostro, S.; Radebaugh, J.; Lorenz, R. D.; Callahan, P.; Wall, S.
2007-10-01
Xanadu was the first surface feature discovered on Titan. It is anomalously bright in the IR, and is also radar bright with unusual physical properties. Xanadu is continent size ( 4000 km wide) with a sharp boundary to the west against the dark dunes of Shangri-La, and less distinct boundaries in other areas. Because of its size and reflectivity it had been proposed that Xanadu is an elevated continent. But it is not. A new topography-from-SAR technique shows that along the T13 Radar swath which completely transects Xanadu, the average topographic elevation is indistinguishable from that of the surrounding terrain. There are many mountains with peaks locally rising up to 1-2 km, but the average elevation of the T13 pass is 200 m +/- 300 m lower than the radius of Titan. The highest point is near the swath center. Photogeologic interpretation suggests that Xanadu slopes to the south; three major river systems begin in the north and flow southward. The lack of significant average elevation means that it is not necessary to create models to explain how Xanadu is dynamically supported. Its eroded-looking terrain, large number of possible eroded impact craters, dune encroachment on its western edge, and apparent detached patches of similar material near its margins all suggest that Xanadu is a relict terrain, currently being disaggregated. The only sign of current activity is the river channels. We speculate that Xanadu was originally a landform of higher elevation (2 km higher if the mountain tops are remnants of an original surface) that has been modified by erosion and/or isostatic adjustment. If the observed river systems have eroded and removed the putative higher terrain there may be significant sediment deposits in the central or southern parts of Xanadu, and/or this material may have been redistributed by winds.
Quadrupole moments of low-lying baryons with spin
Indian Academy of Sciences (India)
2015-11-27
Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.
Dynamic polarizabilities for the low lying states of Ca+
International Nuclear Information System (INIS)
Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J
2014-01-01
The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states
Low-lying (K π= 0+) states of gadolinium isotopes
Indian Academy of Sciences (India)
The sd-interacting boson approximation (sd-IBA) and the df-interacting boson approximation (df-IBA) can be related to each other and the states of the interacting boson approximation model can ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
The low lying yrast structure of 212Po
International Nuclear Information System (INIS)
Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.
1987-07-01
The properties of states in 212 Po populated by the 208 Pb( 9 Be,αn) 212 Po reaction have been investigated. the previously proposed yrast scheme below 3MeV has been verified and eight further transitions placed in the level scheme. Mean lives of the 6 + , 8 + and (10 + ) states at 1355, 1476 and 1834 keV have been measured as 1.1(3), 24.6(3) and 0.8(2)ns respectively. Shell model calculations using effective interactions were used to interpret the observed scheme. A synthesis of all available theoretical and experimental evidence allows the 65s isomer to be identified clearly as the 18 + level arising primarily from the π(h 9/2 2 )*ν(g 9/2 i 11/2 ) configuration
The low-lying yrast structure of 212Po
International Nuclear Information System (INIS)
Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.
1987-01-01
The properties of states in 212 Po populated by the 208 Pb( 9 Be,αn) 212 Po reaction have been investigated. The previously proposed yrast scheme below ≅ 3 MeV has been verified and eight further transitions placed in the level scheme. Mean lives of the 6 + , 8 + and (10 + ) states at 1355, 1476 and 1834 keV have been measured at 1.1 (3), 24.6 (3) and 0.8 (2) ns respectively. Shell model calculations using effective interactions were used to interpret the observed scheme. A synthesis of all available theoretical and experimental evidence allows the τ m = 65 s isomer to be identified clearly as the 18 + level arising primarily from the π(h 2 9/2 ) * ν(g 9/2 i 11/2 ) configuration. (orig.)
Strange sea quark effects for low lying baryons
International Nuclear Information System (INIS)
Upadhyay, A.; Batra, Meenakshi
2013-01-01
Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)
Hyperfine splitting of low-lying heavy baryons
Energy Technology Data Exchange (ETDEWEB)
Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)
1997-11-10
We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.
Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques
International Nuclear Information System (INIS)
Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.
2011-01-01
The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.
Low-lying (K π= 0+) states of gadolinium isotopes
Indian Academy of Sciences (India)
The sd-interacting boson approximation (sd-IBA) and the df-interacting boson approximation (df-IBA) can be related to each other and the states of the interacting boson approximation model can be identified with the fully symmetric states in the sdf interacting boson approximation model. A systematic study of the sdf-IBA ...
Quadrupole moments of low-lying baryons with spin
Indian Academy of Sciences (India)
The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...
Cross-correlated imaging of distributed mode filtering rod fiber
DEFF Research Database (Denmark)
Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie
2013-01-01
We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....
Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo
2017-01-01
Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...
Pietanza, L D; Colonna, G; Laporta, V; Celiberto, R; D'Ammando, G; Laricchiuta, A; Capitelli, M
2016-05-05
A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism.
International Nuclear Information System (INIS)
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-01-01
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested
Energy Technology Data Exchange (ETDEWEB)
Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)
2014-12-07
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.
The structure of nuclear states at low, intermediate and high excitation energies
International Nuclear Information System (INIS)
Soloviev, V.G.
1976-01-01
It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed
International Nuclear Information System (INIS)
Suzuki, D.; Iwasaki, H.; Ong, H.J.; Imai, N.; Sakurai, H.; Nakao, T.; Aoi, N.; Baba, H.; Bishop, S.; Ichikawa, Y.; Ishihara, M.; Kondo, Y.; Kubo, T.; Kurita, K.; Motobayashi, T.; Nakamura, T.; Okumura, T.; Onishi, T.K.; Ota, S.; Suzuki, M.K.
2008-01-01
Lifetime measurements were performed on low-lying excited states of the neutron-rich isotope 17 C using the recoil shadow method. The γ-decay mean lifetimes were determined to be 583±21(stat)±35(syst) ps for the first excited state at 212 keV and 18.9±0.6(stat)±4.7(syst) ps for the second excited state at 333 keV. Based on a comparison with the empirical upper limits for the electromagnetic transition strengths, these decays are concluded to be predominantly M1 transitions. The reduced M1 transition probabilities to the ground state were deduced to be (1.0±0.1)x10 -2 μ N 2 and (8.2 -1.8 +3.2 )x10 -2 μ N 2 , respectively, for the first and second excited states. The strongly hindered M1 strength as well as the lowered excitation energy represents unique nature of the 212-keV state
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments
Lim, Edward C
2013-01-01
Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo
Lim, Edward C
1982-01-01
Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho
Sigma- versus Pi-Dimerization Modes of Triangulene.
Mou, Zhongyu; Kertesz, Miklos
2018-04-20
We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Detection of interstellar vibrationally excited HCN
International Nuclear Information System (INIS)
Ziurys, L.M.; Turner, B.E.
1986-01-01
Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1/sup 1d/,1c, 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the ''hot core,'' is 1.7-10 16 cm -2 and can be understood in terms of the ''doughnut'' model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10 18 cm -2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 μm flux from IRc2 accounts for the (0,1,0) population provided the hot core is approx.6-7 x 10 16 cm distant from IRc2, in agreement with the ''cavity'' model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1/sup 1c/,/sup 1d/,0) and (0,2 0 ,0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope
Efficient channel-plasmon excitation by nano-mirrors
DEFF Research Database (Denmark)
Radko, Ilya P.; Stær, Tobias Holmgaard; Han, Zhanghua
2011-01-01
We demonstrate a configuration for efficient channel-plasmon mode excitation using tapered terminations of V-shaped groove waveguides. The plasmon excitation is achieved by directly illuminating tapers of gold V-grooves with a focused laser beam, incident normally onto the sample surface. For near......-infrared wavelengths, we find experimentally as well as numerically, by conducting three-dimensional finite-difference time-domain calculations, that the efficiency of channel-plasmon mode excitation exceeds 10% in the optimum configuration, which is the highest experimentally observed efficiency of coupling from free-propagation...
Angular-momentum-bearing modes in fission
International Nuclear Information System (INIS)
Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.
1989-03-01
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs
Multipole giant resonances in highly excited nuclei
International Nuclear Information System (INIS)
Xia Keding; Cai Yanhuang
1989-01-01
The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed
Phonon excitations in multicomponent amorphous solids
International Nuclear Information System (INIS)
Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.
1988-01-01
The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated
Dubin, D. H. E.
This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.
Self-excited oscillation due to the fluid discharge over a flexible weir, 1
International Nuclear Information System (INIS)
Hisano, Katsumi; Kaneko, Shigehiko
1989-01-01
The excitation mechanism of a self-excited oscillation due to the fluid discharge over a flexible weir was investigated both theoretically and experimentally. A new type of hydroelastic instability was discovered during test operations of the Super-Phenix LMFBR reactor in France. According to the recent report by Aita, this phenomenon includes two types of instability modes: one is sloshing mode which means the oscillation of a weir associated with coupled sloshing modes of both feeding and restitution fluid collectors; the other is a hydroelastic mode which means the oscillation of a weir associated with fluid-shell modes. In this report, the excitation mechanism of a sloshing mode is discussed by calculating the excitation energy brought by discharge to the fluid-structure system. The theoretical results for the range of sloshing mode instability almost agreed with the experimental data. (author)
Self-excited oscillation due to the fluid discharge over a flexible weir, 2
International Nuclear Information System (INIS)
Hisano, Katsumi; Kaneko, Shigehiko
1990-01-01
The excitation mechanism of a self-excited oscillation due to the fluid discharge over a flexible weir was investigated both theoretically and experimentally. A new type of hydroelastic instability was discovered during test operations of the Super-Phenix LMFBR reactor in France. According to a recent report by Aita, this phenomenon includes two types of instability modes: one is the sloshing mode which means the oscillation of a weir associated with coupled sloshing modes of both feeding and restitution fluid collectors; the other is a hydroelastic mode which means the oscillation of a weir associated with fluid-shell modes. In this report, the excitation mechanism of a hydroelastic mode is discussed by calculating the excitation energy brought by discharge to the fluid-structure system. The theoretical results for the range of hydroelastic mode instability virtually agreed with the experimental data. (author)
Energy Technology Data Exchange (ETDEWEB)
Lautesse, Ph
2005-11-15
The progress made in particle detection, particularly the design of multi-detectors, like INDRA, that cover a solid angle of almost 4{pi}, have given a new impetus to heavy ion collisions. These detectors are demanding for an efficient way of selecting events that have a common history or similar features, for instance the events representing the de-excitation of a unique emitter. The problem is to find the adequate variable on which the discrimination can be based. Different methods are proposed in this work, the common point is that they require efficient models to reproduce and analyse experimental data in order to apprehend the equation of state of nuclear matter. Most of these models are based on the numerically solving of the nuclear Boltzmann equation. The application to the Ni + Ni reaction with an energy ranging from a few A.MeV to more than 50 A.MeV illustrates this work. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Lautesse, Ph
2005-11-15
The progress made in particle detection, particularly the design of multi-detectors, like INDRA, that cover a solid angle of almost 4{pi}, have given a new impetus to heavy ion collisions. These detectors are demanding for an efficient way of selecting events that have a common history or similar features, for instance the events representing the de-excitation of a unique emitter. The problem is to find the adequate variable on which the discrimination can be based. Different methods are proposed in this work, the common point is that they require efficient models to reproduce and analyse experimental data in order to apprehend the equation of state of nuclear matter. Most of these models are based on the numerically solving of the nuclear Boltzmann equation. The application to the Ni + Ni reaction with an energy ranging from a few A.MeV to more than 50 A.MeV illustrates this work. (A.C.)
International Nuclear Information System (INIS)
Suzuki, T.; Sagawa, H.
2000-01-01
Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)
International Nuclear Information System (INIS)
Sobolewski, Andrzej L.; Domcke, Wolfgang
2003-01-01
The low-lying 1 ππ* excited states of the 2-aminopyridine dimer have been investigated with multi-reference ab initio methods (CASSCF and MRMP2). The 2-aminopyridine dimer can be considered as a mimetic model of Watson-Crick DNA base pairs. The reaction path and the energy profile for single proton transfer in the lowest 1 ππ* inter-monomer charge-transfer state have been obtained. A weakly avoided crossing of the 1 ππ* surface with the electronic ground-state surface has been found near the single-proton-transfer minimum of the 1 ππ* surface. From the splitting of the adiabatic surfaces at the avoided crossing, an internal-conversion lifetime of the excited state of <100 ps has been estimated. The potential relevance of these results for the rationalization of radiation-induced mutations and the photostability of the genetic code is briefly discussed
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations
Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.
1981-11-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)
New excitation equipment for 220 MW generators in Kozloduy NPP
International Nuclear Information System (INIS)
Tomerlin, D.
2001-01-01
Rehabilitation on the excitation equipment for Generator 5, Reactor Unit 3, in Kozloduy NPP was completed in November 2000. ABB's Static Excitation System based on UNITROL 5000 technology has been chosen by the Bulgarian National Utility and Kozloduy NPP to substitute the original Russian excitation system equipment with electro-magnetic voltage regulators. The substitution is in a rehabilitation package of four excitation system equipment for Generator 5 and 6 of Reactor Unit 3 and Generator 7 and 8 of Reactor Unit 4 after a short overview of the original excitation system this paper describes the new Static Excitation System UNITROL 5000 including configuration with block diagram, its main features and merits such as modes of operation, limiter, special control functions and diagnostic facilities. Furthermore, new facilities, which are implemented in UNITROL 5000, such as dynamic current distribution among the thyristors working in parallel as well as the start-up from the residual magnetism are mentioned. Special functions including a so-called free-running mode of operation and automatic change over sequence from new excitation system to the stand-by excitation system, which is DC exciter machine, are described. Some records of the transient responses performed during the commissioning and a photograph of a manufactured system are provided. (author)
Microwave Excitation In ECRIS plasmas
International Nuclear Information System (INIS)
Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.
2007-01-01
A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma
Nucleon, Δ and Ω excited state spectra in Nf=2+1 lattice QCD
International Nuclear Information System (INIS)
Bulava, J.; Edwards, R.G.; Joo, B.; Richards, D.G.; Engelson, E.; Wallace, S.J.; Lin, H.W.; Morningstar, C.
2010-04-01
The energies of the excited states of the Nucleon, Δ and Ω and are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses m π =392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we nd reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified. (orig.)
Coulomb excitation of $^{182-184}$ Hg: Shape coexistence in the neutron-deficient lead region
We put forward a study of the interplay between individual nucleon behavior and collective degrees of freedom in the nucleus, as manifested in shape coexistence in the neutron-deficient lead region. As a first step of this experimental campaign, we propose to perform Coulomb excitation on light mercury isotopes to probe their excited states and determine transitional and diagonal E2 matrix elements, especially reducing the current uncertainties. The results from previous Coulomb excitation measurements in this mass region performed with 2.85 MeV/u beams from REX-ISOLDE have shown the feasibility of these experiments. Based on our past experience and the results obtained, we propose a detailed study of the $^{182-184}$Hg nuclei, that exhibit a pronounced mixing between 2 low-lying excited states of apparently different deformation character, using the higher energy beams from HIE-ISOLDE which are crucial to reach our goal. The higher beam energy should result in an increased sensitivity with respect to the qua...
Coulomb excitation of the odd-odd isotopes $^{106, 108}$In
Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D
2010-01-01
The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...
Inner hole excitations in 89Zr and 91Mo via the (3He,α) reaction at 97 MeV
International Nuclear Information System (INIS)
Duhamel, G.; Perrin, G.; Didelez, J.P.; Gerlic, E.; Langevin-Joliot, H.; Guillot, J.; Van de Wiele, J.
1981-01-01
The 89 Zr and 91 Mo nuclei have been investigated up to approximately 25 MeV excitation energy using the ( 3 He,α) reaction at 97.3 MeV incident energy. In addition to the well known low-lying levels and analog states, strongly excited groups of level centered around 4.4 MeV are confirmed to belong to 1fsub(7/2) neutron inner shell in 89 Zr, with at most approximately 50% of the sum rule strength. A corresponding group, with comparable strength, is found for the first time in 91 Mo at nearly the same excitation energy. In addition, and for both nuclei two much smoother structures are observed lying under and beyond the analog states. We discuss their possible attribution respectively to the 1fsub(7/2)T components. Contributions from 1d inner shells are also considered. In both nuclei, new I.A.S. fragments have been identified
Bauschlicher, C. W., Jr.; Yarkony, D. R.
1980-01-01
A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.
Harmonic excitations in quasicrystals
International Nuclear Information System (INIS)
Luck, J.M.
1986-03-01
The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized
Radio frequency plasma excitation
International Nuclear Information System (INIS)
Burden, M.St.J.; Cross, K.B.
1979-01-01
An investigation into the use of rf sputtering for ion cleaning of insulating substrates before ion plating is reported. Initial experiments consisted of sputtering metals with rf power followed by the deposition of copper onto glass slides using rf plasma excitation and biasing supply. It was found that good quality films were obtained by rf ion plating onto plastics with excellent adhesion over a wide operating pressure range. A block schematic of the rf plasma excitation system is shown. (UK)
High energy nuclear excitations
International Nuclear Information System (INIS)
Gogny, D.; Decharge, J.
1983-09-01
The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.