WorldWideScience

Sample records for low-level cyclonic vorticity

  1. A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis

    International Nuclear Information System (INIS)

    Venkatesh, T N; Mathew, Joseph

    2010-01-01

    An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

  2. Diabatic modification of potential vorticity in extratropical cyclones

    Science.gov (United States)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  3. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    Science.gov (United States)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  4. Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2017-12-01

    Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an

  5. Variability in Global-Scale Circulations and Their Impacts on Atlantic Tropical Cyclone Activity

    National Research Council Canada - National Science Library

    Rosencrans, Matthew J

    2006-01-01

    ... favorable or unfavorable for tropical cyclone formation. Favorable impacts on tropical Atlantic circulation characteristics are defined by an increase in low-level relative vorticity, a decrease in westerly vertical wind shear, and increased convection...

  6. The spatial distribution and evolution characteristics of North Atlantic cyclones

    Science.gov (United States)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  7. A Long-lived Cyclone In Saturn's Atmosphere: Observations And Models

    Science.gov (United States)

    Del Rio Gaztelurrutia, Teresa; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2009-09-01

    The atmospheres of the Giant Planets Jupiter and Saturn possess large numbers of atmospheric vortices. On Jupiter, anticyclones are generally long-lived structures while cyclones survive a much shorter time. A long term survey of images of Saturn atmosphere obtained by the Cassini ISS camera has revealed the presence of a long-lived cyclone in Saturn's southern hemisphere during at least four years, making this vortex the longest lived cyclone on either Jupiter or Saturn. We find that the vortex drifts following the wind profile, with changes in velocity following changes of latitude. During the four years of our survey its size remained essentially constant, and there was no other structure of comparable size at its latitude. Internal circulation is cyclonic, with a maximum velocity of 20±5 m/s and an average vorticity of 4·10-5 s-1, an order of magnitude lower than planetary vorticity, but only slightly higher than the ambient vorticity. Photometric analysis shows that the vortex is located at a slightly lower altitude than its surroundings, at an average of 10-20 mbar below adjacent clouds. Finally, EPIC simulations of the vortex that reproduce its behavior imply a Rossby deformation radius of 2000 km in the weather layer (1 - 10 bar), consistent with the size of the cyclone. The long-lifetime of this cyclonic spot is surprising in view of its low tangential velocity and it suggests that low dissipation conditions prevail at mid-latitudes in Saturn's upper troposphere. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  8. Balanced thermal structure of an intensifying tropical cyclone

    Directory of Open Access Journals (Sweden)

    David J. Raymond

    2012-12-01

    Full Text Available This study tests the hypothesis that the formation of a virtual potential temperature dipole in a developing tropical cyclone is a balanced response to the growth of an associated mid-level vortex. The dipole is collocated with the vortex and consists of a warm anomaly in the upper troposphere and a cool anomaly in the lower troposphere. An axisymmetric approximation to the observed potential vorticity distribution is inverted subject to non-linear balance for two successive days during the formation of typhoon Nuri in 2008. Good agreement is found between the area-averaged actual and balanced virtual temperature dipoles in these two cases. Furthermore, a strong correlation exists between the degree of bottom-heaviness of convective mass flux profiles and the strength of the balanced virtual potential temperature dipole. Since the dipole is balanced, it cannot be an immediate artefact of the existing convection, but rather is an inherent feature of the developing cyclone. Cloud resolving numerical modelling suggests that the dipole temperature anomaly actually promotes more bottom-heavy convective mass flux profiles, as observed. Such profiles are associated with low-level mass and vorticity convergence via mass continuity and the circulation theorem, resulting in low-level spin-up. The present work thus supports the hypothesis that the low-level spin-up associated with tropical cyclogenesis is made possible by the thermodynamic environment created by a strong mid-level vortex.

  9. On the movement of tropical cyclone LEHAR

    KAUST Repository

    Dasari, Hari Prasad

    2017-11-09

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (θe) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  10. On the movement of tropical cyclone LEHAR

    KAUST Repository

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-01-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (θe) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  11. On the movement of tropical cyclone LEHAR

    Science.gov (United States)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  12. Sources of CAM3 vorticity bias during northern winter from diagnostic study of the vorticity equation

    Energy Technology Data Exchange (ETDEWEB)

    Grotjahn, Richard [University of California, Department of Land, Air and Water Resources, Davis, CA (United States); Pan, Lin-Lin; Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States)

    2011-06-15

    CAM3 (Community Atmosphere Model version 3) simulation bias is diagnosed using the vorticity equation. The study compares CAM3 output with ECMWF (European Centre for Medium-Range Weather Forecasts) 40 year reanalysis (ERA-40) data. A time mean vorticity bias equation is also formulated and the terms are grouped into categories: linear terms, nonlinear terms, transient contributions, and friction (calculated as a residual). Frontal cyclone storms have much weaker band passed kinetic energy and enstrophy in CAM3. The downstream end of the North Atlantic storm track (NAST) has large location error. While the vorticity equation terms have similar amplitude ranking in CAM3 and ERA-40 at upper levels, the ranking differs notably in the lower troposphere. The linear and friction terms dominate the vorticity bias equation. The transient terms contribute along the storm track, but the nonlinear terms are generally much smaller, with the primary exception being over the Iberian peninsula. Friction is much stronger in CAM3. As evidence, nearly all wavelengths (including the longest planetary waves) have smaller amplitude in CAM3 than in ERA-40 vorticity data. Negative near surface vorticity tendency bias on the European side of the Arctic is linked to the NAST track error (evident in the divergence term). CAM3 misses the Beaufort high in sea level pressure (SLP) due to low level warm temperature bias, too little vortex compression, and to too little horizontal advection of negative vorticity compared with ERA-40. Generally lower SLP values in CAM3 over the entire Arctic follow from lower level warm bias in CAM3. (orig.)

  13. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  14. The Interaction of Two Surface Vortices Near a Topographic Slope in a Stratified Ocean

    Directory of Open Access Journals (Sweden)

    Charly de Marez

    2017-10-01

    Full Text Available We study the influence of bottom topography on the interaction of two identical vortices in a two-layer, quasi-geostrophic model. The two vortices have piecewise-uniform potential vorticity and are lying in the upper layer of the model. The topography is a smooth bottom slope. For two cyclones, topography modifies the merger critical distance and the merger efficiency: the topographic wave and vortices can advect the two cyclones along the shelf when they are initially far from it or towards the shelf when they are initially closer to it. They can also advect the two cyclones towards each other and thus favour merger. The cyclones deform, and the potential vorticity field undergoes filamentation. Regimes of partial vortex merger or of vortex splitting are then observed. The interaction of the vorticity poles in the two layers are analysed to explain the evolution of the two upper layer cyclones. For taller topography, two new regimes appear: vortex drift and splitting; and filamentation and asymmetric merger. They are due to the hetonic coupling of lower layer vorticity with the upper layer vortices (a heton is a baroclinic vortex dipole, carrying heat and momentum and propagating horizontally in the fluid, or to the strong shear that the former exerts on the latter. The interaction of two anticyclones shows regimes of co-rotation or merger, but specifically, it leads to the drift of the two vortices away from the slope, via a hetonic coupling with oppositely-signed vorticity in the lower layer. This vorticity originates in the breaking of the topographic wave. The analysis of passive tracer evolution confirms the inshore or offshore drift of the fluid, the formation of tracer fronts along filaments and its stirring in regions of vortex merger. The trajectories of particles indicate how the fluid initially in the vortices is finally partitioned.

  15. Dissipative soliton vortices and tropical cyclones

    Science.gov (United States)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  16. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  17. The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-equatorial Surges

    Institute of Scientific and Technical Information of China (English)

    XU Yamei

    2011-01-01

    The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis (2000) was selected as the case to study. The research data used are from the results of the non-hydrostatic mesoscale model (MM5), which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm. The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end. It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak, sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression, with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation. The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression. The depression was strengthened by cross-equatorial surges, which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.

  18. Clusters of cyclones encircling Jupiter’s poles

    Science.gov (United States)

    Adriani, A.; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; Moriconi, M. L.; Rogers, J.; Eichstädt, G.; Momary, T.; Ingersoll, A. P.; Filacchione, G.; Sindoni, G.; Tabataba-Vakili, F.; Dinelli, B. M.; Fabiano, F.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Lunine, J. I.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Plainaki, C.; Olivieri, A.; O’Neill, M. E.; Turrini, D.; Stefani, S.; Sordini, R.; Amoroso, M.

    2018-03-01

    The familiar axisymmetric zones and belts that characterize Jupiter’s weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter’s low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter’s equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn’s polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

  19. Towards a Statistical Model of Tropical Cyclone Genesis

    Science.gov (United States)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  20. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    Science.gov (United States)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    the vorticity of the lower layer, h is the depth of the upper layer and w 0 is the upward entrainment velocity across the pycnocline. Under high discharge conditions the axis of the river plume proceeds in a right bounded direction, describing an inertial circle clearly seen in satellite images. Under low discharge conditions the river plume is deflected in a left bounded direction by the anti-cyclonic circulation of the upper layer.

  1. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  2. Nonlinear effects and vortical structures in homogeneous rotating turbulence under stable density stratification; Antei seisoka ni aru kaiten ichiyo ranryu no hisenkei koka to uzu kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Iida, O.; Nagano, Y. [Nagoya Institute of Technology, Nagoya (Japan)

    2000-02-25

    The generation mechanism of the vertical vortices associated with the baroclinic instability and the effects of nonlinear term on the vortices are investigated by using both direct numerical simulation (DNS) and rapid distortion theory (RDT). Two kinds of the anisotropic flow fields are used as initial conditions. As a result, the initial anisotropy of Reynolds stresses is found to affect asymmetry of the vertical vortices. In the cases where the initial vertical velocity is set to be zero, the p. d. f. of the vertical vorticity tends to incline toward the anticyclonic side. When the vertical component of initial velocity is larger than the horizontal one, the cyclonic vortices are more enhanced. By comparing DNS and RDT, it is found that in both cases of the initial conditions the enhanced vortices of DNS are stretched in the vertical direction, which is not observed in the RDT results. This should be because the nonlinear vortex-stretching term intensifies and elongates vertical vortices in the vertical direction. The anticyclones are markedly augmented in low Prandtl number fluids, while the cyclones become dominant in the high Prandtl number case. In particular, the flow field becomes almost two-dimensionalized and Taylor columns are formed in the vertical direction in the low Prandtl number case. However, neither two-dimensionalization nor Taylor column is observed in the RDT analysis which neglects the nonlinear terms. (author)

  3. Diabatic processes and the evolution of two contrasting extratropical cyclones

    Science.gov (United States)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  4. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  5. Large-Scale Influences on the Genesis of Tropical Cyclone Karl (2010)

    Science.gov (United States)

    Griffin, K.; Bosart, L. F.

    2012-12-01

    westerly wind anomalies have been associated with an increase in the frequency of TC genesis, commonly attributed to the generation of low-level cyclonic vorticity and a reduction in climatological shear over the western Atlantic by other researchers. Further, the total wind field associated with a CCKW promotes deep convection via the enhancement of low-level convergence and upper-level outflow ahead of the wave. The passage of the CCKW during 8-10 September occurs in concert with the aforementioned cold surge-related enhanced low-level southerly winds that turn eastward as they cross the equator, further strengthening the westerly wind anomalies associated with the CCKW. This favorable juxtaposition of low-level southerly and westerly flows results in the amplification of convective activity associated with the CCKW around the time the CCKW interacts with the pre-Karl disturbance and likely serves to enhance the resulting low-level cyclonic circulation, eventually leading to the genesis of TC Karl.

  6. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 ??m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3?? (planetocentric) latitude, and decreasing to conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 ??m images, indicating little windshear above the ~2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8??N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant

  7. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    Science.gov (United States)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    Flood events in the Mediterranean are frequently linked to synoptic scale cyclones, although topographical or anthropogenic factors can play important role. The knowledge of the vertical profile and dynamics of these cyclones can serve as a reliable early flood warning system that can further help in hazard mitigation and risk management planning. Crete is the second largest island in the eastern Mediterranean region, being characterized by high precipitation amounts during winter, frequently causing flood events. The objective of this study is to examine the dynamic and thermodynamic mechanisms at the upper and lower levels responsible for the generation of these events, according to their origin domain. The flooding events were recorded for a period of almost 20 years. The surface cyclones are identified with the aid of MS scheme that was appropriately modified and extensively employed in the Mediterranean region in previous studies. Then, the software VTS, specially developed for the Mediterranean cyclones, was employed to investigate the vertical extension, slope and dynamic/kinematic characteristics of the surface cyclones. Composite maps of dynamic/thermodynamic parameters, such as potential vorticity, temperature advection, divergence, surface fluxes were then constructed before and during the time of the flood. The dataset includes 6-hourly surface and isobaric analyses on a 0.5° x 0.5° regular latitude-longitude grid, as derived from the ERA-INTERIM Reanalysis of the ECMWF. It was found that cyclones associated with flood events in Crete mainly generate over northern Africa or southern eastern Mediterranean region and experience their minimum pressure over Crete or southwestern Greece. About 84% of the cyclones extend up to 500hPa, demonstrating that they are well vertically well-organized systems. The vast majority (almost 84%) of the surface cyclones attains their minimum pressure when their 500 hpa counterparts are located in the NW or SW, confirming

  8. Trailing vortices from low speed flyers

    Science.gov (United States)

    Waldman, Rye; Kudo, Jun; Breuer, Kenneth

    2009-11-01

    The structure and strength of the vortex wake behind a airplane or animal flying with a fixed or flapping wing contains valuable information about the aerodynamic load history. However, the amount of vorticity measured in the trailing vortex is not always in agreement with the known lift generated, and the behavior of these vortices at relatively low Reynolds numbers is also not well-understood. We present the results from a series of wind tunnel PIV experiments conducted behind a low-aspect ratio rectangular wing at a chord-Reynolds numbers of 30,000. In addition to wake PIV measurements measured in the cross-stream (Trefftz) plane, we measure the lift and drag directly using a six-axis force-torque transducer. We discuss how vortex size, shape, strength and position vary in time and downstream location, as well as the challenges associated with the use of PIV wake measurements to accurate determine aerodynamic forces.

  9. How much should we believe correlations between Arctic cyclones and sea ice extent?

    Science.gov (United States)

    Rae, Jamie G. L.; Todd, Alexander D.; Blockley, Edward W.; Ridley, Jeff K.

    2017-12-01

    This paper presents an investigation of the robustness of correlations between characteristics of Arctic summer cyclones and September Arctic sea ice extent. A cyclone identification and tracking algorithm is run for output from 100-year coupled climate model simulations at two resolutions and for 30 years of reanalysis data, using two different tracking variables (mean sea-level pressure, MSLP; and 850 hPa vorticity) for identification of the cyclones. The influence of the tracking variable, the spatial resolution of the model, and spatial and temporal sampling on the correlations is then explored. We conclude that the correlations obtained depend on all of these factors and that care should be taken when interpreting the results of such analyses. Previous studies of this type have used around 30 years of reanalysis and observational data, analysed with a single tracking variable. Our results therefore cast some doubt on the conclusions drawn in those studies.

  10. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (jupiter, saturn, neptune)

    Science.gov (United States)

    Nezlin, Michael V.; Sutyrin, Georgi G.

    1994-01-01

    Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and

  11. Jovian Vortices and Barges: HST observations 1994-1998

    Science.gov (United States)

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  12. How much should we believe correlations between Arctic cyclones and sea ice extent?

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2017-12-01

    Full Text Available This paper presents an investigation of the robustness of correlations between characteristics of Arctic summer cyclones and September Arctic sea ice extent. A cyclone identification and tracking algorithm is run for output from 100-year coupled climate model simulations at two resolutions and for 30 years of reanalysis data, using two different tracking variables (mean sea-level pressure, MSLP; and 850 hPa vorticity for identification of the cyclones. The influence of the tracking variable, the spatial resolution of the model, and spatial and temporal sampling on the correlations is then explored. We conclude that the correlations obtained depend on all of these factors and that care should be taken when interpreting the results of such analyses. Previous studies of this type have used around 30 years of reanalysis and observational data, analysed with a single tracking variable. Our results therefore cast some doubt on the conclusions drawn in those studies.

  13. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  14. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  15. Observational-numerical Study of Maritime Extratropical Cyclones Using FGGE Data

    Science.gov (United States)

    Wash, C. H.; Elsberry, R. L.

    1984-01-01

    The accomplishments, current research, and future plans of a study investigating the development, maturation, and decay of maritime extratropical cyclones are reported. Three cases of explosive cyclogenesis during the first GARP global experiment (FGGE) DOP-1 were studied diagnostically using storm-following budgets derived from the ECMWF and GLAS level III-b analyses. Mass, vorticity and angular momentum budgets for the moving storm environment were computed for each case. Key results from these studies include: (1) demonstration that the FGGE analyses can be used to explore oceanic circulations; (2) isolation of the role of upper level jet streaks in the initiation of the explosive period in all three cases; and (3) illustration of the lower tropospheric destabilization during each rapid deepening period, which is primarily due to sensible heating of the cold air by the warmer ocean surface. The physics package of the Navy global forecast model was successfully utilized in a semi-prognostic mode to estimate diabatic components of oceanic cyclone systems. Fields of sensible and latent heat fluxes, radiational heating and inferred cloud structures were also computed.

  16. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

    Science.gov (United States)

    Wernli, Heini; Papritz, Lukas

    2018-02-01

    Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

  17. Experimental Research into the Two-Level Cylindrical Cyclone with a Different Number of Channels

    Directory of Open Access Journals (Sweden)

    Egidijus Baliukas

    2014-10-01

    Full Text Available The multichannel two-level cyclone has been designed for separating solid particles from airflow and built at the Laboratory of Environmental Protection Technologies of Vilnius Gediminas Technical University. The conducted research is aimed at determining air flow distribution at two levels and channels of the multichannel cyclone. The multifunctional meter Testo-400 and the dynamic Pitot tube have been used form easuring air flow rates in the channels. The obtained results show that the equal volume of air gets into two levels installed inside the cyclone, and rates are distributed equally in the channels of these levels. The maximum air flow rate is recorded in the first channel and occurs when half-rings are set in such positions so that 75% of air flow returns to the previous channel. The biggest aerodynamic resistance is 1660 Pa and has been recorded in the cyclone having eight channels under air flow distribution ratio 75/25. The highest air purification efficiency has been observed in the two-level six-channel cyclone under air flow distribution ratio 75/25. The effectiveness of separating granite particles is 92.1% and that of wood particles – 91.1 when the particles are up to 20 μm in diameter.

  18. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Hamish A. [Monash University, Monash Weather and Climate, School of Mathematical Sciences, Clayton, VIC (Australia); Camargo, Suzana J.; Kim, Daehyun [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-08-15

    A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969-2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation - most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10 S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Nino (La Nina) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO. (orig.)

  19. Baroclinic flows, transports, and kinematic properties in a cyclonic-anticyclonic-cyclonic ring triad in the Gulf of Mexico

    Science.gov (United States)

    Vidal, VíCtor M. V.; Vidal, Francisco V.; HernáNdez, Abel F.; Meza, Eustorgio; PéRez-Molero, José M.

    1994-04-01

    During October-November 1986 the baroclinic circulation of the central and western Gulf of Mexico was dominated by an anticyclonic ring that was being bisected by two north and south flanking cyclonic rings. The baroclinic circulation revealed a well-defined cyclonic-anticyclonic-cyclonic triad system. The anticyclone's collision against the western gulf continental slope at 22.5°N, 97°W originated the north and south flanking cyclonic rings. The weakening of the anticyclone's relative vorticity, during the collision, was compensated by along-shelf north (26 cm s-1) and south (58 cm s-1) jet currents and by the anticyclone's flanking water mass's gain of cyclonic vorticity from lateral shear contributed by east (56 cm s-1) and west (42 cm s-1) current jets with individual mass transports of ˜18 Sv. Within the 0-1000 and 0-500 dbar layers and across 96°W the magnitudes of the colliding westward transports were 17.80 and 8.59 Sv, respectively. These corresponding transports were 85 and 94% balanced by along-shelf jet currents north and south of the anticyclone's collision zone. This indicates that only minor amounts (energy from the upper to the deeper water layers. Our vertical transport estimates through the 1000-m-depth surface revealed a net vertical descending transport of 0.4 Sv for the ring triad system. This mass flux occurred primordially within the south central gulf region and most likely constituted a principal mechanism that propelled the gulf's deep horizontal circulation. The volume renewal time is ˜5 years for the ring triad system within 0-1000 dbar. The volume renewal time for the gulf's deep water layer (2000-3000 dbar), estimated as a function of its horizontal outflowing mass flux (1.96 Sv), is of the same order of magnitude and reveals that the deeper layer of the Gulf of Mexico is as well ventilated as its upper layer (0-1000 dbar). The ring triad's surface kinematic properties were derived from the sea surface baroclinic circulation field

  20. ENSO-Modulated Cyclogenesis over the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Felton, C.S.; Subrahmanyam, B.; Murty, V.S.N.

    correlated with the BoB tropical cyclone activity to a statistically significant percentage by a lead time of 5 months. Composites of 10-m zonal winds exhibit greater variance during La Niña events, favoring the development of low-level cyclonic vorticity...

  1. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  2. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2006-01-01

    Full Text Available Ozone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  3. Observing and Modelling the HighWater Level from Satellite Radar Altimetry During Tropical Cyclones

    DEFF Research Database (Denmark)

    Deng, Xiaoli; Gharineiat, Zahra; Andersen, Ole Baltazar

    2016-01-01

    This paper investigates the capability of observing tropical cyclones using satellite radar altimetry. Two representative cyclones Yasi (February 2011) and Larry (March 2006) in the northeast Australian coastal area are selected based also on available tide gauge sea level measurements. It is sho...

  4. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  5. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  6. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones

    Science.gov (United States)

    Jaegle, L.; Wood, R.; Wargan, K.

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange by using cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite and contrasting them to composites obtained with Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) as well as with the GEOS-Chem chemical transport model. MERRA sea level pressure fields are used to identify 15,978 extratropical cyclones in the northern hemisphere (NH) between 2005 and 2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites of these cyclones feature a distinct 1,000 km wide O3 enhancement in the dry intrusion to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased water vapor. In the lowermost stratosphere, MLS composites show that the dry intrusion O3 enhancements reach a 210 ppbv maximum in April. In the middle troposphere, TES composites display dry intrusion maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich dry intrusion forms a coherent and vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring dry intrusions, O3 is enhanced by 100 pbbv or 100-130% relative to background conditions at 300 hPa, with a significant contribution reaching pressure altitudes below 500 hPa (6-20 ppbv or 15-30% enhancement). We calculate that extratropical cyclones result in a STT flux of 119 Tg O3 yr-1, accounting for 42% of the annual NH O3 extratropical STT flux. The STT flux in cyclones is highest in spring and displays a strong dependence on westerly 300 hPa wind speeds.

  7. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  8. Nuclear vorticity and the low-energy nuclear response. Towards the neutron drip line

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Athens Univ.; Wambach, J.; Ponomarev, V.Y.; Mavrommatis, E.

    2004-01-01

    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock+continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L > 1 vortical transitions. (orig.)

  9. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    International Nuclear Information System (INIS)

    Sugimoto, Norihiko

    2015-01-01

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves

  10. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2015-12-15

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  11. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  12. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    Science.gov (United States)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  13. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  14. The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2009-01-01

    Full Text Available Cases of mesoscale cloud bands in extratropical cyclones are observed a few hours after atmospheric gravity waves (AGWs are launched from the auroral ionosphere. It is suggested that the solar-wind-generated auroral AGWs contribute to processes that release instabilities and initiate slantwise convection thus leading to cloud bands and growth of extratropical cyclones. Also, if the AGWs are ducted to low latitudes, they could influence the development of tropical cyclones. The gravity-wave-induced vertical lift may modulate the slantwise convection by releasing the moist symmetric instability at near-threshold conditions in the warm frontal zone of extratropical cyclones. Latent heat release associated with the mesoscale slantwise convection has been linked to explosive cyclogenesis and severe weather. The circumstantial and statistical evidence of the solar wind influence on extratropical cyclones is further supported by a statistical analysis of high-level clouds (<440 mb extracted from the International Satellite Cloud Climatology Project (ISCCP D1 dataset. A statistically significant response of the high-level cloud area index (HCAI to fast solar wind from coronal holes is found in mid-to-high latitudes during autumn-winter and in low latitudes during spring-summer. In the extratropics, this response of the HCAI to solar wind forcing is consistent with the effect on tropospheric vorticity found by Wilcox et al. (1974 and verified by Prikryl et al. (2009. In the tropics, the observed HCAI response, namely a decrease in HCAI at the arrival of solar wind stream followed by an increase a few days later, is similar to that in the northern and southern mid-to-high latitudes. The amplitude of the response nearly doubles for stream interfaces associated with the interplanetary magnetic field BZ component shifting southward. When the IMF BZ after the stream interface shifts northward, the autumn-winter effect weakens or shifts to lower (mid latitudes

  15. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    Science.gov (United States)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  16. Emission control by cyclone combustor technology

    Energy Technology Data Exchange (ETDEWEB)

    Syred, N; Styles, A C; Sahatimehr, A

    1983-09-01

    Recent work carried out on a multi-inlet gas-fired cyclone combustor has shown that NO formation is reduced to negligible proportions when operated at mixture ratios 1.5 < PHI < 2.2 with combustion occurring under fully premixed fuel conditions. Elimination of hot spots, common to partial premixed systems, has been achieved with mean temperatures below 1300 C, thereby reducing NO emissions (1.5 ppm) by preventing the onset of Zeldovich and prompt mechanisms. The low NO levels are therefore dependent on a combination of low flame front temperature (about 1100 C) and premixed combustion conditions. Owing to the operating mode of combustion, heat transfer at the walls plays an important role in flame stability. Insulation of the cyclone chamber by refractory has been found to extend the operating range to higher mixture ratios. Conversely, it is expected that heat removal from the walls would enable the combustor to operate at mixture ratios nearer to stoichiometric, whilst still giving rise to low levels of NO emission. 17 references.

  17. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  18. The mechanical influence of continental topography on the trajectories of tropical cyclones near the west coast of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zavala Sanson, L. [Departamento de Oceanografia Fisica, CICESE, Ensenada, Baja California (Mexico)

    2004-07-01

    The evolution of tropical cyclonic vortices on the eastern North Pacific is examined by means of a barotropic model with an idealized continental topography. The aim of the study is to investigate the trajectories of cyclones in this area affected by both the topography and the planetary {beta} effects. The topographic {beta} effect is mainly due to the ascending slope of the orography, and induces the vortex to drift towards local northwest direction, which coincides with the geographical northwest (because of the topography orientation). As a result, the vortex drift is clearly enhanced when both effects are considered. The precise direction of the trajectory depends on the initial geographical position with respect to the continent. Vortices initialized at southeastern areas (around 12{center_dot} N, 95{center_dot} W) are deflected by the Sierra Madre del Sur more to the west, following a trajectory almost parallel to the continent. For vortices initialized at 15{center_dot} N or more, their drift is mainly due to the planetary {beta} effect, although eventually they are attracted towards the Sierra Madre Occidental at higher latitudes. These conclusion suggest the possible influence of orography on the trajectories of real tropical cyclones in this area. [Spanish] La evolucion de ciclones tropicales en el Pacifico Norte oriental es estudiada por medio de un modelo barotropico con topografia continental. El objetivo es investigar la trayectoria de vortices ciclonicos en esta area cuando son afectados solamente por los efectos {beta} planetario y topografico. Este ultimo se deba a la pendiente de la orografia continental e induce la deriva del vortice en la direccion noroeste local, la cual coincide con el noroeste geografico (debido a la orientacion de la topografia). Un claro resultado de la combinacion de estos dos mecanismos es el aumento de la rapidez de derivada del ciclon. La direccion precisa de la trayectoria depende de la posicion inicial con respecto

  19. The neighbor enclosed area tracking algorithm and its application to cyclone merger in the midlatitudes

    Science.gov (United States)

    Inatsu, Masaru; Amada, Shotarou; Satake, Yuya

    2010-05-01

    front jet, are connected to potential vorticity disturbances in the upper troposphere. NEAT counts more than four merged cyclones there in the DJF season. Based on the NEAT statistics, these merged cyclones have a great growth rate with a statistical significance. Composite maps and backtracking from merged cyclones reveal two possible pathways in the north and south of Japan.

  20. Tropical cyclones over north Indian Ocean during El-Nino Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

     and Pankaj Kumar. (2004).    The El‐Niño and positive  IOD occured simultaneously  in 1982 and 1997, and El‐Niño Modoki   and positive  IOD occured simultaneously in 1994. Table 3, presents the variations in the frequencies of cyclones in various  basins... as seasonal genesis parameter (SGP) this is the product of three dynamic parameters as well as three  thermodynamic parameters,  such  as 1.  low  level  relative  vorticity, 2.  coriolis parameter, 3.  inverse of  the  vertical shear of the horizontal wind between lower and upper troposphere, 4. ocean thermal energy or sea  surface temperature above 26°C...

  1. Climatology and Structures of Southwest Vortices in NCEP Climate Forecast System Reanalysis

    Science.gov (United States)

    Feng, Xinyuan; Liu, Changhai; Fan, Guangzhou; Liu, Xiaodong; Feng, Caiyun

    2017-04-01

    to their short persistence. The average duration time, horizontal dimension (effective diameter), and translation speed are 15.1 h, 435 km, and 8.6 m s-1, respectively. The SWV structures show regional and seasonal contrasts. The winter-spring elevated dry vortex in the basin is vertically confined to a shallow layer between 850-600 hPa and tilts northeastward. The low level has a cold center, and the mid-upper levels feature apparent baroclinicity. The nighttime warm-season precipitating vortex system in the basin has a deep structure with the cyclonic vorticity extending from the surface into the upper-troposphere. The non-severe precipitating vortex is weakly baroclinic and tilts northward with height, whereas the severe precipitating vortex is vertically aligned. In the southern mountainous region, the shallow surface-based vortex develops in a well-mixed planetary boundary layer during the evening-early-night time and exhibits vertical tilting toward the elevated upslope and a warm and low-humidity core. When attendant with precipitation, the mountainous system is large, deep and nearly upright at most levels with a fairly barotropic environment.

  2. Marine boundary layer characteristics during a cyclonic storm over ...

    Indian Academy of Sciences (India)

    raise the water level due to the generation of huge waves and .... mum intensity of the system was T2.5 on Dvorak's scale from 15 .... movement of cyclonic storm over land, the low level ... 15 and 18 are classified as deep convective sound-.

  3. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  4. Vitrification of low-level radioactive waste in a slagging combustor

    International Nuclear Information System (INIS)

    Holmes, M.J.; Downs, W.; Higley, B.A.

    1995-07-01

    The suitability of a Babcock ampersand Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock ampersand Wilcox's cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application

  5. RELATIONSHIPS BETWEEN ZONAL WIND ANOMALIES IN HIGH AND LOW TROPOSPHERE AND ANNUAL FREQUENCY OF NW PACIFIC TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    GONG Zhen-song; HE Min

    2007-01-01

    Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition.It is indicated that when △ U200-△U850 >0 in the eastern tropical Pacific and △ U200- △U850 <0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones.

  6. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    Science.gov (United States)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides

  7. An empirical framework for tropical cyclone climatology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam-Young [Korea Meteorological Administration, Seoul (Korea, Republic of); Florida State University, Tallahassee, FL (United States); Elsner, James B. [Florida State University, Tallahassee, FL (United States)

    2012-08-15

    An empirical approach for analyzing tropical cyclone climate is presented. The approach uses lifetime-maximum wind speed and cyclone frequency to induce two orthogonal variables labeled ''activity'' and ''efficiency of intensity''. The paired variations of activity and efficiency of intensity along with the opponent variations of frequency and intensity configure a framework for evaluating tropical cyclone climate. Although cyclone activity as defined in this framework is highly correlated with the commonly used exponent indices like accumulated cyclone energy, it does not contain cyclone duration. Empirical quantiles are used to determine threshold intensity levels, and variant year ranges are used to find consistent trends in tropical cyclone climatology. In the western North Pacific, cyclone activity is decreasing despite increases in lifetime-maximum intensity. This is due to overwhelming decreases in cyclone frequency. These changes are also explained by an increasing efficiency of intensity. The North Atlantic shows different behavior. Cyclone activity is increasing due to increasing frequency and, to a lesser extent, increasing intensity. These changes are also explained by a decreasing efficiency of intensity. Tropical cyclone trends over the North Atlantic basin are more consistent over different year ranges than tropical cyclone trends over the western North Pacific. (orig.)

  8. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  9. The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms

    Directory of Open Access Journals (Sweden)

    Irina Rudeva

    2014-12-01

    Full Text Available The IMILAST project (‘Intercomparison of Mid-Latitude Storm Diagnostics’ was set up to compare low-level cyclone climatologies derived from a number of objective identification algorithms. This paper is a contribution to that effort where we determine the sensitivity of three key aspects of Northern Hemisphere cyclone behaviour [namely the number of cyclones, their intensity (defined here in terms of the central pressure and their deepening rates] to specific features in the automatic cyclone identification. The sensitivity is assessed with respect to three such features which may be thought to influence the ultimate climatology produced (namely performance in areas of complicated orography, time of the detection of a cyclone, and the representation of rapidly propagating cyclones. We make use of 13 tracking methods in this analysis. We find that the filtering of cyclones in regions where the topography exceeds 1500 m can significantly change the total number of cyclones detected by a scheme, but has little impact on the cyclone intensity distribution. More dramatically, late identification of cyclones (simulated by the truncation of the first 12 hours of cyclone life cycle leads to a large reduction in cyclone numbers over the both continents and oceans (up to 80 and 40%, respectively. Finally, the potential splitting of the trajectories at times of the fastest propagation has a negligible climatological effect on geographical distribution of cyclone numbers. Overall, it has been found that the averaged deepening rates and averaged cyclone central pressure are rather insensitive to the specifics of the tracking procedure, being more sensitive to the data set used (as shown in previous studies and the geographical location of a cyclone.

  10. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea

    Science.gov (United States)

    Yang, Bing; Hou, Yijun; Hu, Po; Liu, Ze; Liu, Yahao

    2015-05-01

    Based on observed temperature and velocity in 2005 in northwestern South China Sea, the shallow ocean responses to three tropical cyclones were examined. The oceanic response to Washi was similar to common observations with 2°C cooling of the ocean surface and slight warming of the thermocline resulted from vertical entrainment. Moreover, the wavefield was dominated by first mode near-inertial oscillations, which were red-shifted and trapped by negative background vorticity leading to an e-folding timescale of 12 days. The repeated reflections by the surface and bottom boundaries were thought to yield the successive emergence of higher modes. The oceanic responses to Vicente appeared to be insignificant with cooling of the ocean surface by only 0.5°C and near-inertial currents no larger than 0.10 m/s as a result of a deepened surface mixed layer. However, the oceanic responses to Typhoon Damrey were drastic with cooling of 4.5°C near the surface and successive barotropic-like near-inertial oscillations. During the forced stage, the upper ocean heat content decreased conspicuously by 11.65% and the stratification was thoroughly destroyed by vertical mixing. In the relaxation stage, the water particle had vertical displacement of 20-30 m generated by inertial pumping. The current response to Damrey was weaker than Washi due to the deepened mixed layer and the destroyed stratification. Our results suggested that the shallow water oceanic responses to tropical cyclones varied significantly with the intensity of tropical cyclones, and was affected by local stratification and background vorticity.

  11. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  12. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  13. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  14. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  15. Fluid vortices

    National Research Council Canada - National Science Library

    Green, Sheldon I

    1995-01-01

    ... . . . . . . . . . . . . . . . Vorticity Kinematics and Dynamics - Physical Principles The Vorticity Equation with Examples . . . . Summary . . . . . . . . . . . . . . . . . Vorticity in Orthogonal...

  16. Climatology and classification of spring Saharan cyclone tracks

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, A. [Reading University, Department of Meteorology, PO Box 243, Reading (United Kingdom); Awad, A. [King Abdulaziz University, Department of Meteorology, Jeddah (Saudi Arabia); Ammar, K. [Meteorological Authority, Department of Research, Cairo (Egypt)

    2011-08-15

    Spring Saharan cyclones constitute a dominant feature of the not-well-explored Saharan region. In this manuscript, a climatological analysis and classification of Saharan cyclone tracks are presented using 6-hourly NCEP/NCAR sea level pressure (SLP) reanalyses over the Sahara (10 W-50 E, 20 N-50 N) for the Spring (March-April-May) season over the period 1958-2006. A simple tracking procedure based on following SLP minima is used to construct around 640 Spring Saharan cyclone tracks. Saharan cyclones are found to be short-lived compared to their extratropical counterparts with an e-folding time of about 3 days. The lee side of the west Atlas mountain is found to be the main cyclogenetic region for Spring Saharan cyclones. Central Iraq is identified as the main cyclolytic area. A subjective procedure is used next to classify the cyclone tracks where six clusters are identified. Among these clusters the Western Atlas-Asia Minor is the largest and most stretched, whereas Algerian Sahara-Asia Minor is composed of the most long-lived tracks. Upper level flow associated with the tracks has also been examined and the role of large scale baroclinicity in the growth of Saharan cyclones is discussed. (orig.)

  17. The intensity of precipitation during extratropical cyclones in global warming simulations: a link to cyclone intensity?

    Energy Technology Data Exchange (ETDEWEB)

    Watterson, I.G. [CSIRO Atmospheric Research, Aspendale (Australia)

    2006-01-01

    Simulations of global warming over the coming century from two CSIRO GCMs are analysed to assess changes in the intensity of extratropical cyclones, and the potential role of increased latent heating associated with precipitation during cyclones. A simple surface cyclone detection scheme is applied to a four-member ensemble of simulations from the Mark 2 GCM, under rising greenhouse gas concentrations. The seasonal distribution of cyclones appears broadly realistic during 1961-1990. By 2071-2100, with 3 K global warming, numbers over 20 deg N to 70 deg N decrease by 6% in winter and 2% annually, with similar results for the south. The average intensity of cyclones, from relative central pressure and other measures, is largely unchanged however. 30-yr extremes of dynamic intensity also show little clear change, including values averaged over continents. Mean rain rates at cyclone centres are typically at least double rates from all days. Rates during cyclones increase by an average 14% in the northern winter under global warming. Rates over adjacent grid squares and during the previous day increase similarly, as do extreme rates. Results from simulations of the higher-resolution (1.8 deg grid) Mark 3 GCM are similar, with widespread increases in rain rates but not in cyclone intensity. The analyses suggest that latent heating during storms increases, as anticipated due to the increased moisture capacity of the warmer atmosphere. However, any role for enhanced heating in storm development in the GCMs is apparently masked by other factors. An exception is a 5% increase in extreme intensity around 55 deg S in Mark 3, despite decreased numbers of lows, a factor assessed using extreme value theory. Further studies with yet higher-resolution models may be needed to examine the potential realism of these results, particularly with regard to extremes at smaller scale.

  18. Scenarios in the development of Mediterranean cyclones

    Directory of Open Access Journals (Sweden)

    M. Romem

    2007-07-01

    Full Text Available The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March. We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive.

    HMSO (1962 has shown that most Mediterranean cyclones (58% enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar, and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%, the Atlantic Ocean (4%, and Western Europe (3%.

    The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%, North Africa and the Red Sea (34.5% and the Mediterranean Basin itself (4.5%. The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing.

    The large difference with respect to the findings of HMSO (1962 is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.

  19. Toward an estimation of the relationship between cyclonic structures and damages at the ground in Europe

    Directory of Open Access Journals (Sweden)

    F. Porcu

    2009-06-01

    Full Text Available Cyclonic systems dominate European and Mediterranean meteorology throughout the year and often induce severe weather in terms of heavy and/or long-lasting precipitation with related phenomena such as strong winds and lightning. Surface cyclonic structures are often related to well defined precipitation patterns with different scales, duration and intensity. Cyclones confined in the upper troposphere, usually referred to as cut off low, may induce instability at lower levels and the development of convective precipitation.

    In this work the occurrence of cyclonic events (discriminated between surface ones and cut-off lows is analyzed and matched with an economic losses database to highlight a relation between the atmospheric structures and the impact on the social environment in terms of casualties and material damages. The study focus on the continental Europe and, based on the ERA-40 reanalysis, two databases of surface cyclones and cut-off lows have been constructed by means of automatic pattern recognition algorithms. The impact on the local communities is estimated from an insurance company record, which provides the location, date and type of the events, as well as related losses in terms of damages and casualties. Results show the relatively high impact of cyclonic structures on human life in Europe: most of the weather induced damages occur close to a cyclonic center, especially during warm months. Damages and human losses are more frequent from late summer to January, and precipitation is the most relevant meteorological damaging feature throughout the year.

  20. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    Science.gov (United States)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  1. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  2. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    International Nuclear Information System (INIS)

    Sarv, Hamid

    2009-01-01

    A NO x minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z(reg sign) low-NO x burner. At a fixed overall excess air level of 17%, NO x emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO x levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO x values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO x emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO x (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO x reduction from the uncontrolled operation. Levelized costs for additional NO x removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO x /10 6 Btu. Two-level OFA ports could offer the most economical approach for moderate NO x control, especially for smaller units. O 2 enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units

  3. A simple method to forecast the frequency of depressions and cyclones over Bay of Bengal during summer monsoon season

    Science.gov (United States)

    Sadhuram, Y.; Maneesha, K.; Suneeta, P.

    2018-04-01

    In this study, an attempt has been made to develop a simple multiple regression model to forecast the total number of depressions and cyclones (TNDC) over Bay of Bengal during summer monsoon (June-September) season using the data for the period, 1995-2016. Four potential predictors (zonal wind speed at 850 hPa in May and April SST in the North Australia-Indonesia region, 05°S-15°S; 120°E-160°E; March NINO 3.4 SST and geopotential height at 200 hPa in the region, 0°N-10°N; 80°E-100°E) have been identified to forecast TNDC. A remarkably high multiple correlation coefficient of 0.92 has been observed with the TNDC which explains 85% variability. The methodology has been tested for the recent 5 years (2012-2016) and found a good agreement between the observed and forecast values of TNDC except in 2015 in which the observed and predicted TNDC were 2 and 0, respectively. It is interesting to see high and significant correlations between the above predictors and the genesis potential parameter (GPP) during summer monsoon season. This GPP depends on the relative vorticity at 850 hPa, mid troposphere relative humidity, thermal instability between 850 and 500 hPa, and vertical wind shear between 200 and 850 hPa. It is inferred that the above predictors are influencing the environmental conditions over Bay of Bengal which, in turn, influencing the genesis of cyclones during summer monsoon season. The impact of ENSO (El-Nino-Southern Oscillation) and La-Nina in TNDC is examined and found that the vertical wind shear and relative vorticity are high and the GPP was almost double in ENSO compared with that in La-Nina which favoured high (low) TNDC under ENSO (La-Nina).

  4. On sharp vorticity gradients in elongating baroclinic eddies and their stabilization with a solid-body rotation

    Science.gov (United States)

    Sutyrin, Georgi G.

    2016-06-01

    Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.

  5. Mineral distribution in two southwest colombian coals using cyclone separation and oxidation at low temperature

    International Nuclear Information System (INIS)

    Rojas Andres F; Barraza, Juan M; Rojas, Andres F.

    2010-01-01

    It was studied the mineral distribution of two Colombian coals using a cyclone separation and oxidation at low temperature, OLT. The cyclone separation was carried out at two densities (1.3 and 1.4), three particle size (1000+ 600?m, 600+ 425?m and 425+ 250?m) and two processing stages. To determine the mineral matter, feed and under flow fractions from hydrocyclone were concentrated in mineral matter by OLT in a fluidized bed (T<300 celsius degrade). 18 minerals were identified by X Ray Diffraction, XRD. XRD results showed 13 minerals from Golondrinas and 15 minerals from Guachinte coal. It was found that kaolinite and quartz were the most abundant minerals in coal fractions from Golondrinas and Guachinte. Furthermore, it was found that mainly minerals kaolinite, quartz, dolomite, jarosite, gypsum and pyrite, exhibited affinity towards mineral matter, while siderite and valerite showed affinity towards organic matter.

  6. Extratropical Cyclone in the Southern Ocean

    Science.gov (United States)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  7. Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yeung, Andie Y.M.; Chan, Johnny C.L. [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China)

    2012-08-15

    This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850 hPa with a value {>=}450 x 10{sup -6} s{sup -1}, and the temperature at 300 hPa being 1 C higher than the average temperature within 15 latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3. (orig.)

  8. Effect of an axially-symmetric cyclonic vortex on the sea surface temperature in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, E.E.; Mendoza, V.M.; Adem, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: eevu@atmosfera.unam.mx

    2006-04-15

    A model for the mixed layer of the Gulf of Mexico has been used to determine the effect that an idealized cyclonic vortex has in the sea surface temperature. The model consists of the equations of conservation of thermal energy and this of balance between mechanical energy and thermal energy, last based on the Kraus-Turner theory; both equations are vertically integrated in the mixed layer. As atmospheric forcing, we prescribe the surface wind associated with an axially-symmetric cyclonic vortex characterized by two parameters: the maximum tangential velocity and the radius at which that velocity is reached. The values of these two parameters, which depend on the position of the vortex, correspond to two cases: hurricane Hilda, which crossed the central part of the Gulf of Mexico between September 29 and October 3, 1964 and hurricane Gilbert whose trajectory between 11 and 17 September, 1988 crossed the Caribbean Sea, the Yucatan Peninsula and the southwest Gulf of Mexico. The results show that a cyclonic vortex with such characteristics, produce during its passage by the sea vertical turbulent water transport through the thermocline (entrainment) that is able to cool down the mixed layer in several degrees and increases the thermocline depth in several meters, in agreement with the observations. [Spanish] Se aplica un modelo de capa de mezcla para el Golfo de Mexico con el objeto de determinar el efecto de un vortice ciclonico idealizado sobre la temperatura de la superficie del mar. El modelo consiste basicamente de dos ecuaciones, la de conservacion de energia termica y la de balance entre energia mecanica y energia termica, esta ultima derivada de la teoria de Kraus-Turner; ambas ecuaciones son verticalmente integradas y acopladas en la capa de mezcla. Como forzamiento atmosferico sobre la superficie del mar se prescribe el viento asociado a un vortice ciclonico axialmente simetrico caracterizado por dos parametros: la velocidad tangencial maxima y el radio al

  9. Vorticity and Λ polarization in baryon rich matter

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  10. Investigation of the differences between deepening and intensification for 500-hpa cyclones in central and East Mediterranean region during warm season of the year

    Directory of Open Access Journals (Sweden)

    S. Spanos

    2006-01-01

    Full Text Available The maximum deepening rate per cyclone track is determined by the maximum height drop at the center of the cyclone (500-hPa low on the basis of all the 6-h successive steps in its life cycle. The geopotential height gradient is calculated over the entire low area and the calculation continued with the variation of the gradient in the successive steps. The maximum intensification rate per cyclone is then determined as the maximum increase of the gradient in the life cycle. Maximum deepening rate for the 500-hPa cyclones in the area does not exceed, on average, 12 gpm/6 h. Maximum intensification which is 1.4 gpm/100 Km*6 h on average, occurs in the early stages of the cyclone's life cycle. This on the average happens approximately 9 h after the first time the low is detected. At the gulf of Genoa and the Adriatic Sea, cyclones usually show the maximum intensification after the maximum deepening. At Turkey's cyclogenesis area, however, this order is reversed. The spatial distributions of maximum intensification in the three sub-periods, indicate that it mainly occurs over Seas during late warm periods and over land during early and middle warm periods. Such a behavior underlines the role of low-level instability in cyclone development.

  11. Modelling of large-scale structures arising under developed turbulent convection in a horizontal fluid layer (with application to the problem of tropical cyclone origination

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2000-01-01

    Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.

  12. Development of high, medium and low oil content hydro cyclones; Desenvolvimento de hidrociclones para altos, medios e baixos teores de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Carlos Alberto Capela; Marins, Luiz Philipe Martinez; Melo, Darley Carrijo de; Silva, Fabricio Soares da [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Tecnologia de Processamento e Avaliacao de Petroleo (Brazil)], e-mails: capela@petrobras.com.br, philipe@petrobras.com.br, darley@petrobras.com.br, fabriciosoares@petrobras.com.br; Oliveira Junior, Joao Americo Aguirre [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil)], e-mail: aguirre@esss.com.br; Souza, Marcos Aurelio de; Barca, Luiz Fernando [Universidade Federal de Itajuba. Instituto de Engenharia Mecanica, MG (Brazil)], e-mails: maurelio@unifei.edu.br, barca@unifei.edu.br; Souza, Adriana Margarida Rodrigues Ferreira de [Fundacao Gorceix (Brazil)], e-mail: adrianamargarida.gorceix@petrobras.com.br; Almeida, Cristina Santos de [Universidade Federal do Rio de Janeiro. Fundacao de Coordenacao de Projetos, Pesquisa e Estudos Tecnologicos (COPPETEC/UFRJ). Escola de Quimica, RJ (Brazil)], e-mail: cristinaalmeida.coppetec@petrobras.com.br

    2008-12-15

    This paper is intended to describe the steps and present the results of a Research and Development (P and D) project aimed at developing and qualifying hydro cyclones for oil and water primary separation by PETROBRAS. The hydro cyclones families for high, medium and low oil content, respectively named as ATO, MTO and BTO were developed in this project and are currently in the patent filing phase. The members of each one of them were initially conceived and analyzed by means of numeric simulations (CFD). The set-ups for these simulations were based on experimental investigation supplemental papers of the fluid-dynamics in hydro cyclones, with the use of Laser Doppler Anemometry (LDA and PIV) in acrylic models. After the selection of the geometries for optimum performance at the CFD, actual size steel prototypes were designed and built for each one of the aforementioned hydro cyclones families. It was also designed and built a two-skid mounted system and one control rack which comprise a Mobile Lab for Hydro cyclone Tests (LMTH, being the acronym in Portuguese) with which field tests were carried out (Buracica Field, Bahia) in the prototypes. As the last phase of the Research and Development (R and D) project, it was prepared a computer routine which allows the performance of a project of a compact separation system for any specific application, using the hydro cyclones of the families aforementioned in series in the streams rich in water. This routine enables, from the features of the fluids in the application in particular, to select the most appropriate hydro cyclone to be used, obtain their corresponding operating conditions and also to obtain an estimate of the minimum performance range expected in the application under analysis. (author)

  13. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    Science.gov (United States)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  14. Quantized vortices in superfluids and superconductors

    International Nuclear Information System (INIS)

    Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.

    1998-01-01

    We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  15. Nonlinear effects in low-dimensional magnetism: Solitons and vortices

    International Nuclear Information System (INIS)

    Bishop, A.R.; Kawabata, C.; Mertens, F.G.; Wysin, G.M.

    1987-07-01

    The report outlines recent results on the dynamics of easy-plane classical ferromagnetic spin in two spatial dimensions emphasising possible signatures of unbound vortices above the Kosterlitz-Thouless topological phase transition. 18 refs, 1 fig

  16. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  17. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  18. Solitary magnetohydrodynamic vortices

    International Nuclear Information System (INIS)

    Silaev, I.I.; Skvortsov, A.T.

    1990-01-01

    This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows

  19. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  20. IMPACT ASSESSMENT OF TROPICAL CYCLONE HUD HUD ON COASTAL REGION OF VISAKHAPATNAM, ANDHRA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    G. Vivek

    2015-10-01

    Full Text Available Tropical cyclone is a rapidly rotating storm system characterized by a low pressure center, strong winds, and a spiral arrangements of thunderstorms that produce heavy rain. Tropical cyclones typically form over large bodies of relatively warm water. On 6th October 2014 Hud Hud originates from a low pressure system that formed under the influence of an upper air cyclonic circulation in the Andaman Sea. On 9th October 2014 the IMD department classified the Hud Hud as a very severe cyclonic storm on IMD scale and category 4 on Staffir-Simpson scale. The cyclone hit the coast of Visakhapatnam on 12th October 2014 at wind speed of 175 km/h which caused extensive damage to the city and the neighbouring districts. The damage caused by Cyclone Hud Hud not only changed the landscape of the port city, but also made it the first city in the country to be directly hit by a cyclone since 1891 as per the records of the IMD. The remote sensing technique used here is NDVI. NDVI will separate vegetation and non-vegetation part. The NDVI will be classified in ERDAS and calculated the area using ARCGIS. The satellite data of 4th October 2014 show s before the cyclone, 14th October 2014 shows after the cyclone and 7th December 2014 after two month of cyclone.

  1. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  2. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  3. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  4. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  5. South-coast cyclone in Japan during El Niño-caused warm winters

    Science.gov (United States)

    Ueda, Hiroaki; Amagai, Yuusuke; Hayasaki, Masamitsu

    2017-05-01

    La Niña conditions during boreal winter sometimes brings excessive snowfall in Japan, especially on the East Sea/Sea of Japan coastal and mountain areas through intensified northwesterly cold winds caused by La-Niña related atmospheric teleconnection. Meanwhile, snowfall events also increase in the Pacific coast area of Japan during the El Niño state due to extratropical cyclones passing along the south coast of Japan (hereafter referred to as South-coast cyclone). In the present study, we investigated year-to-year snowfall/rainfall variations based on meteorological station data and cyclone tracks identified by using the Japanese 55-year Reanalysis. The result clearly indicates increase of the South-coast cyclone during El Niño-developing winters, which is consistent with excessive snow-fall in the northern part of the Pacific coast. Strong subtropical jet hampers cyclogenesis due to less vertical interaction through the trapping of upper-level eddies. During El Niño-developing winters, the subtropical jet is weakened over East Asia, indicating dynamic linkage to increased cyclone frequency. In addition to this, both the deepening of the upper-tropospheric trough over East Asia and anomalous low-tropospheric northwest anticyclones extending from the Philippines toward Japan are also consistent with the enhancement of cyclogenesis over the East China Sea as well as warm winter in Japan.

  6. Post Cyclone (PoC) : An innovative way to reduce the emission of fines from industrial cyclones

    NARCIS (Netherlands)

    Ray - Bhowmick, Madhumita; Luning, P.E.; Hoffmann, A.C; Plomp, A.; Beumer, M.I.L.

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 mu m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called ''Post Cyclone'' (PoC),

  7. Cyclone and after...

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    This is a general article meant for the non-specialist reader. The article provides a brief description of the devastating effects of tropical cyclones in general, and super-cyclone that hit the Orissa Coast, India in 1999, which has been described...

  8. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshov, Y.; Qi, L. [Australian Bureau of Meteorology, Melbourne, VIC (Australia). National Climate Centre; Chane Ming, F.; Chouaibou, I.; Hoareau, C. [UMR CNRS-Meteo-France-Univ. de la Reunion, La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Roux, F. [Paul Sabatier Univ., CNRS, Toulouse (France). Lab. d' Aerologie

    2009-07-01

    Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Nino-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Nina events compared to El Nino events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Nina seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Nino (La Nina) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables. (orig.)

  9. Aerodynamics and vortical structures in hovering fruitflies

    Science.gov (United States)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  10. Environmental Composites for Bomb Cyclones of the Western North Atlantic in Reanalysis, 1948-2016.

    Science.gov (United States)

    Adams, R.; Sheridan, S. C.

    2017-12-01

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  11. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific

    Science.gov (United States)

    Fan, Tingting; Xu, Shibin; Huang, Fei; Zhao, Jinping

    2018-04-01

    This study compares the interdecadal variations in tropical cyclone (TC) activities over the western North Pacific (WNP) basin during the peak season (July-September) and late season (October-December) of 1955-2014 and explores the possible physical mechanisms behind the variations. Both the peak- and late-season tropical storm (TS) days show distinct interdecadal variations, while the late-season TS days lead the peak-season TS days by approximately 4 years on an interdecadal time scale. The late-season TC activity is related to the east-west sea surface temperature (SST) gradient across the equatorial Pacific. The westerly winds induced by the SST gradient can reduce the vertical wind shear and increase the low-level vorticity, which favors TC genesis over the TC genesis region. The peak-season TC activity appears to relate to the SST gradient between the Indian Ocean and the Central Pacific. The westerly wind induced by the SST gradient can reduce the vertical wind shear and increase the mid-level relative humidity, thereby enhancing the TC activity. The full picture of the interdecadal variation in the WNP TC activity during the peak and late seasons revealed in this study provides a new perspective on the seasonal TC forecasts and future projections.

  12. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  13. Stratosphere-troposphere exchange in an extratropical cyclone, calculated with a Lagrangian method

    Directory of Open Access Journals (Sweden)

    M. Sigmond

    Full Text Available A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.

    Key words: Meteorology and atmospheric dynamics (general circulation; mesoscale meteorology; middle atmosphere dynamics

  14. Stratosphere-troposphere exchange in an extratropical cyclone, calculated with a Lagrangian method

    Directory of Open Access Journals (Sweden)

    M. Sigmond

    2000-05-01

    Full Text Available A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.Key words: Meteorology and atmospheric dynamics (general circulation; mesoscale meteorology; middle atmosphere dynamics

  15. Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region

    Directory of Open Access Journals (Sweden)

    Pradeep K. Goyal

    2011-09-01

    Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.

  16. Assessing the impact of cyclones in the coastal zone of Bangladesh

    Science.gov (United States)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  17. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    Science.gov (United States)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the

  18. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    Science.gov (United States)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  19. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  20. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  1. Upper-level enhancement of microphysical processes in extratropical cyclones observed during OLYMPEX

    Science.gov (United States)

    Rowe, A.; McMurdie, L. A.; Houze, R.; Zagrodnik, J. P.; Schuldt, T.; Chaplin, M.

    2017-12-01

    Data collected during the Olympic Mountains Experiment (OLYMPEX) of fall 2015-winter 2016 offer a unique opportunity to document enhancement of precipitation on the windward side of a mountain range as mid-latitude cyclones encountered the complex terrain of the Olympic Mountains. During the campaign, extensive instrumentation was deployed, including ground-based dual-polarization Doppler radars on the windward and leeward sides of the mountains and research aircraft providing in situ microphysical measurements and triple-frequency radar data over the ground-based sites and highest elevations. These datasets provide unprecedented detail on microphysical and dynamical processes associated with precipitation enhancement. Previous studies of precipitation enhancement over mountains have focused on surface rainfall amounts. However, the airflow over the terrain affects precipitation throughout the vertical columns of the atmosphere passing over the mountains. The OLYMPEX data were collected in a way that allows the mechanisms leading to enhancement to be examined at all levels. In particular, NASA's S-band and the NSF/CSWR DOW6 X-band dual-polarization radars provided high-resolution vertical cross sections in sectors upwind and over the mountains. The degree of upper-level enhancement seen in these radar data was most pronounced when the integrated vapor transport was strong, stability was moist neutral, and melting levels were relatively high. These conditions were often found within the warm sectors of the mid-latitude cyclones observed in OLYMPEX. Within widespread stratiform echo, radar data revealed layers of enhanced differential reflectivity aloft in addition to the enhanced reflectivity. In situ microphysical probe data from the University of North Dakota Citation aircraft were obtained in the context of these ground-based radar observations, which along with observations from the APR3 radar aboard the DC8 research aircraft, provide a unique dataset for

  2. Thunderstorms caused by southern cyclones in Estonia

    Directory of Open Access Journals (Sweden)

    Kaupo Mändla

    2014-05-01

    Full Text Available The relationships between the frequency and duration of thunderstorms, lightning and southern cyclones over Estonia are presented for the period 1950–2010. A total of 545 southern cyclones and 2106 thunderstorm days were detected, whereas 11.3% of the observed thunder days were associated with southern cyclones. At the same time, 29.2% of all southern cyclones were accompanied by thunderstorms. In the thunder season, however, this percentage was much higher, reaching up to 80% in summer months. The number of thunder days was largest when the centres of southern cyclones passed a measuring station at a distance less than 500 km. The number of cloud-to-ground lightning strikes related to southern cyclones was larger than that of any other thunder events. The results of our study demonstrate that the intensity of thunderstorms related to southern cyclones is higher than that of other thunderstorms. Correlation analysis revealed statistically significant relationships between the frequency of thunder days related to southern cyclones and the frequency of southern cyclones, also between the frequency of thunder days related to southern cyclones and days of other thunder events.

  3. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Directory of Open Access Journals (Sweden)

    Y. Kuleshov

    2009-06-01

    Full Text Available Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs, relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western part of the basin as well as for the northeast (southwest shift of points of cyclogenesis during El Niño (La Niña events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.

  4. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  5. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  6. Tropical cyclone disasters in the Gulf of Thailand

    Directory of Open Access Journals (Sweden)

    Suphat Vongvisessomjai

    2009-07-01

    Full Text Available The origin of tropical cyclones in the South China Sea is over a vast deep sea, southeast of the Philippines. The severetropical cyclones in summer with northerly tracks attack the Philippines, China, Korea and Japan, while the moderate ones inthe rainy season with northwesterly tracks pass Vietnam, Laos and northern Thailand. In October, November and December, the tropical cyclones are weakened and tracks shift to a lower latitude passing the Gulf of Thailand. Tropical cyclone disasters in the Gulf of Thailand due to strong winds causing storm surges and big waves or heavy rainfall over high mountains in causing floods and land slides result in moderate damages and casualties. Analyses are made of six decades of data of tropical cyclones from 1951-2006 having averaged numbers of 3 and 13 in Thailand and the South China Sea respectively. Detailed calculation of surges and wave heights of the 5 disastrous tropical cyclones in the Gulf of Thailand reveal that the Upper Gulf of Thailand with a limited fetch length of about 100 km in north/south direction and about 100 km width in the east/west direction, resulted in a limited maximum wave height of 2.3-2.5 m and maximum storm surge height of 1.2 m generated by Typhoon Vae (1952, while the east coast, with longer fetch lengthbut still limited by the existence of its shoreline, resulted in an increased maximum wave height of 4 m and maximum storm surge height of 0.6 m in the Upper Gulf of Thailand generated by Typhoon Linda (1997. These are the Probable Maximum Cyclones here.The southern shoreline, with unlimited fetch length on the east by tropical cyclones approaching from the South China Sea, generated maximum wave height of 6-11 m by Typhoon Gay (1989, resulting in more casualties and damages. Note that storm surges on the southern shorelines with steep slopes are small due to the short distance of shallow shorelines in receiving wind stresses for piling up sea levels. These disasters can be

  7. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  8. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  9. Interferometry with Vortices

    Directory of Open Access Journals (Sweden)

    P. Senthilkumaran

    2012-01-01

    Full Text Available Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI, a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams.

  10. Analysis of wake vortices of a medium range twin-propeller military cargo aircraft using statistically designed experiments

    Science.gov (United States)

    Sahin, Burhan

    An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle of attack, flap angle, propeller pitch angle and downstream distance. Velocity measurements of the flow fields were accomplished using both Particle Image Velocimetry (PIV) and Hotwire Anemometry (HWA) to yield average velocities, turbulence levels, vorticity strengths and Reynolds shear stresses in the wake of the model. The results of measurements showed that the vertical motions, horizontal motions, and vorticity strengths of both vortices as well as the shortest distance between both vortices depend on the aforementioned factors and the interactions of some factors. It can be concluded that propeller pitch angle mainly affects the behaviors of the vortices as much as angle of attack to the extent that their second order terms take place in some of the regression models.

  11. Towards laboratory detection of topological vortices in superfluid phases of QCD

    Science.gov (United States)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  12. Emergency Department Presentations following Tropical Cyclone Yasi.

    Directory of Open Access Journals (Sweden)

    Peter Aitken

    Full Text Available Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED of a tertiary level hospital (Townsville following a tropical cyclone (Yasi. Specific areas of focus include changes in: patient demographics (age and gender, triage categories, and classification of diseases.Data were extracted from the Townsville Hospitals ED information system (EDIS for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011 to six days after Yasi crossed the coast line (8 February 2012. The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level.There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99, and factors influencing health care status (Z00-Z99. The most common diagnostic presentation across all years was injury (S00-T98.There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  13. Life defence against big storm surges. Cyclone shelter in Bangladesh; Kyodai takashio kara seimei wo mamoru. Bangladesh no cyclone shelter

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, H. [Kyoto Univ., Kyoto (Japan). Disaster Prevention Research Inst.

    1996-08-15

    This paper presents the cyclone shelters in Bangladesh. Bangladesh has been damaged by flooding due to big storm surges caused by cyclone every year, losing many human lives and properties. The sea within 100km apart from the coast is gradually shoaling beach shallower than 10m because of sediment transport by the Ganges. Consequently, huge storm surges are easily caused by cyclone generated in Bay of Bengal. The cyclone shelter is only one refuge from cyclone. Construction of the cyclone shelters was opened in the 1960s, and the public work department (PWD) in the government had constructed the cyclone shelters under support by International Development Association (IDA) since 1970. At the same time, BDRCS had constructed the shelters under support by Red Cross Societies of every country, and positive NGOs such as Caritas had been also in the same action. Because many cyclone shelters became too old for use, construction of new cyclone shelters was opened again just after disaster in 1991. 2 refs., 8 figs., 1 tab.

  14. Multi-Scale Aspects of Tropical Cyclone Predictability

    Science.gov (United States)

    Doyle, J. D.; Moskaitis, J.; Black, P. G.; Hendricks, E. A.; Reinecke, A.; Amerault, C. M.

    2014-12-01

    The intensification of tropical cyclones (TCs) may be sensitive to aspects of large-scale forcing, as well as internal mesoscale dynamics. In this presentation, the degree to which tropical cyclone intensity and structure is sensitive to small perturbations to the basic properties of the synoptic-scale environment, as well as in the immediate vicinity of the storm, is explored using both adjoint- and ensemble-based approaches. In particular, we explore the relationship between tropical cyclone intensity changes and upper-level outflow. We make use of observations from two recent field campaigns: i) the NASA Hurricane and Severe Storms Sentinel (HS3), which featured two fully instrumented Global Hawk unmanned aerial systems, and ii) the ONR Tropical Cyclone Intensity (TCI-14) experiment that utilized the NASA WB-57. We make use of the Navy's high-resolution tropical cyclone prediction system COAMPS-TC to provide ensemble forecasts, numerical experiments with and without the assimilation of specific observation types (e.g., satellite, dropsondes, high-frequency radiosonde), as well as mesoscale nested adjoint sensitivity and observation impact calculations, all of which provide insight into the initial state sensitivity and predictability issues. We assess the impact of observations in sensitive regions in the TC environment (including outflow regions away from the TC inner core) on predictions of TC intensity and structure. Overall the results underscore the importance of multiple scales that influence the predictability of TC intensification. During HS3, the assimilation of Global Hawk dropsondes has been shown to reduce the maximum wind error from 15 knots to less than 10 knots at 48 h for Hurricane Nadine (2012). In this particular case, the adjoint model shows strong sensitivity in the TC outflow near the entrance region of an upper-level jet. The impact of dropsondes from data denial experiments and adjoint-based observation impact calculations will be

  15. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    Science.gov (United States)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by

  16. Southern Hemisphere Extratropical Cyclones and their Relationship with ENSO in springtime

    Science.gov (United States)

    Reboita, M. S.; Ambrizzi, T.; Da Rocha, R.

    2013-05-01

    Extratropical cyclones occurrence is associated with the teleconnection mechanisms that produce climate variability. Among these mechanisms we have El Niño-Southern Oscillation (ENSO). Some works have indicated that during the ENSO positive phase there are more cyclogenetic conditions in some parts of the globe as the southwest of South Atlantic Ocean. Therefore, the purpose of this study is to verify if the extratropical cyclones number and location are altered in the different ENSO phases in the austral spring over the Southern Hemisphere (SH). The Melbourne University automatic tracking scheme was used to determine the cyclone climatology from 1980 to 2012. All cyclones that appear with lifetime higher or equal to 24 hours in the sea level pressure data from National Centers for Environment Prediction reanalysis I were included in the climatology. El Niño (EN), La Niña (LN) and Neutral (N) years were identified through the Oceanic Niño Index (ONI) from Climate Prediction Center/NOAA. The average number of cyclones in the spring over the SH is similar in the EN (200), N (184) and LN (197) episodes. By latitude bands, during EN episodes the cyclones occurrence reduces in 16% between 70-60 degrees and increases in ~15% between 80-70 and 50-40 degrees. On the other hand, during the LN episodes, the cyclones are 17% more frequent in 50-60 degrees and 22% less frequent in 30-20 degrees. One more detailed analysis of the cyclones trajectory density (that is a statistic product of the tracking algorithm) shows that in the South Atlantic Ocean, near the southeast of South America, the number of cyclones in EN years is higher than in the neutral period and lower than in the LN years. In the Indian Ocean, the EN year is characterized by a cyclones reduction in the west and east sector, near the continents. In the Pacific Ocean, the region southward the New Zealand presents more cyclones occurrence in EN years.

  17. Detection and Tracking of Tropical Cyclones on a Seasonal Scale in the Philippines

    Directory of Open Access Journals (Sweden)

    Josefina C. Argete

    2007-12-01

    Full Text Available A regional climate model is used to detect tropical cyclones (TC and simulate their tracks for a four-month (June-July-August-September wet season in the Philippine region. The model, run at 45-km resolution, is forced along the boundaries with 6-hourly reanalyses data (ERA-40 with about 250-km resolution. Three experiments are devised which varied the size of the domain and placement of the boundaries.A detection and tracking algorithm is developed using 850-mb vorticity threshold, minimum sea level pressure and the presence of a warm core aloft as criteria. The tracks extracted from the ERA-40 field, herein called analyses track, are compared with JTWC best track to test the performance of the tracking algorithm. Of the fourteen (14 TC that entered the domain, ten were formed in the Pacific Ocean and four in the South China Sea. The algorithm detected all TC and skillfully captured the JTWC best track. From the 417 cases (6-hourly positions of the 14 TC, the mean zonal and meridional errors are -164, -23 km, respectively, where the analyses tracks are on the average moving faster westward and southward than the best track. The relatively small magnitude of errors indicates skill of the tracking method.The regional model is able to detect all 14 TC but with tracks that are farther displaced north of analyses. Simulation of track was enhanced as domain size is decreased. The intensity simulation is improved as more typhoons otherwise not found in the forcing data are generated by the regional model. This study demonstrates that a regional model forced by "perfect" boundary conditions can reasonably simulate the tracks and intensity of tropical cyclones on a seasonal scale. The importance of the use of the proper domain configuration is also shown.

  18. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  19. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to

  20. Climatological aspects of cyclonic tracks associated with flood events in Crete, Greece

    Science.gov (United States)

    Flocas, H. A.; Tsanis, I. K.; Katavoutas, G.; Kouroutzoglou, J.; Iordanidou, V.; Alexakis, D. D.

    2017-11-01

    In this study, an attempt was made to identify the tracks of the synoptic-scale cyclones associated with flood events in Crete, a Greek island in the southern Aegean Sea and to investigate their kinematic and dynamic characteristics and vertical structure for a period of 25 years. Furthermore, a comparison is made with the corresponding characteristics of the population of surface cyclones passing over Crete during the same period. The Melbourne University Cyclone Tracking Algorithm was employed to examine the genesis and movement of these cyclones while their vertical profile was examined with the aid of the vertical tracing software, Vertical Tracking Scheme (VTS). The input data are based on ERA INTERIM reanalysis datasets with resolution 0.5° × 0.5° during the period 1990 to 2014. It was found that the vast majority originate mainly over the north African coasts, contrasting the preference of all cyclones passing over Crete to develop within the Southeast Mediterranean. Cyclones associated with the flood events are more intense than the cyclonic population, being mainly characterized by long duration and track length. Furthermore, they reveal characteristics of vertically organized baroclinic systems, suggesting that they are mainly driven by baroclinic processes at upper and lower levels.

  1. 1997 Annual Tropical Cyclone Report

    National Research Council Canada - National Science Library

    Dillon, C

    1997-01-01

    .... Separate bulletins are issued for the Western Pacific and the Indian Ocean. TROPICAL CYCLONE FORMATION ALERT - Defines a specific area when synoptic, satellite, or other germane data indicate development of a significant tropical cyclone (TC...

  2. Nuclear power plant risk from tropical cyclones

    International Nuclear Information System (INIS)

    Gilmore, T.F.

    1991-01-01

    Tropical cyclones are considered to have a potential for contributing to the overall core-melt frequency at Turkey Point. A tropical cyclone is known to have the four main hazards associated with it: wind, tidal surge, wind-generated missiles, and precipitation. To understand the contribution to overall core-melt risk at Turkey Point, it is essential to understand the mechanisms of these hazards and their relative importance. The results are bounded by the hurricane surge scenario, where the frequency of core melt is equal to the frequency of the surge reaching 19 ft NGVD (National Geographic Vertical Datum). This could be mitigated by potential recovery actions for the tropical cyclone scenario. The probability of the storm surge reaching 19 ft NVGD is estimated to be 1 x 10 -4 . The data associated with the tropical cyclones as discussed in detail in the body of this paper are lacking in quantity and quality. By taking the conservative approach in creating the wind/frequency, wind/surge, and surge/frequency relationships, the conclusion that the results are worst case is reasonable. With this in mind, it is logical to conclude that the value of further hazard analysis to narrow down the built-in conservative margin using the existing data and technology is doubtful. Thus, a recovery approach to driving the risk level down is the most pragmatic step to be taken

  3. Advantages and risks in increasing cyclone separator length

    NARCIS (Netherlands)

    Hoffmann, AC; de Groot, M; Peng, W; Dries, HWA; Kater, J

    The effect of cyclone length on separation efficiency and pressure drop has been investigated experimentally and theoretically by varying the length of the cylindrical segment of a cylinder-on-cone cyclone. Experimental results based on cyclone lengths from 2.65 to 6.15 cyclone diameters showed a

  4. Effect of boundary conditions on downstream vorticity from counter-rotating swirlers

    Directory of Open Access Journals (Sweden)

    Weiye Huo

    2015-02-01

    Full Text Available Particle image velocimetry (PIV is utilized to measure the non-reacting flow field in a reflow combustor with multiple and single swirlers. The velocity field, vortex structure and total vorticity levels are experimentally obtained using two different boundary conditions, representing a single confined swirler and multiple swirlers in an annular combustor. The influence of the boundary conditions on the flow field at several locations downstream of the swirlers is experimentally investigated, showing that the central vortex in the multi-swirler case is more concentrated than in the single-swirler case. The vorticity of the central vortex and average cross-sectional vorticity are relatively low at the swirler outlet in both cases. Both of these statistics gradually increase to the maximum values near 20 mm downstream of the swirler outlet, and subsequently decrease. It is also found that the central vortex in the multi-swirler case is consistently greater than the single-swirler case. These results demonstrate the critical influence of boundary conditions on flow characteristic of swirling flow, providing insight into the difference of the experiments on test-bed combustor and the full-scale annular combustors.

  5. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    Science.gov (United States)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set

  6. Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He

    International Nuclear Information System (INIS)

    Yano, H.; Hashimoto, N.; Handa, A.; Obara, K.; Ishikawa, O.; Hata, T.; Nakagawa, M.

    2007-01-01

    The motions of superfluid vortices attached to a boundary are investigated in alternating currents by using a vibrating wire. The attached vortices appear to form a layer on the wire and enhance the mass of the wire, even for low velocity currents. In turbulence, chaotic motions of vortices such as entanglement and reconnection reduce the thickness of the layer in spite of the fact that the vortices unstably expand. When turbulence subsides, the attached vortices appear to shrink, with the degree of shrinking influenced by thermal excitations in the superfluid

  7. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  8. Impacts of tropical cyclones on Fiji and Samoa

    Science.gov (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  9. Potential Vorticity Evolution in the Co-orbital Region of Embedded Protoplanets

    International Nuclear Information System (INIS)

    Koller, J.

    2004-01-01

    This thesis presents two-dimensional hydrodynamic disk simulations with embedded protoplanets, emphasizing the non-linear dynamics in the co-orbital region. In particular, it demonstrates how a protoplanetary disk responds to embedded low mass planets at the inviscid limit. Since the potential vorticity (PV) flow is not conserved, due to the spiral shocks and possibly boundary layer effects emanating from the planet, the PV profile develops inflection points which eventually render the flow unstable. Vortices are produced in association with the potential vorticity minima. Born in the separatrix region, these vortices experience close encounters with the planet, consequently exerting strong torques on the planet. The existence of these vortices, if confirmed, have important implications on planetary migration rates. The formation of vortices is discussed in more detail and a key parameter is found which depends solely on planet mass and sound speed. With this key parameter, one can predict the disk evolution, PV growth rates, and threshold conditions for forming vortices in the co-orbital region. An analytical estimate for the change of PV due to shocks is compared to the actual change in PV in the hydrodynamic simulations. They match well except in the inner region where vortices form. In addition, extensive resolution tests were carried out but uncertainties remain about the physics of this particular region

  10. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.

  11. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong, E-mail: yxt27272@mail.ustc.edu.cn, E-mail: zjun@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  12. Thunderstorms caused by southern cyclones in Estonia

    OpenAIRE

    Kaupo Mändla; Sven-Erik Enno; Mait Sepp

    2014-01-01

    The relationships between the frequency and duration of thunderstorms, lightning and southern cyclones over Estonia are presented for the period 1950–2010. A total of 545 southern cyclones and 2106 thunderstorm days were detected, whereas 11.3% of the observed thunder days were associated with southern cyclones. At the same time, 29.2% of all southern cyclones were accompanied by thunderstorms. In the thunder season, however, this percentage was much higher, reaching up to 80% in summer month...

  13. Finiteness of corner vortices

    Science.gov (United States)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  14. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    Science.gov (United States)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  15. North Atlantic cyclones; trends, impacts and links to large-scale variability

    Science.gov (United States)

    Trigo, R. M.; Trigo, I. F.; Ramos, A. M.; Paredes, D.; Garcia-Herrera, R.; Liberato, M. L. R.; Valente, M. A.

    2009-04-01

    Based on the cyclone detection and tracking algorithm previously developed (Trigo, 2006) we have assessed the inter-annual variability and cyclone frequency trends between 1960 and 2000 for the Euro-Atlantic sector using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 Surface Level Pressure. Additionally, trends for the u and v wind speed components are also computed at the monthly and seasonal scales, using the same dataset. All cyclone and wind speed trend maps were computed with the corresponding statistical significance field. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February and March. Seasonal and monthly analysis of wind speed trends shows similar spatial patterns. We show that these changes in the frequency of low pressure centers and the associated wind patterns are partially responsible for trends of the significant height of waves. Throughout the extended winter months (ONDJFM), regions with positive (negative) wind magnitude trends, of up to 5 cm/s per year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for the JFM months are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of 50°N up to -3 cm/year, and positive up to 5cm/year just north of Scotland). Using precipitation data from ECMWF reanalyses and a CRU high resolution dataset we show the impact of these trends in cyclone frequencies upon the corresponding precipitation trends in the influenced areas. It is also shown that these changes are partially linked to major shifts on the indices of large-scale patterns modes, namely the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian Patterns (SCAN). Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in

  16. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    Science.gov (United States)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  17. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  18. Effect of Sulfate Aerosol Geoengineering on Tropical cyclones

    Science.gov (United States)

    Wang, Q.; Moore, J.; Ji, D.

    2017-12-01

    Variation in tropical cyclone (TC) number and intensity is driven in part by changes in the thermodynamics that can be defined by ocean and atmospheric variables. Genesis Potential Index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that quantify thermodynamic forcing of TC activity under changed climates, and can be calculated from climate model output. Here we use five CMIP5 models running the RCP45 experiment the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment to calculate the two indices over the 2020 to 2069 period. Globally, GPI under G4 is lower than under RCP45, though both have a slight increasing trend. Spatial patterns in the relative effectiveness of geoengineering show reductions in TC in all models in the North Atlantic basin, and northern Indian Ocean in all except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. VI generally coincide with the GPI patterns. Most models project Potential intensity and Relative Humidity to be the dominant variable to affect genesis potential. Changes in vertical wind shear and vorticity are small with scatter across different models and ocean basins. We find that tropopause temperature maybe as important as sea surface temperature in effecting TC genesis. Thus stratospheric aerosol geoengineering impacts on potential intensity and hence TC intensity are reasonably consistent, but probably underestimated by statistical forecasts of Tropical North Atlantic hurricane activity driven by sea surface temperatures alone. However the impacts of geoengineering on other ocean basins are more difficult to assess, and require more complete understanding of their driving parameters under present day climates. Furthermore, the possible effects of stratospheric injection on chemical reactions in the stratosphere, such as ozone, are

  19. On the occurrence of cyclones with low central pressures in the Atlantic-European area from 1930 to 1991

    International Nuclear Information System (INIS)

    Schinke, H.

    1992-01-01

    Large natural disasters increased dramatically in the last three decades, both with regard to number and damage scale. Large storm events contribute considerably to this. In the context of climate changes it is of interest whether the frequency and/or the regional and temporal distribution of storm cyclones of the temperate latitudes are also subject to specific changes. The definition of storm cyclones with the aid of weather maps which served as basis of investigation is only possible with considerable time expenditure. All low-pressure areas with central pressures equal to, or less than 990 hPa were therefore included in the investigation. The wind velocities were not analyzed. The investigation area covers the area from the 60th degree of easter longitude to the 60th degree of western longitude and from the 30th degree of northern latitude to the North Pole. It comprises the hole of the European mainland as well as large parts of the North Atlantic. The period of 1930 to 1991 is considered. (orig./KW) [de

  20. Tropical Cyclone Paka's Initial Explosive Development (10-12 December, 1997)

    Science.gov (United States)

    Rodgers, Edward B.; Halverson, Jeff; Simpson, Joanne; Olson, William; Pierce, Harold

    1999-01-01

    Convection associated with an equatorial westerly wind burst was first observed late November during the strong El Nino of 1997 at approximately 2000 km southwest of the Hawaiian Islands. This region of convection lead to the formation of twin tropical cyclones, one in the southern hemisphere named Pam and the other in the northern hemisphere named Paka. During the first week in December, tropical cyclone Paka, the system of concern, reached tropical storm stage as it moved rapidly westward at relatively low latitudes. During the 10-12 of December, Paka rapidly developed into a typhoon.

  1. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  2. Cyclone: java-based querying and computing with Pathway/Genome databases.

    Science.gov (United States)

    Le Fèvre, François; Smidtas, Serge; Schächter, Vincent

    2007-05-15

    Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.

  3. Characteristics and development of European cyclones with tropical origin in reanalysis data

    Science.gov (United States)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  4. Ocean barrier layers' effect on tropical cyclone intensification.

    Science.gov (United States)

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  5. Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient

    Science.gov (United States)

    2012-12-11

    low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly

  6. LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Fu, Wen; Li, Hui; Li, Shengtai; Lubow, Stephen

    2014-01-01

    Recent observations of large-scale asymmetric features in protoplanetary disks suggest that large-scale vortices exist in such disks. Massive planets are known to be able to produce deep gaps in protoplanetary disks. The gap edges could become hydrodynamically unstable to the Rossby wave/vortex instability and form large-scale vortices. In this study we examine the long-term evolution of these vortices by carrying out high-resolution two-dimensional hydrodynamic simulations that last more than 10 4 orbits (measured at the planet's orbit). We find that the disk viscosity has a strong influence on both the emergence and lifetime of vortices. In the outer disk region where asymmetric features are observed, our simulation results suggest that the disk viscous α needs to be low, ∼10 –5 -10 –4 , to sustain vortices to thousands and up to 10 4 orbits in certain cases. The chance of finding a vortex feature in a disk then decreases with smaller planet orbital radius. For α ∼ 10 –3 or larger, even planets with masses of 5 M J will have difficulty either producing or sustaining vortices. We have also studied the effects of different disk temperatures and planet masses. We discuss the implications of our findings on current and future protoplanetary disk observations

  7. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  8. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    Science.gov (United States)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  9. Human Influence on Tropical Cyclone Intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  10. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  11. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  12. Dynamics of vortices in polariton quantum fluids : From full vortices, to half vortices and vortex pairs

    Science.gov (United States)

    Deveaud-Plédran, Benoit

    2012-02-01

    Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.

  13. VORTICAL MODEL OF THE WING COVERED WITH CONTINUOUSLY DISTRIBUTED CIRCULATION OF THE VORTICAL LAYER

    Directory of Open Access Journals (Sweden)

    B. L. Artamonov

    2014-01-01

    Full Text Available The linear vortical model ot the final scope of a wing is exsamined. It representis the flat rectangular spatial veil covered with continuously distributed vortical layer. Elements of digitization of a veil are the quadrangular panels laying on its surface. Method, algorithms and the program of calculation of three making vectors of inductive speed from any guided rectangular platform covered with a vortical layer are created. Its intensity linearly changes on the surface of a platform. The decision is received in elementary functions. The numerical way solves the task of a definition of the law of circulation of the attached whirlwinds in scope of a wing and calculation of its aerodynamic characteristics, being based on the accepted vortical model and a hypothesis of flat sections.

  14. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  15. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  16. Synoptic and climatological aspects of extra-tropical cyclones

    Science.gov (United States)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  17. A Study on the Impact of Observation Assimilation on the Numerical Simulation of Tropical Cyclones JAL and THANE Using 3DVAR

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2013-12-08

    In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72

  18. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    Science.gov (United States)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  19. Core sizes and dynamical instabilities of giant vortices in dilute Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Kuopanportti, Pekko; Lundh, Emil; Huhtamaeki, Jukka A. M.; Pietilae, Ville; Moettoenen, Mikko

    2010-01-01

    Motivated by a recent demonstration of cyclic addition of quantized vorticity into a Bose-Einstein condensate, the vortex pump, we study dynamical instabilities and core sizes of giant vortices. The core size is found to increase roughly as a square-root function of the quantum number of the vortex, whereas the strength of the dynamical instability either saturates to a fairly low value or increases extremely slowly for large quantum numbers. Our studies suggest that giant vortices of very high angular momenta may be achieved by gradually increasing the operation frequency of the vortex pump.

  20. Monopoles, vortices, and confinement

    International Nuclear Information System (INIS)

    Mack, G.; Pietarinen, E.

    1981-10-01

    An exact relation is established between an SO(3) lattice gauge theory model without monopoles, and a corresponding SU(2) model. Elimination of the monopoles (and their strings) leads to a substantial lowering of the entropy of thin vortices and a corresponding decrease of the string tension for low γ. This is revealed by approximate calculations of the vortex free energy and is confirmed by Monte Carlo data. The value of the physical transition temperature to 'hot gluon soup' is also lowered considerably. (orig.)

  1. Tropical cyclones in the Bay of Bengal and extreme sea-level projections along the east coast of India in a future climate scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; RameshKumar, M.R.; Sindhu, B.

    (2071– 2100), A2. The analysis showed an increase in the frequency of cyclones in the Bay of Bengal during the late monsoon (August and September) in the A2 scenario compared to the baseline scenario. Extreme sea-level projections along the east coast...

  2. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    Science.gov (United States)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  3. Vorticity budget of a tornado-like vortex

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, Koji; Takemura, Saki, E-mail: sassa@kochi-u.ac.jp [Department of Applied Science, Kochi University (Japan)

    2011-12-22

    We evaluated the vorticity budget of a tornado-like vortex by measuring vertical and horizontal circulations of it. Though spiral horizontal vortices are clearly observed to converge and tilted into the tornado-like vortex, their circulation is quite small. The conversion of the vertical vorticity concentrated at the side of the spiral horizontal vortices was found to mainly contribute to the maintenance of the tornado-like vortex.

  4. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    Science.gov (United States)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  5. Forecasting and Warning of Tropical Cyclones in China

    Directory of Open Access Journals (Sweden)

    Bangzhong Wang

    2007-10-01

    Full Text Available With the development of the global economy, the impact of tropical cyclones has become far-reaching. Thus they are a fundamental issue to be addressed both nationally and globally. The socio-economic impact is particularly noticeable in developing countries, especially China. This paper begins with the effects of cyclones on regional and global economies. Then a brief introduction to the past and current situations and progress in cyclones forecasting and warning in China are presented. Finally the paper gives recommendations about improving and perfecting the tropical cyclone forecasting and warning systems.

  6. Review of vortices in wildland fire

    Science.gov (United States)

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  7. Vortices wiggled and dragged

    International Nuclear Information System (INIS)

    Reichardt, Charles

    2008-01-01

    When a sufficiently strong magnetic field is applied to a superconductor, some of the field can pierce it through the generation of magnetic vortices, each of which contains a quantized amount of magnetic flux. Although the superconducting state of the material outside each vortex is maintained (and destroyed within each vortex), the interaction of vortices with a current passing through the material can cause them to move, dissipating energy and thereby generating a source of electrical resistance. The ability to manipulate an individual superconducting vortex represents a powerful tool for studying the dynamics of vortices and the superconductors that support them. It could also lead to the development of a new class of fluxon-based electronics.

  8. Promoting the confluence of tropical cyclone research.

    Science.gov (United States)

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  9. Origin of the pre-tropical storm Debby (2006) African easterly wave-mesoscale convective system

    Science.gov (United States)

    Lin, Yuh-Lang; Liu, Liping; Tang, Guoqing; Spinks, James; Jones, Wilson

    2013-05-01

    The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW-MCS system.

  10. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  11. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    Science.gov (United States)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  12. Design of laboratory cyclone separator for biogas purification

    Directory of Open Access Journals (Sweden)

    Marián Fodora

    2013-01-01

    Full Text Available This article deals with calculation of a cyclone separator for biogas purification using physical and chemical methods. There is presented a methodology for determination of operating dimensions of the cyclone separator and description of principal features of the cyclone separator model. Calculations have been performed for the diameter of the cylindrical part of cyclone separator 175 mm and for the biogas volume flow rate 6.9∙10−5 m3∙s−1. The calculations can be used in practice for the design of cyclone separator depending on the flow rate of biogas, size of the biogas plants respectively. The developed cyclone separator has been used for the cleaning of biogas in operating conditions at the biogas plant in Kolinany (Slovakia. The presented method of biogas purification has been used for the removing of hydrogen sulphide, particulate matter and carbon dioxide from the raw biogas at the biogas plant. Removal of these undesirable impurities from the biogas is an important step in the production of a fully valued fuel, biomethane.

  13. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  14. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  15. How ocean color can steer Pacific tropical cyclones

    Science.gov (United States)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  16. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); UPMC, LOCEAN/IPSL, Paris Cedex 05 (France); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, Goa (India); Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); Institut de Recherche pour le Developpement, Noumea (New Caledonia); Jourdain, Nicolas C. [Institut de Recherche pour le Developpement, Noumea (New Caledonia); Marchesiello, Patrick [Institut de Recherche pour le Developpement, Noumea (New Caledonia); CNES/CNRS/UPS/IRD, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), Toulouse (France); Madec, Gurvan [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Oceanographic Centre, Southampton (United Kingdom)

    2011-05-15

    The interannual variability of the South Pacific Convergence Zone (SPCZ) and its influence on tropical cyclone (TC) genesis in the South Pacific are investigated using observations and ERA40 reanalysis over the 1979-2002 period. In austral summer, the SPCZ displays four typical structures at interannual timescales. The first three are characterized by a diagonal orientation of the SPCZ and account for 85% of the summer seasons. One is close to climatology and the other two exhibit a 3 northward or southward departure from the SPCZ climatological position. In contrast, the fourth one, that only encompasses three austral summer seasons (the extreme 1982/1983 and 1997/1998 El Nino events and the moderate 1991/1992 El Nino event), displays very peculiar behaviour where the SPCZ largely departs from its climatological position and is zonally oriented. Variability of the western/central Pacific equatorial sea surface temperature (SST) is shown to modulate moisture transport south of the equator, thereby strongly constraining the location of the SPCZ. The SPCZ location is also shown to strongly modulate the atmospheric circulation variability in the South Pacific with specific patterns for each class. However, independently of its wide year-to-year excursions, the SPCZ is always collocated with the zero relative vorticity at low levels while the maximum vorticity axis lies 6 to the south of the SPCZ position. This coherent atmospheric organisation in the SPCZ region is shown to constrain tropical cyclogenesis to occur preferentially within 10 south of the SPCZ location as this region combines all the large-scale atmospheric conditions that favour the breeding of TCs. This analysis also reveals that cyclogenesis in the central Pacific (in the vicinity of French Polynesia) only occurs when the SPCZ displays a zonal orientation while this observation was previously attributed to El Nino years in general. Different characteristics of El Nino Southern Oscillation (ENSO

  17. Vortices on hyperbolic surfaces

    International Nuclear Information System (INIS)

    Manton, Nicholas S; Rink, Norman A

    2010-01-01

    It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.

  18. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  19. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    Science.gov (United States)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  20. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    Science.gov (United States)

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  1. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  2. Dynamics of two-dimensional solitary vortices in a low-β plasma with convective motion

    International Nuclear Information System (INIS)

    Makino, Mitsuhiro; Kamimura, Tetsuo; Taniuti, Tosiya.

    1980-12-01

    Numerical studies of the Hasegawa-Mima equation, derived in the context of drift waves but equivalent to the quasigeostrophic vortex potential equation for Rossby waves, show the stable properties of solitary vortices which are two dimensional, localized, steady and translating solutions of this same equation. A solitary vortex can propagate only in the direction (x-direction) perpendicular to the density gradient. When this solitary vortex solution is inclined at some angle with respect to the x-axis, its propagation direction oscillates in the x and y plane. In two dimensional collisions, i.e. head-on collision and overtaking, solitary vortices interact two-dimensionally and recover their initial shapes at the end of both types of collisions. (author)

  3. Year 2001 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2001 Tropical Cyclones of the World poster. During calendar year 2001, fifty tropical cyclones with sustained surface winds of at least 64 knots were observed...

  4. Year 2000 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2000 Tropical Cyclones of the World poster. During calendar year 2000, forty-five tropical cyclones with sustained surface winds of at least 64 knots were...

  5. Parameters determining maximum wind velocity in a tropical cyclone

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1984-09-01

    The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)

  6. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  7. On the performance of small diameter gas cyclones

    International Nuclear Information System (INIS)

    Halasz, Marcos Roberto Teixeira

    2002-02-01

    Small diameter cyclones represent a potential alternative for the removal of small diameter particles from gaseous mixtures as well as the environmental control of their emission. In order to establish feasible configurations of a small diameter cyclone applied in the separation of solid particles dispersed in a gas and considering a large quantify of experimental data in literature, neural networks were used to estimate the equipment grade efficiency and pressure drop. In order to evaluate a performance of many small diameters configurations and analysis was carried of parametrical sensibility which determines the most important variables on separation efficiency determination. A set of experimental runs was carried out in a lab-scale mini-cyclone in order to obtain the separation efficiency and pressure drop for different configurations, and evaluate the feasibility of coupling a post-cyclone device to improve the equipment overall performance. The cyclones used presented diameters of 0.03 and 0.05 m and the remaining dimensions varied proportionally about those found in Stairmand high-efficiency cyclones. Experimental separation efficiencies up to 99% were obtained in this work. These results confirm the feasibility of the experimental set-up configuration proposed. (author)

  8. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  9. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  10. Modeling of oceanic vortices

    Science.gov (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  11. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  12. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  13. Aharonov-Bohm effect with many vortices

    International Nuclear Information System (INIS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-01-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  14. Aharonov-Bohm effect with many vortices

    Science.gov (United States)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  15. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  16. Interannual variability of the frequency and intensity of tropical cyclones striking the California coast

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.

    2016-12-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  17. How can tropical cyclones survive?

    Science.gov (United States)

    Smedman, Ann-Sofi

    2013-04-01

    How can tropical cyclones survive? It is important for understanding the development of tropical cyclones to be able to quantify the exchange of enthalpy and momentum between air and water. Air-sea fluxes are often formulated as drag CD and enthalpy CK exchange coefficients. Emanuel, 1986, derived an expression for potential intensity that depends on local environment parameters and is proportional to the ratio of enthalpy and drag coefficients. This ratio should be larger than 0.75 for a cyclone to develop. There are no direct surface measurements of CK/ CD under hurricane conditions and extrapolation from most open-ocean measurements at 25 m/s gives values of CK/ CD0.75 is in accordance with Emanuel's prediction. The high CK values are observed during situations when there is a regime shift of the structure of turbulence in the boundary layer. From spectral analysis it was found that as the boundary layer approaches neutral stratification, smaller-scale eddies become increasingly important in the turbulent transport of humidity and sensible heat and thus enhance the exchange coefficient CK. This turbulence regime is called the UVCN regime and require high wind speed, small temperature difference between air and water, sufficiently strong wind gradients and growing sea condition ( Smedman et al., 2007, Sahlee et al., 2008). What is the difference between world oceans and enclosed seas? The answer is the waves. The wave field over the open oceans is swell dominated but in enclosed seas and coastal areas swell is restricted mainly to low wind speed conditions, and swell is short lived because of short distances to the shores. When swell is present the MABL will be dominated by large eddies of zi size creating weak gradients of wind, temperature and humidity and thus small scale eddies cannot be formed leading to reduced CK-values. However, during hurricane condition the waves are expected to be young, stratification is close to neutral and gradients are sufficiently

  18. Travelling water waves with compactly supported vorticity

    International Nuclear Information System (INIS)

    Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2013-01-01

    In this paper, we prove the existence of two-dimensional, travelling, capillary-gravity, water waves with compactly supported vorticity. Specifically, we consider the cases where the vorticity is a δ-function (a point vortex), or has small compact support (a vortex patch). Using a global bifurcation theoretic argument, we construct a continuum of finite-amplitude, finite-vorticity solutions for the periodic point vortex problem. For the non-periodic case, with either a vortex point or patch, we prove the existence of a continuum of small-amplitude, small-vorticity solutions. (paper)

  19. Response of primary and secondary rainforest flowers and fruits to a cyclone, and implications for plant-servicing bats.

    Science.gov (United States)

    Scanlon, Annette T; Petit, Sophie; Tuiwawa, Marika; Naikatini, Alivereti

    2018-02-24

    The response of primary (PF) and secondary (SF) rainforests to cyclones has broad implications for servicing fauna and the resilience of forest functions. We collected fine-scale data on the reproductive phenology of plant communities in Fijian PF and SF in 12 monthly surveys before and after Cyclone Tomas (2010). We generated a resource index from the reproductive loads of 2218 trees and 1150 non-trees (>190 species) and trunk and stem diameter to assess patterns in resource abundance for nectarivores and frugivores (hereafter NF resources). We aimed to determine (i) whether species richness of NF resources differed between forests; (ii) the patterns of resilience of NF resources at community level in both forests after a cyclone; and (iii) the effect of response on NF resources for plant-servicing bats (Pteropodidae). In 12 months preceding the cyclone, NF resources were greater in PF trees; non-tree resources fluctuated and were greater in SF. Lower species richness of NF resources in SF indicated that fewer opportunities exist there for exploitation by a diverse fauna. More resources were available for bats in PF. In 12 months following the cyclone, PF flowers and fruits, and SF fruits specifically used by pteropodid bats decreased for trees. Non-tree resources were especially susceptible to the cyclone. No universal pattern of decline was associated with the cyclone; instead, some NF resources declined and others were resilient or responded rapidly to a post-cyclone environment. Both PF and SF demonstrated resilience at the community level via increased flower survival (PF) and rapid flower production (SF). Reduced species richness of NF resources in SF will compromise future resilience and response to disturbance, including for threatened pteropodid bat species. These findings are critical for long-term management of forests, given predicted increases in cyclone frequency and intensity associated with anthropogenic climate change. © 2018 John Wiley & Sons

  20. An investigation of the Sutcliffe development theory

    Science.gov (United States)

    Dushan, J. D.

    1973-01-01

    Two case studies were used to test the Sutcliffe-Peterssen development theory for both cyclonic and anticyclonic development over the eastern United States. Each term was examined to determine when and where it made a significant contribution to the development process. Results indicate the advection of vorticity at the level of non-divergence exerts the dominant influence for initial cyclone development, and that the thermal terms (advection of thickness, stability, and diabatic influence) become important after development has begun. Anticyclonic development, however, depends primarily on the stability term throughout the life cycle of the anticyclone. Simple procedures for forecasting the development and movement of cyclones and anticyclones are listed. These rules indicate that routine National Meteorological Center analyses may be used to locate areas where the positive advection of 500-mb vorticity, indicative of cyclonic development, coincides with regions of severe weather activity. The development of anticyclones also is predicted easily. Regions of increasing stability, indicating anticyclonic development, may be located by use of National Meteorological Center radar summaries and analyses for 1000-500-mb thickness. A test of these techniques found them to be satisfactory for the case examined.

  1. Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean

    Science.gov (United States)

    Hall, C.; Lutjeharms, J. R. E.

    2011-03-01

    Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.

  2. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    Science.gov (United States)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    A series of surface cyclones formed along an anomalously strong northeast-southwest oriented baroclinic zone over north-central Russia on 1-3 August 2012. These cyclones moved northeastward, intensified slowly, and crossed the coast of Russia by 4 August. The last cyclone in the series strengthened rapidly as it moved poleward over the Arctic Ocean on 5-6 August, achieved a minimum sea level pressure of life cycle of this Arctic Ocean cyclone from a multiscale perspective. Anticyclonic wave breaking in the upper troposphere across Russia in late July and very early August 2012 created an anomalously strong baroclinic zone across northern Asia between 60-80°N. During 1-5 August, negative 850 hPa temperature anomalies between -2° and -4°C were found poleward of 70-75°N between 90°E and the Dateline over the Arctic Ocean while positive 850 hPa temperature anomalies of 8-9°C were found over eastern Russia near 60°N. The associated anomalously strong 850 hPa meridional temperature gradient of ~10°C (2000 km)-1 helped to sustain an anomalously strong (20-30 m s-1) 250 hPa jet along the coast of northeastern Russia. A local wind speed maximum (~50 m s-1 ) embedded in this 250 hPa jet corridor contributed to the extreme intensity of the trailing (last) surface cyclone in the series. Although the dominant surface cyclone in the series of surface cyclones intensified most rapidly over the relatively ice free Arctic Ocean, the impact of surface heat and moisture fluxes appeared to be secondary to jet-driven dynamical processes in the deepening process. Anomalously high observed 1000-500 hPa thickness values between 564-570 dam, precipitable water values between 30-40 mm, and CAPE values between 500-1000 J kg-1 in the warm sector of the developing cyclone over north-central Russia were indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying

  3. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    Science.gov (United States)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  4. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  5. FAQ HURRICANES, TYPHOONS, AND TROPICAL CYCLONES

    Science.gov (United States)

    ? A6) What is a sub-tropical cyclone? A7) What is an extratropical cyclone ? A8) What is storm surge easterly wave and what causes them? A5) What is a tropical disturbance, tropical depression, tropical storm and how is it different from storm tide ? A9) What is a "CDO" ? A10) What is a TUTT ? A11

  6. On the stability of shear-Alfven vortices

    International Nuclear Information System (INIS)

    Jovanovic, D.; Horton, W.

    1993-08-01

    Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex

  7. Three-Dimensional Storm Structure and Low-Level Boundaries at Different Stages of Cyclic Mesocyclone Evolution in a High-Precipitation Tornadic Supercell

    Directory of Open Access Journals (Sweden)

    Daniel P. Betten

    2018-01-01

    Full Text Available Nearly continuous wind retrievals every three minutes for an unprecedented 90-minute period were constructed during multiple mesocyclone cycles in a tornadic high-precipitation supercell. Asymptotic contraction rate analysis revealed the relationship between the primary and secondary rear-flank gust fronts (RFGF and SRFGFs and the rear-flank downdraft (RFD and occlusion downdrafts. This is thought to be the first radar-based analysis where the relationship between the near-surface gust fronts and their parent downdrafts has been explored for sequential mesocyclones. Changes in the SRFGFs were associated with surges in the RFD. During part of the mesocyclone lifecycle, the SRFGF produced a band of low-level convergence and associated deep updraft along the southwestern side of the hook echo region that ingested the RFD outflow and limited both entrainment into the RFD and reinforcement of low-level convergence along the leading edge of the primary RFGF. The second mesocyclone intensified from stretching in an occlusion updraft rather than in the primary updraft. This low-level mesocyclone remained well separated from the updraft shear region vorticity that was associated with a more traditional midlevel mesocyclone. However, the third mesocyclone initiated in the vorticity-rich region of the primary updraft zone and was amplified by stretching in the primary updraft.

  8. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Science.gov (United States)

    Sheikhzada, Ahmad K.

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  9. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzada, Ahmad [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  10. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  11. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  12. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    Science.gov (United States)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  13. Impact of global warming on cyclonic disturbances over south Asian ...

    Indian Academy of Sciences (India)

    Providing REgional Climates for Impacts ... The change is evaluated towards the end of present ... For a country like India, where the economy of the ... The influence of green- .... Mean sea level pressure pattern of the PRECIS simulated cyclonic storm.

  14. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  15. Interaction of vortices with ultrasound and the acoustic Faraday effect in type-II superconductors

    International Nuclear Information System (INIS)

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R.

    1996-01-01

    We study the interaction of sound waves with vortices in type-II superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. We propose ultrasound techniques as a method for obtaining information about vortex dynamics. This is particularly appropiate at low temperatures where transport measurements are ineffective. The changes in sound velocity and attenuation due to vortices, can provide information on the elastic constants of the vortex system and on vortex dissipation, respectively. At low temperatures the Magnus force acting on vortices leads to the acoustic Faraday effect: there is a rotation of the polarization plane of tranverse sound waves propagating along the magnetic field. This effect is linear in the Magnus force and magnetic field in crystals with equivalent a and b axes for a field parallel to the c axis. We discuss how this effect can be measured by means of either pulse-echo techniques or standing sound waves. Also, we show that an ac electromagnetic field acting on the vortex system can generate ultrasound. We calculate the amplitude of the generated sound waves in the linear regime and compare with recent experiments. copyright 1996 The American Physical Society

  16. An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model

    Directory of Open Access Journals (Sweden)

    M. E. Nicholls

    2013-06-01

    Full Text Available Simulations are conducted with a cloud-resolving numerical model to examine the transformation of a weak incipient mid-level cyclonic vortex into a tropical cyclone. Results demonstrate that two distinct pathways are possible and that development along a particular pathway is sensitive to model physics and initial conditions. One pathway involves a steady increase of the surface winds to tropical cyclone strength as the radius of maximum winds gradually decreases. A notable feature of this evolution is the creation of small-scale lower tropospheric cyclonic vorticity anomalies by deep convective towers and subsequent merger and convergence by the low-level secondary circulation. The second pathway also begins with a strengthening low-level circulation, but eventually a significantly stronger mid-level circulation develops. Cyclogenesis occurs subsequently when a small-scale surface concentrated vortex forms abruptly near the center of the larger-scale circulation. The small-scale vortex is warm core throughout the troposphere and results in a fall in local surface pressure of a few millibars. It usually develops rapidly, undergoing a modest growth to form a small tropical cyclone. Many of the simulated systems approach or reach tropical cyclone strength prior to development of a prominent mid-level vortex so that the subsequent formation of a strong small-scale surface concentrated vortex in these cases could be considered intensification rather than genesis. Experiments are performed to investigate the dependence on the inclusion of the ice phase, radiation, the size and strength of the incipient mid-level vortex, the amount of moisture present in the initial vortex, and the sea surface temperature. Notably, as the sea surface temperature is raised, the likelihood of development along the second pathway is increased. This appears to be related to an increased production of ice. The sensitivity of the pathway taken to model physics and initial

  17. Effects of outer perturbances on dynamics of wake vortices

    International Nuclear Information System (INIS)

    Baranov, N.A.; Belotserkovsky, A.S.; Turchak, L.I.

    2004-01-01

    One of the problems in aircraft flight safety is reduction of the risk related with aircraft encounter with wake vortices generated by other aircraft. An efficient approach to this problem is design of systems providing information on areas of potential danger of wake vortices to pilots in real time. The main components of such a system are a unit for calculations of wake vortices behind aircraft and a unit for calculations of areas of potential danger. A promising way to development of real time algorithms for calculation of wake vortices is the use of vortex methods in CFD based on the hypothesis of quasi-3D flow in the area of wake vorticity. The mathematical model developed by our team calculates positions and intensity of wake vortices past aircraft taking account of such effects as viscous dissipation of vortices, effects of ambient turbulence, wind shear, as well as viscous interaction between wake vortices and the underlying surface. The necessity of including the last factor could be stems from the fact that in the case where wake vortices are in close proximity of the rigid surface, the viscous interaction between the wake vortices and the surface boundary layer results in the boundary layer separation changing the overall intensity and dynamics of the wake vortices. To evaluate the boundaries of the danger areas the authors use an approach based on calculation of additional aerodynamic forces and moments acting on the aircraft encountering wake vortices by means of evaluation of the aircraft additional velocities and angular rates corresponding to distribution of disturbed velocities on the aircraft surface. These criteria could be based on local characteristics of the vorticity areas or on characteristics related to the perturbation effects on the aircraft. The latter characteristics include the actual aerodynamic roll moment, the maximum angular rate or the maximum roll of the aircraft under perturbations in the wake vortices. To estimate the accuracy

  18. The Relationship Between Extratropical Cyclone Steering and Blocking Along the North American East Coast

    Science.gov (United States)

    Booth, James F.; Dunn-Sigouin, Etienne; Pfahl, Stephan

    2017-12-01

    The path and speed of extratropical cyclones along the east coast of North America influence their societal impact. This work characterizes the climatological relationship between cyclone track path and speed, and blocking and the North Atlantic Oscillation (NAO). An analysis of Lagrangian cyclone track propagation speed and angle shows that the percentage of cyclones with blocks is larger for cyclones that propagate northward or southeastward, as is the size of the blocked region near the cyclone. Cyclone-centered composites show that propagation of cyclones relative to blocks is consistent with steering by the block: northward tracks more often have a block east/northeast of the cyclone; slow tracks tend to have blocks due north of the cyclone. Comparison with the NAO shows that to first-order blocking and the NAO steer cyclones in a similar manner. However, blocked cyclones are more likely to propagate northward, increasing the likelihood of cyclone related impacts.

  19. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    Science.gov (United States)

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  20. Dynamics of vortices in superconductors

    International Nuclear Information System (INIS)

    Weinan, E.

    1992-01-01

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter

  1. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    Science.gov (United States)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  2. Lattice Wind Description and Characterization of Mexico City Local Wind Events in the 2001–2006 Period

    Directory of Open Access Journals (Sweden)

    Alejandro Salcido

    2015-07-01

    Full Text Available Urban transformation and expansion in Mexico City continuously affect its urban morphology, and therefore the modes of wind circulation inside it and their occurrence probabilities. Knowledge on these topics is an important issue for urban planning and for other urban studies, such as air quality assessment. In this paper, using a lattice wind model at a meso-β scale, we develop a simple description and characterization of Mexico City local wind events that occurred during the period 2001–2006, including an estimation of the occurrence probabilities. This region was modeled as a 2D lattice domain of identical cells, and wind conditions in each cell were described by four wind attributes: the horizontal velocity components, divergence, and vorticity. Models of one and four cells were applied to wind data furnished by the meteorological network of the city. Results include the following: Early morning: low intensity winds (75% from N, NW, W and SW (75%, convergent (93%, with a slight predominance of cyclonic vorticity (54%. Morning and early afternoon: winds from N, NE and E (72% with speeds from 0.5 to 3.5 m/s, slight prevailing of convergent winds (51%, and slight predominance of cyclonic vorticity (57%. Late afternoon and night: winds blowing from N, NW, and S (63% with speeds from 1.5 to 3.5 m/s (66%, convergent (90%, and cyclonic (72%.

  3. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  4. Education as a Determinant of Response to Cyclone Warnings: Evidence from Coastal Zones in India

    Directory of Open Access Journals (Sweden)

    Upasna Sharma

    2013-06-01

    Full Text Available Education is often considered a means for enhancing adaptive capacity, based on the consideration that formal education is likely to improve the ability of individuals to evaluate risks and respond to warning information. We explore the relation between the level and nature of education and enhanced ability to respond to tropical cyclone risk. We make a distinction between formal school-based education and nonformal education in the form of traditional knowledge of environmental precursors and conditions that may be associated with tropical cyclone occurrence. We evaluate two possible routes through which education could lead to enhanced ability to respond to tropical cyclone risk; first, education, both formal and nonformal, may lead to a better ability to access, understand, and interpret warning information and hence lead to an appropriate response to the warning; and second, formal education may be associated with greater income levels and socioeconomic status and thus with greater resources for evacuating in response to cyclone warning. We find that the hypotheses regarding the link between formal education and adaptive capacity are actually not well supported by empirical data. On the other hand nonformal education in the form of traditional knowledge for predicting cyclones based on environmental precursors emerged as a significant determinant of the ability to understand and interpret warning information and provides a strong case for preserving and promoting a hazard-specific traditional knowledge base along with formal education.

  5. Topic 2.0: Tropical cyclone formation and extratropical transition

    OpenAIRE

    Harr, Patrick A.

    2010-01-01

    Approved for public release; distribution is unlimited In this section, progress since ITWC-VI on research, observations and forecasting of tropical cyclone formation and extratropical transition is summarized. While tropical cyclone formation and extratropical transition are stages at opposite ends of the tropical cyclone lifecycle, significant lack of understanding remains in relation to processes associated with each stage. Formation and extratropical transition involve interactions a...

  6. Relationships between convective asymmetry, imbalance and intensity in numerically simulated tropical cyclones

    Directory of Open Access Journals (Sweden)

    David A. Schecter

    2013-09-01

    Full Text Available This article examines the relationships between convective asymmetry (CA, imbalance and intensity in tropical cyclones (TCs that emerge from random winds on the periodic f-plane in a cloud-system-resolving numerical model. The model is configured with warm-rain microphysics and includes a basic parameterisation of long-wave radiation. Within the simulation set, the sea-surface temperature ranges from 26 to 32°C, and the Coriolis parameter f ranges from 10−5 to 10−4 s−1. The number of TCs that develop in a simulation increases rapidly with f and ranges from 1 to 18. Taken together, the simulations provide a diverse spectrum of vortices that can be used for a meaningful statistical study.Consistent with earlier studies, mature TCs with minimal asymmetry are found to have maximum wind speeds greater than the classic theoretical value derived by Emanuel under the assumptions of gradient-wind and hydrostatic balance. In a statistical sense, it is found that the degree of superintensity with respect to balance theory reliably decays with an increasing level of inner-core CA. It is verified that a more recent version of axisymmetric steady-state theory, revised to incorporate imbalance, provides a good approximation for the maximum (azimuthally averaged azimuthal wind speed V max when CA is relatively weak. More notably, this theory for axisymmetric vortices maintains less than 10% error as CA becomes comparable in magnitude to the symmetric component of inner-core convection. Above a large but finite threshold of CA, axisymmetric steady-state theory generally over-predicts V max. The underachievement of TCs in this parameter regime is shown to coincide with substantial violation of the theoretical assumption of slantwise convective neutrality in the main updraft of the basic state. Of further interest, a reliable curve-fit is obtained for the anticorrelation between a simple measure of CA and V max normalised to an estimate of its balanced

  7. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...... models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation. Achievements in the fields of stability analysis, waves on vortices and vortex breakdown are also presented....

  8. Infectious Diseases and Tropical Cyclones in Southeast China.

    Science.gov (United States)

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  9. Impact of flocculation on flotation tailing's hydro-cycloning properties

    Directory of Open Access Journals (Sweden)

    Knežević Dinko N.

    2014-01-01

    Full Text Available Research results of hydro-cycloning of flocculated and non-flocculated flotation tailing from the lead and zinc open pit mine 'Suplja stijena', Sula - Montenegro have been shown in this paper. Reason for this research was finding conditions in order to separate fraction that is suitable for embankment erection. Flotation tailings has been tested in the very state that it goes out from the flotation process and tailings which is flocculated by anionic flocculant. The object was to determine the impact of flocculation on properties of hydro-cycloning products and disposal process. In hydro-cycloning process greater underflow mass is being separated with non-flocculated tailing. Values of geomechanical parameters are significantly different, especially hydro-cyclone's underflow. All geomechanical parameters of hydro-cyclone's underflow are suitable for erecting embankment which shall be made from non-flocculated tailing. Underflow drainage of non-flocculated tailing is faster while overflow drainage is slower and problematic with both tailings.

  10. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  11. Resolving Tropical Cyclone Intensity in Models

    Science.gov (United States)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  12. Trends in Northern Hemisphere surface cyclone frequency and intensity

    Science.gov (United States)

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  13. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  14. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  15. Quantum fluctuations of vortices in Josephson-coupled superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L.N.; Maley, M.P.

    1994-01-01

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2), is explained. In the mean, field approach this slope should be almost B independent. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T

  16. Clustering Indian Ocean Tropical Cyclone Tracks by the Standard Deviational Ellipse

    Directory of Open Access Journals (Sweden)

    Md. Shahinoor Rahman

    2018-05-01

    Full Text Available The standard deviational ellipse is useful to analyze the shape and the length of a tropical cyclone (TC track. Cyclone intensity at each six-hour position is used as the weight at that location. Only named cyclones in the Indian Ocean since 1981 are considered for this study. The K-means clustering algorithm is used to cluster Indian Ocean cyclones based on the five parameters: x-y coordinates of the mean center, variances along zonal and meridional directions, and covariance between zonal and meridional locations of the cyclone track. Four clusters are identified across the Indian Ocean; among them, only one cluster is in the North Indian Ocean (NIO and the rest of them are in the South Indian Ocean (SIO. Other characteristics associated with each cluster, such as wind speed, lifespan, track length, track orientation, seasonality, landfall, category during landfall, total accumulated cyclone energy (ACE, and cyclone trend, are analyzed and discussed. Cyclone frequency and energy of Cluster 4 (in the NIO have been following a linear increasing trend. Cluster 4 also has a higher number of landfall cyclones compared to other clusters. Cluster 2, located in the middle of the SIO, is characterized by the long track, high intensity, long lifespan, and high accumulated energy. Sea surface temperature (SST and outgoing longwave radiation (OLR associated with genesis of TCs are also examined in each cluster. Cyclone genesis is co-located with the negative OLR anomaly and the positive SST anomaly. Localized SST anomalies are associated with clusters in the SIO; however, TC geneses of Cluster 4 are associated with SSTA all over the Indian Ocean (IO.

  17. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  18. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Using bench scale apparatus, asbestos floats and diatomaceous earth were evaluated as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80% to less than 1%. To collect the same quantity of fly ash, less diatomaceous earth was needed than asbestos floats. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co, counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1% at moderate pressure drop

  19. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  20. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H; Mitsudharmadi, Hatsari; Budiman, A C; Hasheminejad, S M; Nadesan, T; Tandiono; Low, H T; Lee, T S

    2015-01-01

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  1. Electrohydrodynamic (EHD) vortices in helical turbulence

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1996-01-01

    The study of large-scale coherent hydrodynamic (HD) vortex generation has been extended to electrified charged dusty vortices to be termed as electrohydrodynamic (EHD) vortices, incorporating helical turbulence in electric and magnetic fields into that in fluid velocity, which are all created by an external DC electric field on the background. A new equation of EHD vortices is introduced on the basis of a set of EHD or electromagnetohydrodynamic (EMHD) equations, including equations of state and a full set of Maxwell's equations by using functional techniques for estimating equations for an ensemble average, turbulent background, and additional random field. In fact, EHD vortices for a charged dusty fluid can be more explosive with larger instabilities than HD vortices. In addition, it is inferred that an external DC electric field could provide the origin of additional self-organization to a coalescence of fluid vortex and electric field lines as a manifestation of a new frozen-in field concept for electric fields when the electric Reynolds number is sufficiently high. This is discussed on the basis of a set of general transport equations for fluid vorticity, magnetic and electric fields that are rederived concisely. In particular, a novel concept of electric field line merging-reconnection is developed in close relation to fluid vortex line merging, indicating a coalescence of fluid vortex breakdown or merging point and electric field line reconnection point, X-type or O-type with possible application to tornadic thunderstorms. In fact, a thundercloud charge distribution so as to provide a coalescence of fluid vortex and electric field lines is quite possible without theoretical inconsistency, and is thought most likely to occur from observations available so far. (orig.)

  2. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  3. Assessment of Mediterranean cyclones in the multi-ensemble EC-Earth

    Science.gov (United States)

    Gil, Victoria; Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2015-04-01

    suggests a slight decrease of the spring maximum and a pronounced increase in the summer maximum. The cyclone characteristics obtained from the ensemble members of EC-Earth indicate that summer cyclones will tend to be slower, less intense but will have a faster deepening phase. Part of the summer enhanced activity is in areas dominated by thermal lows. Trigo I.F., G. R. Bigg and T.D. Davies, 2002: Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Wea. Rev. 130, 549-569. Trigo, I. F., 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dynam., 26, 127-143. Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  4. The environmental influence on tropical cyclone precipitation

    Science.gov (United States)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  5. Vorticity amplification and its effects on flow separation from simplified landing gear wheels

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2015-11-01

    In the presence of weak streams of inbound vorticity, the stagnation region of bluff bodies have been shown to support mechanisms for the collection and amplification of said vorticity into large-scale, discrete vortex structures. For extremely low aspect ratio cylinders, such as those which represent simplified aircraft landing gear wheels, these discrete vortex structures tilt around the sides of the geometry, orientating their axes in the streamwise direction. Once the oncoming vorticity is collected and amplified into discrete vortices, they are shed from the stagnation region and this cycle repeats itself periodically. The present work investigates the effect of the vortex tilting and subsequent shedding on the behaviour of the outboard side flow separation region present on simplified landing gear wheels. Experiments were conducted in a recirculating-type water tunnel on a two-wheel landing gear model, with the upstream vorticity source being a 100 µm platinum wire. Hydrogen bubble visualisations were first used for qualitative understanding of the flow, accompanied by 2D-PIV for vortex identification and tracking of the growth and movement of the observed structures. Finally, the side separation bubble has been characterised using 3D velocity measurements (using V3V). The authors would like to thank Bombardier, Messier-Bugatti-Dowty and NSERC for their support for this project.

  6. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  7. On the motion of multiple helical vortices

    Science.gov (United States)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  8. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  9. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  10. Tunneling decay of self-gravitating vortices

    Directory of Open Access Journals (Sweden)

    Dupuis Éric

    2018-01-01

    Full Text Available We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications.

  11. Test plan for glass melter system technologies for vitrification of hign-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    International Nuclear Information System (INIS)

    Higley, B.A.

    1995-01-01

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock ampersand Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing

  12. Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea** The study was supported by the Estonian Ministry of Education and Research (IUT20-11 and Grant ETF9134 and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Programme Project No. 3.2.0801.12-0044.

    Directory of Open Access Journals (Sweden)

    Piia Post

    2014-01-01

    Full Text Available The basic parameters of extra-tropical cyclones in the northern Baltic are examined in relation to extreme sea level events at Estonian coastal stations between 1948 and 2010. The hypothesis that extreme sea level events might be caused not by one intense extra-tropical cyclone, as suggested by earlier researchers, but by the temporal clustering of cyclones in a certain trajectory corridor, is tested. More detailed analysis of atmospheric conditions at the time of the two most extreme cases support this concept: the sequence of 5 cyclones building up the extreme sea level within about 10 days was very similar in structure and periodicity.

  13. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  14. Determination of the main parameters of the cyclone separator of the flue gas produced during the smelting of secondary aluminum

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav

    2016-06-01

    One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.

  15. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    Science.gov (United States)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  16. Projecting the risk of damage to reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    OpenAIRE

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2017-01-01

    Tropical cyclones (TCs), sea level rise (SLR), and storm surges cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater able to reduce the risks of natural disasters to coastal communities. However, projections of change ...

  17. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  18. A global historical data set of tropical cyclone exposure (TCE-DAT)

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  19. Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean

    Directory of Open Access Journals (Sweden)

    M. Venkat Ratnam

    2016-07-01

    Full Text Available Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere–troposphere exchange (STE processes in the upper troposphere and lower stratosphere (UTLS region. In the present study, the impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE processes is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS radio occultation (RO measurements, and ozone and water vapour concentrations in the UTLS region are obtained from Aura Microwave Limb Sounder (MLS satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km of the centre of the tropical cyclone. In our earlier study, we observed a decrease (increase in the tropopause altitude (temperature up to 0.6 km (3 K, and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL thickness of 3 km within 500 km of the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from the cyclone centre, whereas the enhancement in the water vapour in the lower stratosphere is more significant on the south-east side, extending from 500 to 1000 km away from the cyclone centre. The cross-tropopause mass flux for different intensities of cyclones is estimated and it is found that the mean flux from the stratosphere to the troposphere for cyclonic storms is 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed on the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget, and

  20. Research of the Aerodynamic Parameters in a Special Cyclone with Secondary Inlets

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2017-09-01

    Full Text Available Special cyclone – gas treatment device which can be applied to remove the fine particulate matter bigger than 2 micrometres from aggressive gas flow at a temperature of 50–145 °C and a relative humidity of more than 95% and can be achieved the cleaning efficiency over 90%. Cyclone work is based on centrifugal forces and the resulting additional filtration process operation. Cyclone structure equipped with primary and secondary gas flow inflows through which gas dispersed flow is supplied parallel to all channels of the cyclone. Analysed modified multi-channel cyclone can be effectively treated from fine particulate matter, during the cleaning of aggressive gas flow an adhesion/cohesion phenomena could be reduced. Research of aerodynamic parameters it’s the first step of studies to determine the optimal case, at the average gas flow velocity in cyclone channels were 8, 12 and 16 m/s, the gas flow dynamics dependencies into cyclone were determined.

  1. Climate Prediction Center (CPC) Western Pacific Basin Cyclone Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical cyclones are one of the nature?s destructive phenomena, causing loss of lives and property damage. The affected countries associated with the cyclones of...

  2. Topological vortices in gauge models of graphene

    Science.gov (United States)

    Zhang, Xin-Hui; Li, Xueqin; Hao, Jin-Bo

    2018-06-01

    Graphene-like structure possessing the topological vortices and knots, and the magnetic flux of the vortices configuration quantized, are proposed in this paper. The topological charges of the vortices are characterized by Hopf indices and Brower degrees. The Abelian background field action (BF action) is a topological invariant for the knot family, which is just the total sum of all the self-linking numbers and all the linking numbers. Flux quantization opens the possibility of having Aharonov-Bohm-type effects in graphene without external electromagnetic field.

  3. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic

  4. Cyclone resilient landscape : the case of Vatomandry, Madagascar

    NARCIS (Netherlands)

    Bergstra, E.; Hornman, R.

    2017-01-01

    Abstract: Madagascar, one of the poorest countries in the world, has to deal with cyclones every year. The impact of a cyclone can be devastating, leaving areas with houses damaged, floods and damaged crops. The aftermath has an even greater impact.The floods increase the number of people affected

  5. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  6. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  7. Analysis of sensitivity to different parameterization schemes for a subtropical cyclone

    Science.gov (United States)

    Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.

    2018-05-01

    A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.

  8. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    Directory of Open Access Journals (Sweden)

    D. T. McCoy

    2018-04-01

    Full Text Available Aerosol–cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol–cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC. Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP. When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6–8.3 Wm−2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  9. Interaction of vortices with flexible piezoelectric beams

    Science.gov (United States)

    Goushcha, Oleg; Akaydin, Huseyin Dogus; Elvin, Niell; Andreopoulos, Yiannis

    2012-11-01

    A cantilever piezoelectric beam immersed in a flow is used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical output. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the behavior of the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to study the interaction of individual vortices with the beam. In our set up, vortex rings produced by an audio speaker travel at specific distances from the beam or impinge on it, with a frequency varied up to the natural frequency of the beam. Depending on this frequency both constructive and destructive interactions between the vortices and the beam are observed. Vortices traveling over the beam with a frequency multiple of the natural frequency of the beam cause the beam to resonate and larger deflection amplitudes are observed compared to excitation from a single vortex. PIV is used to compute the flow field and circulation of each vortex and estimate the effect of pressure distribution on the beam deflection. Sponsored by NSF Grant: CBET #1033117.

  10. Dynamics of Chern-Simons vortices

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    We study vortex dynamics in three-dimensional theories with Chern-Simons interactions. The dynamics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first Chern character of a suitable index bundle. We derive these results by integrating out massive fermions and following the fate of their zero modes.

  11. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  12. Why does gravitational radiation produce vorticity?

    International Nuclear Information System (INIS)

    Herrera, L; Barreto, W; Carot, J; Prisco, A Di

    2007-01-01

    We calculate the vorticity of worldlines of observers at rest in a Bondi-Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super-Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacuum spacetimes

  13. Ensemble Prediction of Tropical Cyclone Genesis

    Science.gov (United States)

    2017-02-23

    5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) I PRCISOEST, University of Hawaii at Manoa 1680 East - West Road, POST...Tim Li IPRC/SOEST, University of Hawaii at Manoa 1680 East - West Road, POST Building 409B Honolulu, Hawaii 96822 Phone: (808) 956-9427, fax: (808... environment with a near bottom vortex or an environment with a mid- level vortex. Five experiments were designed with different initial vertical vorticity and

  14. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  15. Infectious Diseases and Tropical Cyclones in Southeast China

    Directory of Open Access Journals (Sweden)

    Jietao Zheng

    2017-05-01

    Full Text Available Southeast China is frequently hit by tropical cyclones (TCs with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RRs were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis (ps < 0.05 than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria (ps < 0.05 than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  16. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...

  17. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  18. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  19. An estimation of water origins in the vicinity of a tropical cyclone's center and associated dynamic processes

    Science.gov (United States)

    Takakura, Toshinari; Kawamura, Ryuichi; Kawano, Tetsuya; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei

    2018-01-01

    To clarify the time evolution of water origins in the vicinity of a tropical cyclone (TC)'s center, we have simulated Typhoon Man-yi (July 2007) in our case study, using an isotopic regional spectral model. The model results confirm that the replacement of water origins occurs successively as the TC develops and migrates northward over the western North Pacific. It is confirmed that, in this case, a significant proportion of total precipitable water around the cyclone center comes from external regions rather than the underlying ocean during the mature stage of a TC. Similar features can also be seen in the proportion of each oceanic origin to total condensation. Indian Ocean, South China Sea, and Maritime Continent water vapors begin to increase gradually at the developing stage and reach their peak at the decay stage when the TC approaches southwestern Japan. These remote ocean vapors are transported to the east of the cyclone via the moisture conveyor belt, a zone characterized by distinct low-level moisture flux that stretches from the Indian Ocean to the TC, and are further supplied into the inner region of the TC by inflow within the boundary layer associated with its secondary circulation. Since it takes time to undergo these two dynamic processes, the delayed influence of remote ocean vapors on the TC appears to become evident during the mature stage.

  20. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data

    Energy Technology Data Exchange (ETDEWEB)

    Gulev, S.K.; Zolina, O.; Grigoriev, S. [AN SSSR, Moscow (USSR). Inst. Okeanologii

    2001-07-01

    The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible. (orig.)

  1. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  2. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  3. Why superconducting vortices follow to moving hot sport?

    Science.gov (United States)

    Sergeev, Andrei; Michael, Reizer

    Recent experiments reported in Nature Comm. 7, 12801, 2016 show that superconducting vortices follow to the moving hot sport created by a focused laser beam, i.e. vortices move from the cold area to the moving hot area. This behavior is opposite to the vortex motion observed in numerous measurements of the vortex Nernst effect, where vortices always move against the temperature gradient. Taking into account that superconducting magnetization currents do not transfer entropy, we analyze the balance of forces acting on a vortex in stationary and dynamic temperature gradients. We show that the dynamic measurements may be described by a single vortex approximation, while in stationary measurements interaction between vortices is critical. Supported by NRC.

  4. Vortex flow and motion of notices in nature and technical science. Wirbelstroemung in Natur und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Lugt, H.J.

    1979-01-01

    First the publication gives a historical overview on classical mechanics and the theories of vortices. Then the paper offers an intelligible introduction in the motion of vortices comprising the following topics: Properties of vortices, vorticity, detachment, instability and turbulence, fluid flow in a rotating system, changes of density in ocean and atmosphere, cyclones. The paper contains no mathematical applications but computer graphics and experiments are described.

  5. On trailing vortices: A short review

    International Nuclear Information System (INIS)

    Jacquin, Laurent

    2005-01-01

    This paper reviews some mechanisms involved in the dynamics of vortices in fluid flows. The topic is first introduced by pointing out its importance in aerodynamics. Several basic notions useful to appraise experimental observations are then surveyed, namely: centrifugal instabilities, inertial waves, cooperative instabilities, vortex merger, vortex breakdown and turbulence in vortices. Each topic is illustrated with experimental or numerical results

  6. Tropical cyclones over NIO during La-Nina Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

    Tropical cyclones over NIO (North Indian Ocean) are highly influenced by the El-Nino and La-Nina activities over the Pacific Ocean Influences of air-sea interaction processes like El-Nino Modoki and La-Nina Modoki on tropical cyclones are less...

  7. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Zhengyi Deng

    2015-01-01

    Full Text Available Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs and the 95% confidence intervals (CIs. Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93 and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25, respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33 and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56, respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27 and OR = 3.05 (95% CI: 2.20–4.23, respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones.

  8. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  9. Understanding the geographic distribution of tropical cyclone formation for applications in climate models

    Science.gov (United States)

    Tory, Kevin J.; Ye, H.; Dare, R. A.

    2018-04-01

    Projections of Tropical cyclone (TC) formation under future climate scenarios are dependent on climate model simulations. However, many models produce unrealistic geographical distributions of TC formation, especially in the north and south Atlantic and eastern south Pacific TC basins. In order to improve confidence in projections it is important to understand the reasons behind these model errors. However, considerable effort is required to analyse the many models used in projection studies. To address this problem, a novel diagnostic is developed that provides compelling insight into why TCs form where they do, using a few summary diagrams. The diagnostic is developed after identifying a relationship between seasonal climatologies of atmospheric variables in 34 years of ECMWF reanalysis data, and TC detection distributions in the same data. Geographic boundaries of TC formation are constructed from four threshold quantities. TCs form where Emanuel's Maximum Potential Intensity, V_{{PI}}, exceeds 40 {ms}^{{ - 1}}, 700 hPa relative humidity, RH_{{700}}, exceeds 40%, and the magnitude of the difference in vector winds between 850 and 200 hPa, V_{{sh}}, is less than 20 {ms}^{{ - 1}}. The equatorial boundary is best defined by a composite quantity containing the ratio of absolute vorticity (η ) to the meridional gradient of absolute vorticity (β ^{*}), rather than η alone. {β ^*} is also identified as a potentially important ingredient for TC genesis indices. A comparison of detected Tropical Depression (TD) and Tropical Storm (TS) climatologies revealed TDs more readily intensify further to TS where {V_{PI}} is elevated and {V_{sh}} is relatively weak. The distributions of each threshold quantity identify the factors that favour and suppress TC formation throughout the tropics in the real world. This information can be used to understand why TC formation is poorly represented in some climate models, and shows potential for understanding anomalous TC formation

  10. Role of exposure in projected residential building cyclone risk for the Australian region

    International Nuclear Information System (INIS)

    Waters, Denis; Cechet, Bob; Arthur, Craig

    2010-01-01

    The paper presents a methodology to analyse the direct impact of tropical cyclone hazard on communities in northern Australia. The study focuses on the maximum potential intensity (MPI) of the cyclonic wind hazard, and location. Storm surge impacts were developed using a simple relationship between intensity and storm surge height and mid-point sea-level rise projections. The impact on residential building stock of severe wind and storm surge hazards associated with IPCC climate change scenarios is considered. Changes in residential building stock, for over 500 coastal statistical local areas (SLAs) from Southeast Queensland anticlockwise to Perth, were estimated using Australian Bureau of Statistics population projections through to 2100. A Probable Maximum Loss (PML) curve was derived, and the average annual cost across a 5000 year period (or 'annualised loss') was evaluated for each region. The projected population growth and the drift to coastal locations are significant elements in determining the damage associated with possible future cyclone threat.

  11. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  12. Dynamic phases of low-temperature low-current driven vortex matter in superconductors

    International Nuclear Information System (INIS)

    Benkraouda, M; Obaidat, I M; Khawaja, U Al; Mulaa, N M J

    2006-01-01

    Using molecular dynamics simulations of vortices in a high-temperature superconductor with square periodic arrays of pinning sites, dynamic phases of the low-current driven vortices are studied at low temperatures. A rough vortex phase diagram of three distinct regimes of vortex flow is proposed. At zero temperature, we obtain a coupled-channel regime where rows of vortices flow coherently in the direction of the driving force. As the temperature is increased, a smooth crossover into an uncoupled-channel regime occurs where the coherence between the flowing rows of vortices becomes weaker. Increasing the temperature further leads to a plastic vortex regime, where the channels of flowing vortices completely disappear. The temperatures of the crossovers between these regimes were found to decrease with the driving force

  13. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    Science.gov (United States)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  14. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  15. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  16. Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator

    OpenAIRE

    Ganga Reddy C; Umesh Kuppuraj

    2015-01-01

    The removal of harmful particulate matter from power plant flue gas is of critical importance to the environment and its inhabitants. The present work illustrates the use of multi-cyclone separators to remove the particulate matter from the bulk of the gas exhausted to the atmosphere. The method has potential to replace conventional systems like electrostatic precipitator due to inherent low power requirement and low maintenance. A parametric model may be employed to design the sy...

  17. Preparation of rhodium target for cyclone-30 accelerator

    International Nuclear Information System (INIS)

    Deng Xuesong; Li Dakang; Xie Xiangqian; Li Chao

    2002-01-01

    The rhodium target for Cyclone-30 accelerator is prepared by pulse electroplating method. The effects of pulse parameters, rhodium concentration, acidity and temperature on the properties of the target layer are studied, and the optimal process is determined. The rhodium target, mass thickness is more than 150 mg/cm 2 , adapts to producing 103 Pd on Cyclone-30 accelerator

  18. Is Quantized Vorticity in Pure He II at Low Temperature Directly Related to Cavitation and Spinodal Pressure?

    International Nuclear Information System (INIS)

    Skrbek, L.

    2006-01-01

    We argue that the critical velocity for intrinsic nucleation of quantized vortices in isothermal flow of He II at low temperature can be viewed as approaching the spinodal limit in pressure and breakdown of superfluidity as a consequence of the Bernoulli equation. Breaking the liquid by cavitation that changes the topology from simply to multiply connected seems an essential requirement for intrinsic vortex nucleation and serves as an additional criterion of superfluidity, of the form Vc = [2(pext - psp)/ρs]1/2, where pext is the external pressure, psp denotes the spinodal limit, and ρs stands for the superfluid density. This criterion can be viewed as additional to the well-known Landau criterion for breakdown of superfluidity due to emission of quasiparticles

  19. Dynamical properties of vortical structures on the beta-plane

    DEFF Research Database (Denmark)

    Sutyrin, G.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    1994-01-01

    The long-time evolution of monopolar and dipolar vortices influenced by the large-scale gradient of the ambient potential vorticity (the beta-effect) is studied by direct numerical solutions of the equivalent barotropic quasi-geostrophic equation. Translation and reorganization of vortical...... structures are shown to depend strongly on their intensity. Transport of trapped fluid by vortical structures is illustrated by calculating particle trajectories and by considering closed isolines of potential vorticity and the streamfunction in a co-moving reference frame. The initial behaviour of strong...... monopoles is found to be well described by a recent approximate theory for the evolution of azimuthal mode one, even for times longer than the linear Rossby wave period. In the long-time limit, strong monopoles transport particles mainly westward, although the meridional displacement is several times larger...

  20. Exploratory experimental and theoretical studies of cyclone gasification of wood powder

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Christian

    1999-11-01

    This thesis describes an exploratory experimental and theoretical study of gasification of wood powder in a cyclone gasifier. The generated gas could be used to operate a gas turbine in a combined cycle power plant. The objective has been to develop the understanding of cyclone gasification by experimental studies of the performance of a cyclone designed in principle as a separation cyclone and by comparisons between the experimental results and theoretical predictions. The experiments were carried out with commercial Swedish wood powder fuels, injected with air or steam/air mixture through two diametrically opposite tangential inlets and gasified at atmospheric pressure in cyclones of two different configurations with a volume of about 0.034 m{sup 3}. The studies show that stable gasification of this fuel can be obtained for a specific fuel feeding rate of about 5 MW/m{sup 3} cyclone volume for equivalence ratios above 0.15 and that the equivalence ratio had to be kept below about 0.4 in order to avoid material temperatures above 950 deg C. A cyclone with a short outlet pipe, designed as a conventional separation cyclone was found to give lower char conversion than a modified cyclone with a long outlet pipe. The heating value of the gas was found to be approximately 4.5 MJ/kg. The dust load in the product gas was measured to between 1000 and 2500 mg/Nm{sup 3}. It was possible to separate at least 40-60% of the potassium and 60-90% of the sodium supplied with the wood. The alkali that left the cyclone with the product gas appear to be in solid or melted phase in the unseparated char particles and consequently not vaporised during gasification. As the K and Na were assumed to remain within the particles during gasification, it was concluded that to reduce the amount of alkali metals in the product gas it would be necessary to improve the particle separation efficiency. The results of the theoretical modelling, using the existing models in the commercial software CFX

  1. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Birn, J.; Bame, S.J.; Asbridge, J.R.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approx.20-40 R/sub E/ and moves tailward through the magnetosphere at speed of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morningside of the plasma sheet and counterclockwise in the eveningside. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations. We believe that the source of the vortical motion is a Kelvin-Helmholtz instability of the plasma boundary layer's inner surface (i.e., the interface between the plasma sheet and the boundary layer) that has recently been proposed by Sonnerup [1980

  2. Tropical cyclones and climate change

    International Nuclear Information System (INIS)

    Andre, J.C.; Royer, J.F.; Chauvin, F.

    2008-01-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades. (authors)

  3. Numerical modeling of wind waves in the Black Sea generated by atmospheric cyclones

    Science.gov (United States)

    Fomin, V. V.

    2017-09-01

    The influence of the translation speed and intensity of atmospheric cyclones on surface wind waves in the Black Sea is investigated by using tightly-coupled model SWAN+ADCIRC. It is shown that the wave field has a spatial asymmetry, which depends on the velocity and intensity of the cyclone. The region of maximum waves is formed to the right of the direction of the cyclone motion. Speedier cyclones generate wind waves of lower height. The largest waves are generated at cyclonic translation speed of 7-9 m/s. This effect is due to the coincidence of the characteristic values of the group velocity of the dominant wind waves in the deep-water part of the Black Sea with the cyclone translation speed.

  4. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  5. A Probabilistic Approach to Tropical Cyclone Conditions of Readiness (TCCOR)

    National Research Council Canada - National Science Library

    Wallace, Kenneth A

    2008-01-01

    Tropical Cyclone Conditions of Readiness (TCCOR) are set at DoD installations in the Western Pacific to convey the risk associated with the onset of destructive winds from approaching tropical cyclones...

  6. Economics of oversized cyclones in the cotton ginning industry

    Science.gov (United States)

    Cost of reducing pollution to meet increasingly stringent air quality standards particularly for the U.S. cotton ginning industry is rising overtime. Most industry participants use cyclones to control air pollutants. These cyclones have no moving parts and their initial investment costs are relative...

  7. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    Science.gov (United States)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  8. Robustness of serial clustering of extratropical cyclones to the choice of tracking method

    Directory of Open Access Journals (Sweden)

    Joaquim G. Pinto

    2016-07-01

    Full Text Available Cyclone clusters are a frequent synoptic feature in the Euro-Atlantic area. Recent studies have shown that serial clustering of cyclones generally occurs on both flanks and downstream regions of the North Atlantic storm track, while cyclones tend to occur more regulary on the western side of the North Atlantic basin near Newfoundland. This study explores the sensitivity of serial clustering to the choice of cyclone tracking method using cyclone track data from 15 methods derived from ERA-Interim data (1979–2010. Clustering is estimated by the dispersion (ratio of variance to mean of winter [December – February (DJF] cyclone passages near each grid point over the Euro-Atlantic area. The mean number of cyclone counts and their variance are compared between methods, revealing considerable differences, particularly for the latter. Results show that all different tracking methods qualitatively capture similar large-scale spatial patterns of underdispersion and overdispersion over the study region. The quantitative differences can primarily be attributed to the differences in the variance of cyclone counts between the methods. Nevertheless, overdispersion is statistically significant for almost all methods over parts of the eastern North Atlantic and Western Europe, and is therefore considered as a robust feature. The influence of the North Atlantic Oscillation (NAO on cyclone clustering displays a similar pattern for all tracking methods, with one maximum near Iceland and another between the Azores and Iberia. The differences in variance between methods are not related with different sensitivities to the NAO, which can account to over 50% of the clustering in some regions. We conclude that the general features of underdispersion and overdispersion of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO on cyclone dispersion.

  9. Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.

    Science.gov (United States)

    Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet

    2004-12-01

    The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.

  10. Correlations between Abelian monopoles and center vortices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Nejad, Seyed Mohsen, E-mail: smhosseininejad@ut.ac.ir; Deldar, Sedigheh, E-mail: sdeldar@ut.ac.ir

    2017-04-15

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  11. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Bench-scale apparatus was used to evaluate asbestos floats and diatomaceous earth as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80 percent to less than 1 percent. Less diatomaceous earth was needed than asbestos floats, to collect the same quantity of fly ash. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co - , counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1 percent at moderate pressure drop. The filter cake which forms on the pellet surfaces decreases penetration greatly

  12. An examination of Southwest Pacific explosive cyclones, 1989 to 2009

    International Nuclear Information System (INIS)

    Black, M T; Pezza, A B; Kreft, P

    2010-01-01

    This study has assembled a climatology of Southwest Pacific explosively developing cyclones, based on the European Centre for Medium-Range Weather Forecasts' ERA-Interim reanalysis data, over the 21-year period from 1989 to 2009. The recently developed 'combined explosive' expression, a refinement of the 'relative explosive' criterion, was used to identify cyclones deemed explosive with respect to both the drop in central pressure and the climatological pressure gradient. Over the period of analysis, 47 explosive cyclones were identified within the Southwest Pacific, equating to an average of 2.2 explosive events per year. Seasonally, explosive cyclones are most frequent during the winter months, while least frequent during the summer. Two case explosive systems are briefly considered, with their corresponding measures of intensity and scale placed into climatological perspective.

  13. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  14. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  15. Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia

    Science.gov (United States)

    Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.

    2018-06-01

    Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major disturbance.

  16. Statistical balance of vorticity and a new scale for vortical structures in turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1993-01-01

    The balance of one-point and two-point statistical characterics of vorticity, is considered on the basis of the Navier-Stokes equations. It is shown that within the inertial range of scales (L Re -3/4 much-lt r much-lt L, L external scale, Re Reynolds number) there is a physically distinguished scale l s ∼L Re -3/10 . The balance of vortical correlations with scales r≥l s is directly affected by the large-scale motion. l s is a natural length scale for the ''vortex strings,'' observed experimentally and numerically in three-dimensional turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly discussed

  17. Analysis of optical vortices with suppressed sidelobes using modified Bessel-like function and trapezoid annulus modulation structures.

    Science.gov (United States)

    Guo, Jian; Wei, Zhongchao; Liu, Yuebo; Huang, Aili

    2015-02-01

    Two amplitude modulation methods, including modified Bessel-like function modulation structure and trapezoid annulus structure, for suppressing sidelobes of optical vortices are studied. In the former approach, we propose that the order of the Bessel-like function can be an additional parameter to modulate diffraction patterns of optical vortices motivated by the idea of conventional annulus structures. Furthermore, new Bessel-like modulation functions are introduced to solve the problem of low diffraction efficiency of the original one. Trapezoid annulus structure is proposed as a compromise structure between the modified Bessel-like modulation structure and the conventional annulus one, and has advantages of both. It is demonstrated that these two approaches can achieve high-quality optical vortices with suppressed sidelobes effectively, and the relative structures behave as more flexible and applicable structures for producing optical vortices with large coverage of topological charges, which suggests great potential in simplifying the structure designing procedure. These reliable and generalized structures for generating high-quality optical vortices will help to promote the development of future optical communication and optical manipulation significantly.

  18. Bangladesh floods, cyclones and ENSO

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1994-04-01

    It has been found that in general there is a reduction of rainfall in all the regions of Bangladesh in all the seasons - premonsoon, monsoon and post monsoon during El Nino years. It has also been observed that in strong El Nino year Bangladesh is not hit by a catastrophic flood or a catastrophic cyclone. In the past, occurrence of famines in this region of the world coincided with El Nino years. The years of weak El Nino or when the El Nino index is positive seem to be favourable for the occurrence of floods and cyclones in Bangladesh. A theory of the modulation of the monsoon in Bangladesh by the Walker circulation has been described in the paper. (author). 14 refs, 7 figs, 1 tab

  19. Toroidal vortices in resistive magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Montgomery, D.; Bates, J.W.; Li, S.

    1997-01-01

    When a time-independent electric current flows toroidally in a uniform ring of electrically conducting fluid, a Lorentz force results, jxB, where j is the local electric current density, and B is the magnetic field it generates. Because of purely geometric effects, the curl of jxB is nonvanishing, and so jxB cannot be balanced by the gradient of any scalar pressure. Taking the curl of the fluid close-quote s equation of motion shows that the net effect of the jxB force is to generate toroidal vorticity. Allowed steady states necessarily contain toroidal vortices, with flows in the poloidal directions. The flow pattern is a characteristic open-quotes double smoke ringclose quotes configuration. The effect seems quite general, although it is analytically simple only in special limits. One limit described here is that of high viscosity (low Reynolds number), with stress-free wall boundary conditions on the velocity field, although it is apparent that similar mechanical motions will result for no-slip boundaries and higher Reynolds numbers. A rather ubiquitous connection between current-carrying toroids and vortex rings seems to be implied, one that disappears in the open-quotes straight cylinderclose quotes limit. copyright 1997 American Institute of Physics

  20. The Role of the Stratosphere in Explosive Deepening of Extratropical Cyclones

    Science.gov (United States)

    Knippertz, Peter; Wilbraham, Robert; Trzeciak, Tomek; Owen, Jenny; Odell, Luke; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    Using a combination of an automatic cyclone tracking method and a special version of the classical pressure tendency equation (PTE), changes in surface core pressure of extra-tropical cyclones can be related to contributions from horizontal temperature advection, vertical motion and diabatic processes, i.e. mainly latent heat release in clouds. Here, the PTE is evaluated in 3°x3° boxes located over the cyclone positions at 6-hourly basis, thus following the movement of a given storm at each time step. PTE calculations are performed from the surface to 100 hPa. Previous work has shown that this approach can be used to quantify the contribution of diabatic processes to cyclone deepening in an automated way, and can easily be applied to large gridded datasets, in this case ERA-Interim reanalyses. In order to close the mass budget in the PTE, geopotential height tendencies at the upper integration boundary (usually 100 hPa) need to be taken into account. Older studies have assumed this term to be negligible, and this has been confirmed with modern re-analysis data for many explosively deepening storms. However, some historical storms show a remarkable contribution from this term, indicating a substantial warming of the levels above 100hPa. An outstanding example is the Braer Storm of January 1993, which reached a record minimum core pressure of 914 hPa near Iceland. A stepwise increase of the upper integration boundary reveals that substantial geopotential height tendencies reach above 1 hPa. This unusual behaviour appears to be related to the propagation of a deep planetary wave trough from North America towards the North Atlantic basin. A similar but somewhat less dramatic behaviour was found for cyclone Wiebke. Another interesting example is storm Emma, which managed to sustain substantial deepening rates despite adverse positive geopotential height tendencies at 100 hPa. Future work will include a more robust statistical analysis of this problem and a better

  1. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. CONCLUSIONS/SIGNIFICANCE: Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  2. Living with the Risks of Cyclone Disasters in the South-Western Coastal Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bishawjit Mallick

    2017-02-01

    Full Text Available Bangladesh is one of the most disaster prone countries in the world. Cyclone disasters that affect millions of people, destroy homesteads and livelihoods, and trigger migration are common in the coastal region of Bangladesh. The aim of this article is to understand how the coastal communities in Bangladesh deal with the continuous threats of cyclones. As a case study, this study investigates communities that were affected by the Cyclone Sidr in 2007 and Cyclone Aila in 2009, covering 1555 households from 45 coastal villages in the southwestern region of Bangladesh. The survey method incorporated household based questionnaire techniques and community based focus group discussions. The pre-event situation highlights that the affected communities were physically vulnerable due to the strategic locations of the cyclone shelters nearer to those with social supreme status and the location of their houses in relatively low-lying lands. The victims were also socio-economically vulnerable considering the high rate of illiteracy, larger family size, no ownership of land, and extreme poverty. They were mostly day labourers, farmers, and fishermen. Post-event situation reveals that the victims’ houses and livelihoods were severely damaged or destroyed. Most victims were forced to shift their occupations (e.g., from farmers to fishermen, and many became unemployed. They also became heavily dependent on micro-credits and other forms of loans. A significant number of people were displaced and migrated to large urban agglomerations in search of livelihoods to maintain their families back in the affected villages. Migration was primarily undertaken as an adaptation strategy.

  3. Martian extratropical cyclones

    Science.gov (United States)

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  4. Theoretical Valuation of Multi-Channel Cyclone to Reduce Gas Flow Dustiness in Agressive Environment

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2016-10-01

    Full Text Available Contaminated gas cleaning from finely divided solids is carried out using a new generation of multi-channel design cyclones. The application of these devices are separated and precipitated particles with a minimum diameter up to 2 micrometers, reaching up to 95% cleaning efficiency. Cyclones of such constructions are usually used under usual conditions at elevated temperature and low humidity. Under aggressive conditions, these devices can be clogged, and their recovery is not possible. Further studies are research into the application of constructive solutions to adapt the cyclone gas cleaning of the particulate matter under aggressive conditions. This theoretical evaluation has described the characteristics change of gas flow and particulate matters at different aggressive environment. Such conditions were loudly describe the gas-flow high-temperature range of 50–200 °C and gas-vapor stream, the humidity reaches 70–100%. Estimated aggressive conditions on the gas flow dynamics forces – pressure, resistance and centrifugal, and particulate mechanical – gravitational and adhesion strength. All parameters are evaluated in comparison with the values under normal conditions.

  5. Mesoscale cyclogenesis over the western north Pacific Ocean during TPARC

    Directory of Open Access Journals (Sweden)

    Christopher A. Davis

    2013-01-01

    Full Text Available Three cases of mesoscale marine cyclogenesis over the subtropics of the Western Pacific Ocean are investigated. Each case occurred during the THORPEX Pacific Asia Regional Campaign and Tropical Cyclone Structure (TCS-08 field phases in 2008. Each cyclone developed from remnants of disturbances that earlier showed potential for tropical cyclogenesis within the tropics. Two of the cyclones produced gale-force surface winds, and one, designated as a tropical cyclone, resulted in a significant coastal storm over eastern Japan. Development was initiated by a burst of organized mesoscale convection that consolidated and intensified the surface cyclonic circulation over a period of 12–24 h. Upper-tropospheric potential vorticity anomalies modulated the vertical wind shear that, in turn, influenced the periods of cyclone intensification and weakening. Weak baroclinicity associated with vertical shear was also deemed important in organizing mesoscale ascent and the convection outbreaks. The remnant tropical disturbances contributed exceptional water vapour content to higher latitudes that led to strong diabatic heating, and the tropical remnants contributed vorticity that was the seed of the development in the subtropics. Predictability of these events more than three days in advance appears to be minimal.

  6. JPL Tropical Cyclone Information System

    Data.gov (United States)

    National Aeronautics and Space Administration — The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a particular...

  7. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    Science.gov (United States)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  8. Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects.

    Science.gov (United States)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

  9. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  10. Point vortex description of drift wave vortices: Dynamics and transport

    International Nuclear Information System (INIS)

    Kono, M.; Horton, W.

    1991-05-01

    Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs

  11. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  12. Volume reduction of low-level, combustible, transuranic waste at Mound Facility

    International Nuclear Information System (INIS)

    Bond, W.H.; Doty, J.W.; Koenst, J.W. Jr.; Luthy, D.F.

    Low-level combustible waste (<100 nCi per g of waste) generated during plutonium-238 processing is collected and stored in 55-gallon (200-liter) drums. The composition of this waste is approximately 32 wt % paper, 46% plastic, 16% rubber and cloth, and 6% metal. Treatment of this waste is initiated by burning in the Mound Cyclone Incinerator, which consists of a burning chamber, deluge tank, venturi scrubber and blower. During the two years of operating the Cyclone Incinerator, experiments have been performed on particle distribution throughout the system using various mixtures of feed material. Measurements were taken at the incinerator outlet, after the spray tank, and after the venturi scrubber. An average emission of 0.23 g of particles per kg of feed at the venturi outlet was determined. The distribution of chlorine from the combustion of polyvinyl chloride was studied. Analyses of the off-gas and scrubber solution show that approximately 75 wt % of the chlorine was captured by the scrubber solution and approximately 17 wt % remained in the off-gas after the venturi scrubber. Measurements of the amount of NO/sub chi/ present in the off-gas were also made during the chloride studies. An average of approximately 200 ppM NO/sub chi/ was produced during each incineration run. Immobilization of the incinerator ash is being studied with regard to long-term behavior of the product. The immobilization matrix which looks most promising is ash mixed with Portland 1A cement in a 65/35 wt % ash-to-cement ratio. This matrix exhibits good mechanical properties while maintaining a maximum volume reduction

  13. Dynamics of quantised vortices in superfluids

    CERN Document Server

    Sonin, Edouard B

    2016-01-01

    A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...

  14. Potential vorticity field in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.

    theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...

  15. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  16. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  17. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  18. Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyang [Department of Physics, Zhejiang University, Hangzhou 310027 (China); College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Pu, Jixiong [College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Zhao, Daomu, E-mail: zhaodaomu@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2011-07-25

    The properties of a pair of vortices embedded in a Gaussian beam focused by a high numerical-aperture are studied on the basis of vector Debye integral. The vortices move and rotate in the vicinity of the focal plane for a pair of vortices with equal topological charges. For incident beam with a pair of vortices with opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane. -- Highlights: → The properties of a pair of vortices focused by a high numerical-aperture are studied. → It is shown that the focusing vortices with equal topological charges move toward and rotate. → It is shown that the focusing vortices with opposite topological charges move toward each other, annihilate and revive.

  19. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    OpenAIRE

    Todd W. Moore; Nicholas J. Sokol; Robert A. Blume

    2017-01-01

    Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributi...

  20. Cyclone track forecasting based on satellite images using artificial neural networks

    OpenAIRE

    Kovordanyi, Rita; Roy, Chandan

    2009-01-01

    Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...

  1. Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Maskey, Manil; Cecil, Dan; Ramachandran, Rahul; Miller, Jeffrey J.

    2018-01-01

    Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning

  2. Dynamics and segregation of particles in a cyclone

    International Nuclear Information System (INIS)

    Mothes, H.

    1982-01-01

    In cyclone separator systems, the separation efficiency increases with increasing dust concentration, although the centripetal force, which is responsible for particle separation in a vortex, decreases with increasing particle concentration. This is demonstrated by laser-doppler-velocity-measurements. The measurements of separation efficiency together with the determination of particle size using stray radiation show that the effect of particle agglomeration is of major importance in the case of higher particle concentrations. Also smaller particles can be separated from the gas by agglomeration to larger particles, which can easily be separated. The calculations show that the improved separation at higher concentrations can be explained by this particle agglomeration effect. Finally different cyclone design models are discussed on the basis of the experimental results and the theoretical considerations on the particle dynamics in a cyclone. (orig./DG) [de

  3. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  4. Training on Eastern Pacific tropical cyclones for Latin American students

    Science.gov (United States)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  5. Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust

    Science.gov (United States)

    Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.

    The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.

  6. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  7. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.

    Science.gov (United States)

    Zheng, Yue; Chen, W J

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  8. Nonautonomous Vortices in (2+1)-Dimensional Graded-Index Waveguide

    International Nuclear Information System (INIS)

    Lai Xian-Jing; Zhang Jie-Fang; Cai Xiao-Ou

    2015-01-01

    With the help of self-similarity transformation, we construct and study the nonautonomous vortices with different topological charges inside a planar graded-index nonlinear waveguide, analytically, and numerically. Although these vortices are approximate, they can reflect the real properties of self-similar optical beam during a short-term propagation. Existence of these autonomous vortices require delicate balances between the system parameters such as diffraction, nonlinearity, gain, and external potential. We are concerned with some special but interesting situations, and discussing the changes of the height, width, energy, and central position of the vortices as the increase of propagation distance. Moreover, we are also interested in the azimuthal modulational instability of the system, and comparing our prediction for the modulational instability growth rates to numerical results. (paper)

  9. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  10. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  11. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  12. High resolution model projections of tropical cyclone landfall over southern Africa under enhanced anthropogenic forcing

    CSIR Research Space (South Africa)

    Malherbe, J

    2011-09-01

    Full Text Available , no such change has been noted when all closed warm-core low pressure systems are considered. Several studies have through the use of coupled global circulation models globally reported a projected decrease in the number of tropical cyclones expected under...

  13. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  14. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    Science.gov (United States)

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  15. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  16. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  17. The Response of the Ligurian and Tyrrhenian Seas to a Summer Mistral Event: A Coupled Atmosphere-Ocean Approach

    Science.gov (United States)

    2012-01-01

    some extent. As well as the classical damping effect of surface friction on synop- tic storms via Ekman spindown (Holton, 2004), more recent stud...ies have suggested that surface stress can influence interior potential vorticity and thus storm growth (Adamson et al., 2006), and surface heat...the model simulations. Hence the mechanisms of SST response are similar to that found previously in tropical cyclones and extratropical low

  18. Cyclone Nargis and Myanmar: A wake up call

    Directory of Open Access Journals (Sweden)

    Lateef Fatimah

    2009-01-01

    Full Text Available In early May 2008, Cyclone Nargis (CN tore across the southern coastal regions of Myanmar, pushing a tidal surge through villages and rice paddies. The almost 12 foot wall of water and wind speed of over 200 km/hr killed tens of thousands of people and left hundreds of thousands homeless and vulnerable to injury and disease. Out of the 7.35 million living in the affected townships of Labutta, Bogale, Pyinsalu, Yangon, and many more, approximately 2.4 million were affected. Overall, more than 50 townships were affected by this most devastating cyclone in Asia since 1991. The Delta region, Myanmar′s Rice Bowl, was severely damaged. The low-lying villages were submerged. There was widespread destruction of homes, critical infrastructure of the villages, roads, ferries, water, fuel, and electricity supplies. Our team from Singapore (called Team Singapore reached out to at least 10 different villages during the time we were there. We ran mobile clinics daily at several locations and these operated from warehouses, temples, schools or any make shift buildings. The journey to the remote villages may take between 1 and 2 hours by road or by boat. We also ran mobile clinics at the township hospital, the rural healthcare centers, and an orphanage.

  19. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  20. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    OpenAIRE

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2014-01-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months ...

  1. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    Science.gov (United States)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  2. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar

    Science.gov (United States)

    Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim

    2017-04-01

    Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.

  3. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  4. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  5. Waves off Gopalpur, northern Bay of Bengal during cyclone Phailin.

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Anoop, T.R.; Nair, T.M.B.; Nherakkol, A.; Jeyakumar, C.

    , 1073–1083, 2014 www.ann-geophys.net/32/1073/2014/ doi:10.5194/angeo-32-1073-2014 © Author(s) 2014. CC Attribution 3.0 License. Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin M. M. Amrutha1, V. Sanil Kumar1, T. R. Anoop1, T. M..., 1073–1083, 2014 www.ann-geophys.net/32/1073/2014/ M. M. Amrutha et al.: Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin 1075 Figure 1. Track of the Cyclone Phailin from 8 October 2013 03:00 UTC to 13 October 2013 06:00 UTC. S(f )= αg 2...

  6. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  7. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  8. A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation

    Directory of Open Access Journals (Sweden)

    Ian R. Young

    2017-10-01

    Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.

  9. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    Science.gov (United States)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  10. Laboratory experiments on multipolar vortices in a rotating fluid

    NARCIS (Netherlands)

    Trieling, R.R.; Heijst, van G.J.F.; Kizner, Ziv

    2010-01-01

    The instability properties of isolated monopolar vortices have been investigated experimentally and the corresponding multipolar quasisteady states have been compared with semianalytical vorticity-distributed solutions to the Euler equations in two dimensions. A novel experimental technique was

  11. Hanford low-level waste process chemistry testing data package

    International Nuclear Information System (INIS)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a open-quotes proof of principleclose quotes test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock ampersand Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM)

  12. Experimental study of cyclone combustion of wood powder for gas turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, J; Kallner, P [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1994-12-31

    The objective of the present project is to study to what extent various elements in the ash, in particular Na and K, can be separated in the first stage of a two-stage combustor, with the first stage being a separation cyclone. Mass balances for the elements in the ash are determined from the fuel flow, the char collected from the cyclone bottom and particles in the combustor outlet gas. Experiments have been carried out at atmospheric pressure for wood powder feeding rates of 5-21 kg/h. The conditions in the cyclone have been kept fuel rich. The gas outlet temperature from this stage has been varied from 750 to 1150 deg C through control of the air/fuel ratio. Second stage combustion is achieved in a separate combustor. The results show that significant separation of Na and K is possible, and that the separation is improved when the cyclone temperature is kept low. At an outlet temperature of around 800 deg C about 60% of the input alkali is found in the char residue. At 1000 deg C, only 30% is separated. Mass balances show that about 80% of the ash elements in the fuel input are identified in char and fly ash. With 60% separation of Na and K the content of these elements in the gas would be less than 7 mg/kg gas for a turbine inlet temperature of 850 deg C. The total dust load would be 30-60 mg/kg gas. Ash sticking temperature tests on bottom char and fly ash show no ash sticking up to 1040 deg C. It is therefore concluded that the ash may pass through the turbine as solid particles and cause minimal deposits or corrosion. 15 refs

  13. Experimental study of cyclone combustion of wood powder for gas turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, J.; Kallner, P. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1993-12-31

    The objective of the present project is to study to what extent various elements in the ash, in particular Na and K, can be separated in the first stage of a two-stage combustor, with the first stage being a separation cyclone. Mass balances for the elements in the ash are determined from the fuel flow, the char collected from the cyclone bottom and particles in the combustor outlet gas. Experiments have been carried out at atmospheric pressure for wood powder feeding rates of 5-21 kg/h. The conditions in the cyclone have been kept fuel rich. The gas outlet temperature from this stage has been varied from 750 to 1150 deg C through control of the air/fuel ratio. Second stage combustion is achieved in a separate combustor. The results show that significant separation of Na and K is possible, and that the separation is improved when the cyclone temperature is kept low. At an outlet temperature of around 800 deg C about 60% of the input alkali is found in the char residue. At 1000 deg C, only 30% is separated. Mass balances show that about 80% of the ash elements in the fuel input are identified in char and fly ash. With 60% separation of Na and K the content of these elements in the gas would be less than 7 mg/kg gas for a turbine inlet temperature of 850 deg C. The total dust load would be 30-60 mg/kg gas. Ash sticking temperature tests on bottom char and fly ash show no ash sticking up to 1040 deg C. It is therefore concluded that the ash may pass through the turbine as solid particles and cause minimal deposits or corrosion. 15 refs

  14. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  15. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  16. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  17. Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices.

    Science.gov (United States)

    Mehmood, M Q; Mei, Shengtao; Hussain, Sajid; Huang, Kun; Siew, S Y; Zhang, Lei; Zhang, Tianhang; Ling, Xiaohui; Liu, Hong; Teng, Jinghua; Danner, Aaron; Zhang, Shuang; Qiu, Cheng-Wei

    2016-04-06

    A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Criteria for evaluating the condition of a tropical cyclone warning system.

    Science.gov (United States)

    Parker, D

    1999-09-01

    This paper evaluates the condition (i.e. health) of a tropical cyclone warning system (TCWS) during a 'quiet period' between infrequent intense cyclones. Capacity to make pre-disaster evaluations is important--disaster warning systems need to be in sound condition before, not after, disaster. The research--part of the UK's International Decade of Natural Disaster Reduction Flagship Programme--focuses upon an evaluatory method first used on flood warning systems. The Criteria-development Matrix comprises social, organisational and institutional criteria by which a TCWS may be assessed using a five-stage development scale. This method is used to evaluate Mauritius's TCWS using in-depth interview data. Ways to enhance the method and apply it to other disaster warning systems are discussed. The TCWS in Mauritius is a relatively sound one from which others can learn. Weaknesses requiring attention for Mauritius's TCWS to progress to an advanced level of development are identified.

  19. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T

    2006-01-01

    ... of tropical cyclones The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved...

  20. Role of centre vortices in dynamical mass generation

    International Nuclear Information System (INIS)

    Leinweber, Derek B.; Bowman, Patrick O.; Heller, Urs M.; Kusterer, Daniel-Jens; Langfeld, Kurt; Williams, Anthony G.

    2006-01-01

    The mass and renormalization functions of the nonperturbative quark propagator are studied in SU(3) gauge field theory with a Symanzik-improved gluon action and the AsqTad fermion action. Centre vortices in the gauge field are identified by fixing to maximal centre gauge. The role of centre vortices in dynamical mass generation is explored by removing centre vortices from the gauge fields and studying the associated changes in the quark propagator. We find that dynamical mass generation survives in the vortex-removed SU(3) gauge field theory despite the vanishing of the string tension and suppression of the gluon propagator in the infrared suggesting the possibility of decoupling dynamical mass generation from confinement

  1. Impact of horizontal resolution on prediction of tropical cyclones over ...

    Indian Academy of Sciences (India)

    Two cyclones, which formed over the Bay of Bengal during the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165km and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track of the cyclones ...

  2. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2007-01-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  3. Black Swan Tropical Cyclones

    Science.gov (United States)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  4. Impact and Implication of Cyclone ‘Xaver’on Coastal Management in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Dangendorf, Sönke

    The passage of cyclone Xaver on 5-6th December 2013 led to severe floods and to substantial coastal erosion along large parts of the Danish and German coasts. Water levels of nearly 2 meters are the highest on record a.o. at the Hornbaek and Copenhagen tide gauges (TG) (1890-2015). The extremity...

  5. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  6. Vortices in nonuniform upper-hybrid field

    International Nuclear Information System (INIS)

    Davydova, T.A.; Vranjes, J.

    1992-01-01

    The equations describing the interaction of an upper-hybrid pump wave with small low-frequency density perturbations are discussed under assumption that the pump is spatially nonuniform. The conditions for the modulational instability are investigated. Instead of a dispersion relation, describing the growth of perturbations in the case of an uniform pump, in our case of nonuniform pump a differential equation is obtained and from its eigenvalues are found the instability criteria. Taking into account the slow-frequency self-interaction terms some localized solutions similar to dipole vortices are found, but described by analytic functions in all space. It is shown that their characteristic size and speed are determined by the pump intensity and its spatial structure. (au)

  7. Magnetic monopoles, center vortices, confinement and topology of gauge fields

    International Nuclear Information System (INIS)

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.

    2000-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed

  8. Magnetic Monopoles, Center Vortices, Confinement and Topology of Gauge Fields

    OpenAIRE

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Sch"afke, A.

    1999-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed.

  9. Climatic hazards warning process in Bangladesh: Experience of, and lessons from, the 1991 April cyclone

    Science.gov (United States)

    Haque, C. Emdad

    1995-09-01

    Science and technology cannot control entirely the causes of natural hazards. However, by using multifaceted programs to modify the physical and human use systems, the potential losses from disasters can effectively be minized. Predicting, identifying, monitoring, and forecasting extreme meteorological events are the preliminary actions towards mitigating the cyclone-loss potential of coastal inhabitants, but without the successful dissemination of forecasts and relevant information, and without appropriate responses by the potential victims, the loss potential would probably remain the same. This study examines the process through which warning of the impending disastrous cyclone of April 1991 was received by the local communities and disseminated throughout the coastal regions of Bangladesh. It is found that identification of the threatening condition due to atmospheric disturbance, monitoring of the hazard event, and dissemination of the cyclone warning were each very successful. However, due to a number of socioeconomic and cognitive factors, the reactions and responses of coastal inhabitants to the warning were in general passive, resulting in a colossal loss, both at the individual and national level. The study recommends that the hazard mitigation policies should be integrated with national economic development plans and programs. Specifically, it is suggested that, in order to attain its goals, the cyclone warning system should regard the aspects of human response to warnings as a constituent part and accommodate human dimensions in its operational design.

  10. Predictability of the 2012 Great Arctic Cyclone on medium-range timescales

    Science.gov (United States)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-03-01

    Arctic Cyclones (ACs) can have a significant impact on the Arctic region. Therefore, the accurate prediction of ACs is important in anticipating their associated environmental and societal costs. This study investigates the predictability of the 2012 Great Arctic Cyclone (AC12) that exhibited a minimum central pressure of 964 hPa on 6 August 2012, using five medium-range ensemble forecasts. We show that the development and position of AC12 were better predicted in forecasts initialized on and after 4 August 2012. In addition, the position of AC12 was more predictable than its development. A comparison of ensemble members, classified by the error in predictability of the development and position of AC12, revealed that an accurate prediction of upper-level fields, particularly temperature, was important for the prediction of this event. The predicted position of AC12 was influenced mainly by the prediction of the polar vortex, whereas the predicted development of AC12 was dependent primarily on the prediction of the merging of upper-level warm cores. Consequently, an accurate prediction of the polar vortex position and the development of the warm core through merging resulted in better prediction of AC12.

  11. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...

  12. Evaluating decadal predictions of northern hemispheric cyclone frequencies

    Directory of Open Access Journals (Sweden)

    Tim Kruschke

    2014-04-01

    Full Text Available Mid-latitudinal cyclones are a key factor for understanding regional anomalies in primary meteorological parameters such as temperature or precipitation. Extreme cyclones can produce notable impacts on human society and economy, for example, by causing enormous economic losses through wind damage. Based on 41 annually initialised (1961–2001 hindcast ensembles, this study evaluates the ability of a single-model decadal forecast system (MPI-ESM-LR to provide skilful probabilistic three-category forecasts (enhanced, normal or decreased of winter (ONDJFM extra-tropical cyclone frequency over the Northern Hemisphere with lead times from 1 yr up to a decade. It is shown that these predictions exhibit some significant skill, mainly for lead times of 2–5 yr, especially over the North Atlantic and Pacific. Skill for intense cyclones is generally higher than for all detected systems. A comparison of decadal hindcasts from two different initialisation techniques indicates that initialising from reanalysis fields yields slightly better results for the first forecast winter (month 10–15, while initialisation based on an assimilation experiment provides better skill for lead times between 2 and 5 yr. The reasons and mechanisms behind this predictive skill are subject to future work. Preliminary analyses suggest a strong relationship of the model's skill over the North Atlantic with the ability to predict upper ocean temperatures modulating lower troposphere baroclinicity for the respective area and time scales.

  13. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  14. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  15. Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2010-01-01

    Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines...... is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form...

  16. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; van Heijst, G.J.F.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during

  17. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    Directory of Open Access Journals (Sweden)

    Ruihua Kang

    Full Text Available Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011.Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs and the 95% confidence intervals (CI.There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12 and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI of 2.16 (95%CI = 1.69, 2.76, 2.43 (95%CI = 1.65, 3.58 and 2.21 (95%CI = 1.65, 2.69, respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48, 2.49 (95%CI = 1.80, 3.44, 4.89 (95%CI = 2.37, 7.37 and 3.18 (95%CI = 2.10, 4.81, respectively.All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  18. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  19. On hairpin vortices in a transitional boundary layer

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available In the presented paper the results of experiments on transitional boundary layer are presented. The boundary layer was generated on smooth flat wall with zero pressure gradient forming one side of the channel of rectangular cross section. The hairpin vortices, packets of hairpin vortices, turbulent spots and calmed regions were experimentally investigated using time-resolved PIV technique.

  20. Vortices and domain walls: 'Wormholes' in unconventional superconductors

    International Nuclear Information System (INIS)

    Bessarab, P F; Radievsky, A V

    2010-01-01

    In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.

  1. Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.

    Science.gov (United States)

    Scott, James R.

    1991-01-01

    A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a

  2. Analysis of small cyclones efficiency for primary treatment of incineration gases of radioactive wastes

    International Nuclear Information System (INIS)

    Halasz, M.R.T.; Massarani, G.

    2000-01-01

    The objective of this work is to develop an efficient gas treatment system, especially small diameter cyclones. The high efficiency justifies the interest in the application in radioactive wastes incinerators because it reduces the amount of radioactive ashes of other gas cleaning steps. The first stage of this work is to establish some promising configurations of high efficiency cyclones through modeling (neural networks). After construction of the equipment , the operation conditions of each small diameter cyclone were obtained and the viability of adaptation of a Post-cyclone (PoC) was also evaluated to increase the efficiency. The results show the effectiveness of the small diameter cyclone PoC set. The efficiency in optimized conditions can be higher than 98% for fine materials (D 50 s = 3,5 g/cm 3 ). (author)

  3. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows

    Science.gov (United States)

    Ranjan, R.; Menon, S.

    2018-04-01

    The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.

  4. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    Directory of Open Access Journals (Sweden)

    Todd W. Moore

    2017-08-01

    Full Text Available Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributions of tropical cyclone tornadoes by intensity, path length, path width, and the damage potential index. The analyses confirm that most tornadoes occur relatively close to the coastline, but show that stronger tornadoes with larger paths are disproportionately common farther inland. They also confirm that the highest amount of activity is located within the northeast and east-of-center quadrants and show that the most potentially damaging tornadoes cluster in a sub region near the intersection of these two quadrants.

  5. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    Science.gov (United States)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  6. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  7. Experimental investigation into the application of a magnetic dense medium cyclone in a production environment / Ilana Katinka Myburgh

    OpenAIRE

    Myburgh, Ilana Katinka

    2001-01-01

    The magnetic dense medium cyclone project was undertaken at Koingnaas Mine on a 250 mm diameter cyclone during 1998 and a 510 mm cyclone during 2000. The aim of the project was to evaluate the performance of a magnetic DM cyclone in a production environment. Previous test work on magnetic DM cyclones were conducted during 1995 and 1996 on small (100 mm) cyclones in a laboratory environment, with medium feed only. Solenoid position, magnetic field strength and medium inlet de...

  8. Characterizing the Severe Turbulence Environments Associated with Commercial Aviation Accidents. Part 2; Hydrostatic Mesobeta Scale Numerical Simulations of Supergradient Wind Flow and Streamwise Ageostrophic Frontogenesis

    Science.gov (United States)

    Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)

    2003-01-01

    Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.

  9. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  10. Comparing the dynamics of skyrmions and superconducting vortices

    International Nuclear Information System (INIS)

    Olson Reichhardt, C.J.; Lin, S.Z.; Ray, D.; Reichhardt, C.

    2014-01-01

    Highlights: • We describe similarities and differences between skyrmion and vortex dynamics. • The Magnus force can dramatically alter skyrmion transport. • The pinning becomes very weak when the Magnus force is strong. - Abstract: Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order–disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties

  11. Tropical Cyclone Information System

    Science.gov (United States)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  12. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  13. Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport

    Science.gov (United States)

    Leung, Marco Y. T.; Zhou, Wen; Shun, Chi-Ming; Chan, Pak-Wai

    2018-04-01

    This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 hPa over the South China coast. On the other hand, the east-west wind at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.

  14. Explosive cyclogenesis of extra-tropical cyclone Klaus and its effects in Catalonia. A case study of hurricane force gusts.

    Science.gov (United States)

    Calvo, J.; López, J. A.; Martín, F.; Morales, G.; Pascual, R.

    2009-09-01

    On 23th and 24th of January 2009, the extra-tropical cyclone Klaus crossed the north of Spain and the south of France producing several deaths and generalized damages. The cyclone of Atlantic origin underwent an explosive deepening of more than 1 hPa per hour at the surface level. Catalonia region was affected by gale-force winds and hurricane gusts. The Atlantic depression underwent a process called explosive cyclogenesis (when a surface cyclone deepens at a rate higher than 1 hPa/hr over 24 hours, approximately) in front of the Spanish Atlantic coasts. In this study we focus on its impact in the Catalonia areas where both synoptic and local effects were important. Also we evaluate the performance of the numerical weather prediction model outputs against observed data.

  15. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  16. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    Science.gov (United States)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  17. 4D-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Rubakov, V.

    2004-07-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four- dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  18. 4d-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar-Daemi, Seif; Rubakov, Valery

    2004-01-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four-dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  19. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    Science.gov (United States)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  20. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  1. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the

  2. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.

    Science.gov (United States)

    Bartol, Ian K; Gharib, Morteza; Webb, Paul W; Weihs, Daniel; Gordon, Malcolm S

    2005-01-01

    Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms

  3. Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD

    Directory of Open Access Journals (Sweden)

    W. P. Martignoni

    2007-03-01

    Full Text Available Cyclone models have been used without relevant modifications for more than a century. Most of the attention has been focused on finding new methods to improve performance parameters. Recently, some studies were conducted to improve equipment performance by evaluating geometric effects on projects. In this work, the effect of cyclone geometry was studied through the creation of a symmetrical inlet and a volute scroll outlet section in an experimental cyclone and comparison to an ordinary single tangential inlet. The study was performed for gas-solid flow, based on an experimental study available in the literature, where a conventional cyclone model was used. Numerical experiments were performed by using CFX 5.7.1. The axial and tangential velocity components were evaluated using RSM and LES turbulence models. Results showed that these new designs can improve the cyclone performance parameters significantly and very interesting details were found on cyclone fluid dynamics properties using RSM and LES.

  4. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    systems, such as a wind turbine, are prevented from ever entering dynamic stall, essentially disregarding potential ... future generations of such systems, an overwhelming need has developed to avail this benefit safely. ... approach must diffuse the vorticity prior to its coalescence, but keep the vorticity over the airfoil up to ...

  5. Continuous control of asymmetric forebody vortices in a bi-stable state

    Science.gov (United States)

    Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi

    2018-02-01

    Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.

  6. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  8. Coastal circulation along the central west coast of India during cyclone Phyan: measurements and numerical simulations

    Digital Repository Service at National Institute of Oceanography (India)

    VinodKumar, K.; Aboobacker, V.M.; Saheed, P.P.; Vethamony, P.

    Measurements and numerical simulations carried out off Mumbai coast for the period 22 October to 22 November 2009 showed significant variations in water level and currents during cyclone Phyan. Changes in the meridional component of the current...

  9. Physical and biological response of the Arabian sea to tropical cyclone Phyan and its implications

    Digital Repository Service at National Institute of Oceanography (India)

    Byju, P.; PrasannaKumar, S.

    regional climate shift since 1995, which is accompanied by a five-fold increase in the occurrence of the most intense cyclones. Even though cyclones are known for their destruction of life and property on the land, they often augment life in the ocean...-red and microwave frequencies provide a real- time recognition and diagnosis of tropical cyclone development. But ocean colour sensors are obscured by clouds, which are often present during and after the passage of a cyclone, therefore it can capture only a very...

  10. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  11. The Born-Infeld vortices induced from a generalized Higgs mechanism.

    Science.gov (United States)

    Han, Xiaosen

    2016-04-01

    We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a | ϕ | 4 - or | ϕ | 6 -type. For the | ϕ | 4 -model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the | ϕ | 6 -model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the | ϕ | 6 -model are also established.

  12. Measurement of characteristics of solid flow in the cyclone separators with fiber optical probe

    International Nuclear Information System (INIS)

    Li Shaohua; Li Yan; Li Jinjing; Yang Shi; Yang Hairui; Zhang Hai; Lu Junfu; Yue Guangxi

    2009-01-01

    In some applications, e.g. circulating fluidized beds (CFB), cyclones are usually operated at high solid loadings. Under high inlet solid concentration, most of the particles are collected at the wall and form a dense particle spiral band because of high separation efficiency. As a result, gas-solid reactions should occur mostly in the near-wall region. To understand the gas-solid reaction mechanism in the cyclone, an experimental study was conducted in a plexiglass CFB cold apparatus, with a riser of 0.2m I.D. and 5m high, and a standard Lapple cyclone. Fiber optical probe was used to measure the characteristics of solid flow in the cyclone, including particle velocity and volumetric solid concentration, especially in the near-wall region of the cyclone. Based on the experiment results, the combustion of carbon particles in the cyclone of a CFB boiler was estimated with group combustion theory. The calculated results show that combustion effectiveness factor ηeff of near-wall particle cloud is smaller than 1/25, which means the combustion rate of a carbon particle in the near-wall region is greatly restricted by other particles in the cloud.

  13. Resistivity Measurements on Bulk Bi2Sr2CaCu2O8+δ: Contribution of Vortices at Low Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Clarina de la Cruz

    1999-12-01

    Full Text Available The behavior of high-temperature superconductors in the presence of an external magnetic field is of particular interest in light of its technological application and commercialization. In this paper, we performed resistivity measurements on bulk superconducting pellets of Bi2Sr2CaCu2O8+δ in the presence of external magnetic fields below 0.5T. The broadening of the transition region below Tc in the resistivity plots, was attributed to the residual resistance imparted by flux flow in the sample. From I-V measurements at 50 K at fields below 0.6T, the contribution of vortices was quantitatively measured as a flux flow resistivity which range from 0.1231 to 1.700 (m(-mm for applied magnetic fields from 0.04T to 0.6T. The increase in the flux flow resistivity with increasing applied field was due to the increase in the number of vortices moving in steady state motion brought about by the interaction of the vortices with the transport current.

  14. Setting up experimental incineration system for low-level radioactive samples and combustion experiments

    International Nuclear Information System (INIS)

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1997-01-01

    An incineration system was constructed which were composed of a combustion furnace (AP-150R), a cyclone dust collector, radioisotope trapping and measurement apparatus and a radioisotope storage room built in the first basement of the Radioisotope Center. Low level radioactive samples (LLRS) used for the combustion experiment were composed of combustible material or semi-combustible material containing 500 kBq of 99m TcO 4 or 23.25 kBq of 131 INa. The distribution of radioisotopes both in the inside and outside of combustion furnace were estimated. We measured radioactivity of a smoke duct gas in terminal exit of the exhaust port. In case of combustion of LLRS containing 99m TcO 4 or 131 INa, concentration of radioisotopes at the exhaust port showed less than legal concentration limit of these radioisotopes. In cases of combustion of LLRS containing 99m TcO 4 or 131 INa, decontamination factors of the incineration system were 120 and 1.1, respectively. (author)

  15. Measurements of Tip Vortices from a Full-Scale UH-60A Rotor by Retro- Reflective Background Oriented Schlieren and Stereo Photogrammetry

    Science.gov (United States)

    Schairer, Edward; Kushner, Laura K.; Heineck, James T.

    2013-01-01

    Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.

  16. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer

    International Nuclear Information System (INIS)

    Xiao-Bing, Liu; Zheng-Qing, Chen; Chao-Qun, Liu

    2010-01-01

    A high-order direct numerical simulation of flow transition over a flat-plate at a free stream Mach number 0.5 is carried out. Formation and development of three-dimensional vortical structures, typically shown as A-vortices, hairpin vortices and ring-like vortices, are observed. Numerical results show that there is a strong downdraft motion of fluid excited by every ring-like vortex in the late-stage of the transition process. At two sides of the vortical structure centerline, the downdraft motions induced by the ring-like vortex and the rotating legs superimpose. This is responsible for the appearance of a high-speed streak associated with the positive spike observed in a previous investigation and the appearance of a high-shear layer in the near wall region. (fundamental areas of phenomenology(including applications))

  17. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  18. The Effects of Cyclone Hudah on the Forest of Masoala Peninsula ...

    African Journals Online (AJOL)

    Cyclones regularly impact the east coast of Madagascar but almost nothing is known about their effects on Malagasy ecosystems. On 2 April 2000 the powerful winds of Cyclone Hudah struck the humid forests in the northern part of Masoala Peninsula. An analysis of satellite images revealed that 3 % of the forest here was ...

  19. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  20. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    Science.gov (United States)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  1. Scaling properties of Wilson loops pierced by P-vortices

    DEFF Research Database (Denmark)

    Dunn, Patrick; Greensite, Jeffrey Paul

    2012-01-01

    P-vortices, in an SU(N) lattice gauge theory, are excitations on the center-projected Z(N) lattice. We study the ratio of expectation values of SU(2) Wilson loops, on the unprojected lattice, linked to a single P-vortex, to that of Wilson loops which are not linked to any P-vortices. When...

  2. Imparting small vorticity to a Bianchi type-VIh empty spacetime

    Science.gov (United States)

    Batakis, Nikos A.

    1981-04-01

    We present and briefly discuss a Bianchi type-VIh empty spacetime. The field equations have been solved after being linearized with respect to a parameter which imparts vorticity to the model. The limit of zero vorticity is an already known solution.

  3. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  4. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  5. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiangyu; Wu, Guoxiong [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Beijing (China); Institute of Atmospheric Physics, Beijing (China)

    2006-12-15

    The intraseasonal variations of the Yangtze rainfall over eastern China and its related atmospheric circulation characteristics during the 1991 summer are examined based on the gauge-observed rainfall and the NCEP/NCAR reanalysis data. Wavelet analysis shows that during the 1991 summer, the active and break sequences of rainfall over the middle and lower Yangtze Basin are mainly regulated by an oscillatory mode with a period of 15-35 days. An investigation of the circulation features suggests that the 15-35-day oscillation is associated with an anomalous low-level cyclone (anticyclone) appearing alternatively over the northern South China Sea (SCS) and the Philippine Sea, and related to a northeastward (southwestward) shift of the western Pacific subtropical anticyclone over the SCS, leading to a lower tropospheric divergence (convergence) over the Yangtze Basin. In the upper troposphere, the 15-35-day oscillation exhibits a dipole anomaly characterized by an anomalous cyclone (anticyclone) over eastern China and an anomalous anticyclone (cyclone) over the northern Tibetan Plateau, resulting in a southwestward shrinking (northeastward extending) of the South Asian anticyclone, and forming a convergence (divergence) over eastern China. Such a coupled anomalous flow pattern between the lower and upper troposphere favors large-scale descending (ascending) motion, and hence reduced (enhanced) rainfall over the Yangtze Basin. Dynamically, the intraseasonal variations in the Yangtze rainfall are mainly determined by the coupling between the low-level relative vorticity and the upper-level divergence. In the middle troposphere, the 15-35-day oscillation of the subtropical high is originated over the central North Pacific north of Hawaii, then propagates westward to the SCS-Philippine Sea, and finally modulates the intraseasonal variations of the Yangtze rainfall. (orig.)

  6. Mean Characteristics of Conical Vortices Above Roof Eaves of Low–Rise Cubic Buildings Using Particle Image Velocimetry

    Directory of Open Access Journals (Sweden)

    M. Gamboa–Marrufo

    2009-04-01

    Full Text Available Fluctuating low pressures near the edges of flat roofs are often caused when the wind impinges on one corner of the building so that conical vortices form above the diagonal roof edges. In turbulent flow, these vortices vary in position and strength and the underlying surface pressures fluctuate accordingly. A preliminary approach to the study of the mechanism linking instantaneous roof edge pressures with the wind vortical structures involves the evaluation of mean characteristics and positions of the latter. However the flow examination has so far been severely limited by the restriction of available anemometers to single–point sampling. In this experimental study, a 200mm cube has been used to model a building with a flat square roof set at an angle of 45° to the oncoming flow direction, and a Particle Image Velocimetry system was used to capture instantaneous two–dimensional velocity vector images of entire flow cross–sections, both normal to the vortex axis and in planes parallel to that axis. The se vector maps were used to estimate the mean characteristics of the vortices and appropriate observation–plane directions to measure wind velocities in the study of the instantaneous problem.

  7. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Preliminary Results with Very Severe Cyclonic Storm Nargis (2008)

    Science.gov (United States)

    Shen, B.; Tao, W.; Atlas, R.

    2008-12-01

    Very Severe Cyclonic Storm Nargis, the deadliest named tropical cyclone (TC) in the North Indian Ocean Basin, devastated Burma (Myanmar) in May 2008, causing tremendous damage and numerous fatalities. An increased lead time in the prediction of TC Nargis would have increased the warning time and may therefore have saved lives and reduced economic damage. Recent advances in high-resolution global models and supercomputers have shown the potential for improving TC track and intensity forecasts, presumably by improving multi-scale simulations. The key but challenging questions to be answered include: (1) if and how realistic, in terms of timing, location and TC general structure, the global mesoscale model (GMM) can simulate TC genesis and (2) under what conditions can the model extend the lead time of TC genesis forecasts. In this study, we focus on genesis prediction for TCs in the Indian Ocean with the GMM. Preliminary real-data simulations show that the initial formation and intensity variations of TC Nargis can be realistically predicted at a lead time of up to 5 days. These simulations also suggest that the accurate representations of a westerly wind burst (WWB) and an equatorial trough, associated with monsoon circulations and/or a Madden-Julian Oscillation (MJO), are important for predicting the formation of this kind of TC. In addition to the WWB and equatorial trough, other favorable environmental conditions will be examined, which include enhanced monsoonal circulation, upper-level outflow, low- and middle-level moistening, and surface fluxes.

  8. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change

    Science.gov (United States)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.

    2016-12-01

    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  9. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  10. Adiabatic effective action for vortices in neutral and charged superfluids

    International Nuclear Information System (INIS)

    Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.

    1996-01-01

    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed

  11. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    Science.gov (United States)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  12. Wind data collected by a fixed-wing aircraft in the vicinity of a tropical cyclone over the south China coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Kowloon, HK (China); Foster, S. [Aventech Research Inc., Ontario (Canada)

    2011-06-15

    The fixed-wing aircraft of Government Flying Service of the Hong Kong Government has recently equipped with an upgraded meteorological measuring system. This system provides horizontal wind velocity components up to 90 m/s at an accuracy of 0.5 m/s for straight and level flight. Besides search and rescue (SAR) missions, this aircraft is also used for windshear and turbulence investigation flights at the Hong Kong International Airport. In a SAR operation in July 2009, the aircraft flew close to the eye of tropical cyclone Molave, when it was located at about 200 km to the east of Hong Kong over the south China coastal waters. The aircraft provided valuable information about the winds in association with Molave because aircraft reconnaissance for tropical cyclones is not carried out for South China Sea. Based on the aircraft measurements, the 1-second mean wind reached the maximum value of 88 knots at a height of 200 m above mean sea level. Assuming a power law with altitude with an exponent of 0.11 over open waters, the corresponding 1-second mean wind at a height of 10 m would be about 63 knots. The maximum 10-minute mean wind reached 69 knots with an average height of 260 m above mean sea level. The corresponding mean at 10 m would be about 48 knots. As such, based on the aircraft measurements (in which the aircraft might not fly into the areas of maximum winds associated with the tropical cyclone), Molave had at least a strength of tropical storm to severe tropical storm at the times of the measurements. Nowadays, the determination of the intensity of tropical cyclones over the South China Sea is normally based on remote sensing data only (e.g. radar and satellite observations). To the knowledge of the authors, the results presented in the paper are the first time that direct measurements of the winds near the centre of a tropical cyclone over the northern part of the South China Sea are made with an aircraft. Apart from the mean wind and gust, other properties

  13. Superconducting vortices in Weinberg - Salam theory

    International Nuclear Information System (INIS)

    Garaud, J.

    2010-09-01

    In this dissertation, we analyze in detail the properties of new string-like solutions of the bosonic sector of the electroweak theory. The new solutions are current carrying generalizations of embedded Abrikosov-Nielsen-Olesen vortices. We were also able to reproduce all previously known features of vortices in the electroweak theory. Generically vortices are current carrying. They are made of a compact conducting core of charged W bosons surrounded by a nonlinear superposition of Z and Higgs field. Far away from the core, the solution is described by purely electromagnetic Biot and Savart field. Solutions exist for generic parameter values including experimental values of the coupling constants. We show that the current whose typical scale is the billion of Amperes can be arbitrarily large. In the second part the linear stability with respect to generic perturbations is studied. The fluctuation spectrum is qualitatively investigated. When negative modes are detected, they are explicitly constructed and their dispersion relation is determined. Most of the unstable modes can be eliminated by imposing periodic boundary conditions along the vortex. However there remains a unique negative mode which is homogeneous. This mode can probably be eliminated by curvature effects if a small piece of vortex is bent into a loop, stabilized against contraction by the electric current. (author)

  14. Localized vortices in ηi-modes

    International Nuclear Information System (INIS)

    Nycander, J.; Lynov, J.P.; Juul Rasmussen, J.

    1992-01-01

    For a wide variety of nonlinear wave equations necessary conditions for the existence of localized, stationary structures can be found by applying a simple procedure, involving two steps: First the linear dispersion relation is obtained and the regions of the phase velocity of linear waves found. Secondly, assuming that localized solutions exist, their velocities are determined by using integral relations. The obtained velocity takes the form of a ''center of mass velocity''. If this velocity falls outside the regions of phase velocities for linear waves then nonlinear localized vortices may exist. Otherwise, the structure will couple to the linear waves and gradually disperse. Applying this method we have shown that monopole vortex solutions exist for drift waves driven by the ion temperature gradient in a magnetized plasma, the so-called η i -modes. Numerical solutions show that such vortices are steadily propagating and stable and they generally emerge from localized initial conditions. Our study is motivated by recent high resolution simulations of η i -turbulence, where it was observed that coherent vortices developed spontaneously. These had a dominating influence on the evolution of the turbulence, and the associated anomalous transport was found to be significantly reduced as compared with the predictions from quasilinear theory. (author) 8 refs., 3 figs

  15. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  16. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  17. Electrochemical Analysis of Taylor Vortices.

    Czech Academy of Sciences Publication Activity Database

    Wouahbi, F.; Allaf, K.; Sobolík, Václav

    2007-01-01

    Roč. 37, 1 (2007) , s. 57-62 ISSN 0021-891X Institutional research plan: CEZ:AV0Z40720504 Keywords : electrodiffusion method * taylor vortices * three-segment electrode Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.417, year: 2007

  18. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  19. Low probability of tropical cyclones on ocean planets in the habitable zones of M dwarfs

    Science.gov (United States)

    Bin, Jiayu; Tian, Feng; Lin, Yanluan; Wang, Yuwei

    2018-01-01

    The genesis potential index (GPI) of tropical cyclones (TC) on ocean planets in the habitable zones of M dwarfs is analyzed based on 3D GCM simulations. We found that GPI on these planets are smaller than those in TC basins on the Earth mainly because of slow rotation of such planets. GPI's on exoplanets with eccentric orbits are strong function of time with values generally greater than those on circular orbits. Future high resolution models are needed to better understand whether TCs could form on ocean exoplanets, and what their potential intensities and distributions might be.

  20. 1987 Annual Tropical Cyclone Report

    Science.gov (United States)

    1987-01-01

    as calculated for all tro ical cyclones in each year, is shown in fTa le 5-2A. Table 5-2B includes along-track and cross-track errors for 1987. A...so that the ATCM can maintain the tropical storm circulation during the forecast. Also, sensitivity experiments are being conducted to fmd the best

  1. Reconstructing Holocene (sub)tropical climate and cyclone variability using geochemical proxies

    OpenAIRE

    van Soelen, E.E.

    2012-01-01

    Anthropogenic greenhouse gas emissions are responsible for a warming trend that cannot easily be reversed. This warming trend is expected to have a large impact on global weather patterns and local environmental conditions, for example by changing precipitation patterns, sea level rise and increasing tropical cyclone activity. Therefore, (sub)tropical coastal regions are expected to be heavily impacted by future climate change. To improve our understanding of the possible consequences of futu...

  2. Numerical simulation of a cyclone used as an inlet device of a gravitational separator

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Carlos Alberto Capela [Centro de Pesquisas da PETROBRAS (CENPES), Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia de Processamento Primario], E-mail: capela@petrobras.com.br; Oliveira Junior, Joao Americo Aguirre; Almeida, Lucilla Coelho de [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil)], E-mails: joao.aguirre@esss.com.br, lucilla@esss.com.br

    2011-04-15

    This study presents the numerical simulation of the flow inside a gravitational separator to evaluate the influence of each internal device in the separation efficiency. In this first stage, the cyclone - located at the vessel entrance, known as the primary separation - internal flow is investigated. The flow inside cyclones presents rather complex and challenging characteristics, such as: streamlines with high curvature, intense force fields, interaction between primary and secondary flows and anisotropic turbulence. A three-dimensional fluid dynamics study is presented of a gas-liquid two-phase flow in a cyclone. The two-phase flow was modeled using an Eulerian, isothermal approach. The main conclusion of these simulations is the phase separation inside the proposed initial design does not occur by centrifugal effect, as an internal rotating flow is not established, due to an ineffective inlet design. Based on the lack of this expected centrifugal field for a cyclone, it can be concluded that the device does not behave as such. As a result, the device efficiency is limited and possibly small droplets will be carried by the gas stream. Therefore, changes to the cyclone inlet geometry were proposed to better achieve the cyclone effect to increase the separation efficiency. (author)

  3. The possible use of Bayer process cyclone fines for manufacture of abrasives

    OpenAIRE

    Sancho, J.; García, M. P.; García, M. F.; Ayala, J.; Verdeja, L. E.

    2002-01-01

    This paper deals with the feasibihty of producing synthetic abrasives from a by-product of the Bayer process: the cyclone fines, through synthesis aided by mineralizers addition. The main result has been the production of a low temperature (1200-1300 °C) polish by adding fluoride mineralizers, that could be in clear competence with synthetic corundum obtained also in this work by a more traditional way: sodium removal, using of magnesium oxide as mineralizer, and high calcination temperatures...

  4. NASA CYGNSS Tropical Cyclone Mission

    Science.gov (United States)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  5. An efficient and general numerical method to compute steady uniform vortices

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2011-07-01

    Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.

  6. An experimental investigation of wind pressures on square pillars in tornado-like vortices

    International Nuclear Information System (INIS)

    Iwatani, Yoshiharu; Maruta, Eizou; Kanda, Makoto; Hattori, Yousuke; Hamano, Naoki; Matsuura, Takeshi

    1992-01-01

    This report describes a laboratory simulation of tornado-like vortices and laboratory measurements of steady wind loads on model structures in tornado-like vortices. The variations of wind direction and wind speed of tornado-like vortices and ground surface pressure under tornado-like vortices with the swirl ratio, Reynolds number and the surface roughness were investigated. Wind pressure distributions on square pillars were measured in tornado-like vortices. It was observed in the experiment that the negative pressures on the roof faces of square pillars were high and distributed rather uniformly but these on the side faces differed greatly from place to place and locally became high. The high pressure regions on the side faces were close to ground surface in the case where the model structures stood in the center of tornado-like vortex, and became higher as the increase of distance between the model structures and the center of tornado-like vortices. (author)

  7. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  8. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  9. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    Science.gov (United States)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  10. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  11. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the

  12. Interannual variations and future change of wintertime extratropical cyclone activity over North America in CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Haiyan; Washington, Warren M.; Meehl, Gerald A. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO (United States)

    2008-06-15

    Climatology and interannual variations of wintertime extratropical cyclone frequency in CCSM3 twentieth century simulation are compared with the NCEP/NCAR reanalysis during 1950-1999. CCSM3 can simulate the storm tracks reasonably well, although the model produces slightly less cyclones at the beginning of the Pacific and Atlantic storm tracks and weaker poleward deflection over the Pacific. As in the reanalysis, frequency of cyclones stronger than 980 hPa shows significant correlation with the Pacific/North America (PNA) teleconnection pattern over the Pacific region and with the North Atlantic Oscillation (NAO) in the Atlantic sector. Composite maps are constructed for opposite phases of El Nino-Southern Oscillation (ENSO) and the NAO and all anomalous patterns coincide with observed. One CCSM3 twenty-first century A1B scenario realization indicates there is significant increase in the extratropical cyclone frequency on the US west coast and decrease in Alaska. Meanwhile, cyclone frequency increases from the Great Lakes region to Quebec and decreases over the US east coast, suggesting a possible northward shift of the Atlantic storm tracks under the warmer climate. The cyclone frequency anomalies are closely linked to changes in seasonal mean states of the upper-troposphere zonal wind and baroclinicity in the lower troposphere. Due to lack of 6-hourly outputs, we cannot apply the cyclone-tracking algorithm to the other eight CCSM3 realizations. Based on the linkage between the mean state change and the cyclone frequency anomalies, it is likely a common feature among the other ensemble members that cyclone activity is reduced on the East Coast and in Alaska as a result of global warming. (orig.)

  13. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  14. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  15. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  16. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  17. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  18. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  19. Propagation and diffraction of optical vortices

    International Nuclear Information System (INIS)

    Fischer, Pascal; Skelton, Susan E.; Leburn, Christopher G.; Streuber, Casey T.; Wright, Ewan M.; Dholakia, Kishan

    2008-01-01

    We explore the propagation and diffraction of optical vortices (Laguerre-Gaussian beams) of varying azimuthal index past a circular obstacle and Young's double slits. When the beam and obstacle centers are aligned the famous spot of Arago, which arises for zero azimuthal index, is replaced for non-zero azimuthal indices by a dark spot of Arago, a simple consequence of the conserved phase singularity at the beam center. We explore how for larger azimuthal indices, as the beam and obstacle centers are progressively misaligned, the central dark spot breaks up into several dark spots of Arago. Using Young's double slits we can easily measure the azimuthal index of the vortex beam, even for polychromatic vortices generated by broadband supercontinuum radiation

  20. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    Science.gov (United States)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west