WorldWideScience

Sample records for low-level cloud response

  1. Constraining the models' response of tropical low clouds to SST forcings using CALIPSO observations

    Science.gov (United States)

    Cesana, G.; Del Genio, A. D.; Ackerman, A. S.; Brient, F.; Fridlind, A. M.; Kelley, M.; Elsaesser, G.

    2017-12-01

    Low-cloud response to a warmer climate is still pointed out as being the largest source of uncertainty in the last generation of climate models. To date there is no consensus among the models on whether the tropical low cloudiness would increase or decrease in a warmer climate. In addition, it has been shown that - depending on their climate sensitivity - the models either predict deeper or shallower low clouds. Recently, several relationships between inter-model characteristics of the present-day climate and future climate changes have been highlighted. These so-called emergent constraints aim to target relevant model improvements and to constrain models' projections based on current climate observations. Here we propose to use - for the first time - 10 years of CALIPSO cloud statistics to assess the ability of the models to represent the vertical structure of tropical low clouds for abnormally warm SST. We use a simulator approach to compare observations and simulations and focus on the low-layered clouds (i.e. z fraction. Vertically, the clouds deepen namely by decreasing the cloud fraction in the lowest levels and increasing it around the top of the boundary-layer. This feature is coincident with an increase of the high-level cloud fraction (z > 6.5km). Although the models' spread is large, the multi-model mean captures the observed variations but with a smaller amplitude. We then employ the GISS model to investigate how changes in cloud parameterizations affect the response of low clouds to warmer SSTs on the one hand; and how they affect the variations of the model's cloud profiles with respect to environmental parameters on the other hand. Finally, we use CALIPSO observations to constrain the model by determining i) what set of parameters allows reproducing the observed relationships and ii) what are the consequences on the cloud feedbacks. These results point toward process-oriented constraints of low-cloud responses to surface warming and environmental

  2. Low level cloud motion vectors from Kalpana-1 visible images

    Indian Academy of Sciences (India)

    . In this paper, an attempt has been made to retrieve low-level cloud motion vectors using Kalpana-1 visible (VIS) images at every half an hour. The VIS channel provides better detection of low level clouds, which remain obscure in thermal IR ...

  3. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    Science.gov (United States)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  4. The impact of meteorology on smoke and low-level clouds over the southeast Atlantic

    Science.gov (United States)

    Adebiyi, Adeyemi A.

    In this dissertation, we use radiosondes and satellite observation, reanalysis datasets, as well as radiative and trajectory models to document the relationship between the low-level clouds, smoke and meteorology over the southeast Atlantic. The southeast Atlantic presents a natural environment with one of the world's largest marine low-level clouds, occurring along with the largest consumption of biomass fire over the adjacent southern African continent. This combination results in an extensive region of above-cloud biomass burning aerosols (predominantly smoke) over the marine low-level clouds, whereby the elevated smoke could lead to the stabilization of the lower troposphere, reduction of the cloud-top entrainment, and the build-up of water vapor within the boundary layer, which may eventually lead to increases in cloud fraction and decreases in cloud-top heights, in a process called semi-direct aerosol effect. The smokes are transported at a preferred altitude (˜750h Pa - 550hPa) by a background easterly winds between July and October. During the same period, strong surface winds and ocean-influenced cold surface temperature characterize the meteorology within the boundary layer. The marine low-level cloud region is also associated with strong climatological subsidence above it, and cloud-top temperature inversion layer. The meteorological variations occurring above and below the low-level clouds are capable of influencing the cloud properties, and therefore may confound with the aerosol effects, making the separation of the aerosol and meteorological influences, on the low-level cloud, a very difficult challenge. We address this problem by identifying the dynamical and thermodynamical variations above the low-level clouds during the the peak aerosol months (July-October). Specifically, three areas are explored in this dissertation: the convolution of the dynamical and moisture effects with shortwave-absorbing aerosols over the low-level clouds; the role of

  5. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  6. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Science.gov (United States)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  7. Subtropical Low Cloud Response to a Warmer Climate in an Superparameterized Climate Model: Part I. Regime Sorting and Physical Mechanisms

    Directory of Open Access Journals (Sweden)

    Peter N Blossey

    2009-07-01

    Full Text Available The subtropical low cloud response to a climate with SST uniformly warmed by 2 K is analyzed in the SP- CAM superparameterized climate model, in which each grid column is replaced by a two-dimensional cloud-resolving model (CRM. Intriguingly, SP-CAM shows substantial low cloud increases over the subtropical oceans in the warmer climate. The paper aims to understand the mechanism for these increases. The subtropical low cloud increase is analyzed by sorting grid-column months of the climate model into composite cloud regimes using percentile ranges of lower tropospheric stability (LTS. LTS is observed to be well correlated to subtropical low cloud amount and boundary layer vertical structure. The low cloud increase in SP-CAM is attributed to boundary-layer destabilization due to increased clear-sky radiative cooling in the warmer climate. This drives more shallow cumulus convection and a moister boundary layer, inducing cloud increases and further increasing the radiative cooling. The boundary layer depth does not change substantially, due to compensation between increased radiative cooling (which promotes more turbulent mixing and boundary-layer deepening and slight strengthening of the boundary-layer top inversion (which inhibits turbulent entrainment and promotes a shallower boundary layer. The widespread changes in low clouds do not appear to be driven by changes in mean subsidence.
    In a companion paper we use column-mode CRM simulations based on LTS-composite profiles to further study the low cloud response mechanisms and to explore the sensitivity of low cloud response to grid resolution in SP-CAM.

  8. Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wang, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wood, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-06-01

    Marine low clouds are a major determinant of the Earth?s albedo and are a major source of uncertainty in how the climate responds to changing greenhouse gas levels and anthropogenic aerosol. Marine low clouds are particularly difficult to simulate accurately in climate models, and their remote locations present a significant observational challenge. A complex set of interacting controlling processes determine the coverage, condensate loading, and microphysical and radiative properties of marine low clouds. Marine low clouds are sensitive to atmospheric aerosol in several ways. Interactions at microphysical scales involve changes in the concentration of cloud droplets and precipitation, which induce cloud dynamical impacts including changes in entrainment and mesoscale organization. Marine low clouds are also impacted by atmospheric heating changes due to absorbing aerosols. The response of marine low clouds to aerosol perturbations depends strongly upon the unperturbed aerosol-cloud state, which necessitates greater understanding of processes controlling the budget of aerosol in the marine boundary layer. Entrainment and precipitation mediate the response of low clouds to aerosols but these processes also play leading roles in controlling the aerosol budget. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) program are making major recent investments in observational data sets from fixed and mobile sites dominated by marine low clouds. This report provides specific action items for how these measurements can be used together with process modeling to make progress on understanding and quantifying the key cloud and aerosol controlling processes in the next 5-10 years. Measurements of aerosol composition and its variation with particle size are needed to advance a quantitative, process-level understanding of marine boundary-layer aerosol budget. Quantitative precipitation estimates

  9. How Difficult is it to Reduce Low-Level Cloud Biases With the Higher-Order Turbulence Closure Approach in Climate Models?

    Science.gov (United States)

    Xu, Kuan-Man

    2015-01-01

    Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC

  10. The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures

    Science.gov (United States)

    Silvers, Levi G.; Paynter, David; Zhao, Ming

    2018-01-01

    Low-level clouds are shown to be the conduit between the observed sea surface temperatures (SST) and large decadal fluctuations of the top of the atmosphere radiative imbalance. The influence of low-level clouds on the climate feedback is shown for global mean time series as well as particular geographic regions. The changes of clouds are found to be important for a midcentury period of high sensitivity and a late century period of low sensitivity. These conclusions are drawn from analysis of amip-piForcing simulations using three atmospheric general circulation models (AM2.1, AM3, and AM4.0). All three models confirm the importance of the relationship between the global climate sensitivity and the eastern Pacific trends of SST and low-level clouds. However, this work argues that the variability of the climate feedback parameter is not driven by stratocumulus-dominated regions in the eastern ocean basins, but rather by the cloudy response in the rest of the tropics.

  11. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    Science.gov (United States)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    . The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.

  12. Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds

    OpenAIRE

    Norgren, Matthew S.; Boer, Gijs; Shupe, Matthew D.

    2018-01-01

    The interactions that occur between aerosols and a mixed-phase cloud system, and the subsequent alteration of the microphysical state of such clouds, is a problem that has yet to be well constrained. Advancing our understanding of aerosol-ice processes is necessary to determine the impact of natural and anthropogenic emissions on Earth’s climate and to improve our capability to predict future climate states. This paper deals specifically with how aerosols influence ice mass production in low-...

  13. The representation of low-level clouds during the West African monsoon in weather and climate models

    Science.gov (United States)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  14. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  15. Ubiquity and impact of thin mid-level clouds in the tropics

    OpenAIRE

    Bourgeois, Quentin; Ekman, Annica M. L.; Igel, Matthew R.; Krejci, Radovan

    2016-01-01

    Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TM...

  16. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  17. The Diversity of Cloud Responses to Twentieth-Century Sea Surface Temperatures

    Science.gov (United States)

    Silvers, L. G.; Paynter, D.; Zhao, M.

    2017-12-01

    Clouds play a crucial role in determining the magnitude of the global temperature response to forcing. Previous work has shown strong connections between cloud feedbacks and climate change, and between these feedbacks and changing patterns of surface temperature. We show that strong variability of the climate feedback parameter is present in three GFDL atmospheric general circulation models (AM2.1, AM3, AM4) over the twentieth century. This variability is highly correlated with the global mean cloud radiative effect (CRE) and low-cloud cover (LCC) anomalies. The decadal variability is characterized by a period of high climate sensitivity (1925-1955) and a period of low climate sensitivity (1975-2005). Observed trends of surface temperature also show distinct differences over these two periods. Although it is the SST that drives the atmospheric response, the estimated inversion strength (EIS) is necessary to reproduce the changing LCC field. During both periods, trends of EIS are shown to closely mirror trends of LCC over much of the globe, not only in the typical stratocumulus regions. Trends of the shortwave CRE (SWCRE), LCC, and the EIS are analyzed in particular geographic regions. All of these regions show a consistent relationship between LCC, SWCRE, and EIS, as well as significant differences between the two time periods. This study uses a 15 member ensemble of amip-piForcing simulations from 1870 -2005. These experiments are driven by observed SST patterns and hold greenhouse gases and other atmospheric forcing agents fixed at constant pre-industrial levels. This allows for a clean analysis of how clouds respond to changing patterns of SST and the resulting influence on the climate feedback parameter. The cloudy response of the atmosphere to changing SST patterns is critical in driving the variability of the climate feedback parameter during periods of both high and low climate sensitivity.

  18. Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment

    Science.gov (United States)

    Bauman, William H., III; Barrett, Joe H., III; Case, Jonathan L.; Wheeler, Mark M.; Baggett, G. Wayne

    2006-01-01

    Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at the Space Shuttle Landing Facility (TTS) to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge for SMG. More specifically, forecasters at SMG are concerned with any rapidly developing clouds/ceilings below 8000 ft in a stable, capped thermodynamic environment. Therefore, the Applied Meteorology Unit (AMU) was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle Flight Rules. The AMU wrote and modified existing code to identify inversions from the morning (-10 UTC) Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog burn-off situations were excluded from the database. In the first phase of this work, only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Phase II of this work includes expanding the database to include nighttime cases which is underway as this abstract is being written. For the nighttime cases, the AMU will analyze both the 00 UTC soundings and the 10 UTC soundings to examine those data for the presence of a low-level inversion. The 00 UTC soundings will probably not have a surface-based inversion, but the presence of inversions or "neutral" layers aloft and below 8,000 ft will most likely help define the stable

  19. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  20. Stable Low Cloud Phase II: Nocturnal Event Study

    Science.gov (United States)

    Bauman, William H., III; Barrett, Joe, III

    2007-01-01

    30% of the low cloud ceiling cases investigated were identified as rapidly developing events. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds/ceilings below 8000 R in a stable, capped thermodynamic environment. Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1994-2005 for nights that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the evening and morning XMR radiosonde during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Nights with precipitation or noticeable fog burn-off situations were excluded from the database. Only the nighttime hours were examined for possible ceiling development events since the daytime events were examined in the first phase of this work. The report presents one sample case of rapidly-developing low cloud ceilings. The case depicts the representative meteorological and thermodynamic characteristics of such events. The case also illustrates how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 6 event nights with rapid low cloud ceiling formation and 80 non-events nights consisting of advection or widespread low cloud ceilings. The teorological conditions

  1. Ubiquity and impact of thin mid-level clouds in the tropics.

    Science.gov (United States)

    Bourgeois, Quentin; Ekman, Annica M L; Igel, Matthew R; Krejci, Radovan

    2016-08-17

    Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TMLCs) are ubiquitous in the tropics. Supported by high-resolution regional model simulations, we find that TMLCs are formed by detrainment from convective clouds near the zero-degree isotherm. Calculations using a radiative transfer model indicate that tropical TMLCs have a cooling effect on climate that could be as large in magnitude as the warming effect of cirrus. We conclude that more effort has to be made to understand TMLCs, as their influence on cloud feedbacks, heat and moisture transport, and climate sensitivity could be substantial.

  2. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    Science.gov (United States)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  3. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.

    Science.gov (United States)

    Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-12-27

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  4. Understanding the Performance of Low Power Raspberry Pi Cloud for Big Data

    Directory of Open Access Journals (Sweden)

    Wajdi Hajji

    2016-06-01

    Full Text Available Nowadays, Internet-of-Things (IoT devices generate data at high speed and large volume. Often the data require real-time processing to support high system responsiveness which can be supported by localised Cloud and/or Fog computing paradigms. However, there are considerably large deployments of IoT such as sensor networks in remote areas where Internet connectivity is sparse, challenging the localised Cloud and/or Fog computing paradigms. With the advent of the Raspberry Pi, a credit card-sized single board computer, there is a great opportunity to construct low-cost, low-power portable cloud to support real-time data processing next to IoT deployments. In this paper, we extend our previous work on constructing Raspberry Pi Cloud to study its feasibility for real-time big data analytics under realistic application-level workload in both native and virtualised environments. We have extensively tested the performance of a single node Raspberry Pi 2 Model B with httperf and a cluster of 12 nodes with Apache Spark and HDFS (Hadoop Distributed File System. Our results have demonstrated that our portable cloud is useful for supporting real-time big data analytics. On the other hand, our results have also unveiled that overhead for CPU-bound workload in virtualised environment is surprisingly high, at 67.2%. We have found that, for big data applications, the virtualisation overhead is fractional for small jobs but becomes more significant for large jobs, up to 28.6%.

  5. Adaptive response after low level irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, I I; Afanasjev, G G; JaGotlib, V; Tereschenko, D G; Tronov, V A; Serebrjany, A M [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Chemical Physics

    1996-02-01

    The experiments conducted on cultured HeLa (tissue culture) cells revealed that there is a limit of dose above which adaptive response was not observed and a limit of dose below which this response was not induced. The exposure of cells in the territories with elevated radiation background leads to genome instability which results in enhanced radiosensitivity. Investigations on the blood lymphocytes of people living in contaminated regions revealed that adaptive response was more significant in children whereas in adults there was slight increase. Acute irradiation serves as a tool revealing the changes that took place in DNA during chronic low level irradiations after Chernobyl disaster. (author).

  6. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  7. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  8. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Science.gov (United States)

    Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Monier, Marie; Szczap, Frédéric; Schwarzenboeck, Alfons; Gayet, Jean-François

    2017-10-01

    This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm-3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m-3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L-1 and 0.025 g m-3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener-Bergeron-Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) - extinction

  9. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Directory of Open Access Journals (Sweden)

    G. Mioche

    2017-10-01

    Full Text Available This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs. We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm−3 on average of small droplets (mean values of 15 µm, with an averaged liquid water content (LWC of 0.2 g m−3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L−1 and 0.025 g m−3 for diameter, particle concentration and ice water content (IWC, respectively. The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener–Bergeron–Findeisen (WBF mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined

  10. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  11. Jovian cloud structure from 5-mu M images

    Science.gov (United States)

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  12. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  13. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  14. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  15. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  16. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

    International Nuclear Information System (INIS)

    Rapp, Anita D; Lebsock, Matthew; L’Ecuyer, Tristan

    2013-01-01

    A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50–80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is ∼0.22 mm d −1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies. (letter)

  17. Low cloud properties influenced by cosmic rays

    Science.gov (United States)

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (climate on Earth.

  18. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low-cloud...... a strong correlation with GCR, which suggests that low-cloud properties observed in these regions are less likely to be contaminated from overlying cloud. The GCR-low cloud correlation cannot easily be explained by internal climate processes, changes in direct solar forcing, or UV-ozone interactions...... properties over the period July 1983 to August 1994 suggests that low clouds are statistically related to two processes, (1) GCR and (2) El Nino-Southern Oscillation (ENSO), with GCR explaining a greater percentage of the total variance. Areas where satellites have an unobstructed view of low cloud possess...

  19. Security in Service Level Agreements for Cloud Computing

    OpenAIRE

    Bernsmed, Karin; JAATUN, Martin Gilje; Undheim, Astrid

    2011-01-01

    The Cloud computing paradigm promises reliable services, accessible from anywhere in the world, in an on-demand manner. Insufficient security has been identified as a major obstacle to adopting Cloud services. To deal with the risks associated with outsourcing data and applications to the Cloud, new methods for security assurance are urgently needed. This paper presents a framework for security in Service Level Agreements for Cloud computing. The purpose is twofold; to help potential Cloud cu...

  20. Persistent solar signatures in cloud cover: spatial and temporal analysis

    International Nuclear Information System (INIS)

    Voiculescu, M; Usoskin, I

    2012-01-01

    A consensus regarding the impact of solar variability on cloud cover is far from being reached. Moreover, the impact of cloud cover on climate is among the least understood of all climate components. This motivated us to analyze the persistence of solar signals in cloud cover for the time interval 1984–2009, covering two full solar cycles. A spatial and temporal investigation of the response of low, middle and high cloud data to cosmic ray induced ionization (CRII) and UV irradiance (UVI) is performed in terms of coherence analysis of the two signals. For some key geographical regions the response of clouds to UVI and CRII is persistent over the entire time interval indicating a real link. In other regions, however, the relation is not consistent, being intermittent or out of phase, suggesting that some correlations are spurious. The constant in phase or anti-phase relationship between clouds and solar proxies over some regions, especially for low clouds with UVI and CRII, middle clouds with UVI and high clouds with CRII, definitely requires more study. Our results show that solar signatures in cloud cover persist in some key climate-defining regions for the entire time period and supports the idea that, if existing, solar effects are not visible at the global level and any analysis of solar effects on cloud cover (and, consequently, on climate) should be done at the regional level. (letter)

  1. Study of tropical clouds feedback to a climate warming as simulated by climate models

    International Nuclear Information System (INIS)

    Brient, Florent

    2012-01-01

    The last IPCC report affirms the predominant role of low cloud-radiative feedbacks in the inter-model spread of climate sensitivity. Understanding the mechanisms that control the behavior of low-level clouds is thus crucial. However, the complexity of coupled ocean-atmosphere models and the large number of processes potentially involved make the analysis of this response difficult. To simplify the analysis and to identify the most critical controls of cloud feedbacks, we analyze the cloud response to climate change simulated by the IPSL-CM5A model in a hierarchy of configurations. A comparison between three model configurations (coupled, atmospheric and aqua-planet) using the same physical parametrizations shows that the cloud response to global warming is dominated by a decrease of low clouds in regimes of moderate subsidence. Using a Single Column Model, forced by weak subsidence large-scale forcing, allows us to reproduce the vertical cloud profile predicted in the 3D model, as well as its response to climate change (if a stochastic forcing is added on vertical velocity). We analyze the sensitivity of this low-cloud response to external forcing and also to uncertain parameters of physical parameterizations involved on the atmospheric model. Through a moist static energy (MSE) budget, we highlight several mechanisms: (1) Robust: Over weak subsidence regimes, the Clausius-Clapeyron relationship predicts that a warmer atmosphere leads to a increase of the vertical MSE gradient, resulting on a strengthening of the import of low-MSE from the free atmosphere into the cloudy boundary layer. The MSE budget links changes of vertical advection and cloud radiative effects. (2) Physics Model Dependent: The coupling between shallow convection, turbulence and cloud schemes allows the intensification of low-MSE transport so that cloud radiative cooling becomes 'less necessary' to balance the energy budget (Robust positive low cloud-radiative feedback for the model). The

  2. Electron Cloud at Low Emittance in CesrTA

    CERN Document Server

    Palmer, Mark; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; Livezey, Jesse; Lyndaker, Aaron; Makita, Junki; McDonald, Michael; Medjidzade, Valeri; Meller, Robert; O'Connell, Tim; Peck, Stuart; Peterson, Daniel; Ramirez, Gabriel; Rendina, Matthew; Revesz, Peter; Rider, Nate; Rice, David; Rubin, David; Sagan, David; Savino, James; Schwartz, Robert; Seeley, Robert; Sexton, James; Shanks, James; Sikora, John; Smith, Eric; Strohman, Charles; Williams, Heather; Antoniou, Fanouria; Calatroni, Sergio; Gasior, Marek; Jones, Owain Rhodri; Papaphilippou, Yannis; Pfingstner, Juergen; Rumolo, Giovanni; Schmickler, Hermann; Taborelli, Mauro; Asner, David; Boon, Laura; Garfinkel, Arthur; Byrd, John; Celata, Christine; Corlett, John; De Santis, Stefano; Furman, Miguel; Jackson, Alan; Kraft, Rick; Munson, Dawn; Penn, Gregory; Plate, David; Venturini, Marco; Carlson, Benjamin; Demma, Theo; Dowd, Rohan; Flanagan, John; Jain, Puneet; Kanazawa, Ken-ichi; Kubo, Kiyoshi; Ohmi, Kazuhito; Sakai, Hiroshi; Shibata, Kyo; Suetsugu, Yusuke; Tobiyama, Makoto; Gonnella, Daniel; Guo, Weiming; Harkay, Katherine; Holtzapple, Robert; Jones, James; Wolski, Andrzej; Kharakh, David; Ng, Johnny; Pivi, Mauro; Wang, Lanfa; Ross, Marc; Tan, Cheng-Yang; Zwaska, Robert; Schachter, Levi; Wilkinson, Eric

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud’s effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results

  3. The response of filamentary and spherical clouds to the turbulence and magnetic field

    Science.gov (United States)

    Gholipour, Mahmoud

    2018-05-01

    Recent observations have revealed that there is a power-law relation between magnetic field and density in molecular clouds. Furthermore, turbulence has been observed in some regions of molecular clouds and the velocity dispersion resulting from the turbulence is found to correlate with to the cloud density. Relating to these observations, in this study, we model filamentary and spherical clouds in magnetohydrostatic equilibrium in two quiescent and turbulent regions. The proposed equations are expected to represent the impact of magnetic field and turbulence on the cloud structure and the relation of cloud mass with shape. The Virial theorem is applied to consider the cloud evolution leading to important conditions for equilibrium of the cloud over its lifetime. The obtained results indicate that under the same conditions of the magnetic field and turbulence, each shape presents different responses. The possible ways for the formation of massive cores or coreless clouds in some regions as well as the formation of massive stars or low-mass stars can be discussed based on the results of this study. It should be mentioned that the shape of the clouds plays an important role in the formation of the protostellar clouds as well as their structure and evolution. This role is due to the effects of magnetic fields and turbulence.

  4. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  5. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  6. Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water clouds in Northern Finland

    Directory of Open Access Journals (Sweden)

    H. Lihavainen

    2008-12-01

    Full Text Available Physical and chemical properties of boundary layer clouds, together with relevant aerosol properties, were investigated during the first Pallas Cloud Experiment (First Pace conducted in northern Finland between 20 October and 9 November 2004. Two stations located 6 km apart from each other at different altitudes were employed in measurements. The low-altitude station was always below the cloud layer, whereas the high-altitude station was inside clouds about 75% of the time during the campaign. Direct measurements of cloud droplet populations showed that our earlier approach of determining cloud droplet residual particle size distributions and corresponding activated fractions using continuous aerosol number size distribution measurements at the two stations is valid, as long as the cloud events are carefully screened to exclude precipitating clouds and to make sure the same air mass has been measured at both stations. We observed that a non-negligible fraction of cloud droplets originated from Aitken mode particles even at moderately-polluted air masses. We found clear evidence on first indirect aerosol effect on clouds but demonstrated also that no simple relation between the cloud droplet number concentration and aerosol particle number concentration exists for this type of clouds. The chemical composition of aerosol particles was dominated by particulate organic matter (POM and sulphate in continental air masses and POM, sodium and chlorine in marine air masses. The inorganic composition of cloud water behaved similarly to that of the aerosol phase and was not influenced by inorganic trace gases.

  7. Cloud Computing: The Level of Awareness Amongst Small & Medium-sized Enterprises (SMEs) in Developing Economies

    DEFF Research Database (Denmark)

    Yeboah-Boateng, Ezer Osei; Essandoh, Kofi Asare

    2013-01-01

    Cloud computing services are being touted as a major enabler for small businesses lately. This new paradigm is seen to offer unique opportunities to small and medium enterprises (SMEs) worldwide and developing economies are no exception. It presents SMEs access to similar technologies available...... indicated that a slight majority of the respondents were familiar with cloud computing on the individual level but the level of awareness amongst the larger SME industry was low to medium. The finding therefore recommends education and sensitization on cloud computing in order to increase awareness...... to their larger counterparts and those in the developed world which inherently creates innovativeness, increases competitive advantage and impacts their operations and processes. This paper seeks to determine the level of awareness and familiarity with this emerging computing paradigm. The results of the study...

  8. analysis of spatial-temporal variations and driving force of low cloud in northern China

    Science.gov (United States)

    Niu, Xiaorui; Wang, Shuyu

    2015-04-01

    Cloud plays a crucial role in the climate system, and better understanding of its characteristics and formation mechanism are essential to study the climate system, improve the performance of climate models, and to provide scientific basis on conducting weather modification activities and better using water resources for the purpose of improving the local climate and ecological environment. During 1961 to 2005, decrease trend is detected for the total cloud amount over most parts of northern China, while increase trend is found for the low cloud amount with significant regionality. Both station and ISCCP D2 datasets present similar spatial distributions and interdecadal variation of high cloud. However two datasets show different characters for those of low cloud. Three typical sub-regions are chosen considering their underlying surface features and the temporal trend of low cloud amount, over which the interdecadal variations of low cloud amount in three regions are systematically investigated. The analyses show the strong regionality and seasonality in low cloud amount's temporal variations and trend, and quasi-biannual oscillations are observed in low cloud amount in three regions in the past 45 years. The relationships between 500 hPa circulation indexes and low cloud over the three regions are examined by means of singular value decomposition (SVD). The results show that the summer low cloud amount in Xinjiang is closely related with the Subtropical High, the Tibetan Plateau and Polar Vortex, and the autumn low cloud amount in North China is affected by the area of Subtropical High and intensity of Polar Vortex. For northeast China the controlling factor that affects the spring low cloud amount is the area of Polar Vortex in quadrant ⅳ(30°W-60°E).

  9. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  10. Islands in the Sky: Ecophysiological Cloud-Vegetation Linkages in Southern Appalachian Mountain Cloud Forests

    Science.gov (United States)

    Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.

    2013-12-01

    Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum

  11. Observed Correlation between Aerosol and Cloud Base Height for Low Clouds at Baltimore and New York, United States

    Directory of Open Access Journals (Sweden)

    Sium Gebremariam

    2018-04-01

    Full Text Available The correlation between aerosol particulate matter with aerodynamic diameter ≤2.5 μ m (PM2.5 and cloud base height (CBH of low clouds (CBH lower than 1.5 km a.g.l. at Baltimore and New York, United States, for an 8 year period (2007–2014 was investigated using information from the Automated Surface Observing System (ASOS observations and collocated U.S. Environmental Protection Agency (EPA observations. The lifting condensation level (LCL heights were calculated and compared with the CBH. The monthly average observations show that PM2.5 decreases from 2007 to 2014 while there is no significant trend found for CBH and LCL. The variability of the LCL height agrees well with CBH but LCL height is systematically lower than CBH (~180 m lower. There was a significant negative correlation found between CBH–LCL and PM2.5. All of the cloud cases were separated into polluted and clean conditions based on the distribution of PM2.5 values. The distributions of CBH–LCL in the two groups show more cloud cases with smaller CBH–LCL in polluted conditions than in clean conditions.

  12. On the relationship between low cloud variability and lower tropospheric stability in the Southeast Pacific

    Directory of Open Access Journals (Sweden)

    F. Sun

    2011-09-01

    Full Text Available In this study, we examine marine low cloud cover variability in the Southeast Pacific and its association with lower-tropospheric stability (LTS across a spectrum of timescales. On both daily and interannual timescales, LTS and low cloud amount are very well correlated in austral summer (DJF. Meanwhile in winter (JJA, when ambient LTS increases, the LTS–low cloud relationship substantially weakens. The DJF LTS–low cloud relationship also weakens in years with unusually large ambient LTS values. These are generally strong El Niño years, in which DJF LTS values are comparable to those typically found in JJA. Thus the LTS–low cloud relationship is strongly modulated by the seasonal cycle and the ENSO phenomenon. We also investigate the origin of LTS anomalies closely associated with low cloud variability during austral summer. We find that the ocean and atmosphere are independently involved in generating anomalies in LTS and hence variability in the Southeast Pacific low cloud deck. This highlights the importance of the physical (as opposed to chemical component of the climate system in generating internal variability in low cloud cover. It also illustrates the coupled nature of the climate system in this region, and raises the possibility of cloud feedbacks related to LTS. We conclude by addressing the implications of the LTS–low cloud relationship in the Southeast Pacific for low cloud feedbacks in anthropogenic climate change.

  13. Low cloud properties influenced by cosmic rays

    DEFF Research Database (Denmark)

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth....

  14. SERVICE AND SECURITY MONITORING IN CLOUD

    Directory of Open Access Journals (Sweden)

    Cristian IVANUŞ

    2015-05-01

    Full Text Available In the cloud computing context, Quality of Software (QoS is defined as the extent to which user requirements are met by the providers of cloud resources. Users can define their requirements using low level metrics such as processing power of the Central Processing Unit (CPU or the amount of memory for a virtual machine, but they are interested in defining their requirements using more abstract concepts at a higher level, such as response time and service availability. Increasing complexity, size and number of areas in which cloud penetrated makes it difficult for anticipating how the system will behave. Because of this, different research groups have started to work on QoS level fields for defining the conditions that must be accomplished by a service in order to be delivered. Likewise, it was invested effort in developing of means for managing and assessing efficiently the status of these conditions.

  15. Slow Cooling in Low Metallicity Clouds: An Origin of Globular Cluster Bimodality?

    Science.gov (United States)

    Fernandez, Ricardo; Bryan, Greg L.

    2018-05-01

    We explore the relative role of small-scale fragmentation and global collapse in low-metallicity clouds, pointing out that in such clouds the cooling time may be longer than the dynamical time, allowing the cloud to collapse globally before it can fragment. This, we suggest, may help to explain the formation of the low-metallicity globular cluster population, since such dense stellar systems need a large amount of gas to be collected in a small region (without significant feedback during the collapse). To explore this further, we carry out numerical simulations of low-metallicity Bonner-Ebert stable gas clouds, demonstrating that there exists a critical metallicity (between 0.001 and 0.01 Z⊙) below which the cloud collapses globally without fragmentation. We also run simulations including a background radiative heating source, showing that this can also produce clouds that do not fragment, and that the critical metallicity - which can exceed the no-radiation case - increases with the heating rate.

  16. Physiological responses to four hours of low-level repetitive work

    DEFF Research Database (Denmark)

    Garde, A Helene; Hansen, Åse Marie; Jensen, Bente R

    2003-01-01

    OBJECTIVES: The study investigated physiological responses to 4 hours of standardized low-level repetitive work. It was hypothesized that accumulative effects not observed after 1 hour could be found after 4 hours of repetitive work. METHODS: Ten healthy women performed intermittent (5 seconds + 5...... muscle activity during a mental reference task with low exerted force indicated attention-related muscle activity. Finally, it was indicated that repetitive work including high demands for attention is performed at the expense of the precision of the exerted force....... seconds) handgrip contractions at 10% of the maximal voluntary contraction combined with mental demands for concentration and attention. Muscle activity in the working forearm muscles, cardiovascular responses, and concentrations of biomarkers in biological fluids were recorded along with exerted force...

  17. Investigating a solar influence on cloud cover using the North American Regional Reanalysis data

    Directory of Open Access Journals (Sweden)

    Krahenbuhl Daniel Scott

    2015-01-01

    Full Text Available The controversial connection between cosmic rays, solar activity, and cloud cover is investigated using a climatological reconstructed reanalysis product: the North American Regional Reanalysis which provides high-resolution, low, mid-level, high, and total cloud cover data over a Lambert conformal conic projection permitting land/ocean discrimination. Pearson’s product-moment regional correlations were obtained between monthly cloud cover data and solar variability indicators, cosmic ray neutron monitors, several climatological indices, including the Atlantic Multidecadal Oscillation (AMO, and between cloud layers. Regions of the mid-latitude oceans exhibited a positive correlation with cosmic ray flux. Additionally, this maritime low cloud cover exhibits the only failed correlation significance with other altitudes. The cross correlation reveals that cloud cover is positively correlated everywhere but for ocean low cloud cover, supporting the unique response of the marine layer. The results of this investigation suggest that with the assumption that solar forcing does impact cloud cover, measurements of solar activity exhibits a slightly higher correlation than GCRs. The only instance where GCRs exhibit a positive regional correlation with cloud cover is for maritime low clouds. The AMO exerts the greatest control of cloud cover in the NARR domain.

  18. Low power offloading strategy for femto-cloud mobile network

    Directory of Open Access Journals (Sweden)

    Anwesha Mukherjee

    2016-03-01

    Full Text Available Nowadays offloading is a popular method of mobile cloud computing where the required computation takes place remotely inside the cloud. But whether to process an application inside the mobile device or to the cloud is a challenging issue because communication with the cloud involves latency and power consumption. This paper has proposed a method of decision making regarding whether to offload or not-to-offload an application to the cloud. According to the proposed strategy, application is offloaded only if it results in lower power consumption than local execution within the mobile device itself. If this condition is satisfied, computation time and deadline of the job are considered as the basic parameters to decide whether to offload or not. Experimental results demonstrate that the proposed offloading algorithm reduces the power consumption to approximately 3–32%. To achieve power-efficiency and security both, femto-cloud architecture is used in the proposed work. In this case offloading from the mobile device to the cloud takes place through the low power and secure femtocell base station. Simulation results present that using femto-cloud architecture 70–83% and 52–66% power savings are achieved than using macrocell and microcell base stations respectively while offloading an application to the cloud.

  19. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  20. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  1. Technical responsibilities in low-level waste disposal

    International Nuclear Information System (INIS)

    Murray, R.L.; Walker, C.K.

    1989-01-01

    North Carolina will be the host state for a low-level radioactive waste (LLRW) disposal facility serving the Southeast Compact for 20 yr beginning in 1993. Primary responsibility for the project rests with the North Carolina Low-Level Radioactive Waste Management Authority, a citizen board. The North Carolina project embodies a unique combination of factors that places the authority in a position to exercise technical leadership in the LLRW disposal field. First, the Southeast Compact is the largest in the United States in terms of area, population, and waste generation. second, it is in a humid rather than an arid region. Third, the citizens of the state are intensely interested in preserving life style, environment, and attractiveness of the region to tourists and are especially sensitive to the presence of waste facilities of any kind. Finally, disposal rules set by the Radiation Protection Commission and enforced by the Radiation Protection Section are stricter than the U.S. Nuclear Regulatory Commission's 10CFR61. These four factors support the authority's belief that development of the facility cannot be based solely on engineering and economics, but that social factors, including perceptions of human risk, concerns for the environment, and opinions about the desirability of hosting a facility, should be integral to the project. This philosophy guides the project's many technical aspects, including site selection, site characterization, technology selection and facility design, performance assessment modeling, and waste reduction policies. Each aspect presents its own unique problems

  2. Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading

    Directory of Open Access Journals (Sweden)

    G. Dagan

    2017-06-01

    Full Text Available Large eddy simulations (LESs with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation and cooling of the upper part (net evaporation. Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect. On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability. The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.

  3. Enhancing Security by System-Level Virtualization in Cloud Computing Environments

    Science.gov (United States)

    Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei

    Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.

  4. If It's in the Cloud, Get It on Paper: Cloud Computing Contract Issues

    Science.gov (United States)

    Trappler, Thomas J.

    2010-01-01

    Much recent discussion has focused on the pros and cons of cloud computing. Some institutions are attracted to cloud computing benefits such as rapid deployment, flexible scalability, and low initial start-up cost, while others are concerned about cloud computing risks such as those related to data location, level of service, and security…

  5. Responses to the low-level-radiation controversy

    International Nuclear Information System (INIS)

    Bond, V.P.

    1981-01-01

    Some data sets dealing with the hazards of low-level radiation are discussed. It is concluded that none of these reports, individually or collectively, changes appreciably or even significantly the evaluations of possible low-level radiation effects that have been made by several authoritative national and international groups

  6. Low-Complexity Scheduling and Power Adaptation for Coordinated Cloud-Radio Access Networks

    KAUST Repository

    Douik, Ahmed

    2017-07-17

    In practical wireless systems, the successful implementation of resource allocation techniques strongly depends on the algorithmic complexity. Consider a cloud-radio access network (CRAN), where the central cloud is responsible for scheduling devices to the frames’ radio resources blocks (RRBs) of the single-antenna base-stations (BSs), adjusting the transmit power levels, and for synchronizing the transmit frames across the connected BSs. Previous studies show that the jointly coordinated scheduling and power control problem in the considered CRAN can be solved using an approach that scales exponentially with the number of BSs, devices, and RRBs, which makes the practical implementation infeasible for reasonably sized networks. This paper instead proposes a low-complexity solution to the problem, under the constraints that each device cannot be served by more than one BS but can be served by multiple RRBs within each BS frame, and under the practical assumption that the channel is constant during the duration of each frame. The paper utilizes graph-theoretical based techniques and shows that constructing a single power control graph is sufficient to obtain the optimal solution with a complexity that is independent of the number of RRBs. Simulation results reveal the optimality of the proposed solution for slow-varying channels, and show that the solution performs near-optimal for highly correlated channels.

  7. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    Science.gov (United States)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  8. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  9. Low-Complexity Scheduling and Power Adaptation for Coordinated Cloud-Radio Access Networks

    KAUST Repository

    Douik, Ahmed; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    In practical wireless systems, the successful implementation of resource allocation techniques strongly depends on the algorithmic complexity. Consider a cloud-radio access network (CRAN), where the central cloud is responsible for scheduling

  10. Low density molecular cloud in the vicinity of the Pleiades

    International Nuclear Information System (INIS)

    Federman, S.R.; Wilson, R.F.

    1984-01-01

    The central region of a small, low density molecular cloud, which lies to the south of the Pleiades cluster, has been studied through the use of molecular line observations. Column densities for CH, OH, 12 CO, and 13 CO are derived from the radio data. The CH and OH data yield a visual extinction through the center of the cloud of about 3 mag. The ratio of the antenna temperatures for the OH main lines is consistent with optically thin emission; therefore, the OH results are a good indication of the total extinction through the optically thin emission; therefore, the OH results are a good indication of the total extinction through the cloud. The analysis of the carbon monoxide data produces a relatively high kinetic temperature of at least 20 K, a low total gas density of approx.300-500 cm -3 , and a column density of approx.4 x 10 17 cm -2 for 12 CO. Thus this small molecular cloud is not typical of the molecular material generally studied in Taurus

  11. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  12. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  13. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  14. Dose response curves for effects of low-level radiation

    International Nuclear Information System (INIS)

    Myers, D.K.

    1980-01-01

    The linear dose-response model used by international committees to assess the genetic and carcinogenic hazards of low-level radiation appears to be the most reasonable interpretation of the available scientific data that are relevant to this topic. There are, of course, reasons to believe that this model may overestimate radiation hazards in certain instances, a fact acknowledged in recent reports of these committees. The linear model is now also being utilized to estimate the potential carcinogenic hazards of other agents such as asbestos and polycyclic aromatic hydrocarbons. This model implies that there is no safe dose for any of these agents and that potential health hazards will increase in direct proportion to total accumulated dose. The practical implication is the recommendation that all exposures should be kept 'as low as reasonably achievable, economic and social factors being taken into account'. (auth)

  15. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  16. Hybrid Scheduling/Signal-Level Coordination in the Downlink of Multi-Cloud Radio-Access Networks

    KAUST Repository

    Douik, Ahmed

    2016-03-28

    In the context of resource allocation in cloud- radio access networks, recent studies assume either signal-level or scheduling-level coordination. This paper, instead, considers a hybrid level of coordination for the scheduling problem in the downlink of a multi-cloud radio- access network, so as to benefit from both scheduling policies. Consider a multi-cloud radio access network, where each cloud is connected to several base-stations (BSs) via high capacity links, and therefore allows joint signal processing between them. Across the multiple clouds, however, only scheduling-level coordination is permitted, as it requires a lower level of backhaul communication. The frame structure of every BS is composed of various time/frequency blocks, called power- zones (PZs), and kept at fixed power level. The paper addresses the problem of maximizing a network-wide utility by associating users to clouds and scheduling them to the PZs, under the practical constraints that each user is scheduled, at most, to a single cloud, but possibly to many BSs within the cloud, and can be served by one or more distinct PZs within the BSs\\' frame. The paper solves the problem using graph theory techniques by constructing the conflict graph. The scheduling problem is, then, shown to be equivalent to a maximum- weight independent set problem in the constructed graph, in which each vertex symbolizes an association of cloud, user, BS and PZ, with a weight representing the utility of that association. Simulation results suggest that the proposed hybrid scheduling strategy provides appreciable gain as compared to the scheduling-level coordinated networks, with a negligible degradation to signal-level coordination.

  17. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  18. Response to marine cloud brightening in a multi-model ensemble

    Directory of Open Access Journals (Sweden)

    C. W. Stjern

    2018-01-01

    Full Text Available Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP. The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF amounts to −1.9 W m−2, with a substantial inter-model spread of −0.6 to −2.5 W m−2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069 −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.

  19. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    Science.gov (United States)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  20. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; De Santis, Stefano; Sonnad, Kiran; Caspers, Fritz; Kroyer, Tom; Krasnykh, Anatoly; Pivi, Mauro

    2008-06-01

    Clouds of low energy electronsin the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energyelectron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  1. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  2. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  3. The response of clouds and aerosols to cosmic ray decreases

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, Martin Andreas Bødker; Shaviv, N. J.

    2016-01-01

    A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response in physi......A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response...... in physical and micro-physical cloud parameters to FDs. The test is subsequently applied to one ground based and three satellite based datasets. Responses (> 95%) to FDs are found in the following parameters of the analyzed datasets. AERONET: Ångström exponent (cloud condensation nuclei changes), SSM...... with the strength of the FDs, and the signs and magnitudes of the responses agree with model based expectations. The effect is mainly seen in liquid clouds. An impact through changes in UV driven photo chemistry is shown to be negligible and an impact via UV absorption in the stratosphere is found to have no effect...

  4. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    Science.gov (United States)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla

    2011-01-01

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  5. Low-dose radiation effects on the evolution of chronic dystrophical processes in cornea and clouding of crystalline lens

    International Nuclear Information System (INIS)

    Gajdaj, Yu.V.; Gajdaj, V.M.

    1993-01-01

    Low-dose radiation effects on the course of chronic dystrophical processes in cornea and the dynamics of crystalline lens clouding of involution age genesis are investigated in the patients participated in Chernobyl accident response. Examples of the concrete pathological cases are considered. It was stated that the above dose effects led to exacerbation of the chronic slack dystrophical processes in cornea and intensification of the development of cornea primary dystrophy. In a number of cases the intensification of development of crystalline lens clouding takes place resulted in the cataract for 2-3 years

  6. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    Science.gov (United States)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C. R.

    2010-12-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model

  7. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  8. A biological basis for the linear non-threshold dose-response relationship for low-level carcinogen exposure

    International Nuclear Information System (INIS)

    Albert, R.E.

    1981-01-01

    This chapter examines low-level dose-response relationships in terms of the two-stage mouse tumorigenesis model. Analyzes the feasibility of the linear non-threshold dose-response model which was first adopted for use in the assessment of cancer risks from ionizing radiation and more recently from chemical carcinogens. Finds that both the interaction of B(a)P with epidermal DNA of the mouse skin and the dose-response relationship for the initiation stage of mouse skin tumorigenesis showed a linear non-threshold dose-response relationship. Concludes that low level exposure to environmental carcinogens has a linear non-threshold dose-response relationship with the carcinogen acting as an initiator and the promoting action being supplied by the factors that are responsible for the background cancer rate in the target tissue

  9. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, RT [University of Washington; Protat, A [Australian Bureau of Meterology; Alexander, SP [Australian Antarctic Division

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  10. California's response to the Low-Level Radioactive Waste Policy Act of 1980: policy and progress

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1985-01-01

    The public and private corporations and institutions in California that use radioactive materials and generate low-level radioactive waste have played a major role in shaping and guiding California's response to the federal Low-Level Radioactive Waste Policy Act of 1980. Working together as the California Radioactive Materials Management Forum (CAL RAD FORUM), these organizations carry out legislative and public education programs with the objective of establishing, in California, a low-level radioactive waste disposal facility and maintaining access to existing disposal facilities in other states until the California facility is licensed and operating

  11. Large-Scale Control of the Arabian Sea Summer Monsoon Inversion and Low Clouds: A New Perspective

    Science.gov (United States)

    Wu, C. H.; Wang, S. Y.; Hsu, H. H.; Hsu, P. C.

    2016-12-01

    The Arabian Sea undergoes a so-called summer monsoon inversion that reaches the maximum intensity in August associated with a large amount of low-level clouds. The formation of inversion and low clouds was generally thought to be a local system influenced by the India-Pakistan monsoon advancement. New empirical and numerical evidence suggests that, rather than being a mere byproduct of the nearby monsoon, the Arabian Sea monsoon inversion is coupled with a broad-scale monsoon evolution connected across the Africa Sahel, South Asia, and the East Asia-western North Pacific (WNP). Several subseasonal variations occur in tandem: The eastward expansion of the Asian-Pacific monsoonal heating likely suppresses the India-Pakistan monsoon while enhancing low-level thermal inversion of Arabian Sea; the upper-tropospheric anticyclone in South Asia weakens in August smoothing zonal contrast in geopotential heights (10°N-30°N); the subtropical WNP monsoon trough in the lower troposphere that signals the revival of East Asian summer monsoon matures in August; the Sahel rainfall peaks in August accompanied by an intensified tropical easterly jet. The occurrence of the latter two processes enhances upper-level anticyclones over Africa and WNP and this, in turn, induces subsidence in between over the Arabian Sea. Numerical experiments demonstrate the combined effect of the African and WNP monsoonal heating on the enhancement of the Arabian Sea monsoon inversion. Connection is further found in the interannual and decadal variations between the East Asian-WNP monsoon and the Arabian Sea monsoon inversion. In years with reduced low clouds of Arabian Sea, the East Asian midlatitude jet stream remains strong in August while the WNP monsoon trough appears to be weakened. The Arabian Sea inversion (ridge) and WNP trough pattern which forms a dipole structure, is also found to have intensified since the 21st century.

  12. Towards Smart Homes Using Low Level Sensory Data

    Directory of Open Access Journals (Sweden)

    Young-Koo Lee

    2011-12-01

    Full Text Available Ubiquitous Life Care (u-Life care is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules.

  13. Summertime Low-Level Jets over the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Stensrud, D.J. [NOAA/ERL/National Severe Storms Lab., Norman, OK (United States); Pfeifer, S. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  14. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  15. Daytime Low Stratiform Cloud Detection on AVHRR Imagery

    Directory of Open Access Journals (Sweden)

    Jan Pawel Musial

    2014-06-01

    Full Text Available The near-real time retrieval of low stratiform cloud (LSC coverage is of vital interest for such disciplines as meteorology, transport safety, economy and air quality. Within this scope, a novel methodology is proposed which provides the LSC occurrence probability estimates for a satellite scene. The algorithm is suited for the 1 × 1 km Advanced Very High Resolution Radiometer (AVHRR data and was trained and validated against collocated SYNOP observations. Utilisation of these two combined data sources requires a formulation of constraints in order to discriminate cases where the LSC is overlaid by higher clouds. The LSC classification process is based on six features which are first converted to the integer form by step functions and combined by means of bitwise operations. Consequently, a set of values reflecting a unique combination of those features is derived which is further employed to extract the LSC occurrence probability estimates from the precomputed look-up vectors (LUV. Although the validation analyses confirmed good performance of the algorithm, some inevitable misclassification with other optically thick clouds were reported. Moreover, the comparison against Polar Platform System (PPS cloud-type product revealed superior classification accuracy. From the temporal perspective, the acquired results reported a presence of diurnal and annual LSC probability cycles over Europe.

  16. Overview of MPLNET Version 3 Cloud Detection

    Science.gov (United States)

    Lewis, Jasper R.; Campbell, James; Welton, Ellsworth J.; Stewart, Sebastian A.; Haftings, Phillip

    2016-01-01

    The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.

  17. Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. 11. Solar longitude dependent circulation

    International Nuclear Information System (INIS)

    Limaye, S.S.

    1988-01-01

    Pioneer Venus Orbiter images obtained in 1982 indicate a marked solar-locked dependence of cloud level circulation in both averaged cloud motions and cloud layer UV reflectivity. An apparent relationship is noted between horizontal divergence and UV reflectivity: the highest reflectivities are associated with regions of convergence at high latitudes, while lower values are associated with equatorial latitude regions where the motions are divergent. In solar-locked coordinates, the rms deviation of normalized UV brightness is higher at 45-deg latitudes than in equatorial regions. 37 references

  18. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    Science.gov (United States)

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  19. Observation of Clouds Using the CSIR Transportable LIDAR: A Case Study over Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Lerato Shikwambana

    2016-01-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR transportable Light Detection And Ranging (LIDAR was used to collect data over Durban (29.9°S, 30.9°E during 20–23 November 2012. Aerosol measurements have been carried out in the past over Durban; however, no cloud measurements using LIDAR have ever been performed. Therefore, this study further motivates the continuation of LIDAR for atmospheric research over Durban. Low level clouds were observed on 20–22 November 2012 and high level clouds were observed on 23 November 2012. The low level cloud could be classified as stratocumulus clouds, whereas the high level clouds could be classified as cirrus clouds. Low level cloud layers showed high extinction coefficients values ranging between 0.0009 and 0.0044 m−1, whereas low extinction coefficients for high level clouds were observed at values ranging between 0.000001 and 0.000002 m−1. Optical depth showed a high variability for 20 and 21 November 2012. This indicates a change in the composition and/or thickness of the cloud. For 22 and 23 November 2012, almost similar values of optical depth were observed. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO revealed high level clouds while the CSIR LIDAR could not. However, the two instruments complement each other well to describe the cloudy condition.

  20. Inverse modeling of cloud-aerosol interactions -- Part 1: Detailed response surface analysis

    NARCIS (Netherlands)

    Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Gorea, D.; Sooroshian, A.

    2011-01-01

    New methodologies are required to probe the sensitivity of parameters describing cloud droplet activation. This paper presents an inverse modeling-based method for exploring cloud-aerosol interactions via response surfaces. The objective function, containing the difference between the measured and

  1. Pointo - a Low Cost Solution to Point Cloud Processing

    Science.gov (United States)

    Houshiar, H.; Winkler, S.

    2017-11-01

    With advance in technology access to data especially 3D point cloud data becomes more and more an everyday task. 3D point clouds are usually captured with very expensive tools such as 3D laser scanners or very time consuming methods such as photogrammetry. Most of the available softwares for 3D point cloud processing are designed for experts and specialists in this field and are usually very large software packages containing variety of methods and tools. This results in softwares that are usually very expensive to acquire and also very difficult to use. Difficulty of use is caused by complicated user interfaces that is required to accommodate a large list of features. The aim of these complex softwares is to provide a powerful tool for a specific group of specialist. However they are not necessary required by the majority of the up coming average users of point clouds. In addition to complexity and high costs of these softwares they generally rely on expensive and modern hardware and only compatible with one specific operating system. Many point cloud customers are not point cloud processing experts or willing to spend the high acquisition costs of these expensive softwares and hardwares. In this paper we introduce a solution for low cost point cloud processing. Our approach is designed to accommodate the needs of the average point cloud user. To reduce the cost and complexity of software our approach focuses on one functionality at a time in contrast with most available softwares and tools that aim to solve as many problems as possible at the same time. Our simple and user oriented design improve the user experience and empower us to optimize our methods for creation of an efficient software. In this paper we introduce Pointo family as a series of connected softwares to provide easy to use tools with simple design for different point cloud processing requirements. PointoVIEWER and PointoCAD are introduced as the first components of the Pointo family to provide a

  2. Venus winds at cloud level from VIRTIS during the Venus Express mission

    Science.gov (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  3. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    Atmospheric partitioning and transport of low volatile organic compounds is strongly influenced by the presence of water (e.g. clouds) and its deposition velocity (e.g. rainfall, snow). It was identified that the assumption of continuous rainfall underestimates the residence time and the transport....... The longer residence time predicted for some compounds in the LMT is due to the capacity of clouds to sorb non-volatile molecules in the liquid water and at the interface of cloud droplets. The efficiency of wet deposition to remove low volatile organic pollutants from the atmosphere is limited primarily...

  4. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    2003-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation-induced cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary, depending on the type of cancer in queation, the dose, dose rate, and LET of the radiation, the age, sex, and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advncing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is more plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (authors)

  5. Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM.

    Science.gov (United States)

    Elmegreen, Bruce G; Rubio, Monica; Hunter, Deidre A; Verdugo, Celia; Brinks, Elias; Schruba, Andreas

    2013-03-28

    Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

  6. Coastal fog and low cloud spatial patterns: do they indicate potential biodiversity refugia?

    Science.gov (United States)

    Torregrosa, A.

    2016-12-01

    Marine fog and low clouds transfer water and nutrients to coastal ecosystems through advection from the ocean and reduce heat effects by reflecting incoming shortwave radiation. These effects are known to benefit many species, vegetation communities, and habitats such as coastal redwood trees and their understory, maritime chaparral, and coastal streams harboring endangered salmon species. The California floristic region is the highest ranked hotspot in the U.S. and ranked 7th of 35 biodiversity hotspots worldwide in terms of the percent of its plant species that are found nowhere else (endemic). Many environmental drivers have been identified as contributing to California's remarkably high endemism and biodiversity, however, coastal low clouds have not typically been included. This could be due to the lack of data such as high resolution maps of coastal low cloud occurrence or the lack of long term records. Using a recent analysis of hourly National Weather Service satellite data, a stability index (SI) for coastal fog and low cloud cover was derived using two measures of variation and average summertime cloud cover to quantify long term spatial stability trends. Several discrete spatial clumps were identified that had both high temporal stability and high coastal low cloud cover. These areas show a strong correlation with a specific topographic landscape configuration with respect to wind direction. Point occurrence distribution maps of endemic coastal species were overlain with the SI to explore spatial correlation. The federally endangered species that showed very high spatial correlation included Yadon's Rein-orchid (Piperia yadonii), Monterey Spineflower (Chorizanthe pungens var. pungens), and Seaside Bird's-beak (Cordylanthus rigidus ssp. littoralis). Current estimated range maps are not consistent with the SI results suggesting a need to update estimated ranges. Biodiversity measures are being investigated in these areas to explore the hypothesis that they

  7. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  8. On the Dependence of Cloud Feedbacks on Physical Parameterizations in WRF Aquaplanet Simulations

    Science.gov (United States)

    Cesana, Grégory; Suselj, Kay; Brient, Florent

    2017-10-01

    We investigate the effects of physical parameterizations on cloud feedback uncertainty in response to climate change. For this purpose, we construct an ensemble of eight aquaplanet simulations using the Weather Research and Forecasting (WRF) model. In each WRF-derived simulation, we replace only one parameterization at a time while all other parameters remain identical. By doing so, we aim to (i) reproduce cloud feedback uncertainty from state-of-the-art climate models and (ii) understand how parametrizations impact cloud feedbacks. Our results demonstrate that this ensemble of WRF simulations, which differ only in physical parameterizations, replicates the range of cloud feedback uncertainty found in state-of-the-art climate models. We show that microphysics and convective parameterizations govern the magnitude and sign of cloud feedbacks, mostly due to tropical low-level clouds in subsidence regimes. Finally, this study highlights the advantages of using WRF to analyze cloud feedback mechanisms owing to its plug-and-play parameterization capability.

  9. A portable low-cost 3D point cloud acquiring method based on structure light

    Science.gov (United States)

    Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia

    2018-03-01

    A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.

  10. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    Science.gov (United States)

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat

    2017-07-01

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.

  11. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  12. Marine low cloud sensitivity to an idealized climate change : The CGILS LES intercomparison

    NARCIS (Netherlands)

    Blossey, P.N.; Bretherton, C.S.; Zhang, M.; Cheng, A.; Endo, S.; Heus, T.; Liu, Y.; Lock, A.P.; De Roode, S.R.; Xu, K.M.

    2013-01-01

    Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs)

  13. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, Arthur C.

    2002-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation- included cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary depending on the type of cancer in question, the dose, dose rate and LET of the radiation, the age, sex and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advancing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is ore plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (author)

  14. The adaptive response of E. coli to low levels of alkylating agent

    International Nuclear Information System (INIS)

    Jeggo, P.; Defais, M.; Samson, L.; Schendel, P.

    1978-01-01

    In an attempt to characterise which gene products may be involved in the repair system induced in E. coli by growth on low levels of alkylating agent (the adaptive response) we have analysed mutants deficient in other known pathways of DNA repair for the ability to adapt to MNNG. Adaptive resistance to the killing effects of MNNG seems to require a functional DNA polymerase I whereas resistance to the mutagenic effects can occur in polymerase I deficient strains; similarly killing adaptation could not be observed in a dam3 mutant, which was nonetheless able to show mutational adaptation. These results suggest that these two parts of the adaptive response must, at least to some extent, be separable. Both adaptive responses can be seen in the absence of uvrD + uvrE + -dependent mismatch repair, DNA polymerase II activity, or recF-mediated recombination and they are not affected by decreased levels of adenyl cyclase. The data presented support our earlier conclusion that adaptive resistance to the killing and mutagenic effect of MNNG is the result of previously uncharacterised repair pathways. (orig.) [de

  15. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    Science.gov (United States)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in

  16. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  17. 1987 annual report on low-level radioactive waste management progress: Report to Congress in response to Public Law 99-240

    International Nuclear Information System (INIS)

    1988-08-01

    In response to Section 7(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Public Law 99-240), this report summarizes the progress of states and low-level radioactive waste compacts in 1987 in establishing new low-level waste disposal facilities. It also reports the volume of low-level waste received for disposal in 1987 by commercially operated low-level waste disposal facilities

  18. The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models

    Science.gov (United States)

    Jenney, A.; Randall, D. A.

    2014-12-01

    Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  19. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  20. Multilevel classification of security concerns in cloud computing

    Directory of Open Access Journals (Sweden)

    Syed Asad Hussain

    2017-01-01

    Full Text Available Threats jeopardize some basic security requirements in a cloud. These threats generally constitute privacy breach, data leakage and unauthorized data access at different cloud layers. This paper presents a novel multilevel classification model of different security attacks across different cloud services at each layer. It also identifies attack types and risk levels associated with different cloud services at these layers. The risks are ranked as low, medium and high. The intensity of these risk levels depends upon the position of cloud layers. The attacks get more severe for lower layers where infrastructure and platform are involved. The intensity of these risk levels is also associated with security requirements of data encryption, multi-tenancy, data privacy, authentication and authorization for different cloud services. The multilevel classification model leads to the provision of dynamic security contract for each cloud layer that dynamically decides about security requirements for cloud consumer and provider.

  1. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    Science.gov (United States)

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  2. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Zhang Qizhou, E-mail: jens.kauffmann@astro.caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS78, Cambridge, MA 02138 (United States)

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  3. Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores

    Energy Technology Data Exchange (ETDEWEB)

    Mechem, David B. [Univ. of Kansas, Lawrence, KS (United States). Atmospheric Science Program. Dept. of Geography and Atmospheric Science; de Szoeke, Simon P. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences; Yuter, Sandra E. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth, and Atmospheric Sciences

    2017-01-15

    Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These data represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency

  4. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    Science.gov (United States)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  5. Simultaneous cloud point extraction of low levels of Cd, Cr and Hg in ...

    African Journals Online (AJOL)

    A one-step preconcentration cloud point extraction (CPE) method has been developed for the simultaneous determination of Cd, Cr, and Hg using a mixture of 1-(2-pyridylazo)-2-naphthol (PAN) and 1-(2-thiazolylazo)-2-naphthol (TAN) chelating agents and polyoxyethylene nonylphenylether-20 (PONPE-20) surfactant.

  6. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  7. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    Science.gov (United States)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  8. Iberian ATLAS Cloud response during the first LHC collisions

    CERN Document Server

    Villaplana, M; The ATLAS collaboration; Borges, G; Borrego, C; Carvalho, J; David, M; Espinal, X; Fernández, A; Gomes, J; González de la Hoz, S; Kaci, M; Lamas, A; Nadal, J; Oliveira, M; Oliver, E; Osuna, C; Pacheco, A; Pardo, JJ; del Peso, J; Salt, J; Sánchez, J; Wolters, H

    2011-01-01

    The computing model of the ATLAS experiment at the LHC (Large Hadron Collider) is based on a tiered hierarchy that ranges from Tier0 (CERN) down to end-user's own resources (Tier3). According to the same computing model, the role of the Tier2s is to provide computing resources for event simulation processing and distributed data analysis. Tier3 centers, on the other hand, are the responsibility of individual institutions to define, fund, deploy and support. In this contribution we report on the operations of the ATLAS Iberian Cloud centers facing data taking and we describe some of the Tier3 facilities currently deployed at the Cloud.

  9. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    Science.gov (United States)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  10. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  11. National electronic medical records integration on cloud computing system.

    Science.gov (United States)

    Mirza, Hebah; El-Masri, Samir

    2013-01-01

    Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.

  12. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  13. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  14. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    Science.gov (United States)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  15. 1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

  16. Fast Cloud Adjustment to Increasing CO2 in a Superparameterized Climate Model

    Directory of Open Access Journals (Sweden)

    Marat Khairoutdinov

    2012-05-01

    Full Text Available Two-year simulation experiments with a superparameterized climate model, SP-CAM, are performed to understand the fast tropical (30S-30N cloud response to an instantaneous quadrupling of CO2 concentration with SST held fixed at present-day values.The greenhouse effect of the CO2 perturbation quickly warms the tropical land surfaces by an average of 0.5 K. This shifts rising motion, surface precipitation, and cloud cover at all levels from the ocean to the land, with only small net tropical-mean cloud changes. There is a widespread average reduction of about 80 m in the depth of the trade inversion capping the marine boundary layer (MBL over the cooler subtropical oceans.One apparent contributing factor is CO2-enhanced downwelling longwave radiation, which reduces boundary-layer radiative cooling, a primary driver of turbulent entrainment through the trade inversion. A second contributor is a slight CO2-induced heating of the free troposphere above the MBL, which strengthens the trade inversion and also inhibits entrainment. There is a corresponding downward displacement of MBL clouds with a very slight decrease in mean cloud cover and albedo.Two-dimensional cloud-resolving model (CRM simulations of this MBL response are run to steady state using composite SP-CAM simulated thermodynamic and wind profiles from a representative cool subtropical ocean regime, for the control and 4xCO2 cases. Simulations with a CRM grid resolution equal to that of SP-CAM are compared with much finer resolution simulations. The coarse-resolution simulations maintain a cloud fraction and albedo comparable to SP-CAM, but the fine-resolution simulations have a much smaller cloud fraction. Nevertheless, both CRM configurations simulate a reduction in inversion height comparable to SP-CAM. The changes in low cloud cover and albedo in the CRM simulations are small, but both simulations predict a slight reduction in low cloud albedo as in SP-CAM.

  17. Spectrophotometric determination of low levels arsenic species in beverages after ion-pairing vortex-assisted cloud-point extraction with acridine red.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan; Kır, Ufuk

    2016-01-01

    A new, low-cost, micellar-sensitive and selective spectrophotometric method was developed for the determination of inorganic arsenic (As) species in beverage samples. Vortex-assisted cloud-point extraction (VA-CPE) was used for the efficient pre-concentration of As(V) in the selected samples. The method is based on selective and sensitive ion-pairing of As(V) with acridine red (ARH(+)) in the presence of pyrogallol and sequential extraction into the micellar phase of Triton X-45 at pH 6.0. Under the optimised conditions, the calibration curve was highly linear in the range of 0.8-280 µg l(-1) for As(V). The limits of detection and quantification of the method were 0.25 and 0.83 µg l(-1), respectively. The method was successfully applied to the determination of trace As in the pre-treated and digested samples under microwave and ultrasonic power. As(V) and total As levels in the samples were spectrophotometrically determined after pre-concentration with VA-CPE at 494 nm before and after oxidation with acidic KMnO4. The As(III) levels were calculated from the difference between As(V) and total As levels. The accuracy of the method was demonstrated by analysis of two certified reference materials (CRMs) where the measured values for As were statistically within the 95% confidence limit for the certified values.

  18. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R. [Univ. of Washington, Seattle, WA (United States)

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  19. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  20. Report to Congress in response to Public Law 99-240: 1990 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the progress during 1990 of states and compact regions in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1990 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act, as amended by Public Law 99-240

  1. Cloud-Based Social Media Visual Analytics Disaster Response System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a next-generation cloud-based social media visual analytics disaster response system that will enable decision-makers and first-responders to obtain...

  2. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  3. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    Science.gov (United States)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate

  4. Mesoscale Features and Cloud Organization on 10-12 December 1978 over the South China Sea.

    Science.gov (United States)

    Warner, Charles

    1982-07-01

    Aircraft data from Winter MONEX have been combined with other data to study mesoscale features, and organization of cumulus clouds, on 10-12 December 1978. A moderate cold surge in the northeasterly monsoon flow, toward cloudiness in an equatorial trough off Borneo, peaked on 11 December.Clouds in the northeasterly monsoon flow were similar to those in the trades, with variations in convective regime on length scales on the order of 100 km. Marked mid-tropospheric subsidence was accompanied by low-level divergence near 20°N. During 10 December, anvil clouds near Borneo expanded; cumulus congestus and cumulonimbus formed on the periphery of this area. The approach of the low-level northeasterlies to the area of anvils was marked by a diminution of subsidence, conditional instability, and a weak field of low-level convergence, with randomly organized cumulus of increasing height. A low-level easterly jet was found in this transition zone, downstream from cloudiness over the Philippines. South of Vietnam, a clear area was associated with low air temperatures, and not subsidence. Congestus and cumulonimbus clouds formed near the eastern coast of the Malay Peninsula.Cloud streets were seen from latitude 19°N to the Malaysian coast (with a break south of Vietnam). These clouds were confined below the level of an inflection point in the profile of winds normal to the street direction. Greatest spacings of streets occurred with greatest vertical shears of the cross-winds. Cloud number densities were more closely related to the instability of the vertical stratification than to any other parameter.Cross-wind organization of clouds occurred in circumstances of unstable, stratification and apparently of net ascent. Alignment of clouds was at an angle to the directions of both winds and vertical wind shears. It is inferred that when convergence was strong, deep clouds occurred along lines of convergence in the surface streamlines.

  5. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  6. Low-Frequency Carbon Recombination Lines in the Orion Molecular Cloud Complex

    Science.gov (United States)

    Tremblay, Chenoa D.; Jordan, Christopher H.; Cunningham, Maria; Jones, Paul A.; Hurley-Walker, Natasha

    2018-05-01

    We detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99-129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.

  7. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    Science.gov (United States)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  8. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    Directory of Open Access Journals (Sweden)

    Jessica H. Belle

    2017-10-01

    Full Text Available Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5 concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  9. Design of RFID Cloud Services in a Low Bandwidth Network Environment

    Directory of Open Access Journals (Sweden)

    John P.T. Mo

    2011-02-01

    Full Text Available The use of Information and Communication Technologies has significantly improved the efficiency of modern supply chains. Existing IT architecture is too rigid to allow new technologies such as RFID technologies to be implemented. With the aid of virtualisation and integrated with cloud services, infrastructure hardware and network devices can be consolidated into a physical device, reducing the cost of ownership. However, for such cloud services model to work correctly, a high speed network is required between each site and the cloud service provider. This poses huge challenges for real‐time system such as RFID‐enabled supply chains. Since modern supply chains operate on a global platform, it is almost impossible to assure availability of high speed networks across the global supply chain. This paper proposes two solutions to supplement the virtualisation and cloud services model. A sub‐cloud services solution, where each service is distributed across multiple hosts across different countries and regions is proposed to enhance accessibility to higher bandwidth networks. The second solution is the Queued Burst Device Compression system incorporates a compression service that compresses RFID data sets into much smaller packages. This solution is proved to work by a multiple‐in‐single‐out queuing model and is suitable for low bandwidth networks such as GPRS and 3G wireless environmenst.

  10. Comments on ''Geomagnetic response to magnetic clouds'' by Robert M. Wilson; and reply

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Wilson, R.M.

    1988-01-01

    The paper 'Geomagnetic Response to Magnetic Clouds' by Wilson (1987) tried to show an association between geomagnetic storm intervals and the passage of interplanetary magnetic clouds at the Earth's magnetosphere. The association is shown through a superposed epoch analysis of the interplanetary magnetic field (IMF)-B Z component and the D st geomagnetic storm index for 19 cloud events occurring between 1973 and 1978. Two aspects of the magnetic cloud-storm relationship are challenged. The first concerns the northward-southward rotation of the IMF-B Z component which is known to exist but not accounted for in Wilson's article. The second concerns the magnitude of the storms associated with the passage of magnetic clouds. In a reply Wilson explains the distinction between N-turning and S-turning clouds of the 19 clouds studied 12 were southward and 7 northward turning. The average behaviour of both is similar, the differences being due to the different onset values of D st . The second problem is attributed to a misunderstanding of the meaning of the I-bars given in the original article. The original results of Wilson are reaffirmed. The comment on the reply suggests that the average peak D st value for S-N clouds is larger by 30% than for the N-S clouds and that the final intensity of the storm can be altered by the type of cloud involved (S-N) or (N-S). (U.K.)

  11. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  12. Consolidation of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Cordeiro, Cristovao; Di Girolamo, Alessandro; Hover, John; Kouba, Tomas; Love, Peter; Mcnab, Andrew; Schovancova, Jaroslava; Sobie, Randall

    2016-01-01

    Throughout the first year of LHC Run 2, ATLAS Cloud Computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS Cloud Computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vac resources, streamlined usage of the High Level Trigger cloud for simulation and reconstruction, extreme scaling on Amazon EC2, and procurement of commercial cloud capacity in Europe. Building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems. ...

  13. Numerical simulations of mechanical and ignition-deflagration responses for PBXs under low-to-medium-level velocity impact loading.

    Science.gov (United States)

    Yang, Kun; Wu, Yanqing; Huang, Fenglei; Li, Ming

    2017-09-05

    An effective computational model is required to accurately predict the dynamic responses in accidental initiations of explosives. The present work uses a series of two-dimensional mechanical-chemical simulations performed via a hydrodynamic-code, DREXH-2D, to efficiently describe the mechanical and ignition-deflagration responses of cased cylindrical polymer-bonded explosives (PBXs) undergoing a low-to-medium-level impact (70-350m/s) in longitudinal direction. The ignition response was predicted based on an ignition criterion of effective plastic work. Slow burning and its growth to deflagration were described through a pressure-dependent reaction rate equation. The extreme value of effective plastic work was found to be useful to determine the ignition threshold velocity for PBXs. For low-level velocity impact, the incident stress wave reflection from lateral surfaces contributed to the formation of ignition regions. After the ignition, the deflagration was induced in the medium-level impact, and its violence was related to the shock strength. However, the low-strength stress wave only induced reaction at local regions, and sequent burning was no longer sensitive to the strength of incident wave. The predicted pressure and temperature results of PBXs were consistent with the medium-level impact tests performed by China Academy of Engineering Physics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Efficient operating system level virtualization techniques for cloud resources

    Science.gov (United States)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  15. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    Science.gov (United States)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  16. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  17. Cloud field classification based upon high spatial resolution textural features. I - Gray level co-occurrence matrix approach

    Science.gov (United States)

    Welch, R. M.; Sengupta, S. K.; Chen, D. W.

    1988-01-01

    Stratocumulus, cumulus, and cirrus clouds were identified on the basis of cloud textural features which were derived from a single high-resolution Landsat MSS NIR channel using a stepwise linear discriminant analysis. It is shown that, using this method, it is possible to distinguish high cirrus clouds from low clouds with high accuracy on the basis of spatial brightness patterns. The largest probability of misclassification is associated with confusion between the stratocumulus breakup regions and the fair-weather cumulus.

  18. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    Science.gov (United States)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  19. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  20. Impact of Antarctic mixed-phase clouds on climate.

    Science.gov (United States)

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  1. Probabilistic Graphical Framework for Estimating Collaboration Levels in Cloud Manufacturing

    Directory of Open Access Journals (Sweden)

    Gilseung Ahn

    2017-02-01

    Full Text Available Cloud manufacturing (CM is an emerging manufacturing model based on collaboration among manufacturing enterprises in a cloud computing environment. Naturally, collaboration is one of main factors that impacts performance in a variety of ways such as quality, lead time, and cost. Therefore, collaboration levels should be considered when solving operational issues in CM. However, there has been no attempt to estimate these levels between enterprises participating in CM. The collaboration level among enterprises in CM is defined as the ability to produce a manufacturing service that satisfies a customer by means of collaborative production amongst enterprises. We measure it as the conditional probability that collaborative performances are high given collaborative performance factors (e.g., resource sharing, information sharing, etc.. In this paper, we propose a framework for estimating collaboration levels. We adopt a probabilistic graphical model (PGM to develop the framework, since the framework includes a lot of random variables and complex dependencies among them. The framework yields conditional probabilities that two enterprises will reduce the total cost, improve resource utilization or quality through collaboration between them given each enterprise’s features, collaboration possibility, and collaboration activities. The collaboration levels the proposed framework yields will help to handle diverse operational problems in CM.

  2. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements

    Directory of Open Access Journals (Sweden)

    D. Zhang

    2018-03-01

    Full Text Available Collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL that is  ∼  1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings. Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.

  3. Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations

    Science.gov (United States)

    Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

    2009-09-01

    The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  4. Future directions for the US Nuclear Regulatory Commission's low-level waste management program

    International Nuclear Information System (INIS)

    Starmer, R.J.

    1986-01-01

    The Low-Level Radioactive Waste Policy Act envisioned that all states would be able to dispose of commercial low-level waste generated within their borders by 1986, either individually or through interstate compacts. Based on the current status of state and compact efforts, it is clear that no new disposal sites will be available by 1986 or for some period thereafter. In the short-term, there is uncertainty that the existing disposal sites will remain open after January 1, 1986, or if restrictions will apply after that time. If restrictions occur, storage, treatment or even curtailed generation may result for individual waste producers. Other uncertainties clouding implementation of the Policy Act include the final configuration of regional compacts - in the northeast in particular - clear assignment of responsibility for disposal of classes of waste, the method of disposal - shallow land burial or alternatives - that will be employed for low-level waste, and regulation of mixed wastes, wastes which have both radioactive and non-radioactive hazardous constituents. The NRC strategy for low-level waste management aims to resolve or reduce these uncertainties, and to encourage transition to a stable, national system based on timely state action. NRC will continue development of regulatory and technical guidance for disposal site licensing and build on its capabilities to address specific areas of state concern, such as alternatives to shallow land burial, and site characterization and modeling. NRC also plans to expand state and compact outreach efforts to help ensure that our technical work is properly focused. The authors will also be directly assisting those states and compacts on technical matters they confront in actual disposal site development and licensing

  5. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  6. Improved cloud parameterization for Arctic climate simulations based on satellite data

    Science.gov (United States)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in

  7. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  8. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  9. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    Science.gov (United States)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  10. Aerosol microphysical and radiative effects on continental cloud ensembles

    Science.gov (United States)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  11. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    Science.gov (United States)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  12. GOCI Level-2 Processing Improvements and Cloud Motion Analysis

    Science.gov (United States)

    Robinson, Wayne D.

    2015-01-01

    The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.

  13. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  14. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  15. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States); Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States); Wood, Robert [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need

  16. The structure of the clouds distributed operating system

    Science.gov (United States)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data

  17. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  18. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1992-01-01

    This paper provides highlights from the summer meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: responsibility for nonfuel component disposal; state experiences in facility licensing; and volume projections

  19. Rate of non-linearity in DMS aerosol-cloud-climate interactions

    Directory of Open Access Journals (Sweden)

    M. A. Thomas

    2011-11-01

    Full Text Available The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO2 and H2SO4 burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m−2. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.

  20. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  1. Successfully burying low-level waste for fun and profit

    International Nuclear Information System (INIS)

    Strong, T.R.; Kirner, N.P.

    1984-01-01

    The state of Washington, now receiving more than half the nation's waste, is here to provide a practical review of the benefits of having a low-level waste disposal site and to provide our perspective on how the state of Washington carries out its responsibilities through regulation of that disposal site. This information is offered in the hope that it may be useful to other states when they accept their responsibility to provide for the disposal of their low-level radioactive waste. The 1980 Low-Level Waste Policy Act very directly gave the responsibility for finding and developing new waste disposal capacity to the states. Through the process of compacting, the states have begun to accept this responsibility. From Washington's perspective, however, the progress shown to date, especially in some states generating very large amounts of waste, has not been adequate to meet the 1986 deadline

  2. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  3. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  4. Towards a Low-Cost Real-Time Photogrammetric Landslide Monitoring System Utilising Mobile and Cloud Computing Technology

    Science.gov (United States)

    Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.

    2016-06-01

    Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.

  5. TOWARDS A LOW-COST, REAL-TIME PHOTOGRAMMETRIC LANDSLIDE MONITORING SYSTEM UTILISING MOBILE AND CLOUD COMPUTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Chidburee

    2016-06-01

    Full Text Available Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i the development of an Android mobile application; (ii the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan and a web-based system (Autodesk 123D Catch. Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard

  6. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  7. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    International Nuclear Information System (INIS)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert

    2017-01-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  8. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Nikutta, Robert, E-mail: tra3595@rit.edu [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States)

    2017-07-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  9. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    Science.gov (United States)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  10. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    Science.gov (United States)

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  11. Recent results on the linearity of the dose-response relationship for radiation-induced mutations in human cells by low dose levels

    International Nuclear Information System (INIS)

    Traut, H.

    1987-01-01

    Five studies made by various authors in the last years are discussed, which are significant in that the response of human cells to low-dose irradiation is determined directly and not by extrapolation, and which also provide information on the mutagenic effects of low radiation doses. The results of these studies do not indicate any other than a linear response for induction of mutations by low-dose irradiation, nor are there any reasons observable for assuming the existence of a threshold dose. It is very likely therefore that cancer initiation at the low dose level also is characterized by a linear relationship. Although threshold dose levels cannot generally be excluded, and maybe are only too low to be detected by experiment, there is no plausible biophysical argument for assuming the existence of such microdose threshold. (orig./MG) [de

  12. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    Science.gov (United States)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is

  13. Using the CMS high level trigger as a cloud resource

    International Nuclear Information System (INIS)

    Colling, David; Huffman, Adam; Bauer, Daniela; McCrae, Alison; Cinquilli, Mattia; Gowdy, Stephen; Coarasa, Jose Antonio; Ozga, Wojciech; Chaze, Olivier; Lahiff, Andrew; Grandi, Claudio; Tiradani, Anthony; Sgaravatto, Massimo

    2014-01-01

    The CMS High Level Trigger is a compute farm of more than 10,000 cores. During data taking this resource is heavily used and is an integral part of the experiment's triggering system. However, outside of data taking periods this resource is largely unused. We describe why CMS wants to use the HLT as a cloud resource (outside of data taking periods) and how this has been achieved. In doing this we have turned a single-use cluster into an agile resource for CMS production computing. While we are able to use the HLT as a production cloud resource, there is still considerable further work that CMS needs to carry out before this resource can be used with the desired agility. This report, therefore, represents a snapshot of this activity at the time of CHEP 2013.

  14. Rain-shadow: An area harboring "Gray Ocean" clouds

    Science.gov (United States)

    Padmakumari, B.; Maheskumar, R. S.; Harikishan, G.; Morwal, S. B.; Kulkarni, J. R.

    2018-06-01

    The characteristics of monsoon convective clouds over the rain-shadow region of north peninsular India have been investigated using in situ aircraft cloud microphysical observations collected during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). The parameters considered for characterization are: liquid water content (LWC), cloud vertical motion (updraft, downdraft: w), cloud droplet number concentration (CDNC) and effective radius (Re). The results are based on 15 research flights which were conducted from the base station Hyderabad during summer monsoon season. The clouds studied were developing congestus. The clouds have low CDNC and low updraft values resembling the oceanic convective clouds. The super-saturation in clouds is found to be low (≤0.2%) due to low updrafts. The land surface behaves like ocean surface during monsoon as deduced from Bowen ratio. Microphysically the clouds showed oceanic characteristics. However, these clouds yield low rainfall due to their low efficiency (mean 14%). The cloud parameters showed a large variability; hence their characteristic values are reported in terms of median values. These values will serve the numerical models for rainfall simulations over the region and also will be useful as a scientific basis for cloud seeding operations to increase the rainfall efficiency. The study revealed that monsoon convective clouds over the rain-shadow region are of oceanic type over the gray land, and therefore we christen them as "Gray Ocean" clouds.

  15. Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Casey J. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Hartmann, Dennis L. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2017-12-01

    Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.

  16. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Gerdin, G.; Vahala, L.; El Cashlan, A.G.

    1990-01-01

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Parks' low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation) and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in pretty good agreement with the TEXT data as to the dimensions of the C +3 region of the cloud along the magnetic field. Also a small improvement has been made in the low-Z pellet plasma-penetration program, which brings the predictions of the model in closer agreement with the carbon pellet injection experiments on TFTR. 22 refs., 3 figs

  17. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  18. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  19. CIT alpha particle extraction and measurement: Low-Z ablation cloud profile simulation for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Gerdin, G.; Vahala, L.; El Cashlan, A.G.

    1990-05-01

    In order to determine the expected properties of the ablation cloud of low-Z pellets interacting with a thermonuclear plasma, which in turn is proposed as a charge-neutralization medium for confined alpha particles, a numerical program has been developed. The physical model for this program is based on Park's low-Z pellet-plasma interaction model for the interior of the cloud adjacent to the pellet's surface out to the sonic surface (roughly, a millimeter in separation), and then propagating outward from this region using the conservation laws of enthalpy, momentum, and mass, along with the assumption of charge-state equilibrium. The effects of local heating by the plasma electrons slowing down in the cloud, and ionization of the ablatant material are treated self-consistently in the model. In collaboration with Dr. Paul Parks of General Atomics Corporation, a joint ODU-GAC research plan for modeling low-Z pellet-plasma interactions has been devised, and considerable progress has been made in its implementation. Recently, using a constraint in the ablatant flow, so that it approximates its observed flow along the magnetic field, results from the program were obtained which could be compared with the results from the GAC experiments on TEXT. The predictions of the program are in poor agreement with the TEXT data as to the dimensions of the C +3 region of the cloud along the magnetic field. The failure of the model appears to be the breakdown of the assumption that charge-state equilibrium exists in the cloud. This problem is particularly severe for the TEXT parameters so modifications in the model to include non-equilibrium effects are being implemented

  20. The GOES-R/JPSS Approach for Identifying Hazardous Low Clouds: Overview and Operational Impacts

    Science.gov (United States)

    Calvert, Corey; Pavolonis, Michael; Lindstrom, Scott; Gravelle, Chad; Terborg, Amanda

    2017-04-01

    Low ceiling and visibility is a weather hazard that nearly every forecaster, in nearly every National Weather Service (NWS) Weather Forecast Office (WFO), must regularly address. In addition, national forecast centers such as the Aviation Weather Center (AWC), Alaska Aviation Weather Unit (AAWU) and the Ocean Prediction Center (OPC) are responsible for issuing low ceiling and visibility related products. As such, reliable methods for detecting and characterizing hazardous low clouds are needed. Traditionally, hazardous areas of Fog/Low Stratus (FLS) are identified using a simple stand-alone satellite product that is constructed by subtracting the 3.9 and 11 μm brightness temperatures. However, the 3.9-11 μm brightness temperature difference (BTD) has several major limitations. In an effort to address the limitations of the BTD product, the GOES-R Algorithm Working Group (AWG) developed an approach that fuses satellite, Numerical Weather Prediction (NWP) model, Sea Surface Temperature (SST) analyses, and other data sets (e.g. digital surface elevation maps, surface emissivity maps, and surface type maps) to determine the probability that hazardous low clouds are present using a naïve Bayesian classifier. In addition, recent research has focused on blending geostationary (e.g. GOES-R) and low earth orbit (e.g. JPSS) satellite data to further improve the products. The FLS algorithm has adopted an enterprise approach in that it can utilize satellite data from a variety of current and future operational sensors and NWP data from a variety of models. The FLS products are available in AWIPS/N-AWIPS/AWIPS-II and have been evaluated within NWS operations over the last four years as part of the Satellite Proving Ground. Forecaster feedback has been predominantly positive and references to these products within Area Forecast Discussions (AFD's) indicate that the products are influencing operational forecasts. At the request of the NWS, the FLS products are currently being

  1. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations

    Directory of Open Access Journals (Sweden)

    C. K. Carbajal Henken

    2014-11-01

    0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root-mean-square deviation. Furthermore, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several Atmospheric Radiation Measurement (ARM sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations. The lowest bias of −0.3 km is found for AATSR cloud top heights for single-layer clouds, while the highest bias of −3.0 km is found for AATSR cloud top heights for multilayer clouds. Variability is low for MERIS cloud top heights for low-level clouds, and high for MERIS cloud top heights for mid-level and high-level single-layer clouds, as well as for both AATSR and MERIS cloud top heights for multilayer clouds.

  2. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    Peel, J.W.; Levin, G.B.

    1980-01-01

    In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document

  3. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  4. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  5. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  6. Consideration of epigenetic responses at organisms chronically exposed to low levels of radioactive substances

    International Nuclear Information System (INIS)

    Gombeau, Kevin

    2015-01-01

    This work integrates within the general framework of the European program COMET (7. Framework Programme EURATOM) and aims to assess the epigenetic responses, and particularly DNA methylation, during chronic exposure to low levels of radioactive materials within two particularly representative contexts of radioecological issues (i.e. uranium mining area and Fukushima post-accidental context). During a first experiment, zebra fish (Danio rerio) were exposed in laboratory controlled conditions to environmentally relevant concentrations of depleted uranium: 2 and 20 μg L"-"1. This experiment allowed an impact on the genomic DNA methylation to be demonstrated, mainly in exposed males, which increased with the duration and level of exposure. In a second experiment, we observed an impact on DNA methylation patterns in the progeny of exposed parents, as well as a perturbation of transcriptomics (i.e. epigenetic processes, DNA damage signaling and repair pathways, embryogenesis) and histological damage in larvae skeletal muscle from exposed parents. The methods developed were applied to the second context focusing on the study of biological effects induced by radionuclides emitted following the Fukushima Daiichi nuclear power plant accident. The analyses performed on the Japanese tree frog (Hyla japonica) revealed a positive correlation between the total dose of radiation absorbed by these frogs (correlated to "1"3"7Cs accumulation), hyper-methylation of genomic DNA as well as increasing damage to mitochondrial DNA. This work highlighted the sensitivity of epigenetic responses in different biological models exposed to low levels of radionuclides. Additionally, these epigenetic modifications are stable over the time and involved in the transfer of the parental toxicity of depleted uranium. As such, the epigenetic marks could be used to further characterize adaptation mechanisms and potential trans-generational effects induced by radionuclides. (author)

  7. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  8. Using a second-order turbulence radiative-convective model to study the cloud/radiation interaction with the FIRE data

    International Nuclear Information System (INIS)

    Kao, C.Y.J.

    1992-01-01

    It is well recognized that extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasipermanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net incoming shortwave flux into the atmosphere and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. Randall et al.[1984] estimated that an increase of a few percent of global low-level stratiform clouds may offset the warming caused by a doubling of the atmos-pheric CO 2 . The Atmospheric Radiation Measure-ment (ARM) Program, sponsored by the US Department of Energy, is envisioning a locale in the Eastern North Pacific for extensive measure-ments of stratiform boundary-layer clouds and their interaction with atmospheric radiation. Thus, a physically-based parameterization sheme for marine low-level stratiform clouds can be developed for general circulation models (GCMs). This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory

  9. Abs: a high-level modeling language for cloud-aware programming

    NARCIS (Netherlands)

    N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2016-01-01

    textabstractCloud technology has become an invaluable tool to the IT business, because of its attractive economic model. Yet, from the programmers’ perspective, the development of cloud applications remains a major challenge. In this paper we introduce a programming language that allows Cloud

  10. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  11. Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models

    Directory of Open Access Journals (Sweden)

    L. Frey

    2017-07-01

    Full Text Available The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5 are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.

  12. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  13. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    International Nuclear Information System (INIS)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected

  14. Distributed Hybrid Scheduling in Multi-Cloud Networks using Conflict Graphs

    KAUST Repository

    Douik, Ahmed

    2017-09-07

    Recent studies on cloud-radio access networks assume either signal-level or scheduling-level coordination. This paper considers a hybrid coordinated scheme as a means to benefit from both policies. Consider the downlink of a multi-cloud radio access network, where each cloud is connected to several base-stations (BSs) via high capacity links, and, therefore, allows for joint signal processing within the cloud transmission. Across the multiple clouds, however, only scheduling-level coordination is permitted, as low levels of backhaul communication are feasible. The frame structure of every BS is composed of various time/frequency blocks, called power-zones (PZs), which are maintained at a fixed power level. The paper addresses the problem of maximizing a network-wide utility by associating users to clouds and scheduling them to the PZs, under the practical constraints that each user is scheduled to a single cloud at most, but possibly to many BSs within the cloud, and can be served by one or more distinct PZs within the BSs’ frame. The paper solves the problem using graph theory techniques by constructing the conflict graph. The considered scheduling problem is, then, shown to be equivalent to a maximum-weight independent set problem in the constructed graph, which can be solved using efficient techniques. The paper then proposes solving the problem using both optimal and heuristic algorithms that can be implemented in a distributed fashion across the network. The proposed distributed algorithms rely on the well-chosen structure of the constructed conflict graph utilized to solve the maximum-weight independent set problem. Simulation results suggest that the proposed optimal and heuristic hybrid scheduling strategies provide appreciable gain as compared to the scheduling-level coordinated networks, with a negligible degradation to signal-level coordination.

  15. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    Science.gov (United States)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  16. 1989 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs

  17. Low-level waste packaging--a managerial perspective

    International Nuclear Information System (INIS)

    Motl, G.P.; Hebbard, L.B. Jr.

    1980-01-01

    This paper emphasizes managerial responsibility for assuring that facility waste is properly packaged. Specifically, existing packaging regulations are summarized, several actual violations are reviewed and, lastly, some recommendations are made to assist managerial personnel in fulfilling their responsibility to ensure that low-level waste is packaged safely and properly before shipment to the disposal site

  18. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  19. Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2.5 levels.

    Science.gov (United States)

    Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang

    2015-01-01

    The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.

  20. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  1. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.

    Science.gov (United States)

    Howk, J Christopher; Lehner, Nicolas; Fields, Brian D; Mathews, Grant J

    2012-09-06

    The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial (7)Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar (7)Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day (7)Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.

  2. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  3. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  4. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road

    Science.gov (United States)

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on “on-demand payment” for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. PMID:26230400

  5. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road.

    Directory of Open Access Journals (Sweden)

    Iñaki Bildosola

    Full Text Available Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible.

  6. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road.

    Science.gov (United States)

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible.

  7. SPH simulations of star/planet formation triggered by cloud-cloud collisions

    OpenAIRE

    Kitsionas, Spyridon; Whitworth, Anthony Peter; Klessen, Ralf S.

    2007-01-01

    We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass objects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the ...

  8. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  9. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  10. DC response of dust to low frequency AC signals

    Science.gov (United States)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  11. NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639

    Science.gov (United States)

    Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda

    2018-06-01

    A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.

  12. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  13. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  14. Analytical and empirical evaluation of low-level waste drum response to accident environments

    International Nuclear Information System (INIS)

    May, R.A.; Romesberg, L.E.; Yoshimura, H.R.; Baker, W.E.; Hokanson, J.C.

    1980-01-01

    Based on results of tests to date, it was found that the structural response of low-level waste drums to impact environments can be generally predicted, both analytically and with subscale models. As currently represented, only the 1/4 scale models would adequately represent full scale drum deformation; however, additional work has shown that with proper heat treating the strength of the material used in the 1/8 scale containers can be reduced to the correct value. Both analytical models give results that are expected to be within the range of behavior of the full scale drums. Failure of the drum closure can be adequately inferred from the radial deformation results of both subscale tests and computer analyses. 6 figures

  15. Response of a reactor building due to detonation of flat layered gas clouds

    International Nuclear Information System (INIS)

    Frik, G.

    1984-05-01

    The stress of the containment of a PWR plant of today is calculated for the loading of three detonating flat layered gas clouds. The dynamic response of the structure due to the blast wave is determined and comparisons are made with previous results of the detonating stochiometric gas cloud and with results of the individual task 11A (GRS). The calculations were realized with the method of modal superposition and linear elastic material laws. The stress conditions of the structure were comprehended by three loading cases of the flat, layered gas clouds. The first loading case B(a) leads to high stresses, which are not interpretable with a linear analysis. On the other hand, the loading case B(b) leads to stresses which are not much above and B(c) to stresses which are not much below the yield stress. It is demonstrated for a linear analysis, that the structure will not be injured by the detonation wave of case B(c). (orig./HP) [de

  16. Laser Remote Sensing from ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    Science.gov (United States)

    Rodier, Sharon; Palm, Steve; Vaughan, Mark; Yorks, John; McGill, Matt; Jensen, Mike; Murray, Tim; Trepte, Chip

    2016-01-01

    With the recent launch of the Cloud-Aerosol Transport System (CATS) we have the opportunity to acquire a continuous record of space based lidar measurements spanning from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) era to the start of the EarthCARE mission. Utilizing existing well-validated science algorithms from the CALIPSO mission, we will ingest the CATS data stream and deliver high-quality lidar data sets to the user community at the earliest possible opportunity. In this paper we present an overview of procedures necessary to generate CALIPSO-like lidar level 2 data products from the CATS level 1 data products.

  17. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  18. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  19. Low-level radioactive-waste compacts. Status report as of July 1982

    International Nuclear Information System (INIS)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this

  20. Low-level radioactive-waste compacts. Status report as of July 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  1. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign

    CERN Document Server

    Praplan, A P; Dommen, J; Baltensperger, U

    2012-01-01

    The CLOUD project investigates the influence of galactic cosmic rays on the nucleation of new particles in an environmental chamber at CERN. Dimethylamine (DMA) was injected intentionally into the CLOUD chamber to reach atmospherically relevant levels away from sources (up to 100 pptv) in order to study its effect on nucleation with sulphuric acid and water at 278 K. Quantification of DMA and also background ammonia (NH 3 ) was performed with ion chromatography (IC). The IC method used together with the sampling line developed for CLOUD in order to measure NH 3 and DMA at low pptv levels is described; the overall sampling efficiency of the method is discussed; and, finally, mixing ratios of NH 3 and DMA measured during CLOUD4 are reported.

  3. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    Science.gov (United States)

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  4. Data security and risk assessment in cloud computing

    Directory of Open Access Journals (Sweden)

    Li Jing

    2018-01-01

    Full Text Available Cloud computing has attracted more and more attention as it reduces the cost of IT infrastructure of organizations. In our country, business Cloud services, such as Alibaba Cloud, Huawei Cloud, QingCloud, UCloud and so on are gaining more and more uses, especially small or median organizations. In the cloud service scenario, the program and data are migrating into cloud, resulting the lack of trust between customers and cloud service providers. However, the recent study on Cloud computing is mainly focused on the service side, while the data security and trust have not been sufficiently studied yet. This paper investigates into the data security issues from data life cycle which includes five steps when an organization uses Cloud computing. A data management framework is given out, including not only the data classification but also the risk management framework. Concretely, the data is divided into two varieties, business and personal information. And then, four classification levels (high, medium, low, normal according to the different extent of the potential adverse effect is introduced. With the help of classification, the administrators can identify the application or data to implement corresponding security controls. At last, the administrators conduct the risk assessment to alleviate the risk of data security. The trust between customers and cloud service providers will be strengthen through this way.

  5. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model

    Directory of Open Access Journals (Sweden)

    A. Teller

    2006-01-01

    Full Text Available Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN, giant CCN (GCCN and Ice Nuclei (IN on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations produce less precipitation than clean clouds (with low CCN concentrations, the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN. The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.

  6. Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm

    Directory of Open Access Journals (Sweden)

    Jean-Charles Dupont

    2018-05-01

    Full Text Available The microphysical properties of low stratus and fog are analyzed here based on simultaneous measurement of an in situ sensor installed on board a tethered balloon and active remote-sensing instruments deployed at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA observatory (south of Paris, France. The study focuses on the analysis of 3 case studies where the tethered balloon is deployed for several hours in order to derive the relationship between liquid water content (LWC, effective radius (Re and cloud droplet number concentration (CDNC measured by a light optical aerosol counter (LOAC in situ granulometer and Bistatic Radar System for Atmospheric Studies (BASTA cloud radar reflectivity. The well-known relationship Z = α × (LWCβ has been optimized with α ϵ [0.02, 0.097] and β ϵ [1.91, 2.51]. Similar analysis is done to optimize the relationship Re = f(Z and CDNC = f(Z. Two methodologies have been applied to normalize the particle-size distribution measured by the LOAC granulometer with a visible extinction closure (R² ϵ [0.73, 0.93] and to validate the LWC profile with a liquid water closure using the Humidity and Temperature Profiler (HATPRO microwave radiometer (R² ϵ [0.83, 0.91]. In a second step, these relationships are used to derive spatial and temporal variability of the vertical profile of LWC, Re and CDNC starting from BASTA measurement. Finally, the synergistic remote sensing of clouds (SYRSOC algorithm has been tested on three tethered balloon flights. Generally, SYRSOC CDNC and Re profiles agreed well with LOAC in situ and BASTA profiles for the studied fog layers. A systematic overestimation of LWC by SYRSOC in the top half of the fog layer was found due to fog processes that are not accounted for in the cloud algorithm SYRSOC.

  7. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood

    Directory of Open Access Journals (Sweden)

    Małgorzata Jędrzejewska-Szczerska

    2014-04-01

    Full Text Available In this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing interferometer. The first step in the research on such sensor is the assessment of its performance under favorable conditions, i.e., using blood samples from healthy volunteers tested in vitro. Such an experiment was conducted using a sensor comprising a superluminescent diode source, an optical spectrum analyzer working as the detection setup and a sensing Fabry-Perot interferometer providing high interference contrast. The response of this sensor was recorded for several samples and compared with the reference laboratory method. The coefficient of determination (R2 for a linear relationship between the results given by both methods was 0.978 and the difference between these results was less than 1%. The presented results suggest that further research into the performance of the sensor is merited.

  8. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    Science.gov (United States)

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  9. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    Energy Technology Data Exchange (ETDEWEB)

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  10. Directions in low-level radioactive-waste management. Incentives and compensation: providing resources for communities hosting low-level waste facilities

    International Nuclear Information System (INIS)

    1982-10-01

    State responsibility for the management of low-level radioactive waste necessitates the selection of candidate locations for a disposal facility. Concern over potential impacts can be expected from segments of the citizenry neighboring a proposed site. A number of national organizations comprising state and local officials have recommended the use of incentives and compensation to help offset the negative local impacts. This document explores that concept. Discussion provides background information on potential local impacts from a low-level waste facility and considers the nature and types of incentives and compensation benefits that could be provided. The document then examines realistic options for planning and implementing the benefit program. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for and managing low-level waste disposal facilities

  11. An investigation of cloud base height in Chiang Mai

    Science.gov (United States)

    Peengam, S.; Tohsing, K.

    2017-09-01

    Clouds play very important role in the variation of surface solar radiation and rain formation. To understand this role, it is necessary to know the physical and geometrical of properties of cloud. However, clouds vary with location and time, which lead to a difficulty to obtain their properties. In this work, a ceilometer was installed at a station of the Royal Rainmaking and Agricultural Aviation Department in Chiang Mai (17.80° N, 98.43° E) in order to measure cloud base height. The cloud base height data from this instrument were compared with those obtained from LiDAR, a more sophisticated instrument installed at the same site. It was found that the cloud base height from both instruments was in reasonable agreement, with root mean square difference (RMSD) and mean bias difference (MBD) of 19.21% and 1.58%, respectively. Afterward, a six-month period (August, 2016-January, 2017) of data from the ceilometer was analyzed. The results show that mean cloud base height during this period is 1.5 km, meaning that most clouds are in the category of low-level cloud.

  12. Community Cloud Computing

    Science.gov (United States)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  13. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  14. Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyelim [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Li, Zhanqing [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing (China)

    2012-12-15

    Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth's radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds. (orig.)

  15. Responsibility Towards The Customers Of Subscription-Based Software Solutions In The Context Of Using The Cloud Computing Technology

    Directory of Open Access Journals (Sweden)

    Bogdan Ștefan Ionescu

    2003-12-01

    Full Text Available The continuously transformation of the contemporary society and IT environment circumscribed its informational has led to the emergence of the cloud computing technology that provides the access to infrastructure and subscription-based software services, as well. In the context of a growing number of service providers with of cloud software, the paper aims to identify the perception of some current or potential users of the cloud solution, selected from among students enrolled in the accounting (professional or research master programs with the profile organized by the Bucharest University of Economic Studies, in terms of their expectations for cloud services, as well as the extent to which the SaaS providers are responsible for the provided services.

  16. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  17. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    Science.gov (United States)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  18. Two-Level Verification of Data Integrity for Data Storage in Cloud Computing

    Science.gov (United States)

    Xu, Guangwei; Chen, Chunlin; Wang, Hongya; Zang, Zhuping; Pang, Mugen; Jiang, Ping

    Data storage in cloud computing can save capital expenditure and relive burden of storage management for users. As the lose or corruption of files stored may happen, many researchers focus on the verification of data integrity. However, massive users often bring large numbers of verifying tasks for the auditor. Moreover, users also need to pay extra fee for these verifying tasks beyond storage fee. Therefore, we propose a two-level verification of data integrity to alleviate these problems. The key idea is to routinely verify the data integrity by users and arbitrate the challenge between the user and cloud provider by the auditor according to the MACs and ϕ values. The extensive performance simulations show that the proposed scheme obviously decreases auditor's verifying tasks and the ratio of wrong arbitration.

  19. Using long-term ARM observations to evaluate Arctic mixed-phased cloud representation in the GISS ModelE GCM

    Science.gov (United States)

    Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2016-12-01

    The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering

  20. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Goldsmith, Paul F., E-mail: jens.kauffmann@astro.caltech.edu, E-mail: tpillai@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter α = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by α ≲ 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters α ≳ 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ∼1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  1. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  2. El Proyecto School on the Cloud: Lecciones Aprendidas = School on the Cloud Project: Lessons Learned

    Directory of Open Access Journals (Sweden)

    María Luisa de Lázaro y Torres

    2017-06-01

    Full Text Available School on the Cloud es un Proyecto europeo Acción Clave 3 del programa de Aprendizaje Permanente de la UE. En sus tres años de andadura ha evidenciado la potencialidad del empleo de la nube para el aprendizaje en todos los niveles educativos con la finalidad de llamar la atención a los agentes responsables de la educación en Europa sobre ello. Diversas actividades y resultados de investigación han permitido llegar a esa conclusión, para cuya consecución se proponen algunas medidas concretas, como por ejemplo, una estrategia europea para la educación en la nube.School on the Cloud is a European Erasmus+ project Key Action 3 of the EU Lifelong Learning program. The experience of three years has proven the potential use of the cloud for learning at all educational levels. We aim to draw stakeholders’ attention to the subject of education in Europe. A number of activities and research results have made it possible to reach this conclusion. Concrete measures to improve this type of learning have been proposed, such as a European strategy for education on the cloud.

  3. L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Fang, Min; Mao, Ruiqing; Zhang, Shaobo; Wang, Yuan; Su, Yang; Chen, Xuepeng; Yang, Ji; Wang, Hongchi; Lu, Dengrong, E-mail: ygong@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-01-20

    We present a new large-scale (2° × 2°) simultaneous {sup 12}CO, {sup 13}CO, and C{sup 18}O (J = 1–0) mapping of L1188 with the Purple Mountain Observatory 13.7 m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure that exhibits high excitation temperatures, enhanced {sup 12}CO and {sup 13}CO emission, and broad {sup 12}CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud–cloud collision happened in L1188 about 1 Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.

  4. State compacts and low-level waste

    International Nuclear Information System (INIS)

    Brown, H.

    1984-01-01

    In 1979, for the first time, low-level waste (LLW) was brought to the attention of policy makers in most states. For several decades, technical personnel had regulated and managed LLW, but elected officials and their staff had been largely ignorant of the origins and destination of low-level radioactive materials. Events in the fall of 1979 set in motion a sequence of events that has compelled the continuing attention of policy makers in every state in the nation. In December 1979, the Executive Committee of the National Governors' Association appointed an eight-member task force, chaired by Governor Bruce Babbitt of Arizona, to review low-level waste management and to formulate state policy by July 1980. The principal findings were as follows: 1. LLW could be managed most efficiently, both technically and politically, at the state level. 2. Each state should take responsibility for its own waste. 3. The creation of a regional waste management system by means of interstate compacts offered the best promise of creating new disposal capacity. 4. Regions should be allowed to exclude waste generated outside their borders after a specified date

  5. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  6. Continuous growth of cloud droplets in cumulus cloud

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-01-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μ m for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued. (paper)

  7. Increased cortisol responsivity to adrenocorticotropic hormone and low plasma levels of interleukin-1 receptor antagonist in women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Lindahl, Magnus S; Olovsson, Matts; Nyberg, Sigrid; Thorsen, Kim; Olsson, Tommy; Sundström Poromaa, Inger

    2007-01-01

    To assess the hypothalamic-pituitary-adrenal (HPA) axis at all levels, to determine the origin of the previously reported hypercortisolism in patients with functional hypothalamic amenorrhea. A secondary aim was to evaluate factors outside the central nervous system which are known to affect the HPA axis, i.e., circulating levels of interleukin-6 (IL-6), interleukin-1 receptor antagonist (IL-1Ra), and fat mass-adjusted leptin levels, in patients with functional hypothalamic amenorrhea and healthy controls. Cross-sectional study. Umeå University Hospital, Umeå, Sweden. Fifteen subjects with hypothalamic amenorrhea, and 14 age- and weight-matched controls. None. We collected blood samples four times during a 24-hour interval for analysis of cortisol, leptin, IL-1Ra, and IL-6 levels. We performed a low-dose oral dexamethasone test and a low-dose ACTH test. We measured body-fat percentage using a dual-energy X-ray absorptiometer. Patients with hypothalamic amenorrhea had increased diurnal cortisol levels (P<.001). The cortisol response to intravenous low-dose ACTH was increased in functional hypothalamic amenorrhea patients compared to control subjects (P<.01), but they had similar rates of dexamethasone suppression. Patients with hypothalamic amenorrhea also had decreased diurnal leptin (P<.05), and decreased diurnal IL-1Ra levels (P<.05), compared to controls. Body-fat percentage was the main predictor of leptin levels. The present study suggests novel links for the development of functional hypothalamic amenorrhea, including increased adrenal responsiveness and impairments in proinflammatory cytokine pathways.

  8. Brief Report: High and Low Level Initiations of Joint Attention, and Response to Joint Attention--Differential Relationships with Language and Imitation

    Science.gov (United States)

    Pickard, Katherine E.; Ingersoll, Brooke R.

    2015-01-01

    Frequency of high-level (showing/pointing) and low-level (coordinated gaze shifts) behaviors on the Early Social Communication Scales are often used as a measure of joint attention initiations (IJA). This study examined the degree to which these skills and response to joint attention (RJA; e.g. gaze following) were differentially related to…

  9. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    Science.gov (United States)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  10. Validity of spherical approximations of initial charge cloud shape in silicon detectors

    International Nuclear Information System (INIS)

    Xu Cheng; Danielsson, Mats; Bornefalk, Hans

    2011-01-01

    Spherical approximation has been used extensively in low-energy X-ray imaging to represent the initial charge cloud produced by photon interactions in silicon detectors, mainly because of its simplicity. However, for high-energy X-rays, where the initial charge distribution is as important as the diffusion process, the spherical approximation will not result in a realistic detector response. In this paper, we present a bubble-line model that simulates the initial charge cloud in silicon detectors for photons in the energy range of medical imaging. An initial charge cloud can be generated by sampling the center of gravity and the track size from statistical distributions derived from Monte Carlo generated tracks and by distributing a certain proportion of photon energy into a bubble (68%) and a line portion uniformly. The simulations of detector response demonstrate that the new model simulates the detector response accurately and corresponds well to Monte Carlo simulation.

  11. Low lifetime stress exposure is associated with reduced stimulus–response memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  12. THIR/Nimbus-7 Level 1 Cloud Data for SBUV/TOMS V001 (THIRN7L1BCLT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN7L1BCLT is the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Cloud Data for SBUV/TOMS (BCLT) product and contains total cloud amounts;...

  13. A numerical model of the electrodynamics of plasma within the contaminant gas cloud of the space shuttle orbiter at low Earth orbit

    International Nuclear Information System (INIS)

    Eccles, J.V.; Raitt, W.J.; Banks, P.M.

    1989-01-01

    This paper presents results from a two-dimensional, finite-difference model used to solve for the time evolution of low beta plasma within the neutral contaminant cloud in the vicinity of space platforms in low earth orbit. The model of the ambient and contaminant plasma dynamics takes into account the effects of the geomagnetic field, electric fields, background ionosphere, ion-neutral collisions, chemistry, and both Pederson and Hall currents. Net ionization and charge exchange source terms are included in the fluid equations to study electrodynamic effects of chemistry within a moving neutral cloud in the low earth orbit ionosphere. The model is then used with complete water cloud chemistry to simulate the known outgassing situation of the space shuttle Orbiter. A comparison is made of the model results with plasma observations made during daytime on OSS-1/STS-3 mission. The reported density enhancements of the OSS-1 mission are unattainable with normal photoionization and charge exchange rates of simple water cloud chemistry used in the two-dimensional model. The enhanced densities are only attained by a generic chemistry model if a net ionization rate 1,000 times higher than the photoionization rate of water is used. It is also shown that significant plasma buildup at the front of the contaminant neutral cloud can occur due to momentum transfer from the neutral outgas cloud to the plasma through elastic collisions and charge exchange. The currents caused by elastic and reactive collisions result in the generation of a small polarization electric field within the outgas cloud

  14. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  15. Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy.

    Science.gov (United States)

    Tietze, Julia K; Angelova, Daniela; Heppt, Markus V; Ruzicka, Thomas; Berking, Carola

    2017-07-01

    The introduction of immune checkpoint blockade (ICB) has been a breakthrough in the therapy of metastatic melanoma. The influence of ICB on T-cell populations has been studied extensively, but little is known about the effect on NK cells. In this study, we analysed the relative and absolute amounts of NK cells and of the subpopulations of CD56 dim and CD56 bright NK cells among the peripheral blood mononuclear cells (PBMCs) of 32 patients with metastatic melanoma before and under treatment with ipilimumab or pembrolizumab by flow cytometry. In 15 (47%) patients, an abnormal low amount of NK cells was found at baseline. Analysis of the subpopulations showed also low or normal baseline levels for CD56 dim NK cells, whereas the baseline levels of CD56 bright NK cells were either normal or abnormally high. The relative and absolute amounts of NK cells and of CD56 dim and CD56 bright NK cell subpopulations in patients with a normal baseline did not change under treatment. However, patients with a low baseline of NK cells and CD56 dim NK cells showed a significant increase in these immune cell subsets, but the amounts remained to be lower than the normal baseline. The amount of CD56 bright NK cells was unaffected by treatment. The baseline levels of NK cells were correlated with the number of metastatic organs. Their proportion increased, whereas the expression of NKG2D decreased significantly when more than one organ was affected by metastases. Low baseline levels of NK cells and CD56 dim NK cells as well as normal baseline levels of CD56 bright NK cells correlated significantly with a positive response to ipilimumab but not to pembrolizumab. Survival curves of patients with low amounts of CD56 dim NK cells treated with ipilimumab showed a trend to longer survival. Normal baseline levels of CD56 bright NK cells were significantly correlated with longer survival as compared to patients with high baseline levels. In conclusion, analysis of the amounts of total NK cells

  16. The basics of cloud computing understanding the fundamentals of cloud computing in theory and practice

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    As part of the Syngress Basics series, The Basics of Cloud Computing provides readers with an overview of the cloud and how to implement cloud computing in their organizations. Cloud computing continues to grow in popularity, and while many people hear the term and use it in conversation, many are confused by it or unaware of what it really means. This book helps readers understand what the cloud is and how to work with it, even if it isn't a part of their day-to-day responsibility. Authors Derrick Rountree and Ileana Castrillo explains the concepts of cloud computing in prac

  17. Exploring the relationship between a ground-based network and airborne CCN spectra observed at the cloud level

    Science.gov (United States)

    Corrigan, C.; Roberts, G. C.; Ritchie, J.; Creamean, J.; White, A. B.

    2011-12-01

    Cloud condensation nuclei (CCN) are aerosol particles that participate in the formation of clouds, and consequently, play a significant role in the influence of anthropogenic aerosols on atmospheric processes and climate change. Ultimately, the CCN of the most interest occupy the part of the atmosphere where cloud processes are occurring. A question arises as to whether in-cloud CCN are properly represented by the measurements of CCN at the ground level. While different locations may result in different answers depending upon local meteorology, the data set collected during CalWater 2011 may allow us to answer to what degree the ground-based observations of CCN are sufficient for evaluating cloud micro-physics over California's Central Valley and the lower slopes of the Sierra Nevada Mountains. During CalWater 2011, ground observations were performed at three different altitudes to assess the evolution of cloud-active aerosols as they were transported from sources in California's Central Valley to the lower slopes of the Sierra Nevada Mountains. CCN spectra were collected over a supersaturation range of 0.08 to 0.80%. Results from these data sets show a diurnal cycle with aerosol concentrations increasing during the afternoon and retreating during the night. In addition, a CCN instrument was placed aboard aircraft for several flights and was able to collect vertical profiles that encompassed the altitudes of the ground sites. The flight data shows a large drop in CCN concentration above the boundary layer and suggests the highest altitude ground site at China Wall ( 1540 masl)was sometimes above the Central Valley boundary layer. By using estimates of boundary layer heights over the mid-altitude site at Sugar Pine Dam (1060 masl), the events when the China Wall site is near or above the boundary layer are identified. During these events, the CCN measurements at China Wall best represent in-cloud CCN behavior. The results of this analysis may be applied towards a

  18. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2015-01-01

    Full Text Available Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO and Particle Swarm Optimization (PSO have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  19. THE GALFA-H I COMPACT CLOUD CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Saul, Destry R.; Peek, J. E. G.; Grcevich, J.; Putman, M. E.; Brown, A. R. H.; Hamden, E. T. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Douglas, K. A. [Physics and Astronomy, University of Calgary/Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); Korpela, E. J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Stanimirovic, S.; Lee, M.; Burkhart, B.; Pingel, N. M. [Department of Astronomy, University of Wisconsin, Madison, 475 N Charter St, Madison, WI 53703 (United States); Heiles, C. [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Gibson, S. J. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Begum, A. [Indian Institute of Science Education and Research, ITI Campus (Gas Rahat) Building, Govindpura, Bhopal-23 (India); Tonnesen, S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2012-10-10

    We present a catalog of 1964 isolated, compact neutral hydrogen clouds from the Galactic Arecibo L-Band Feed Array Survey Data Release One. The clouds were identified by a custom machine-vision algorithm utilizing the difference of Gaussian kernels to search for clouds smaller than 20'. The clouds have velocities typically between |V{sub LSR}| =20 and 400 km s{sup -1}, line widths of 2.5-35 km s{sup -1}, and column densities ranging from 1 to 35 Multiplication-Sign 10{sup 18} cm{sup -2}. The distances to the clouds in this catalog may cover several orders of magnitude, so the masses may range from less than a solar mass for clouds within the Galactic disk, to greater than 10{sup 4} M{sub Sun} for high-velocity clouds (HVCs) at the tip of the Magellanic Stream. To search for trends, we separate the catalog into five populations based on position, velocity, and line width: HVCs; galaxy candidates; cold low-velocity clouds (LVCs); warm, low positive-velocity clouds in the third Galactic quadrant; and the remaining warm LVCs. The observed HVCs are found to be associated with previously identified HVC complexes. We do not observe a large population of isolated clouds at high velocities as some models predict. We see evidence for distinct histories at low velocities in detecting populations of clouds corotating with the Galactic disk and a set of clouds that is not corotating.

  20. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  1. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  2. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    Science.gov (United States)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly

  3. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  4. Risks of low-level radiation - the evidence of epidemiology

    International Nuclear Information System (INIS)

    Gloag, D.

    1980-01-01

    The difficulties involved in estimating risks from very low levels of radiation and the use of dose-response models for cancer incidence are discussed with reference to the third BEIR Committee report on the Effects on Populations of Exposure to low levels of Ionizing Radiation (1980). Cancer risk estimates derived from different epidemiological studies are reviewed. They include atom bomb survivors, medically irradiated groups and occupational groups. (36 references). (author)

  5. Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Ozaki, Calvin B.; Kerr, Thomas A.; Williams, R. Eric

    1991-01-01

    Two national systems comprise the low-level radioactive waste management system in the United States of America. The U.S. Nuclear Regulatory Commission regulates low-level radioactive waste produced in the public sector (commercial waste), and the U.S. Department of Energy manages low-level radioactive waste produced by government-sponsored programs. The primary distinction between the two national systems is the source of regulatory control. This paper discusses two issues critical to the success of each system: the site selection process used by the commercial low-level waste disposal system, and the evaluation process used to determine configuration of the DOE waste management system. The two national systems take different approaches to reach the same goals, which are increased social responsibility, protection of public health and safety, and protection of the environment

  6. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  7. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  8. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  9. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    Science.gov (United States)

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  10. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  11. Low level waste shipment accident lessons learned

    International Nuclear Information System (INIS)

    Rast, D.M.; Rowe, J.G.; Reichel, C.W.

    1995-01-01

    On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident

  12. Identity Management issues in Cloud Computing

    OpenAIRE

    Saini, Smita; Mann, Deep

    2014-01-01

    Cloud computing is providing a low cost on demand services to the users, omnipresent network,large storage capacity due to these features of cloud computing web applications are moving towards the cloud and due to this migration of the web application,cloud computing platform is raised many issues like privacy, security etc. Privacy issue are major concern for the cloud computing. Privacy is to preserve the sensitive information of the cloud consumer and the major issues to the privacy are un...

  13. Projected Response of Low-Level Convergence and Associated Precipitation to Greenhouse Warming

    Science.gov (United States)

    Weller, Evan; Jakob, Christian; Reeder, Michael J.

    2017-10-01

    The parameterization of convection in climate models is a large source of uncertainty in projecting future precipitation changes. Here an objective method to identify organized low-level convergence lines has been used to better understand how atmospheric convection is organized and projected to change, as low-level convergence plays an important role in the processes leading to precipitation. The frequency and strength of convergence lines over both ocean and land in current climate simulations is too low compared to reanalysis data. Projections show a further reduction in the frequency and strength of convergence lines over the midlatitudes. In the tropics, the largest changes in frequency are generally associated with shifts in major low-latitude convergence zones, consistent with changes in the precipitation. Further, examining convergence lines when in the presence or absence of precipitation results in large spatial contrasts, providing a better understanding of regional changes in terms of thermodynamic and dynamic effects.

  14. Cloud Computing in Support of Synchronized Disaster Response Operations

    Science.gov (United States)

    2010-09-01

    scalable, Web application based on cloud computing technologies to facilitate communication between a broad range of public and private entities without...requiring them to compromise security or competitive advantage. The proposed design applies the unique benefits of cloud computing architectures such as

  15. Security Certification Challenges in a Cloud Computing Delivery Model

    Science.gov (United States)

    2010-04-27

    Relevant Security Standards, Certifications, and Guidance  NIST SP 800 series  ISO /IEC 27001 framework  Cloud Security Alliance  Statement of...CSA Domains / Cloud Features ISO 27001 Cloud Service Provider Responsibility Government Agency Responsibility Analyze Security gaps Compensating

  16. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An

  17. Plans for managing greater-than-class C low-level waste

    International Nuclear Information System (INIS)

    Newberry, W.F.; Coleman, J.A.

    1990-01-01

    Low-level waste is defined in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I, Public Law 99-240) as radioactive waste that is neither high-level radioactive waste, spent nuclear fuel, nor by-product material (mill tailings). This paper presents proposed plans for the Department of Energy to fulfill its responsibility to dispose of GTCC LLW under the 1985 law, and to ensure that safe options are available for long-term management of such, pending the availability of disposal capacity. In the absence of a concentration-based definition for high-level waste, there currently is no upper bound for the concentration of radionuclides in low-level waste

  18. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns

  19. Georeferenced Point Clouds: A Survey of Features and Point Cloud Management

    Directory of Open Access Journals (Sweden)

    Johannes Otepka

    2013-10-01

    Full Text Available This paper presents a survey of georeferenced point clouds. Concentration is, on the one hand, put on features, which originate in the measurement process themselves, and features derived by processing the point cloud. On the other hand, approaches for the processing of georeferenced point clouds are reviewed. This includes the data structures, but also spatial processing concepts. We suggest a categorization of features into levels that reflect the amount of processing. Point clouds are found across many disciplines, which is reflected in the versatility of the literature suggesting specific features.

  20. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  1. Low-level wind response to mesoscale pressure systems

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  2. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor—A Solution for Smoothing the Output Power of PV Power Plants

    Science.gov (United States)

    Sukič, Primož; Štumberger, Gorazd

    2017-01-01

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078

  3. Investigating the influence of volcanic sulfate aerosol on cloud properties Along A-Train tracks

    Science.gov (United States)

    Mace, G. G.

    2017-12-01

    Marine boundary layer (MBL) clouds are central actors in the climate system given their extensive coverage on the Earth's surface, their 1-way influence on the radiative balance (cooling), and their intimate coupling between air motions, anthropogenic and natural aerosol sources, and processes within the upper ocean mixed layer. Knowledge of how MBL shallow cumulus clouds respond to changes in aerosol is central to understanding how MBL clouds modulate the climate system. A frequent approach to investigating how sulfate aerosol influences MBL clouds has been to examine sulfate plumes extending downstream of active island volcanoes. This approach is challenging due to modification of the air motions in the plumes downstream of islands and due to the tendency of most researchers to examine only level-2 retrievals ignoring the actual data collected by sensors such as MODIS. Past studies have concluded that sulfate aerosols have large effects consistent with the 1st aerosol indirect effect (AIE). We reason that if such effects are as large as suggested in level-2 retrievals then evidence should also be present in the raw MODIS reflectance data as well as other data sources. In this paper we will build on our recently published work where we tested that hypothesis from data collected near Mount Kilauea during a 3-year period. Separating data into aerosol optical depth (A) quartiles, we found little support for a large 1st AIE response. We did find an unambiguous increase in sub 1km-scale cloud fraction with A. This increase in sub 1 km cloud fraction was entirely consistent with increased reflectance with increasing A that is used, via the level 2 retrievals, to argue for a large AIE response of MBL clouds. While the 1-km pixels became unambiguously brighter, that brightening was due to increased sub 1 km cloud fraction and not necessarily due to changes in pixel-level cloud microphysics. We also found that MBL cloud top heights increase as do surface wind speeds as

  4. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  5. Resource optimization and security for cloud services

    CERN Document Server

    Xiong , Kaiqi

    2014-01-01

    This book includes a study of trustworthiness, percentile response time, service availability, and authentication in the networks between users and cloud service providers, and at service stations or sites that may be owned by different service providers. The first part of the book contains an analysis of percentile response time, which is one of the most important SLA (service level agreements) metrics. Effective and accurate numerical solutions for the calculation of the percentile response time in single-class and multi-class queueing networks are obtained. Then, the numerical solution is

  6. Electron Cloud Effect in the Linear Colliders

    International Nuclear Information System (INIS)

    Pivi, M

    2004-01-01

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R and D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design

  7. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  8. SecSLA: A Proactive and Secure Service Level Agreement Framework for Cloud Services

    OpenAIRE

    Fahad F. Alruwaili; T. Aaron Gulliver

    2014-01-01

    Cloud customers migrate to cloud services to reduce the operational costs of information technology (IT) and increase organization efficiency. However, ensuring cloud security is very challenging. As a consequence, cloud service providers find it difficult to persuade customers to acquire their services due to security concerns. In terms of outsourcing applications, software, and/or infrastructure services to the cloud, customers are concerned about the availability, integrity, privacy...

  9. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  10. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  11. Star clouds of Magellan

    International Nuclear Information System (INIS)

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  12. On the genetic effects of low-level tritium

    International Nuclear Information System (INIS)

    Hori, Tada-aka; Nakai, Sayaka

    1976-01-01

    Genetic risk assessment for potential hazard from environmental tritium to man becomes important with increasing nuclear-power industry. The purpose of this short review is to discuss the possible genetic effects of tritium from a view of genetic risk estimation. The discussion is based mainly on our experimental results on the chromosome aberrations induced in human lymphocytes by tritium at the very low-level. The types of chromosome aberrations induced by radiation from tritium incorporated into the cells are mostly chromatid types. The most interesting finding is that the dose-response relationship observed in both tritiated-water and tritiated-thymidine is composed of two phases. The examination on the nature of two-phase dose-response relationship is very important not only for the mechanisms of chromosome aberrations, but also for the evaluation of genetic risk from low-level radiation. (auth.)

  13. Security in cloud computing

    OpenAIRE

    Moreno Martín, Oriol

    2016-01-01

    Security in Cloud Computing is becoming a challenge for next generation Data Centers. This project will focus on investigating new security strategies for Cloud Computing systems. Cloud Computingisarecent paradigmto deliver services over Internet. Businesses grow drastically because of it. Researchers focus their work on it. The rapid access to exible and low cost IT resources on an on-demand fashion, allows the users to avoid planning ahead for provisioning, and enterprises to save money ...

  14. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  15. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  16. Cloud computing development in Armenia

    Directory of Open Access Journals (Sweden)

    Vazgen Ghazaryan

    2014-10-01

    Full Text Available Purpose – The purpose of the research is to clarify benefits and risks in regards with data protection, cost; business can have by the use of this new technologies for the implementation and management of organization’s information systems.Design/methodology/approach – Qualitative case study of the results obtained via interviews. Three research questions were raised: Q1: How can company benefit from using Cloud Computing compared to other solutions?; Q2: What are possible issues that occur with Cloud Computing?; Q3: How would Cloud Computing change an organizations’ IT infrastructure?Findings – The calculations provided in the interview section prove the financial advantages, even though the precise degree of flexibility and performance has not been assessed. Cloud Computing offers great scalability. Another benefit that Cloud Computing offers, in addition to better performance and flexibility, is reliable and simple backup data storage, physically distributed and so almost invulnerable to damage. Although the advantages of Cloud Computing more than compensate for the difficulties associated with it, the latter must be carefully considered. Since the cloud architecture is relatively new, so far the best guarantee against all risks it entails, from a single company's perspective, is a well-formulated service-level agreement, where the terms of service and the shared responsibility and security roles between the client and the provider are defined.Research limitations/implications – study was carried out on the bases of two companies, which gives deeper view, but for more widely applicable results, a wider analysis is necessary.Practical implications:Originality/Value – novelty of the research depends on the fact that existing approaches on this problem mainly focus on technical side of computing.Research type: case study

  17. Resource-level QoS metric for CPU-based guarantees in cloud providers

    OpenAIRE

    Goiri Presa, Íñigo; Julià Massó, Ferran; Fitó, Josep Oriol; Macías Lloret, Mario; Guitart Fernández, Jordi

    2010-01-01

    Success of Cloud computing requires that both customers and providers can be confident that signed Service Level Agreements (SLA) are supporting their respective business activities to their best extent. Currently used SLAs fail in providing such confidence, especially when providers outsource resources to other providers. These resource providers typically support very simple metrics, or metrics that hinder an efficient exploitation of their resources. In this paper, we propose a re...

  18. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    International Nuclear Information System (INIS)

    Huerta, M.; Lamoreaux, G.H.; Romesberg, L.E.; Yoshimura, H.R.; Joseph, B.J.; May, R.A.

    1983-01-01

    This report describes extensive full-scale and scale-model testing of 55-gallon drums used for shipping low-level radioactive waste materials. The tests conducted include static crush, single-can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full-, quarter-, and eighth-scale with different types of waste materials. The full-scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full-scale drums. Two computer techniques for calculating the response of drum stacks are presented. 83 figures, 9 tables

  19. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  20. Blood pressure response to low level static contractions

    DEFF Research Database (Denmark)

    Fallentin, Nils; Jørgensen, Kurt

    1992-01-01

    The present study re-examines the 15% MVC concept, i.e. the existence of a circulatory steady-state in low intensity static contractions below 15% of maximal voluntary contraction (MVC). Mean arterial blood pressure was studied during static endurance contractions of the elbow flexor and extensor...... 0.7) min for elbow extension]. Mean arterial blood pressure exhibited a continuous and progressive increase during the 10% MVC contractions indicating that the 15% MVC concept would not appear to be valid. The terminal blood pressure value recorded at the point of exhaustion in the 10% MVC elbow...... the circulation to the muscles was arrested just prior to the cessation of the contraction, blood pressure only partly recovered and remained elevated for as long as the occlusion persisted, indicating the level of pressure-raising muscle chemoreflexes. Based on blood pressure recordings obtained during...

  1. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    Science.gov (United States)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  2. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    Science.gov (United States)

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  3. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...

  4. The mass spectrum of interstellar clouds

    International Nuclear Information System (INIS)

    Dickey, J.M.; Garwood, R.W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal. 36 refs

  5. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  6. Carbon pellet cloud striations

    International Nuclear Information System (INIS)

    Parks, P.B.

    1989-01-01

    Fine scale striations, with alternating rows of bright and dark zones, have been observed in the ablation clouds of carbon pellets injected into the TEXT tokamak. The striations extend along the magnetic field for about 1 cm with quite regular cross-field variations characterized by a wavelength of a few mm. Their potential as a diagnostic tool for measuring q-profiles in tokamaks provides motivation for investigating the origin of the striations. The authors propose that the striations are not due to a sequence of high and low ablation rates because of the finite thermal magnetic islands localized at rational surfaces, q = m/n, would be responsible for reducing the electron flux to the pellet region; the length of the closed field line which forms the local magnetic axis of the island is too long to prevent a depletion of plasma electrons in a flux tube intercepting the pellet for the duration 2 rp / vp . Instead, they propose that striations are the manifestation of the saturated state of growing fluctuations inside the cloud. The instability is generated by E x B rotation of the ablation cloud. The outward centrifugal force points down the ablation density gradient inducing the Rayleigh-Taylor instability. The instability is not present for wave numbers along the field lines, which may explain why the striations are long and uniform in that direction. The E field develops inside the ablation cloud as a result of cold electron return currents which are induced to cancel the incoming hot plasma electron current streaming along the field lines

  7. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  8. Cloud properties derived from two lidars over the ARM SGP site

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  9. Molecular Evidence for Species-Level Distinctions in Clouded Leopards

    OpenAIRE

    Buckley-Beason, Valerie A.; Johnson, Warren E.; Nash, Willliam G.; Stanyon, Roscoe; Menninger, Joan C.; Driscoll, Carlos A.; Howard, JoGayle; Bush, Mitch; Page, John E.; Roelke, Melody E.; Stone, Gary; Martelli, Paolo P.; Wen, Ci; Ling, Lin; Duraisingam, Ratna K.

    2006-01-01

    Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats [1–5]. This secretive, mid-sized (16–23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A) [4–8]. We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known ...

  10. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  11. SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Center for Computational Sciences, The University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2016-02-20

    Spectral line survey observations of seven molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO{sup +}, and HNC are detected in addition to those of CO and {sup 13}CO, while CH{sub 3}OH is not detected in any source and N{sub 2}H{sup +} is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the seven sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic of the LMC without influences by star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH{sub 3}OH. Feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO{sup +} and SO/HCO{sup +} ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along the molecular cloud formation.

  12. A review on software testing approaches for cloud applications

    Directory of Open Access Journals (Sweden)

    Tamanna Siddiqui

    2016-09-01

    Full Text Available Cloud computing has actually been invented to be the latest computing standard that will work several distinctive research areas, such as software testing. Testing cloud applications will keep its unique characteristics that involve more recent testing techniques. Software testing helps to reduce the need for hardware and software services and also provide adaptable and valuable cloud platform. Testing within the cloud platform is easily manageable based on new test models and criteria. Prioritization approach is made responsive to build much better relationship between test cases. These test cases are clustered dependent on priority level. The resources can be used properly by applying load balancing algorithm. Cloud guarantees maximum usage of existing resources. But, security defined as a primary problem in cloud. At the present time, organizations are progressively moving excited about deploying and making use of ready-prepared business applications, with particular short-term to the marketplace. The possible lack of capital budgets for software planning and on principle deployments, along with the swift progression of cloud these are the reasons why one should make the interest on business application. However, these are the interests that help make the SaaS based business application on-demand. In this paper different approaches has been discussed that will help to extend the cloud environment. Also, the study of several well-known software testing approaches.

  13. Cloud Computing for Standard ERP Systems

    DEFF Research Database (Denmark)

    Schubert, Petra; Adisa, Femi

    for the operation of ERP systems. We argue that the phenomenon of cloud computing could lead to a decisive change in the way business software is deployed in companies. Our reference framework contains three levels (IaaS, PaaS, SaaS) and clarifies the meaning of public, private and hybrid clouds. The three levels......Cloud Computing is a topic that has gained momentum in the last years. Current studies show that an increasing number of companies is evaluating the promised advantages and considering making use of cloud services. In this paper we investigate the phenomenon of cloud computing and its importance...... of cloud computing and their impact on ERP systems operation are discussed. From the literature we identify areas for future research and propose a research agenda....

  14. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  15. Factors influencing the organizational adoption of cloud computing: a survey among cloud workers

    Directory of Open Access Journals (Sweden)

    Mark Stieninger

    2018-01-01

    Full Text Available Cloud computing presents an opportunity for organizations to leverage affordable, scalable, and agile technologies. However, even with the demonstrated value of cloud computing, organizations have been hesitant to adopt such technologies. Based on a multi-theoretical research model, this paper provides an empirical study targeted to better understand the adoption of cloud services. An online survey addressing the factors derived from literature for three specific popular cloud application types (cloud storage, cloud mail and cloud office was undertaken. The research model was analyzed by using variance-based structural equation modelling. Results show that the factors of compatibility, relative advantage, security and trust, as well as, a lower level of complexity lead to a more positive attitude towards cloud adoption. Complexity, compatibility, image and security and trust have direct and indirect effects on relative advantage. These factors further explain a large part of the attitude towards cloud adoption but not of its usage.

  16. Recommended regulatory program plan for low-level radioactive waste management in Maryland

    International Nuclear Information System (INIS)

    1986-01-01

    The National Program for Low-Level Radioactive Waste Management was instituted by the US Department of Energy to assist the states in carrying out this new federal policy. Based on the premise that the safe disposal of low-level waste is technologically feasible and that states have the necessary degree of authority to set management policy, the National Program is helping them to develop a responsive, comprehensive regulatory program. The State of Maryland is actively engaged with the National Program in its efforts to form a comprehensive management program. The purpose of this plan is to review existing statutory and regulatory program responsibilities and provide a recommended management scheme for low-level radioactive waste

  17. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  18. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  19. Enhancing accountability in the cloud

    NARCIS (Netherlands)

    Jaatun, M.; Pearson, S.; Gittler, F.; Leenes, Ronald; van der Zwet, Maartje

    2016-01-01

    This article focuses on the role of accountability within information management, particularly in cloud computing contexts. Key to this notion is that an accountable Cloud Provider must demonstrate both willingness and capacity for being a responsible steward of other people's data. More generally,

  20. Plans for managing greater-than-glass C low-level waste

    International Nuclear Information System (INIS)

    Newberry, W.F.; Coleman, J.A.

    1990-01-01

    Low-level waste is defined in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I, Public Law 99-240) as radioactive waste that is neither high-level radioactive waste, spent nuclear fuel, nor by-product material (mill tailings). This paper presents proposed plans for the Department of Energy to fulfill its responsibility to dispose of GTCC LLW under the 1985 law, and to ensure that safe options are available for long-term management of such, pending the availability of disposal capacity. In the absence of a concentration-based definition for high-level waste, there currently is no upper bound for the concentration of radionuclides in low-level waste. DOE's plans for managing and disposing of GTCC LLW are generally consistent with a report issued by the Congressional Office of Technology Assessment in October 1988, An Evaluation of Options for Managing Greater-than-Class C Low-Level Radioactive Waste

  1. Simulation of cloud/radiation interaction using a second-order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.; Smith, W.S.

    1994-01-01

    Extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasi-permanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net shortwave flux entering the atmosphere, and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory. Future work includes sensitivity tests to ascertain the model validity as well as to systematically include all the possible ambient atmospheric and surface conditions. Detailed budget analyses are also useful in categorizing the cloud-capped boundary layers into a few classes

  2. Design Thinking and Cloud Manufacturing: A Study of Cloud Model Sharing Platform Based on Separated Data Log

    Directory of Open Access Journals (Sweden)

    Zhe Wei

    2013-01-01

    Full Text Available To solve the product data consistency problem which is caused by the portable system that cannot conduct real-time update of product data in mobile environment under the mass customization production mode, a new product data optimistic replication method based on log is presented. This paper focuses on the design thinking provider, probing into a manufacturing resource design thinking cloud platform based on manufacturing resource-locating technologies, and also discuss several application scenarios of cloud locating technologies in the manufacturing environment. The actual demand of manufacturing creates a new mode which is service-oriented and has high efficiency and low consumption. Finally, they are different from the crowd-sourcing application model of Local-Motors. The sharing platform operator is responsible for a master plan for the platform, proposing a open interface standard and establishing a service operation mode.

  3. When STAR meets the Clouds-Virtualization and Cloud Computing Experiences

    International Nuclear Information System (INIS)

    Lauret, J; Hajdu, L; Walker, M; Balewski, J; Goasguen, S; Stout, L; Fenn, M; Keahey, K

    2011-01-01

    In recent years, Cloud computing has become a very attractive paradigm and popular model for accessing distributed resources. The Cloud has emerged as the next big trend. The burst of platform and projects providing Cloud resources and interfaces at the very same time that Grid projects are entering a production phase in their life cycle has however raised the question of the best approach to handling distributed resources. Especially, are Cloud resources scaling at the levels shown by Grids? Are they performing at the same level? What is their overhead on the IT teams and infrastructure? Rather than seeing the two as orthogonal, the STAR experiment has viewed them as complimentary and has studied merging the best of the two worlds with Grid middleware providing the aggregation of both Cloud and traditional resources. Since its first use of Cloud resources on Amazon EC2 in 2008/2009 using a Nimbus/EC2 interface, the STAR software team has tested and experimented with many novel approaches: from a traditional, native EC2 approach to the Virtual Organization Cluster (VOC) at Clemson University and Condor/VM on the GLOW resources at the University of Wisconsin. The STAR team is also planning to run as part of the DOE/Magellan project. In this paper, we will present an overview of our findings from using truly opportunistic resources and scaling-out two orders of magnitude in both tests and practical usage.

  4. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an

  5. INFRARED DARK CLOUDS IN THE SMALL MAGELLANIC CLOUD?

    International Nuclear Information System (INIS)

    Lee, Min-Young; Stanimirovic, Snezana; Devine, Kathryn E.; Ott, Juergen; Van Loon, Jacco Th.; Oliveira, Joana M.; Bolatto, Alberto D.; Jones, Paul A.; Cunningham, Maria R.

    2009-01-01

    We have applied the unsharp-masking technique to the 24 μm image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty-five candidate regions of high extinction, namely, high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H 2 . HCRs have a peak contrast at 24 μm of 2%-2.5% and a size of 8-14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2-3 times darker at 24 μm than our HCRs. To constrain the physical properties of the HCRs, we have performed NH 3 , N 2 H + , HNC, HCO + , and HCN observations toward one of the HCRs, HCR LIRS36-east, using the Australia Telescope Compact Array and the Mopra single-dish radio telescope. We did not detect any molecular line emission, however, our upper limits to the column densities of molecular species suggest that HCRs are most likely moderately dense with n ∼ 10 3 cm -3 . This volume density is in agreement with predictions for the cool atomic phase in low-metallicity environments. We suggest that HCRs may be tracing clouds at the transition from atomic to molecule-dominated medium, and could be a powerful way to study early stages of gas condensation in low-metallicity galaxies. Alternatively, if made up of dense molecular clumps <0.5 pc in size, HCRs could be counterparts of Galactic IRDCs, and/or regions with highly unusual abundance of very small dust grains.

  6. Radio-adaptation: cellular and molecular features of a response to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Rigaud, O.

    1998-01-01

    It is well established that sublethal doses of DNA damaging agents induce protective mechanisms against a subsequent high dose treatment ; for instance, the phenomenon of radio-adaptation in the case of ionizing radiations. Since the early observation described in 1984, numerous studies have confirmed the radio-adaptive response in terms of reduction of chromosomal breaks for varied biological models in vitro and in vivo. Evidence for an adaptive response against the induction of gene mutations and the lethal effect is clearly demonstrated. This paper reviews the experimental results describing various aspects of these adaptive responses expressed on these different biological end-points. The molecular mechanism underlying radio-adaptation still remains nuclear. The development of this phenomenon requires de novo synthesis of transcripts and proteins during the time interval between the two doses. Some data are consistent with the hypotheses that these gene products would be involved in the activation of DNA repair pathways and antioxidant systems. However, a major question still remains unanswered; indeed, it is not clear whether or not the radio-adaptation could affect the estimation of cancer risk related with low level exposure to ionizing radiation, a major concern in radioprotection. Until such data are available, it is yet unwise to evoke the beneficial effects of radio-adaptation. (authors)

  7. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  8. Cloud Computing. Technology Briefing. Number 1

    Science.gov (United States)

    Alberta Education, 2013

    2013-01-01

    Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…

  9. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, K.; Smith, W.K. [Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Biology

    2008-01-15

    Global climate change is expected to increase regional cloud ceiling levels in many mountainous forested areas of the world. This study investigated environmental influences on the gas exchange physiology of understory red spruce and Fraser fir trees at 2 sites in the Appalachian mountains. The study hypothesized that the humid, cloudy environment would influence the photosynthetic performance of the trees, and that the species would adapt to low, diffuse light. The study also predicted that leaf conductance to carbon dioxide (CO{sub 2}) would be high as a result of low leaf-to-air-vapour pressure deficit (LAVD). The study demonstrated that leaf conductance decreased exponentially as LAVD increased. Predawn leaf water potentials remained stable, while late afternoon values declined. It was concluded that leaf gas exchange was correlated with the response of leaf conductance and LAVD. The cloudy, humid environment strongly influenced tree leaf gas exchange and water relations. It was suggested that further research is needed to investigate cloud impacts on carbon gain and water relations. 72 refs., 1 tab., 8 figs.

  10. Cloud System Evolution in the Trades—CSET

    Science.gov (United States)

    Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was

  11. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  12. Guidance document for prepermit bioassay testing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report

  13. Guidance document for prepermit bioassay testing of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  14. Robotic disaster recovery efforts with ad-hoc deployable cloud computing

    Science.gov (United States)

    Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.

    2013-06-01

    Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.

  15. The Determination of Jurisdiction in Grid and Cloud Service Level Agreements

    Science.gov (United States)

    Parrilli, Davide Maria

    Service Level Agreements in Grid and Cloud scenarios can be a source of disputes particularly in case of breach of the obligations arising under them. It is then important to determine where parties can litigate in relation with such agreements. The paper deals with this question in the peculiar context of the European Union, and so taking into consideration Regulation 44/2001. According to the rules on jurisdiction provided by the Regulation, two general distinctions are drawn in order to determine which (European) courts are competent to adjudicate disputes arising out of a Service Level Agreement. The former is between B2B and B2C transactions, and the latter regards contracts which provide a jurisdiction clause and contracts which do not.

  16. Illinois perspective on low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Etchison, D.

    1984-01-01

    Illinois is a big generator of low level radioactive waste. It has had extensive experience with controversial waste disposal and storage facilities. This experience makes it difficult for the public and political leaders in Illinois to support the establishment of new disposal facilities in the state. Yet, with extensive debates and discussions concerning the Low Level Waste Policy Act of 1980 and the proposed Midwest Compact, political leaders and the public are facing up to the fact that they must be responsible for the disposal of the low level radioactive waste generated in the state. The Governor and many political leaders from Illinois support the regional approach and believe it can be an innovative and progressive way for the state to deal with the range of low level waste management and disposal problems. A version of the Midwest Interstate Low Level Waste Compact has become Illinois law, but it has significant differences from the one adopted by five other states. Like other states in the midwest and northeast, Illinois is opposed to Congressional consent of the four pending compacts before the remaining two compacts, the northeast and midwest are sent to Washington and interregional agreements are negotiated between the sited and non-sited regions. A new national system must be established before access to existing commercial disposal becomes restricted

  17. Cell wide responses to low oxygen exposure in Desulfovibriovulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.; Redding, A.; Joachimiak, M.; Arkin, A.; Borglin, S.; Dehal, P.; Chakraborty, R.; Geller, J.; Hazen, T.; He, Q.; Joyner, D.; Martin, V.; Wall, J.; Yang, Z.; Zhou, J.; Keasling, J.

    2007-03-11

    The responses of the anaerobic, sulfate-reducing Desulfovibrio vulgaris Hildenborough to low oxygen exposure (0.1% O{sub 2}) were monitored via transcriptomics and proteomics. Exposure to 0.1% O{sub 2} caused a decrease in growth rate without affecting viability. A concerted up regulation in the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O{sub 2} exposure. Several of these candidates also showed increases in protein abundance. Among the remaining small number of transcript changes was the up regulation of the predicted transmembrane tetraheme cytochrome c3 complex. Other known oxidative stress response candidates remained unchanged during this low O{sub 2} exposure. To fully understand the results of the 0.1% O{sub 2} exposure, transcriptomics and proteomics data were collected for exposure to air using a similar experimental protocol. In contrast to the 0.1% O{sub 2} exposure, air exposure was detrimental to both the growth rate and viability and caused dramatic changes at both the transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon genes were down regulated during air exposure. Our results highlight the differences in the cell wide response to low and high O{sub 2} levels of in D. vulgaris and suggest that while exposure to air is highly detrimental to D. vulgaris, this bacterium can successfully cope with periodic exposure to low O{sub 2} levels in its environment.

  18. New photoionization models of intergalactic clouds

    Science.gov (United States)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  19. A Secure Cloud-Assisted Wireless Body Area Network in Mobile Emergency Medical Care System.

    Science.gov (United States)

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao

    2016-05-01

    Recent advances in medical treatment and emergency applications, the need of integrating wireless body area network (WBAN) with cloud computing can be motivated by providing useful and real time information about patients' health state to the doctors and emergency staffs. WBAN is a set of body sensors carried by the patient to collect and transmit numerous health items to medical clouds via wireless and public communication channels. Therefore, a cloud-assisted WBAN facilitates response in case of emergency which can save patients' lives. Since the patient's data is sensitive and private, it is important to provide strong security and protection on the patient's medical data over public and insecure communication channels. In this paper, we address the challenge of participant authentication in mobile emergency medical care systems for patients supervision and propose a secure cloud-assisted architecture for accessing and monitoring health items collected by WBAN. For ensuring a high level of security and providing a mutual authentication property, chaotic maps based authentication and key agreement mechanisms are designed according to the concept of Diffie-Hellman key exchange, which depends on the CMBDLP and CMBDHP problems. Security and performance analyses show how the proposed system guaranteed the patient privacy and the system confidentiality of sensitive medical data while preserving the low computation property in medical treatment and remote medical monitoring.

  20. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  1. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  2. Cloud Condensation Nuclei Measurements During the First Year of the ORACLES Study

    Science.gov (United States)

    Kacarab, M.; Howell, S. G.; Wood, R.; Redemann, J.; Nenes, A.

    2016-12-01

    Aerosols have significant impacts on air quality and climate. Their ability to scatter and absorb radiation and to act as cloud condensation nuclei (CCN) plays a very important role in the global climate. Biomass burning organic aerosol (BBOA) can drastically elevate the concentration of CCN in clouds, but the response in droplet number may be strongly suppressed (or even reversed) owing to low supersaturations that may develop from the strong competition of water vapor (Bougiatioti et al. 2016). Understanding and constraining the magnitude of droplet response to biomass burning plumes is an important component of the aerosol-cloud interaction problem. The southeastern Atlantic (SEA) cloud deck provides a unique opportunity to study these cloud-BBOA interactions for marine stratocumulus, as it is overlain by a large, optically thick biomass burning aerosol plume from Southern Africa during the burning season. The interaction between these biomass burning aerosols and the SEA cloud deck is being investigated in the NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study. The CCN activity of aerosol around the SEA cloud deck and associated biomass burning plume was evaluated during the first year of the ORACLES study with direct measurements of CCN concentration, aerosol size distribution and composition onboard the NASA P-3 aircraft during August and September of 2016. Here we present analysis of the observed CCN activity of the BBOA aerosol in and around the SEA cloud deck and its relationship to aerosol size, chemical composition, and plume mixing and aging. We also evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics.

  3. The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design

    Science.gov (United States)

    Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2014-03-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of

  4. Performance Evaluation of Cloud Service Considering Fault Recovery

    Science.gov (United States)

    Yang, Bo; Tan, Feng; Dai, Yuan-Shun; Guo, Suchang

    In cloud computing, cloud service performance is an important issue. To improve cloud service reliability, fault recovery may be used. However, the use of fault recovery could have impact on the performance of cloud service. In this paper, we conduct a preliminary study on this issue. Cloud service performance is quantified by service response time, whose probability density function as well as the mean is derived.

  5. Giant molecular cloud scaling relations: the role of the cloud definition

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  6. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  7. Effects of an assumed cosmic ray-modulated low global cloud cover on the Earth's temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.; Mendoza, B. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Mendoza, V.; Adem, J. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: victor@atmosfera.unam.mx

    2006-07-15

    We have used the Thermodynamic Model of the Climate to estimate the effect of variations in the low cloud cover on the surface temperature of the Earth in the Northern Hemisphere during the period 1984-1994. We assume that the variations in the low cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the surface temperature is more significant in the continents, where for July of 1991, we have found anomalies of the order of 0.7 degrees Celsius for the southeastern of Asia and 0.5 degrees Celsius for the northeast of Mexico. For an increase of 0.75% in the low cloud cover, the surface temperature computed by the model in the North Hemisphere presents a decrease of {approx} 0.11 degrees Celsius; however, for a decrease of 0.90% in the low cloud cover, the model gives an increase in the surface temperature of {approx} 0.15 degrees Celsius, these two cases correspond to a climate sensitivity factor for the case of forcing by duplication of atmospheric CO{sub 2}. These decreases or increases in surface temperature by increases of decreases in low clouds cover are ten times greater than the overall variability of the non-forced model time series. [Spanish] Hemos usado el Modelo Termodinamico del Clima para estimar el efecto de variaciones en la cubierta de nubes bajas sobre la temperatura superficial de la Tierra en el Hemisferio Norte durante el periodo 1984 - 1994. Suponemos que las variaciones en la cubierta de nubes bajas son proporcionales a las variaciones del flujo de rayos cosmicos medido durante el mismo periodo. Los resultados indican que el efecto en la temperatura es mas significativo en los continentes, donde para julio de 1991, hemos encontrado anomalias del orden de 0.7 grados Celsius sobre el sureste de Asia y 0.5 grados Celsius al noreste de Mexico. Para un incremento de 0.75% en la cubierta de nubes bajas, la temperatura de la superficie calculada por el modelo en

  8. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  9. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  10. 1994 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1995-04-01

    This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  11. Cloud Spirals and Outflow in Tropical Storm Katrina

    Science.gov (United States)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe

  12. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  13. Using Stable Isotopes in Water Vapor to Diagnose Relationships Between Lower-Tropospheric Stability, Mixing, and Low-Cloud Cover Near the Island of Hawaii

    Science.gov (United States)

    Galewsky, Joseph

    2018-01-01

    In situ measurements of water vapor isotopic composition from Mauna Loa, Hawaii, are merged with soundings from Hilo to show an inverse relationship between the estimated inversion strength (EIS) and isotopically derived measures of lower-tropospheric mixing. Remote sensing estimates of cloud fraction, cloud liquid water path, and cloud top pressure were all found to be higher (lower) under low (high) EIS. Inverse modeling of the isotopic data corresponding to terciles of EIS conditions provide quantitative constraints on the last-saturation temperatures and mixing fractions that govern the humidity above the trade inversion. The mixing fraction of water vapor transported from the boundary layer to Mauna Loa decreases with respect to EIS at a rate of about 3% K-1, corresponding to a mixing ratio decrease of 0.6 g kg-1 K-1. A last-saturation temperature of 240 K can match all observations. This approach can be applied in other settings and may be used to test models of low-cloud climate feedbacks.

  14. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  15. Low-level effects

    International Nuclear Information System (INIS)

    Devine, R.T.; Chaput, R.L.

    1987-01-01

    Risk assignments can be made to given practices involving exposure to radiation, because sufficient data are available for the effects of high-dose, low-LET radiation and because sufficient exists in the methods of extrapolation to low doses and low dose rates. The confidence in the extrapolations is based on the fact that the risk is not expected to be overestimated, using the assumptions made (as opposed to the possibility that the extrapolations represent an accurate estimate of the risk). These risk estimates have been applied to the selection of permissible exposure levels, to show that various amounts of radiation involve no greater risk to the worker than the risk expected in another industry that is generally considered safe. The setting of standards for protection from exposure to low levels of ionizing radiation is made by expert committees at the national and international levels who weigh social factors as well as scientific factors. Data on low-level effects may be applied when assigning a ''probability of causation'' to a certain exposure of radiation. This has become a prominent method for arriving at an equitable award for damages caused by such exposure. The generation of these tables requires as many (if not more) social and political considerations as does the setting up of protection criteria. It is impossible to extract a purely scientific conclusion solely from the protection standards and other legal decisions. Sufficient information exists on low-LET radiation that safety standards for exposure can be rationally (if not scientifically) agreed upon

  16. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  17. Overview of the Nuclear Regulatory Commission Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Bishop, W.P.; Bell, M.J.; Dragonette, K.S.; Adam, J.

    1979-01-01

    Environmental impacts from Table S-3 of 10 CFR Part 51 are included in individual environmental impact statements for LWR's. In response to a U.S. Court of Appeals finding of inadequate documentation to support Table S-3, ''Environmental Survey of Reprocessing and Waste Management Portions of the LWR Fuel Cycle'' (NUREG-0116) and ''Public Comments and Task Force Responses Regarding Environmental Survey of the Reprocessing and Waste Portions of the LWR Fuel Cycle'' (NUREG-0216) were published. As a result of these in-house studies, an interim rule revising Table S-3 has been published. These documents include discussions of shallow land burial of low-level waste, past experiences and sensitivity calculations estimating potential dose commitments from the groundwater migration of the wastes. An NRC task force report (NUREG-0217) examining the Federal and Agreement State programs for regulating commercial low-level waste disposal recommends increasing the federal role in low-level waste disposal. The need to investigate alternatives to shallow land burial is identified. The NRC is developing a radioactive waste management program which includes a plan for the implementation of the task force recommendations, the development of environmental impacts for low-level waste disposal, development of standards and criteria, and the establishment of a regulatory framework and licensing procedures for the disposal of low-level radioactive waste

  18. Cloud cover over the equatorial eastern Pacific derived from July 1983 International Satellite Cloud Climatology Project data using a hybrid bispectral threshold method

    Science.gov (United States)

    Minnis, Patrick; Harrison, Edwin F.; Gibson, Gary G.

    1987-01-01

    A set of visible and IR data obtained with GOES from July 17-31, 1983 is analyzed using a modified version of the hybrid bispectral threshold method developed by Minnis and Harrison (1984). This methodology can be divided into a set of procedures or optional techniques to determine the proper contaminate clear-sky temperature or IR threshold. The various optional techniques are described; the options are: standard, low-temperature limit, high-reflectance limit, low-reflectance limit, coldest pixel and thermal adjustment limit, IR-only low-cloud temperature limit, IR clear-sky limit, and IR overcast limit. Variations in the cloud parameters and the characteristics and diurnal cycles of trade cumulus and stratocumulus clouds over the eastern equatorial Pacific are examined. It is noted that the new method produces substantial changes in about one third of the cloud amount retrieval; and low cloud retrievals are affected most by the new constraints.

  19. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  20. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  1. The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design

    Science.gov (United States)

    Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2013-05-01

    The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary

  2. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  3. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...... on the estimated visibilities between any two locations within the point cloud. With the segmentation into rooms at hand, we subsequently determine the locations and extents of doors between adjacent rooms. In our experiments, we demonstrate the feasibility of our method by applying it to synthetic as well...

  4. CHPS IN CLOUD COMPUTING ENVIRONMENT

    OpenAIRE

    K.L.Giridas; A.Shajin Nargunam

    2012-01-01

    Workflow have been utilized to characterize a various form of applications concerning high processing and storage space demands. So, to make the cloud computing environment more eco-friendly,our research project was aiming in reducing E-waste accumulated by computers. In a hybrid cloud, the user has flexibility offered by public cloud resources that can be combined to the private resources pool as required. Our previous work described the process of combining the low range and mid range proce...

  5. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  6. Green Cloud Computing: A Literature Survey

    Directory of Open Access Journals (Sweden)

    Laura-Diana Radu

    2017-11-01

    Full Text Available Cloud computing is a dynamic field of information and communication technologies (ICTs, introducing new challenges for environmental protection. Cloud computing technologies have a variety of application domains, since they offer scalability, are reliable and trustworthy, and offer high performance at relatively low cost. The cloud computing revolution is redesigning modern networking, and offering promising environmental protection prospects as well as economic and technological advantages. These technologies have the potential to improve energy efficiency and to reduce carbon footprints and (e-waste. These features can transform cloud computing into green cloud computing. In this survey, we review the main achievements of green cloud computing. First, an overview of cloud computing is given. Then, recent studies and developments are summarized, and environmental issues are specifically addressed. Finally, future research directions and open problems regarding green cloud computing are presented. This survey is intended to serve as up-to-date guidance for research with respect to green cloud computing.

  7. Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Klein, Stephen A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Taylor, Karl E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Andrews, Timothy [Met Office Hadley Center, Exeter (United Kingdom); Webb, Mark J. [Met Office Hadley Center, Exeter (United Kingdom); Gregory, Jonathan M. [Univ. of Reading, Exeter (United Kingdom). National Center for Atmospheric Science; Forster, Piers M. [Univ. of Leeds (United Kingdom)

    2013-07-01

    When using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. After CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m-2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. Furthermore, the authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m-2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m-2 K-1, whereas accounting for rapid adjustments reduces by 0.14 W m-2 K-1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

  8. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    Science.gov (United States)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  9. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  10. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  11. Stimulus Ratio and Level Dependence of Low- and Mid-Frequency Distortion-Product Otoacoustic Emissions

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    ratios f2/f1 (1.05-1.50) and three stimulus sound pressure levels L1/L2 (65/45, 65/55, 70/60) were measured in each configuration. The DPOAE response was isolated with the discrete Fourier transformation (DFT). The DFT measures the DPOAE response accurately only when the DPOAE frequency and both stimulus...... examples of low-frequency DPOAEs exist in the literature. Overcoming the decreasing response level and increasing noise level with decreasing frequency may provide a non-invasive window into the inner-ear mechanics of low-frequency hearing. Eighteen out of 21 young human adults screened (19-30 years) had......-frequency range. The stimulus level has similar effects in both frequency ranges, that is, the ratio-magnitude response increases and broadens with increasing level. The combined observations could indicate a difference between apical and basal cochlear physiology....

  12. Low back pain and low level flying

    NARCIS (Netherlands)

    J.C.F.M. Aghina

    1989-01-01

    textabstractLow level flying is a very good tactical possibility to carry out a mission unseen by a hostile radarsystem. Nowadays, Western Europe in general and the Federal Republic of Germany in particular, decreased . the permissions to low level flying in assigned regions. That's why the

  13. Research computing in a distributed cloud environment

    International Nuclear Information System (INIS)

    Fransham, K; Agarwal, A; Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  14. Response of cloud condensation nuclei (>50 nm) to changes in ion-nucleation

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke

    2013-01-01

    In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulfur dioxide, and water vapor, the relative increase in aerosols produced by ionization by gamma sources is constant from nucleation to diameters larger than 50 nm, appropriate for cloud condensation nuclei....... This result contradicts both ion-free control experiments and also theoretical models that predict a decline in the response at larger particle sizes. This unpredicted experimental finding points to a process not included in current theoretical models, possibly an ion-induced formation of sulfuric acid...

  15. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1996-06-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal

  16. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Churtgen, C.

    2007-01-01

    The low-level radioactivity measurements service performs measurements of alpha or beta emitters on various types of low-radioactivity samples (biological and environmental) from internal and external clients. to maintain and develop techniques concerning the measurement of low-level radioactivity of alpha and beta emitting radionuclides in environmental or biological samples; to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters and alpha-spectrometers); to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination or low level radioactivity measurements; to maintain the quality assurance system according to the ISO17025 standard for which we obtained the Beltest accreditation in 1998; to assess the internal dose from occupational intakes of radionuclides for workers of the nuclear industry;

  17. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2002-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination and low-level radioactivity measurements; (4) to maintain and improve the quality assurance system according to the ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2001 are reported

  18. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2001-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001/ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2000 are reported

  19. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    Science.gov (United States)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  20. Notes on a storage manager for the Clouds kernel

    Science.gov (United States)

    Pitts, David V.; Spafford, Eugene H.

    1986-01-01

    The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.

  1. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica

    OpenAIRE

    Sosa, Victoria; Ornelas, Juan Francisco; Ram?rez-Barahona, Santiago; G?ndara, Etelvina

    2016-01-01

    Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted...

  2. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  3. A Study of the Link between Cosmic Rays and Clouds with a Cloud Chamber at the CERN PS

    CERN Multimedia

    Laakso, L K; Lehtipalo, K; Miettinen, P K; Duarte branco da silva santos, F; Stojkov, Y; Jud, W; Wurm, F; Pinterich, T; Dommen, J; Curtius, J; Kreissl, F C; Minginette, P; Azeredo lima, J M; Kulmala, M T; Petaja, T T; Volkamer, R M; Schafer, M; Rodrigues tome, A; Viisanen, Y A; Onnela, A T O; Kristic, R; Ehrhart, S K; Amorim, A J; Maksumov, O; Kupc, A; Sitals, R P; Dunne, E M; Riipinen, I A; Downard, A J; Virtanen, A; Tsagkogeorgas, G; Schuchmann, S; Kvashnin, A; Hansel, A; Gonzalez carracedo, L R; Vrtala, A; Schallhart, S; Yan, C; Stratmann, F; Pinto mogo, S I; Makhmutov, V; Riccobono, F; Weingartner, E P; Kurten, C A; Rondo, L; Ruuskanen, T M; Finkenzeller, H F; Laaksonen, A J; De menezes, L; Hauser, D; Kajos, M K; Schmitt, T M; Mathot, S; Wasem, A; Guida, R; Metzger, A E; Baltensperger, U; Kirkby, J; Duplissy, J; Franchin, A; Rorup, B; Flagan, R C; Wex, H D

    2002-01-01

    Three recent independent observations suggest that galactic cosmic rays may exert a significant influence on the climate. Firstly, satellite data suggest a positive correlation between variations of cosmic ray intensity and the fraction of Earth covered by low clouds. Secondly, palaeoclimatic data provide extensive evidence for an association between cosmic ray intensity and climate over the last 10 kyr and at earlier times. Finally, the presence of ion-induced nucleation of new aerosol in the atmosphere is supported by recent observations. If cosmic rays do indeed enhance aerosol production and low cloud formation, this could exert a strong cooling influence on the radiative energy balance of Earth. Physical mechanisms by which cosmic rays may affect aerosol and clouds have been proposed and modelled, but definitive experiments are lacking. The aim of CLOUD is to investigate the nature and significance of cosmic ray-aerosol-cloud mechanisms under controlled laboratory conditions using the T11 beam at the CER...

  4. Somatic and genetic effects of low-level radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1974-01-01

    Although the biological effects of ionizing radiation are probably better known than those of any other physical or chemical agent in the environment, our information about such effects has come from observations at doses and dose rates which are orders of magnitude higher than natural background environmental radiation levels. Whether, therefore biological effects occur in response to such low levels can be estimated only by extrapolation, based on assumptions about the dose-effect relationship and the mechanisms of the effects in question. Present knowledge suggests the possibility that several types of biological effects may result from low-level irradiation. The induction of heritable genetic changes in germ cells and carcinogenic changes in somatic cells are considered to be the most important from the standpoint of their potential threat to health. On the basis of existing data, it is possible to make only tentative upper limit estimates of the risks of these effects at low doses. The estimates imply that the frequency of such effects attributable to exposure at natural background radiation levels would constitute only a small fraction of their natural incidence. 148 references

  5. CloudGC: Recycling Idle Virtual Machines in the Cloud

    OpenAIRE

    Zhang , Bo; Al-Dhuraibi , Yahya; Rouvoy , Romain; Paraiso , Fawaz; Seinturier , Lionel

    2017-01-01

    International audience; Cloud computing conveys the image of a pool of unlimited virtual resources that can be quickly and easily provisioned to accommodate the user requirements. However, this flexibility may require to adjust physical resources at the infrastructure level to keep the pace of user requests. While elasticity can be considered as the de facto solution to support this issue, this elasticity can still be broken by budget requirements or physical limitations of a private cloud. I...

  6. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  7. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  8. Role of Atmospheric Cloud Radiative Effects in the Intermodal Spread in the Shift of Southern Hemispheric Eddy-driven Jet in Responses to Global Warming

    Science.gov (United States)

    Li, Y.; Thompson, D. W. J.; Bony, S.

    2017-12-01

    Observations and most climate models suggest storm track and extratropical eddy driven jet shifts poleward in a warmer climate, particularly in the Southern Hemisphere. However, the magnitude of such shifts remains uncertain. Even for a prescribed uniform SST changes, models produce large inter-model spread in the magnitude of jet shift, suggesting that a substantial part of these uncertainties are caused by the impact of cloud radiative effects on the atmospheric heating rate per se. In this study we will investigate 1) how much do clouds contribute to the spread of the circulation response in the absence of SST coupling? 2) how much do clouds contribute to the spread of the direct CO2 and SST-only response?

  9. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  10. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  11. The importance of mixed-phase clouds for climate sensitivity in the global aerosol-climate model ECHAM6-HAM2

    OpenAIRE

    Lohmann, Ulrike; Neubauer, David

    2018-01-01

    Clouds are important in the climate system because of their large influence on the radiation budget. On the one hand, they scatter solar radiation and with that cool the climate. On the other hand, they absorb and re-emit terrestrial radiation, which causes a warming. How clouds change in a warmer climate is one of the largest uncertainties for the equilibrium climate sensitivity (ECS). While a large spread in the cloud feedback arises from low-level clouds, it was recently shown that also mi...

  12. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  13. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    International Nuclear Information System (INIS)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2013-01-01

    The response time of a PV (photovoltaic) plant is very short and its output power follows the abrupt change in solar irradiance level due to alternate shadow by clouds. The sunshine number (SSN) is a Boolean quantity stating whether the sun is covered by clouds or not, thus being an appropriate parameter to predict the occurrence of direct solar radiation at ground level. Various ARIMA (Autoregressive Integrated Moving Average) models for SSN nowcasting are inferred and discussed in this paper. Actinometric and meteorological data measured at 15 s lag during June 2010 in Timisoara (Romania) are used. The forecasting accuracy is studied as a function of season, of the procedure used to obtain a binary time series and of the type of white noise distribution, respectively. It is demonstrated that the ARIMA(0,1,0) model forecasts SSN with the same accuracy as higher order ARIMA models. The forecasting accuracy decreases when the instability of the radiative regime increases. - Highlights: • Nowcasting of passing clouds is modeled by using a 15 s lag database. • ARIMA (Autoregressive Integrated Moving Average) (0,1,0) model is mostly recommended for nowcasting of passing clouds. • Models accuracy increases by increasing the radiative regime stability

  14. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  15. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    -seasonal variation of shortwave CRF, indicating the importance of cloud vertical structure. The strong negative feedbacks from the responses of latent and sensible heat flux tend to limit the effects of low clouds on the surface temperature simulations, as evidently the surface air temperatures bias of only _ in the EASM simulations while the variances of the surface radiative fluxes and heat fluxes are, respectively, in the ranges of 100 - 200 and 60 - 110 Wm-2 when total cloud cover are all near 80%. Therefore, it is also concluded that surface air temperature, precipitation, and total cloud cover, which are three frequently examined variables for climate models, are not sufficient for model evaluation, but instead the cloud vertical structure needs to be examined.

  16. What happens at very low levels of radiation exposure ? Are the low dose exposures beneficial ?

    International Nuclear Information System (INIS)

    Deniz, Dalji

    2006-01-01

    Full text: Radiation is naturally present in our environment and has been since the birth of this planet. The human population is constantly exposed to low levels of natural background radiation, primarily from environmental sources, and to higher levels from occupational sources, medical therapy, and other human-mediated events. Radiation is one of the best-investigated hazardous agents. The biological effects of ionizing radiation for radiation protection consideration are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain t hreshold a n appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Sendromes, ARS) occurs days to months after an acute radiation dose. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels. Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. For this reason, a stochastic effect is called a Linear or Zero-Threshold (LNT) Dose-Response Effect. There is a stochastic correlation between the number of cases of cancers or genetic defects developed inside a population and the dose received by the population at relatively large levels of radiation. These changes in gene activation seem to be able to modify the response of cells to subsequent radiation exposure, termed the a daptive response

  17. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals

    International Nuclear Information System (INIS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If τ(1–ϖ) and τ(1–ϖg) are conserved where τ is optical thickness, ϖ the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1–ϖg) factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1–ϖ)/(1–ϖg)]"1"/"2, also tend to be similar. - Highlights: • Similarity relations are theoretically analyzed and validated. • Similarity relations are verified with the MODIS Level 2 Collection 5 and 6 ice cloud property products. • The product of ice cloud optical thickness and (1–ϖg) is approximately invariant. • The similarity parameter derived from the MODIS ice cloud effective radius retrieval tends to be invariant.

  18. Forty-year (1971-2010) semiquantitative observations of visibility-cloud-precipitation in Korea and its implication for aerosol effects on regional climate.

    Science.gov (United States)

    Lee, Hyo-Jung; Kang, Jeong-Eon; Kim, Cheol-Hee

    2015-07-01

    Forty-year (1971-2010) observations of cloud cover and types have been analyzed, and implications on the effects of aerosol-cloud feedback were explored. Cloud cover and types have been observed over Korea on the basis of visible (human-eye) attributes without any change in official observing instructions. Visibility has been used as an ongoing proxy measure of aerosol concentrations, and observed meteorological variables such as sunshine duration and precipitation have been employed to analyze aerosol causes and implications for urban and regional climate. The analysis revealed persistent decade-long patterns in Korea: steadily reduced visibility (-0.37 km/yr), consistently decreasing sunshine duration (-0.06 %/hr), and declining occurrence of light precipitation. Spatial distributions of sunshine duration and visibility exhibited more localized variations in the early period (1971-1990), and tended to be more uniform throughout Korea over more recent years (1991-2010), implying the recent regional-scale impact of cloud change over northeast Asia. Cloud analysis results showed that the five most common types were stratocumulus (Sc), cirrus (Ci), altostratus (As), stratus (St), and nimbostratus (Ns), with occurrences of 33%, 17%, 17%, 9%, and 8%, respectively. Occurrence of rarely precipitating or nonprecipitating low-level Sc clouds showed an increasing (+0.34%/yr), but no (or only minor) effects of aerosols on heavy precipitation such as cumulus cloud types were found. Cloud cover in the range of 6/10 to 8/10 units has increased by 31.5±6.5%, and occurrences of both cloud-free (~2/10 units) and overcast (~8/10 units) conditions have decreased. Aerosol-cloud-precipitations interaction is highly nonlinear due to feedback mechanisms. One reason for our poor understanding of the aerosol-cloud feedback study is the variety of cloud types with their complicated responses to variations of the aerosol. Our study on the response of precipitation-cloud to long

  19. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    Science.gov (United States)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  20. Closing the Skill Gap of Cloud CRM Application Services in Cloud Computing for Evaluating Big Data Solutions

    Directory of Open Access Journals (Sweden)

    You-Shyang Chen

    2016-12-01

    Full Text Available Information systems (IS continually motivate various improvements in the state-of-the-art of issues and solutions for advanced geo-information technologies in cloud computing. Reducing IS project risks and improving organizational performance has become an important issue. This study proposes a research framework, constructed from the Stimulus-Organism-Response (S-O-R framework, in order to address the issues comprising the stimulus of project risk, the organism of project management, and the response of organizational performance for cloud service solutions. Cloud customer relationship management (cloud CRM experts, based on cloud computing, with many years of project management experience, were selected for the interview sample in this study. Decision Making Trial and Evaluation Laboratory–based analytical network process (DEMATEL based-ANP, DANP is a multiple-criteria decision-making (MCDM analysis tool that does not have prior assumptions and it was used to experience the dynamic relationships among project risk, project management, and organizational performance. The study results include three directions: (a Improving the internal business process performance can improve the efficiency of cloud CRM project processes and activities; (b The emphasis on financial performance management can reduce the cost of a cloud CRM project so that the project can be completed within the approved budget; (c Meeting user needs can improve user risk and reduce negative cloud CRM user experience. The scientific value of this study can be extended in order to study different projects, through research methods and frameworks, in order to explore project risk management and corporate performance improvements.

  1. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    International Nuclear Information System (INIS)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal

  2. Replicas Strategy and Cache Optimization of Video Surveillance Systems Based on Cloud Storage

    Directory of Open Access Journals (Sweden)

    Rongheng Li

    2018-04-01

    Full Text Available With the rapid development of video surveillance technology, especially the popularity of cloud-based video surveillance applications, video data begins to grow explosively. However, in the cloud-based video surveillance system, replicas occupy an amount of storage space. Also, the slow response to video playback constrains the performance of the system. In this paper, considering the characteristics of video data comprehensively, we propose a dynamic redundant replicas mechanism based on security levels that can dynamically adjust the number of replicas. Based on the location correlation between cameras, this paper also proposes a data cache strategy to improve the response speed of data reading. Experiments illustrate that: (1 our dynamic redundant replicas mechanism can save storage space while ensuring data security; (2 the cache mechanism can predict the playback behaviors of the users in advance and improve the response speed of data reading according to the location and time correlation of the front-end cameras; and (3 in terms of cloud-based video surveillance, our proposed approaches significantly outperform existing methods.

  3. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  4. Globules, dark clouds, and low mass pre-main sequence stars

    International Nuclear Information System (INIS)

    Hyland, A.R.

    1981-01-01

    The current observational and theoretical literature on Bok globules and their relationship to star formation is reviewed. Recent observations of globules at optical, infrared, and far infrared wavelengths are shown to provide important constraints on their structure and evolutionary status, and the suggestion that many globules are gravitationally unstable is seriously questioned. Dark clouds associated with T associations are well-known sites of recent and continuing star formation. In recent years molecular observations and far infrared surveys have provided maps of such regions from which possible sites of star formation may be identified. Optical (Hα) and near infrared surveys have enabled a clear identification of pre-main sequence (PMS) objects within the clouds. Methods of distinguishing these from background objects and the nature of their infrared excesses are examined in the light of recent observations in the near and far infrared. The perennial question as to the existence of anomalous reddening within dark clouds is also investigated. (Auth.)

  5. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc < τt) for high aerosol concentration, and slow microphysics (τc > τt) for low aerosol concentration; here, τc is the phase relaxation time and τt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs-1c-1 + τt-1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.

  6. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  7. The Community Cloud Atlas - Building an Informed Cloud Watching Community

    Science.gov (United States)

    Guy, N.; Rowe, A.

    2014-12-01

    The sky is dynamic, from long lasting cloud systems to ethereal, fleeting formations. After years of observing the sky and growing our personal collections of cloud photos, we decided to take to social media to share pictures, as well as build and educate a community of cloud enthusiasts. We began a Facebook page, the Community Cloud Atlas, described as "...the place to show off your pictures of the sky, identify clouds, and to discuss how specific cloud types form and what they can tell you about current and future weather." Our main goal has been to encourage others to share their pictures, while we describe the scenes from a meteorological perspective and reach out to the general public to facilitate a deeper understanding of the sky. Nearly 16 months later, we have over 1400 "likes," spanning 45 countries with ages ranging from 13 to over 65. We have a consistent stream of submissions; so many that we decided to start a corresponding blog to better organize the photos, provide more detailed explanations, and reach a bigger audience. Feedback from users has been positive in support of not only sharing cloud pictures, but also to "learn the science as well as admiring" the clouds. As one community member stated, "This is not 'just' a place to share some lovely pictures." We have attempted to blend our social media presence with providing an educational resource, and we are encouraged by the response we have received. Our Atlas has been informally implemented into classrooms, ranging from a 6th grade science class to Meteorology courses at universities. NOVA's recent Cloud Lab also made use of our Atlas as a supply of categorized pictures. Our ongoing goal is to not only continue to increase understanding and appreciation of the sky among the public, but to provide an increasingly useful tool for educators. We continue to explore different social media options to interact with the public and provide easier content submission, as well as software options for

  8. Characterizing synoptic and cloud variability in the northern atlantic using self-organizing maps

    Science.gov (United States)

    Fish, Carly

    Low-level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast Atlantic region are highly variable in space and time and are a research focus for many atmospheric scientists. Characterizing the synoptic patterns in the region through the implementation of self-organizing maps (SOMs) enables a climatological grasp of cloud and atmospheric fields. ERA -- Interim and MODIS provide the platform to explore the variability in the Northeast Atlantic for over 30 years of data. Station data comes from CAP -- MBL on Graciosa Island in the Azores, which lies in a strong gradient of cloud and other atmospheric fields, offer an opportunity to incorporate an observational aspect for the years of 2009 and 2010.

  9. Quality of Experience Assessment of Video Quality in Social Clouds

    Directory of Open Access Journals (Sweden)

    Asif Ali Laghari

    2017-01-01

    Full Text Available Video sharing on social clouds is popular among the users around the world. High-Definition (HD videos have big file size so the storing in cloud storage and streaming of videos with high quality from cloud to the client are a big problem for service providers. Social clouds compress the videos to save storage and stream over slow networks to provide quality of service (QoS. Compression of video decreases the quality compared to original video and parameters are changed during the online play as well as after download. Degradation of video quality due to compression decreases the quality of experience (QoE level of end users. To assess the QoE of video compression, we conducted subjective (QoE experiments by uploading, sharing, and playing videos from social clouds. Three popular social clouds, Facebook, Tumblr, and Twitter, were selected to upload and play videos online for users. The QoE was recorded by using questionnaire given to users to provide their experience about the video quality they perceive. Results show that Facebook and Twitter compressed HD videos more as compared to other clouds. However, Facebook gives a better quality of compressed videos compared to Twitter. Therefore, users assigned low ratings for Twitter for online video quality compared to Tumblr that provided high-quality online play of videos with less compression.

  10. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Science.gov (United States)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  11. State and Federal activities on low-level waste

    International Nuclear Information System (INIS)

    1983-01-01

    With the passage of the Low-Level Waste Policy Act in December 1980, the states have assumed the management responsibility and the federal government has become a facilitator. State and Federal roles in regulation have not altered. This paper reviews the developments over the last two years to point out the progress made and critical steps that lie ahead. Both technological and political aspects are covered, and a conclusion is presented with a look to the future. Since compact development in the tool chosen by the politicans for low-level waste management, the author reviews the present status starting with the northwest compact which has been introduced into the House and Senate and is subject to hearings. The past two years have seen real progress in technology in the broadest sense. An information development and dissemination system was established in 1978 wih the state-by-state assessment of low-level waste disposal. Annual examinations have been made through 1981 which enables one to understand the generation of low-level wastes. Policy level planning by states can be supported by the base level of information available. Incineration of dry active waste and other non-fuel cycle waste is ready to be fully accepted. Much work has been done on volume reduction of liquids. The increased understanding of the ways to make a disposal site work represents a major technolological improvement. Within the DOE system, there is beginning to be a real understanding of the critical parameters in disposal site performance in the East

  12. BI-LEVEL AUTHENTICATION FOR EFFECTIVE DATA SHARING IN CLOUD VIA PRIVACY-PRESERVING AUTHENTICATION PROTOCOL

    OpenAIRE

    J. Jeya Praise; A. Sam Silva

    2017-01-01

    Cloud computing is an emerging technology of distributed computing where users can remotely store their data in cloud storage and enjoy the on-demand cloud applications and services from a shared pool of configurable computing resources, without the burden of local infrastructure and maintenance. During data accessing, different users may share their data to achieve productive benefits. Storing the data in third party’s cloud system causes serious concern over the data confidentiality. The e...

  13. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  14. Cloud Formation, Sea-Air-Land Interaction, Mozambique, Africa

    Science.gov (United States)

    1991-01-01

    This rare depiction of the physical interactions of air land and sea in cloud formation was seen over Mozambique (12.0S, 40.5E). Moist low air, heated as it moves over land, rises and forms clouds. Even the coastal islands have enough heat to initiate the process. Once begun, the circulation is dynamic and the descending motion suppresses cloud formation on either side of the cloud stream. As clouds move inland, they rise to follow the land upslope.

  15. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  16. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  17. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  18. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  19. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  20. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; Berghaus, Frank; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  1. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    Science.gov (United States)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  2. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    Mohankumar, M.N.; Jeevanram, R.K.

    1995-01-01

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  3. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau

    Science.gov (United States)

    Liu, Y.; Yan, Y.; Lu, J.

    2017-12-01

    The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.

  4. Testosterone Treatment and Sexual Function in Older Men With Low Testosterone Levels.

    Science.gov (United States)

    Cunningham, Glenn R; Stephens-Shields, Alisa J; Rosen, Raymond C; Wang, Christina; Bhasin, Shalender; Matsumoto, Alvin M; Parsons, J Kellogg; Gill, Thomas M; Molitch, Mark E; Farrar, John T; Cella, David; Barrett-Connor, Elizabeth; Cauley, Jane A; Cifelli, Denise; Crandall, Jill P; Ensrud, Kristine E; Gallagher, Laura; Zeldow, Bret; Lewis, Cora E; Pahor, Marco; Swerdloff, Ronald S; Hou, Xiaoling; Anton, Stephen; Basaria, Shehzad; Diem, Susan J; Tabatabaie, Vafa; Ellenberg, Susan S; Snyder, Peter J

    2016-08-01

    The Testosterone Trials are a coordinated set of seven trials to determine the efficacy of T in symptomatic men ≥65 years old with unequivocally low T levels. Initial results of the Sexual Function Trial showed that T improved sexual activity, sexual desire, and erectile function. To assess the responsiveness of specific sexual activities to T treatment; to relate hormone changes to changes in sexual function; and to determine predictive baseline characteristics and T threshold for sexual outcomes. A placebo-controlled trial. Twelve academic medical centers in the United States. A total of 470 men ≥65 years of age with low libido, average T sexual intercourse at least twice a month. Men were assigned to take T gel or placebo for 1 year. Sexual function was assessed by three questionnaires every 3 months: the Psychosexual Daily Questionnaire, the Derogatis Interview for Sexual Function, and the International Index of Erectile Function. Compared with placebo, T administration significantly improved 10 of 12 measures of sexual activity. Incremental increases in total and free T and estradiol levels were associated with improvements in sexual activity and desire, but not erectile function. No threshold T level was observed for any outcome, and none of the 27 baseline characteristics predicted responsiveness to T. In older men with low libido and low T levels, improvements in sexual desire and activity in response to T treatment were related to the magnitude of increases in T and estradiol levels, but there was no clear evidence of a threshold effect.

  5. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  6. The variation of cloud amount and light rainy days under heavy pollution over South China during 1960-2009.

    Science.gov (United States)

    Fu, Chuanbo; Dan, Li

    2018-01-01

    The ground observation data was used to analyze the variation of cloud amount and light precipitation over South China during 1960-2009. The total cloud cover (TCC) decreases in this period, whereas the low cloud cover (LCC) shows the obvious opposite change with increasing trends. LCP defined as low cloud cover/total cloud cover has increased, and small rainy days (pollution in the form of anthropogenic aerosols. The horizontal visibility and sunshine duration are used to depict the anthropogenic aerosol loading. When horizontal visibility declines to 20 km or sunshine duration decreases to 5 h per day, LCC increases 52% or more and LCP increases significantly. The correlation coefficients between LCC and horizontal visibility or sunshine duration are - 0.533 and - 0.927, and the values between LCP and horizontal visibility or sunshine duration are - 0.849 and - 0.641, which pass 0.001 significance level. The results indicated that aerosols likely impacted the long-term trend of cloud amount and light precipitation over South China.

  7. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  8. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    Science.gov (United States)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  9. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  10. Effect of Low Level Cadmium Exposure on Superoxide Dismutase ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of low level cadmium (Cd) exposure on the activity of superoxide dismutase ... cancer, aging and a diversity of diseases [5]. Superoxide .... responsible for the long biological half-life of cadmium [12]. ... indicator of the balance between the damaging effects and the ... Scand J Work Environ.

  11. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  12. How to govern the cloud?

    NARCIS (Netherlands)

    Prüfer, J.; Diamond, S.; Wainwright, N.

    2013-01-01

    This paper applies economic governance theory to the cloud computing industry. We analyze which governance institution may be best suited to solve the problems stemming from asymmetric information about the true level of data protection, security, and accountability offered by cloud service

  13. Molecular evidence for species-level distinctions in clouded leopards.

    Science.gov (United States)

    Buckley-Beason, Valerie A; Johnson, Warren E; Nash, Willliam G; Stanyon, Roscoe; Menninger, Joan C; Driscoll, Carlos A; Howard, JoGayle; Bush, Mitch; Page, John E; Roelke, Melody E; Stone, Gary; Martelli, Paolo P; Wen, Ci; Ling, Lin; Duraisingam, Ratna K; Lam, Phan V; O'Brien, Stephen J

    2006-12-05

    Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).

  14. Fast Molecular Cloud Destruction Requires Fast Cloud Formation

    Energy Technology Data Exchange (ETDEWEB)

    Mac Low, Mordecai-Mark [American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024 (United States); Burkert, Andreas [Universitäts Sternwarte München, Ludwigs-Maximilian-Universität, D-81679 München (Germany); Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching bei München (Germany)

    2017-09-20

    A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular clouds must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.

  15. Consolidation of cloud computing in ATLAS

    Science.gov (United States)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  16. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    International Nuclear Information System (INIS)

    Usachev, A D; Zobnin, A V; Petrov, O F; Fortov, V E; Thoma, M H; Pustylnik, M Y; Fink, M A; Morfill, G E

    2016-01-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud. (paper)

  17. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  18. Modelling ice microphysics of mixed-phase clouds

    Science.gov (United States)

    Ahola, J.; Raatikainen, T.; Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Korhonen, H.

    2017-12-01

    The low-level Arctic mixed-phase clouds have a significant role for the Arctic climate due to their ability to absorb and reflect radiation. Since the climate change is amplified in polar areas, it is vital to apprehend the mixed-phase cloud processes. From a modelling point of view, this requires a high spatiotemporal resolution to capture turbulence and the relevant microphysical processes, which has shown to be difficult.In order to solve this problem about modelling mixed-phase clouds, a new ice microphysics description has been developed. The recently published large-eddy simulation cloud model UCLALES-SALSA offers a good base for a feasible solution (Tonttila et al., Geosci. Mod. Dev., 10:169-188, 2017). The model includes aerosol-cloud interactions described with a sectional SALSA module (Kokkola et al., Atmos. Chem. Phys., 8, 2469-2483, 2008), which represents a good compromise between detail and computational expense.Newly, the SALSA module has been upgraded to include also ice microphysics. The dynamical part of the model is based on well-known UCLA-LES model (Stevens et al., J. Atmos. Sci., 56, 3963-3984, 1999) which can be used to study cloud dynamics on a fine grid.The microphysical description of ice is sectional and the included processes consist of formation, growth and removal of ice and snow particles. Ice cloud particles are formed by parameterized homo- or heterogeneous nucleation. The growth mechanisms of ice particles and snow include coagulation and condensation of water vapor. Autoconversion from cloud ice particles to snow is parameterized. The removal of ice particles and snow happens by sedimentation and melting.The implementation of ice microphysics is tested by initializing the cloud simulation with atmospheric observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The results are compared to the model results shown in the paper of Ovchinnikov et al. (J. Adv. Model. Earth Syst., 6, 223-248, 2014) and they show a good

  19. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    Science.gov (United States)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta

  20. Coordinated scheduling for the downlink of cloud radio-access networks

    KAUST Repository

    Douik, Ahmed S.

    2015-09-11

    This paper addresses the coordinated scheduling problem in cloud-enabled networks. Consider the downlink of a cloud-radio access network (CRAN), where the cloud is only responsible for the scheduling policy and the synchronization of the transmit frames across the connected base-stations (BS). The transmitted frame of every BS consists of several time/frequency blocks, called power-zones (PZ), maintained at fixed transmit power. The paper considers the problem of scheduling users to PZs and BSs in a coordinated fashion across the network, by maximizing a network-wide utility under the practical constraint that each user cannot be served by more than one base-station, but can be served by one or more power-zones within each base-station frame. The paper solves the problem using a graph theoretical approach by introducing the scheduling graph in which each vertex represents an association of users, PZs and BSs. The problem is formulated as a maximum weight clique, in which the weight of each vertex is the benefit of the association represented by that vertex. The paper further presents heuristic algorithms with low computational complexity. Simulation results show the performance of the proposed algorithms and suggest that the heuristics perform near optimal in low shadowing environments. © 2015 IEEE.

  1. Cognitive Privacy for Personal Clouds

    Directory of Open Access Journals (Sweden)

    Milena Radenkovic

    2016-01-01

    Full Text Available This paper proposes a novel Cognitive Privacy (CogPriv framework that improves privacy of data sharing between Personal Clouds for different application types and across heterogeneous networks. Depending on the behaviour of neighbouring network nodes, their estimated privacy levels, resource availability, and social network connectivity, each Personal Cloud may decide to use different transmission network for different types of data and privacy requirements. CogPriv is fully distributed, uses complex graph contacts analytics and multiple implicit novel heuristics, and combines these with smart probing to identify presence and behaviour of privacy compromising nodes in the network. Based on sensed local context and through cooperation with remote nodes in the network, CogPriv is able to transparently and on-the-fly change the network in order to avoid transmissions when privacy may be compromised. We show that CogPriv achieves higher end-to-end privacy levels compared to both noncognitive cellular network communication and state-of-the-art strategies based on privacy-aware adaptive social mobile networks routing for a range of experiment scenarios based on real-world user and network traces. CogPriv is able to adapt to varying network connectivity and maintain high quality of service while managing to keep low data exposure for a wide range of privacy leakage levels in the infrastructure.

  2. Coordinated scheduling for the downlink of cloud radio-access networks

    KAUST Repository

    Douik, Ahmed S.; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    This paper addresses the coordinated scheduling problem in cloud-enabled networks. Consider the downlink of a cloud-radio access network (CRAN), where the cloud is only responsible for the scheduling policy and the synchronization of the transmit

  3. Low-level memory processes in vision.

    Science.gov (United States)

    Magnussen, S

    2000-06-01

    Psychophysical studies of the short-term memory for attributes or dimensions of the visual stimulus that are known to be important in early visual processing (spatial frequency, orientation, contrast, motion and color) identify a low-level perceptual memory mechanism. This proposed mechanism is located early in the visual processing stream, prior to the structural description system responsible for shape priming but beyond primary visual cortex (V1); it is composed of a series of parallel, special-purpose perceptual mechanisms with independent but limited processing resources. Each mechanism is devoted to the analysis of a single dimension and is coupled to a memory store.

  4. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    Science.gov (United States)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  5. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  6. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    Science.gov (United States)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  7. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  8. Aerosol-cloud feedbacks in a turbulent environment: Laboratory measurements representative of conditions in boundary layer clouds

    Science.gov (United States)

    Cantrell, W. H.; Chandrakar, K. K.; Karki, S.; Kinney, G.; Shaw, R.

    2017-12-01

    Many of the climate impacts of boundary layer clouds are modulated by aerosol particles. As two examples, their interactions with incoming solar and upwelling terrestrial radiation and their propensity for precipitation are both governed by the population of aerosol particles upon which the cloud droplets formed. In turn, clouds are the primary removal mechanism for aerosol particles smaller than a few micrometers and larger than a few nanometers. Aspects of these interconnected phenomena are known in exquisite detail (e.g. Köhler theory), but other parts have not been as amenable to study in the laboratory (e.g. scavenging of aerosol particles by cloud droplets). As a complicating factor, boundary layer clouds are ubiquitously turbulent, which introduces fluctuations in the water vapor concentration and temperature, which govern the saturation ratio which mediates aerosol-cloud interactions. We have performed laboratory measurements of aerosol-cloud coupling and feedbacks, using Michigan Tech's Pi Chamber (Chang et al., 2016). In conditions representative of boundary layer clouds, our data suggest that the lifetime of most interstitial particles in the accumulation mode is governed by cloud activation - particles are removed from the Pi Chamber when they activate and settle out of the chamber as cloud droplets. As cloud droplets are removed, these interstitial particles activate until the initially polluted cloud cleans itself and all particulates are removed from the chamber. At that point, the cloud collapses. Our data also indicate that smaller particles, Dp defined through the use of the Dämkohler number, the ratio of the characteristic turbulence timescale to the cloud's microphysical response time. Chang, K., et al., 2016. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00203.1

  9. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    Science.gov (United States)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  10. [Porting Radiotherapy Software of Varian to Cloud Platform].

    Science.gov (United States)

    Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin

    2017-09-30

    To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.

  11. Dynamics of Clouds and Mesoscale Circulations over the Maritime Continent

    Science.gov (United States)

    Jin, Y.; Wang, S.; Xian, P.; Reid, J. S.; Nachamkin, J.

    2010-12-01

    In recent decades Southeast Asia (SEA) has seen rapid economic growth as well as increased biomass burning, resulting in high air pollution levels and reduced air qual-ity. At the same time clouds often prevent accurate air-quality monitoring and analysis using satellite observations. The Seven SouthEast Asian Studies (7SEAS) field campaign currently underway over SEA provides an unprecedented opportunity to study the com-plex interplay between aerosol and clouds. 7SEAS is a comprehensive interdisciplinary atmospheric sciences program through international partnership of NASA, NRL, ONR and seven local institutions including those from Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. While the original goal of 7SEAS is to iso-late the impacts of aerosol particles on weather and the environment, it is recognized that better understanding of SEA meteorological conditions, especially those associated with cloud formation and evolution, is critical to the success of the campaign. In this study we attempt to gain more insight into the dynamic and physical processes associated with low level clouds and atmospheric circulation at the regional scale over SEA, using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS® ), a regional forecast model in operation at FNMOC since 1998. This effort comprises two main components. First, multiple-years of COAMPS operational forecasts over SEA are analyzed for basic climatology of atmospheric fea-tures. Second, mesoscale circulation and cloud properties are simulated at relatively higher resolution (15-km) for selected periods in the Gulf of Tonkin and adjacent coastal areas. Simulation results are compared to MODIS cloud observations and local sound-ings obtained during 7SEAS for model verifications. Atmospheric boundary layer proc-esses are examined in relation to spatial and temporal variations of cloud fields. The cur-rent work serves as an important step toward improving our

  12. On the Clouds: A New Way of Computing

    Directory of Open Access Journals (Sweden)

    Yan Han

    2010-06-01

    Full Text Available This article introduces cloud computing and discusses the author’s experience “on the clouds.” The author reviews cloud computing services and providers, then presents his experience of running multiple systems (e.g., integrated library systems, content management systems, and repository software. He evaluates costs, discusses advantages, and addresses some issues about cloud computing. Cloud computing fundamentally changes the ways institutions and companies manage their computing needs. Libraries can take advantage of cloud computing to start an IT project with low cost, to manage computing resources cost-effectively, and to explore new computing possibilities.

  13. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  14. Particulate size growth in a buoyant aerosol cloud

    International Nuclear Information System (INIS)

    Bathula, Sreekanth; Anand, S.; Sapra, B.K.; Chaturvedi, Shashank; Chaudhury, Probal; Pradeepkumar, K.S.

    2018-01-01

    Intentional/accidental release of Chemical, Biological, Radiological or Nuclear (CBRN) contaminant into environment create air and ground contamination. Preparedness and response towards such incidents require reliable models to predict the contamination levels. If the released contaminant is a gas, then it will undergo dilution by mixing with the atmospheric air hence air concentration will reduce to a greater extent and ground contamination may not be possible unless by means of wet deposition. But if the released contaminant is in the form of an aerosol cloud, significant ground deposition is possible due to dry deposition as well as wet deposition along with the air concentration. Particle size distribution inside the cloud is essential information required in computing the air concentration as well as ground concentration. The particle size distribution inside the cloud also undergoes temporal variation due to microscopic processes like particle-particle interactions (coagulation) and macroscopic like buoyancy, air entrainment and volume expansion etc. In this paper, the numerical computation of particle size and particle number concentration in an instantaneous, uniformly mixed, buoyant spherical puff released from a pressurised container is presented

  15. PC-Cluster based Storage System Architecture for Cloud Storage

    OpenAIRE

    Yee, Tin Tin; Naing, Thinn Thu

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low ...

  16. THE VALUE OF CLOUD COMPUTING IN THE BUSINESS ENVIRONMENT

    OpenAIRE

    Mircea GEORGESCU; Marian MATEI

    2013-01-01

    Without any doubt, cloud computing has become one of the most significant trends in any enterprise, not only for IT businesses. Besides the fact that the cloud can offer access to low cost, considerably flexible computing resources, cloud computing also provides the capacity to create a new relationship between business entities and corporate IT departments. The value added to the business environment is given by the balanced use of resources, offered by cloud computing. The cloud mentality i...

  17. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  18. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    Science.gov (United States)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  19. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    Science.gov (United States)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  20. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  1. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  2. Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates

  3. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  4. Resource Management in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Andrei IONESCU

    2015-01-01

    Full Text Available Mobile cloud computing is a major research topic in Information Technology & Communications. It integrates cloud computing, mobile computing and wireless networks. While mainly built on cloud computing, it has to operate using more heterogeneous resources with implications on how these resources are managed and used. Managing the resources of a mobile cloud is not a trivial task, involving vastly different architectures. The process is outside the scope of human users. Using the resources by the applications at both platform and software tiers come with its own challenges. This paper presents different approaches in use for managing cloud resources at infrastructure and platform levels.

  5. Low cloud investigations for project FIRE: Island studies of cloud properties, surface radiation, and boundary layer dynamics. A simulation of the reflectivity over a stratocumulus cloud deck by the Monte Carlo method. M.S. Thesis Final Report

    Science.gov (United States)

    Ackerman, Thomas P.; Lin, Ruei-Fong

    1993-01-01

    The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.

  6. Biological monitors for low levels of ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, M N; Jeevanram, R K [Safety Research and Health Physics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1996-12-31

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author). 98 refs., 11 figs., 4 tabs.

  7. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  8. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  9. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  10. A cloud climatology of the Southern Great Plains ARM CART

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, S.M.; Krueger, S.K.; Mace, G.G.

    2000-05-15

    Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports that have been edited to facilitate cloud analysis. Two stations near the Southern Great Plains (SGP) Cloud and Radiation Test Bed (CART) in north-central Oklahoma (Oklahoma City, Oklahoma and Wichita, Kansas) were selected. The ECR data span a 10-yr period from December 1981 to November 1991. The International Satellite Cloud Climatology Project (ISCCP) provided cloud amounts over the SGP CART for an 8-yr period (1983--91). Cloud amounts were also obtained from Micro Pulse Lidar (MPL) and Belfort Ceilometer (BLC) cloud-base height measurements made at the SGP CART over a 1-yr period. The annual and diurnal cycles of cloud amount as a function of cloud height and type were analyzed. The three datasets closely agree for total cloud amount. Good agreement was found in the ECR and MPL-BLC monthly low cloud amounts. With the exception of summer and midday in other seasons, the ISCCP low cloud amount estimates are generally 5%--10% less than the others. The ECR high cloud amount estimates are typically 10%--15% greater than those obtained from either the ISCCP or MPL-BLC datasets. The observed diurnal variations of altocumulus support the authors' model results of radiatively induced circulations.

  11. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    Science.gov (United States)

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.

  12. Getting started with ownCloud

    CERN Document Server

    Patawari, Aditya

    2013-01-01

    This is a standard, precise, and short tutorial for setting up ownCloud and includes advanced topics like encryption, user management, and server security. This ownCloud book would be an ideal starting point for anyone who wants to store their data and also share it.This book is for first time users as well as administrators who are interested or responsible for managing an ownCloud instance. You do not need any prior experience with any of the technology, including Linux/Windows, Apache/IIS, SQLite/MySQL, or even PHP. It is a beginner-friendly book, written with a first time user in mind.

  13. Cosmic ray decreases affect atmospheric aerosols and clouds

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, J.

    2009-01-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can...... diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International...

  14. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    Science.gov (United States)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  15. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    Science.gov (United States)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-05-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  16. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  17. Are Cloud Environments Ready for Scientific Applications?

    Science.gov (United States)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to

  18. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  19. Epidemiological studies on the effects of low-level ionizing radiation on cancer risk

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2010-01-01

    The health effects of low-level ionizing radiation are yet unclear. As pointed out by Upton in his review (Upton, 1989), low-level ionizing radiation seems to have different biological effects from what high-level radiation has. If so, the hazard identification of ionizing radiation should he conducted separately for low- and high-level ionizing radiation; the hazard identification of low-level radiation is yet to be completed. What makes hazard identification of ionizing radiation difficult, particularly in the case of carcinogenic effect, is the difficulty in distinguishing radiation-induced cancer from other cancers with respect to clinicopathological features and molecular biological characteristics. Actually, it is suspected that radiation-induced carcinogenesis involves mechanisms not specific for radiation, such as oxidative stress. Excess risk per dose in medium-high dose ranges can be extrapolated to a low-dose range if dose-response can be described by the linear-non-threshold model. The cancer risk data of atomic-bomb survivors describes leukemia risk with a linear-quadratic (LQ) model and solid-cancer risk with linear non-threshold (LNT) model. The LQ model for leukemia and the LNT model for solid cancer correspond to the two-hit model and the one-hit model, respectively. Although the one-hit model is an unlikely dose-response for carcinogenesis, there is no convincing epidemiological evidence supporting the LQ model or non-threshold model for solid cancer. It should be pointed out, however, even if the true dose response is non-linear various noises involved in epidemiological data may mask the truth. In this paper, the potential contribution of epidemiological studies on nuclear workers and residents in high background radiation areas will be discussed. (author)

  20. A Revolution in Information Technology - Cloud Computing

    OpenAIRE

    Divya BHATT

    2012-01-01

    What is the Internet? It is collection of “interconnected networks” represented as a Cloud in network diagrams and Cloud Computing is a metaphor for certain parts of the Internet. The IT enterprises and individuals are searching for a way to reduce the cost of computation, storage and communication. Cloud Computing is an Internet-based technology providing “On-Demand” solutions for addressing these scenarios that should be flexible enough for adaptation and responsive to requirements. The hug...