WorldWideScience

Sample records for low-level burial grounds

  1. Shallow ground burial of low-level waste

    International Nuclear Information System (INIS)

    Camilleri, A.; Cooper, M.B.; Hargrave, N.J.; Munslow-Davies, L.

    1989-01-01

    Acceptance criteria for the disposal of low-level radioactive wastes are presented for adoption throughout Australia, a continent in which there are readily available areas in arid, sparsely inhabited places, likely to be suitable as sites for shallow ground burial. Drawing upon overseas practices and experiences, criteria have been developed for low-level waste disposal and are intended to be applicable and relevant to the Australian situation. Concentration levels have been derived for a shallow ground burial facility assuming a realistic institutional control period of 200 years. A comparison is made between this period and institutional control for 100 years and 300 years. Longer institutional control periods enable the acceptance of higher concentrations of radionuclides of intermediate half-lives. Scenarios, which have been considered, include current Australian pastoral practices and traditional Aboriginal occupancy. The derived radionuclide concentration levels for the disposal of low level wastes are not dissimilar to those developed in other countries. 17 refs., 6 tabs., 1 fig

  2. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  3. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976)

  4. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  5. Waste analysis plan for the low-level burial grounds

    International Nuclear Information System (INIS)

    Barnes, B.M.

    1996-01-01

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds that are located in the 200 East and 200 West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize and obtain and analyze representative samples of waste managed at this unit

  6. Waste analysis plan for the low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Haas, C.R.

    1996-09-19

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

  7. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  8. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and ground water. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However,the input parameters used in these models are highly variable, and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  9. Hydrologic transport of radionuclides from low-level waste burial grounds

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1979-01-01

    The physical characteristics of the virgin site and of the disturbed site after burial drastically affect the transport of radionuclides from buried waste. The disturbance of the land surface during the waste burial operation causes changes in the local ground-water regimen. These changes can increase the water table elevation and cause the occurrence of perched water in burial trenches. The combination of these changes may lead to submersion of the waste and to increased radionuclide transport from the burial site in both surface and groundwater. Factors such as ion exchange can retard or in some cases, with competing ions, can also mobilize radionuclides and increase their discharge into ground and surface water. Because of complexing agents (organics) contained in the waste, increased mobility of some radionuclides can be expected. The chemical form of radionuclides in the water, the ground-water quality, and the chemistry of the geologic formation in which the waste is buried all influence the movement of radionuclides in the hydrologic system. For the assessment of the environmental impact of low-level waste burial, models capable of simulating both the chemical and the physical factors that affect hydrologic transport must be available. Several models for conducting such simulation are presently available. However, the input parameters used in these models are highly variable; and the accuracy of parameter measurement must be considered in evaluating the reliability of simulated results

  10. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text

  11. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    International Nuclear Information System (INIS)

    None

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  12. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  13. Environmental analysis burial of offsite low-level waste at SRP

    International Nuclear Information System (INIS)

    Poe, W.L.; Moyer, R.A.

    1980-12-01

    The environmental effects of receipt and burial of low-level naval waste generated at Department of Energy Laboratories are assessed in this environmental analysis. Through 1979, this low-level DOE waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. DOE announced on October 26, 1979, that DOE-generated low-level waste would no longer be buried at commercial waste burial sites. SRP was selected to receive the naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only slightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared

  14. Hanford facility dangerous waste permit application, low-level burial grounds

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20)

  15. Hanford facility dangerous waste permit application, low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, R.H.

    1997-08-12

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  16. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    International Nuclear Information System (INIS)

    Murphy, E. S.; Holter, G. M.

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  17. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  18. Low-Level Burial Grounds Dangerous Waste Permit Application design documents

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents the Functional Design Criteria for trenches to be constructed to receive solid radioactive mixed waste (RMW) from on and offsite generators. The new RMW disposal facilities are considered modifications to or lateral expansion of the existing low-level waste burial grounds. The new facilities upgrade the existing disposal practice for RMW to the minimum technology requirements of the Resource Conservation and Recovery Act. The proposed locations for the two facilities are: 218-E-10 for drag-off-waste packages and, 218-W-4C for non drag-off waste packages

  19. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  20. Waste analysis plan for the low-level burial grounds. Revision 2

    International Nuclear Information System (INIS)

    Pratt, D.A.

    1997-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste 5 acceptance process, sampling methodologies, analytical techniques, and overall 6 processes that are undertaken for waste accepted for disposal at the Low-Level 7 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of 8 the Hanford Facility, Richland, Washington. Because dangerous waste does not 9 include the source, special nuclear, and by-product material components of 10 mixed waste, radionuclides are not within the scope of this documentation. 11 The information on radionuclides is provided only for general knowledge. The 12 LLBG also receive low-level radioactive waste for disposal. The requirements 13 of this WAP are not applicable to this low-level waste

  1. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  2. Waste Analysis Plan for the Low-Level Burial Grounds [CANCELLED] Reissued as HNF-5841

    International Nuclear Information System (INIS)

    ELLEFSON, M.D.

    2000-01-01

    Canceled see HNF-5841 Rev 0. This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit

  3. Low-Level Burial Grounds dangerous waste permit application: Request for exemption from lined trench requirements and from land disposal restrictions for residual liquid at 218-E-12B Burial Ground Trench 94

    International Nuclear Information System (INIS)

    1992-10-01

    This document has been prepared and is being submitted to the respective agencies to satisfy three objectives of the US Department of Energy (DOE) Richland Field Office (DOE-RL) concerning Trench 94 of the 218-E-12B Burial Ground. The 218-E-12B Burial Ground is located in the 200 East Area of the Hanford Facility. Figure 1-1 shows the general location of the Hanford Site. The 218-E-12B Burial Ground is one of eight burial grounds included in the Low-Level Burial Grounds (LLBG), a treatment, storage and/or disposal (TSD) unit. Decommissioned, defueled naval submarine reactor compartments (SRCs) contain radioactivity caused by exposure of structural components to neutrons during normal operation of the submarines. After all the alternatives were evaluated in the US Department of the Navy 1984 environmental impact statement (EIS) (USN 1984), land burial of the SRCs was selected as the preferred disposal option. The SRCs currently are sent to Trench 94 of the 218-E-12B Burial Ground. In addition to radioactivity, the SRCs disposed in. The DOE-RL's three objectives in preparing and submitting this document are as follows. Request from Ecology an exemption from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements for Trench 94 of the 218-E-12B Burial Ground. Petition Ecology to exempt residual liquid in the SRCs from land disposal restrictions. Obtain EPA Region 10 review and comment on the request to Ecology for exemption from liner/leachate system requirements

  4. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  5. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

  6. Treatability tests on water from a low-level waste burial ground

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1990-01-01

    Lab-scale treatability tests on trench water from a low-level waste burial ground have shown that the water can be successfully treated by existing wastewater treatment plants at Oak Ridge National Laboratory. Water from the four most highly contaminated trenches that had been identified to date was used in the treatability tests. The softening and ion exchange processes used in the Process Wastewater Treatment Plant removed Sr-90 from the trench water, which was the only radionuclide present at above the discharge limits. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant removed volatile and semi-volatile organics, which were the main contaminants in the trench water, to below detection limits. 6 refs., 2 figs., 7 tabs

  7. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  8. NRC Task Force report on review of the federal/state program for regulation of commercial low-level radioactive waste burial grounds

    International Nuclear Information System (INIS)

    1977-01-01

    The underlying issue explored in this report is that of Federal vs State regulation of commercial radioactive waste burial grounds. The need for research and development, a comprehensive set of standards and criteria, a national plan for low-level waste management, and perpetual care funding are closely related to the central issue and are also discussed. Five of the six commercial burial grounds are regulated by Agreement States; the sixth is regulated solely by the NRC (NRC also regulates Special Nuclear Material at the sites). The sites are operated commercially. The operators contribute to the perpetual care funds for the sites at varying rates. The States have commitments for the perpetual care of the decommissioned sites except for one site, located on Federally owned land. Three conclusions are reached. Federal control over the disposal of low-level waste should be increased by requiring joint Federal/State site approval, NRC licensing, Federal ownership of the land, and a Federally administered perpetual care program. The NRC should accelerate the development of its regulatory program for the disposal of low-level waste. The undisciplined proliferation of low-level burial sites must be avoided. NRC should evaluate alternative disposal methods, conduct necessary studies, and develop a comprehensive low-level waste regulatory program (i.e., accomplish the above recommendations) prior to the licensing of new disposal sites

  9. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  10. Ancient tombs in China and shallow ground burial of solid low-intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Huang Yawen; Gu Cunli

    1987-01-01

    Having reviewed the experiences with ancient tombs in China, particularly the experiences with tomb siting, configuration of tombs, backfilling materials, civil engineering techniques, sealing techniques, drainage system, antiseptic techniques, a comparison between the ancient tombs and the shallow ground burial of solid radioactive wastes is made. The authors believe that the brilliant achievements of ancient tombs in China in keeping ancient corpses and funeral objects are a historical evidence for safety of shallow ground burial of radioactive wastes, and that the main experiences with the ancient tombs may be useful to shallow ground burial of solid radioactive wastes

  11. The Remediation of Hanford's Last Low-Level Waste Burial Grounds in the 300 Area: 618-7 and 618-1

    International Nuclear Information System (INIS)

    Haass, M.J.

    2009-01-01

    Under the U.S. Department of Energy's (DOE) River Corridor Closure Project, Washington Closure Hanford (WCH) has completed remediation of more than seven low-level waste (LLW) burial grounds in the 300 Area of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses the challenges and lessons learned from remediating the last two major burial grounds in the 300 Area: 618-7 and 618-1. The 618-7 Burial Ground was in operation from 1960 through 1973, during which it received waste from the production of Zircaloy (zirconium alloy) jacketed metallic uranium fuel rods and thoria targets for the production of uranium-233. Its major remediation challenges included the recovery, characterization, and disposal of 550 drums and disposal of two compressed gas cylinders that were suspected to contain highly toxic chemicals. Approximately 100 of the drums contained Zircaloy metal turnings that could be pyrophoric under certain conditions. Remediation activities were completed in December 2008. The 618-1 Burial Ground was in operation from 1945 (i.e., the beginning of Hanford operations) through 1951. It received waste from 300 Area laboratories that conducted experimental work associated with World War II and Cold War era processes for fuel fabrication and the production of plutonium. Some of the wastes were associated with highly radioactive irradiated material. Remediation of this burial ground is still in progress and is expected to be completed by June 2009. Information presented in this paper will be an aid to those involved in the planning, design, and remediation of burial grounds located on the DOE complex. (authors) Remediation of the 618-7 Burial Ground was completed in December 2008; the 618-1 Burial Ground is proceeding without incident and is expected to be completed in June

  12. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  13. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-05-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

  14. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    International Nuclear Information System (INIS)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-01-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground

  15. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  16. Water budget for SRP burial ground area

    International Nuclear Information System (INIS)

    Hubbard, J.E.; Emslie, R.H.

    1984-01-01

    Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables

  17. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  18. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  19. Groundwater monitoring in the Savannah River Plant low-level waste burial ground: a summary and interpretation of the analytical data

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1983-01-01

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace-level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated, but most of these were shown to be incapable of mobilizing more than trace quantities of plutonium. The parameters of greatest importance were oxidation-reduction potential, pH, dissolved organic carbon, phosphate and carbonate. Of these, organic and phosphate complexation had the greatest potential for mobilizing plutonium in the SRP groundwater. In the absence of such complexants, plutonium would be essentially immobile in the soil/water system of the SRP burial ground. 50 references, 8 figures, 2 tables

  20. The Steksovo II burial ground

    Directory of Open Access Journals (Sweden)

    Martianov Vladimir N.

    2014-12-01

    Full Text Available The article is dedicated to the results of many-years’ (1990-2010 excavations on the ancient Mordovian Steksovo II burial ground site. The burial ground had functioned in the 3rd to 13th centuries AD. The investigations revealed hundreds of burials, which enabled the researchers to judge upon the wealth of material items found and the variety of burial rites of the population that had formed the burial ground. The 1st millennium AD is characterized by bi-ritualism, while inhumation is characteristic of the 11-13th-century period; horses’ burials were also discovered. The data of the burial ground make it possible to modify the concept of the stages in ancient Mordovians ethnogenesis. It is generally attributed to the Erzya Mordvins, but in early burials the combination of the Erzya and Moksha ancientries is traced. Complexes of the items of crucial importance for the chronology of the burial are discussed in the article with a representation of statistical data characterizing funeral rites and traditions.

  1. Improvement in operating incident experience at the Savannah River Burial Ground

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1979-01-01

    Low-level radioactive wastes generated at the Savannah River Plant and Laboratory are stored at the Savannah River burial ground. These wastes have accumulated from >20 years of reprocessing nuclear fuels and materials for defense programs at the Savannah River Plant. Burial in earthen trenches and aboveground storage for transuranic materials are the principal modes of storage. The infrequent operating incidents that have occurred during the 20-year period have been analyzed. The incidents can be categorized as those causing airborne contamination, waterborne contamination, or vegetation contamination through penetration of plant roots into contaminated soil. Contamination was generally confined to the immediate area of the burial ground. Several incidents occurred because of unintentional burial or exhumation of material. The frequency of operating incidents decreased with operating experience of the burial ground, averaging only about two incidents per year during the last six years of operation

  2. Environmental assessment for Trench 33 widening in 218-W-5 Low-Level Burial Ground, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-07-01

    This environmental assessment (EA) has been prepared to assess potential environmental impacts associated with the US Department of Energy''s proposed action: to widen and operated the unused Trench 33 in the 218-W-5 Low-Level Burial Ground. Information contained herein will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No significant Impact will be issued and the action may proceed

  3. Environmental assessment for Trench 33 widening in 218-W-5 Low-Level Burial Ground, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This environmental assessment (EA) has been prepared to assess potential environmental impacts associated with the US Department of Energy`s proposed action: to widen and operated the unused Trench 33 in the 218-W-5 Low-Level Burial Ground. Information contained herein will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No significant Impact will be issued and the action may proceed.

  4. Waste migration studies at the Savannah River Plant burial ground

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Grant, M.W.; Hoeffner, S.L.; King, C.M.

    1985-01-01

    The low-level radioactive waste burial ground at the Savannah River Plant is a typical shallow-land-burial disposal site in a humid region. Studies of waste migration at this site provide generic data for designing other disposal facilities. A program of field, laboratory, and modeling studies for the SRP burial ground has been conducted for several years. Recent results of lysimeter tests, soil-water chemistry studies, and transport modeling are reported. The lysimeter experiments include ongoing tests with 40 lysimeters containing a variety of defense wastes, and recently concluded lysimeter tests with tritium and plutonium waste forms. The tritium lysimeter operated 12 years. In chemistry studies, measurements of soil-water distribution coefficients (K/sub d/) were concluded. Current emphasis is on identification of trace organic compounds in groundwater from the burial site. Development of the dose-to-man model was completed, and the computer code is available for routine use. 16 refs., 2 figs., 2 tabs

  5. 618-11 Burial Ground USRADS radiological surveys

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1994-01-01

    This report summarizes and documents the results of the radiological surveys conducted from February 4 through February 10, 1993 over the 618-11 Burial Ground, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 618-11 Burial Ground radiological survey field task consisted of two activities: characterization of the specific background conditions and the radiological survey of the area. The radiological survey of the 618-11 Burial Ground, along with the background study, were conducted by Site Investigative Surveys Environmental Restoration Health Physics Organization of the Westinghouse Hanford Company. The survey methodology was based on utilization of the Ultrasonic Ranging and Data System (USRADS) for automated recording of the gross gamma radiation levels at or near six (6) inches and at three (3) feet from the surface soil

  6. Project TN-030: hydrogeology - ORNL radioactive waste burial grounds

    International Nuclear Information System (INIS)

    1981-01-01

    Continuation of an effort started in 1980, the water-level and precipitation data collected during the early years of the project were compiled into a series of five basic data reports. Technical advice on the design of piezometers in Burial Ground 5 was provided, and their construction has been monitored. Field work has continued, principally in Burial Grounds 5 and 6

  7. Burial No. 67 of the Keliysky Burial Ground (Ingushetia Highlands)

    OpenAIRE

    Narozhny Evgeniy I; Narozhny Vitaliy E.

    2012-01-01

    Martial burial No, 67 from excavations of Keliyskiy burial ground in Ingushetia highlands is introduced into scientific use. The grave goods contained in the burial are quite traditional: a knife, arrowheads, belt buckles dating from the Golden Horde epoch. An iron helmet with a visor is a find standing apart. Helmets of the kind are similar not only to those found in burial sites of Ingushetia, but also to the helmets discovered in the burials of the Golden Horde nomads, which makes it possi...

  8. Great Moravian burial grounds in Rajhrad and Rajhradice

    OpenAIRE

    Hendrychová, Soňa

    2015-01-01

    The diploma thesis presented deals with an overall assessment of the Great Moravian burial ground in Rajhrad (Brno- venkov), which was excavated in the years 1972 to 1976. The work is based on a catalogue of this burial ground and the neighbouring one in Rajhradice published by Čeněk Staňa. It follows individual aspects of funeral rites at a necropolis and evaluates the inventory of the graves. Based on the findings, the work dates the burial ground, compares with burial ground in Rajhradice ...

  9. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  10. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  11. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs

  12. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  13. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  14. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  15. Cleanup Verification Package for the 618-2 Burial Ground

    International Nuclear Information System (INIS)

    Thompson, W.S.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities

  16. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  17. Natural analogue study for low-and-intermediate level radioactive waste shallow burial disposal

    International Nuclear Information System (INIS)

    Gu Cunli; Fan Zhiwen; Huang Yawen; Cui Anxi; Liu Xiuzheng; Zhang Jinshen

    1995-01-01

    The paper makes a comparison of low-and-intermediate level radioactive waste shallow burial disposal with Chinese ancient tombs in respects of siting, engineering structures, design principle and construction procedures. Results showed that Chinese ancient tombs are very good analogue for low-and-intermediate level radioactive waste shallow burial disposal. Long-term preservation of ancient tombs and buried objects demonstrated that low-and-intermediate level radioactive waste shallow burial disposal would be safe if suitable sites were selected, reasonable engineering structures and good backfill materials were adopted, and scientific construction procedures were followed. The paper reports for the first time the testing results of certain ancient tomb backfill materials. The results indicated that the materials have so low a permeability as 1.5 x 10 -8 cm/s , and strong adsorption to radionuclides Co and Cs with the distribution coefficients of 1.4 x 10 4 mL/g and 2.1 x 10 4 mL/g, and the retardation factors of 4.4 x 10 4 and 7.7 x 10 4 respectively. Good performance of these materials is important assurance of long-term preservation of the ancient tombs. These materials may be considered to be used as backfill materials in low-and-intermediate level radioactive shallow burial disposal. (4 figs., 10 tabs.)

  18. Low-level burial grounds dangerous waste permit application

    International Nuclear Information System (INIS)

    1990-07-01

    This document is submitted to request an exemption for Trench 94 from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements. This exemption request is based on an evaluation which demonstrates that burial in Trench 94 of cathodically protected submarine reactor compartments (SRC), which contain lead and polychlorinated biphenyls (PCB) as hazardous constituents, is as effective as disposal in a landfill having a liner/leachate system. This demonstration also considers the effectiveness of burial in Trench 94 in terms of preventing long-term migration of contaminants to groundwater or surface water. Modeling results indicate that release of contaminants to the groundwater or surface water will not occur until after long periods of time and that even after reaching the groundwater, contaminants will not be in excess of current regulatory limits, such as drinking water standards. Chapter 1.0 provides introductory information concerning this request, including the scope of the exemption request and relevant background information. The five subsequent chapters provide information needed to support the exemption request. Chapter 2.0 discusses the regulatory basis for the exemption request and presents performance objectives related to regulatory requirements. Chapter 3.0 provides a description of the site and its operation. Chapter 4.0 describes the wastes subject to this exemption request Chapter 5.0 discusses the performance of the disposal site with respect to performance objectives. Finally, Chapter 6.0 presents the actual request for exemption from requirements for a liner/leachate system. 30 refs., 13 figs., 6 tabs

  19. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  20. Tritium in the burial ground of the Savannah River Site

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1993-06-01

    This memorandum reviews the available information on tritium-contaminated material discarded to burial grounds. Tritium was the first isotope studied because it represents the most immediate concern with regard to release to the environment. Substantial amounts of tritium are known to be present in the ground water underneath the area, and outcropping of this ground water in springs and seeps has been observed. The response to this release of tritium from the burial ground is a current concern. The amount of tritium emplaced in the burial ground facilities is very uncertain, however, some general conclusions can be made. In particular, most of the tritium buried is associated with spent equipment and other waste, rather than spent melts. Correspondingly, most of the tritium in the ground water seems to be associated with burials of this type, rather than the spent melts. Maps are presented showing the location of burials of tritiated waste by type, and the location of the largest individual burials according to COBRA records

  1. Procedures and technology for shallow-land burial. Low-level radioactive-waste-management handbook series

    International Nuclear Information System (INIS)

    1983-08-01

    This handbook provides technical information on the requirements, activities, and the roles of all parties involved in the development and operation of new shallow land burial facilities for disposal of low-level radioactive waste. It presents an overview of site selection, design, construction, operation, and closure. Low-level waste shallow land burial practices and new technology applications are described. The handbook is intended to provide a basis for understanding the magnitude and complexity of developing new low-level waste disposal facilities

  2. Cleanup Verification Package for the 618-8 Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building

  3. Cleanup Verification Package for the 618-3 Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings

  4. Cleanup Verification Package for the 118-F-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  5. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  6. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. 7 refs., 3 figs., 5 tabs

  7. Evaluation of dynamic compaction of low level waste burial trenches containing B-25 boxes

    International Nuclear Information System (INIS)

    McMullin, S.R.

    1994-01-01

    The Savannah River Site, owned by the US Department of Energy, is preparing to close an additional 13.8 ha of burial grounds under the Resource Conservation Recovery Act. In preparation for this closure, the dynamic compaction facility was designed and constructed to address unresolved design issues. Among these issues is the evaluation of the ability for dynamic compaction to consolidate buried low level waste containers. A model burial trench containing simulated clean wastes was dynamically compacted, after which the materials were excavated and compaction quantified. The test determined that under existing success criteria, the bottom tier of stacked B-25 boxes were not being consolidated. A quasi-structural layer was formed midway through the stacked boxes, which absorbed the compactive energy. Resulting from these observations and the data collected, a new success criterion is recommended which depends on the relative displacement per drop. The test successfully demonstrated that dynamic compaction will consolidate buried metal boxes

  8. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cannon, J.B.; Jacobs, D.G.; Lee, D.W.

    1986-02-01

    The performance objectives included in regulations for disposal of low-level radioactive waste (10 CFR 61 for commercial waste and DOE Order 5820.2 for defense waste) are generic principles that generate technical requirements which must be factored into each phase of the development and operation of a shallow land burial facility. These phases include a determination of the quantity and characteristics of the waste, selection of a site and appropriate facility design, use of sound operating practices, and closure of the facility. The collective experience concerning shallow land burial operations has shown that achievement of the performance objectives (specifically, waste isolation and radionuclide containment) requires a systems approach, factoring into consideration the interrelationships of the phases of facility development and operation and their overall impact on performance. This report presents the technical requirements and procedures for the development and operation of a shallow land burial facility for low-level radioactive waste. The systems approach is embodied in the presentation. The report is not intended to be an instruction manual; rather, emphasis is placed on understanding the technical requirements and knowing what information and analysis are needed for making informed choices to meet them. A framework is developed for using the desired site characteristics to locate potentially suitable sites. The scope of efforts necessary for characterizing a site is then described and the range of techniques available for site characterization is identified. Given the natural features of a site, design options for achieving the performance objectives are discussed, as are the operating practices, which must be compatible with the design. Site closure is presented as functioning to preserve the containment and isolation provided at earlier stages of the development and operation of the facility

  9. Site selection criteria for the shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Falconer, K.L.; Hull, L.C.; Mizell, S.A.

    The shallow land burial of low-level waste must be accomplished in a manner that ensures the public and biosphere are protected from harmful amounts of radiation. This can be attained by selecting, designing, operating and closing sites such that contaminants never leave the site boundary in levels above regulatory limits. Site design, operation and closure are all functions of the characteristics of the site selected. As a result, the site selection process offers the most effective means for optimizing safe, efficient and economical low-level waste burial practices. The purpose of this document is to set forth criteria for the selection of shallow land burial sites. Criteria are standard rules, by which the ability of a site to meet waste management goals can be judged. They are comprehensive, universal, and qualitative and are applicable in any geologic environment. Site selection criteria provide the framework for the siting process

  10. Cleanup Verification Package for the 118-F-2 Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.; Anselm, K.A.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities

  11. RETRIEVING SUSPECT TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS PROGRESS PLANS AND CHALLENGES

    International Nuclear Information System (INIS)

    FRENCH, M.S.

    2006-01-01

    This paper describes the scope and status of the program for retrieval of suspect transuranic (TRU) waste stored in the Hanford Site low-level burial grounds. Beginning in 1970 and continuing until the late 1980's, waste suspected of containing significant quantities of transuranic isotopes was placed in ''retrievable'' storage in designated modules in the Hanford burial grounds, with the intent that the waste would be retrieved when a national repository for disposal of such waste became operational. Approximately 15,000 cubic meters of waste, suspected of being TRU, was placed in storage modules in four burial grounds. With the availability of the national repository (the Waste Isolation Pilot Plant), retrieval of the suspect TRU waste is now underway. Retrieval efforts, to date, have been conducted in storage modules that contain waste, which is in general, contact-handled, relatively new (1980's and later), is stacked in neat, engineered configurations, and has a relatively good record of waste characteristics. Even with these optimum conditions, retrieval personnel have had to deal with a large number of structurally degraded containers, radioactive contamination issues, and industrial hazards (including organic vapors). Future retrieval efforts in older, less engineered modules are expected to present additional hazards and difficult challenges

  12. Shallow land burial of solid low-level radioactive wastes - 30 years of experience at the Savannah River Plant

    International Nuclear Information System (INIS)

    Stone, J.A.; Fenimore, J.W.; Hawkins, R.H.; Oblath, S.B.; Ryan, J.P. Jr.

    1983-01-01

    Solid radioactive wastes from production of nuclear materials at the Savannah River Plant (SRP) are buried in shallow trenches on a 79-hectare plot within the SRP site. The SRP burial ground, in use since 1953, has provided containment for about 370,000 m 3 of waste containing 10 7 Ci that have been buried through 1982. Site characteristics, operating practices, and monitoring results are described. Extensive field and laboratory studies aimed at developing a fundamental understanding of the soil/waste/water system of the SRP burial ground are discussed. Leaching and migration of buried radionuclides have been monitored by assays of soil cores and by periodic sampling of numerous groundwater wells. Except for tritium, none of the radionuclides have migrated significantly from the waste. Generally, traces of alpha and nonvolatile beta/gamma emitters that have entered the groundwater can be detected only by ultra-low-level radiochemical analyses. Current research efforts include: (1) migration of individual radionuclides such as 60 Co, 90 Sr, 99 Tc, 106 Ru, 129 I, 137 Cs, 238 Pu, and 239 Pu (plus nonradioactive materials such as mercury); (2) groundwater chemistry under buried waste, to determine fundamental transport mechanisms; (3) radionuclide migration from well characteized sources emplaced in lysimeters; (4) laboratory measurements of sorption on burial ground soil. In addition to ensuring continued safe operation, the ongoing waste migration studies provide technical guidance for site operations and decommissioning

  13. In-situ high-resolution gamma-spectrometric survey of burial ground-monitoring wells

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1981-09-01

    In situ high resolution gamma-ray spectrometry with an intrinsic germanium detector assembly of special design surveyed the burial ground monitoring wells to locate and identify gamma emitters that may have migrated from the burial trenches toward the water table. Gamma-ray spectra were acquired as a function of depth in each well and recorded on magnetic tape. These spectra were reduced by a series of computer programs to produce count rate versus depth profiles for natural and man-made activities. The original spectra and the profiles have been archived on magnetic tape for comparison with similar future surveys. Large amounts of man-made activities were observed in some of the burial trenches; however, below the trench bottoms, only very low but detectable amounts of 60 Co and 137 Cs were observed in eleven wells. The highest level of man-made gamma activity observed below the trench bottoms has a count rate roughly equal to that observed for uranium daughter activities which are natural to the subsoil

  14. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. W.

    2012-06-28

    A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  15. Recent experience with the land burial of solid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Meyer, G.L.

    1976-01-01

    Low-level, nuclear fuel cycle wastes are being disposed of at six commercially operated sites in the United States of America. Similar wastes resulting from Federal activities are being disposed of at five Federally operated sites. The hydrology, geology, climate and operational practices at these sites vary greatly. At three sites in the wetter eastern United States which have low-permeability burial media, it is difficult to keep water from getting into the trenches. Two commercial burial sites in New York and Kentucky have not performed as planned. Authorization to operate these facilities was based on site analyses which, it was believed, demonstrated that the buried radioactive wastes would not migrate from the site during their hazardous lifetime (i.e. for hundreds of years). In ten years or less, however, radioactivity has been detected offsite from these two sites. Radioactivity has migrated offsite from the Federal burial site at Oak Ridge National Laboratory, also. State and Federal authorities have stated that the radioactivity in the environment around the site was not a health hazard at this time. Information is presented on recent disposal practices and experience at these three low-level burial facilities. Based on this experience, the paper (1) briefly describes operations and problems at the sites; (2) suggests factors which led to the problems; (3) identifies problems which appear to be generic to disposal in humid climates; (4) identifies specific problems which could either reduce the ability to predict the impact of disposal operations or reduce the retention capability of the site; and (5) recommends improvements which can be made in site selection, development, and operation to reduce the environmental impact of the site. (author)

  16. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Gaschott, L.J.

    1995-01-01

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility

  17. Evaluating biological transport of radionuclides at low-level waste burial sites

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Kennedy, W.E.; McKenzie, D.H.

    1983-08-01

    The purpose of the work reported here is to develop and demonstrate methods for evaluating the long-term impact of biological processes at low-level waste (LLW) disposal sites. As part of this effort, we developed order-of-magnitude estimates of dose-to-man resulting from animal burrowing activity and plant translocation of radionuclides. Reference low-level waste sites in both arid and humid areas of the United States were examined. The results of our evaluation for generalized arid LLW burial site are presented here. Dose-to-man estimates resulting from biotic transport are compared with doses calculated from human intrusion exposure scenarios. Dose-to-man estimates, as a result of biotic transport, are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. These results indicate that biotic transport has the long-term potential to mobilize radionuclides. Therefore, biotic transport should be carefully evaluated during burial site assessment

  18. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  19. Enhanced Site Characterization of the 618-4 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher J.; Last, George V.; Chien, Yi-Ju

    2001-09-25

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution.Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  20. Novel experiments for understanding the shallow land burial of low-level radioactive wastes

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Hakonson, T.E.

    1981-01-01

    Data on the basic processes that occur in the shallow land burial of low-level radioactive wastes are needed to engineer facilities with guaranteed performance, to validate models for system predictions, and to provide input to models that consider contaminant pathways out of the facility. Two types of novel experiments that will provide experimental data on the basic processes in shallow land burial facilities are described in this paper. Generic experiments that give data on the movement of water and radionuclides and an experiment that is particularly important for semi-arid sites are described

  1. Evaluation of burial ground soil covers

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1976-11-01

    Solid radioactive waste burial at the Savannah River Plant between 1955 and 1972 filled a 76-acre site. Burial operations then were shifted to an adjacent site, and a program was begun to develop a land cover that would: (1) minimize soil erosion; and (2) protect the buried waste from deep-rooted plants, since radionuclides can be recycled by uptake through root systems. In anticipation of the need for a suitable soil cover, five grass species were planted on 20 plots (4 plots of each species) at the burial ground (Facility 643-G) in 1969. The grass plots were planted for evaluation of viability, root depth, and erosion protection existing under conditions of low fertility and minimum care. In addition, 16 different artificial soil covers were installed on 32 plots (each cover on two plots) to evaluate: (1) resistance of cover to deterioration from weathering; (2) resistance of cover to encroachment by deep-rooted plants; and (3) soil erosion protection provided by the cover. All test plots were observed and photographed in 1970 and in 1974. After both grass and artificial soil covers were tested five years, the following results were observed: Pensacola Bahia grass was the best of the five cover grasses tested; and fifteen of the sixteen artificial covers that were tested controlled vegetation growth and soil erosion. Photographs of the test plots will be retaken at five-year intervals for future documentation

  2. Estimated erosion rate at the SRP burial ground

    International Nuclear Information System (INIS)

    Horton, J.H.; Wilhite, E.L.

    1978-04-01

    The rate of soil erosion at the Savannah River Plant (SRP) burial ground can be calculated by means of the universal soil loss equation. Erosion rates estimated by the equation are more suitable for long-term prediction than those which could be measured with a reasonable effort in field studies. The predicted erosion rate at the SRP burial ground ranges from 0.0007 cm/year under stable forest cover to 0.38 cm/year if farmed with cultivated crops. These values correspond to 170,000 and 320 years, respectively, to expose waste buried 4 ft deep

  3. Hydrology of the solid waste burial ground, as related to the potential migration of radionuclides, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Barraclough, J.T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-08-01

    This report describes a study conducted by the U. S. Geological Survey with the following objectives: to evaluate the hydrologic, radiologic and geochemical variables that control the potential for subsurface migration of waste radionuclides from the burial trenches to the Snake River Plain aquifer; to determine the extent of radionuclide migration, if any; and, to construct monitoring wells into the aquifer. Statistically significant trace amounts of radioactivity were found in about one-half of the 44 sedimentary samples from the six holes core drilled inside the burial ground and from all water samples from one hole tapping a perched water table. These very low levels of radioactivity are detectable only with the most sensitive of analytical equipment and techniques. The levels of radioactivity detected were, in most cases, less than the amounts found in surface soils in this region resulting from world-wide fallout. This radioactivity found in the cores could have been introduced naturally by migration by infiltrating water which had made contact with buried waste or could have been introduced artificially during drilling and sampling. The available data from the four peripheral monitoring wells do not indicate that radionuclide constituents from the burial ground have migrated into the underlying Snake River Plain aquifer. The low concentrations of radionuclides detected in samples taken from the sedimentary layers are not expected to migrate to the Snake River Plain aquifer. Water samples from the peripheral wells and one core hole inside the burial ground will continue to be collected and analyzed for radioactivity semi-annually

  4. Solid Waste Burial Grounds/Central Waste Complex hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for Solid Waste Burial Grounds/Central Waste Complex on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is documented

  5. Engineering evaluation of the 618-9 Burial Ground expedited response action

    International Nuclear Information System (INIS)

    1991-08-01

    Throughout Hanford Site history, chemical waste products were disposed via burial in trenches. One such trench was the 618-9 Burial Ground, located in the 600 Area on the Hanford Site. The 618-9 Burial Ground was suspected to contain approximately 5,000 ga (19,000 L) of uranium contaminated solvent in 55-gal (208-L) steel drums. On December 20, 1990, the US Department of Energy (DOE) was instructed by the US Environmental Protection Agency (EPA) and the State of Washington Department of Ecology (Ecology) to initiate planning necessary to implement an expedited response action (ERA) for the 618-9 Burial Ground. The project was to be implemented in two phases: (1) removal of immediate human health and environmental hazards and (2) remediation of contaminated soil. Phase 1 of the project was initiated February 15, 1991. During Phase 1 activities approximately 700 gal (2,650 L) of methyl isobutyl ketone (hexone) and 900 gal (3,400 L) of kerosene solvent were removed from the 618-9 Burial Ground. A significant amount of scrap process equipment/building debris was excavated. The results of an environmental risk assessment for chemicals above detection further determined that risks posed by other detected constituents to human health and the environment are negligible. A compilation of activities utilized for determining subsequent remediation activities for the 618-9 Burial Ground is presented. This includes: (1) Phase 1 activities, (2) sampling performed and associated data results, (3) results of the risk assessment, and (4) applicable or relevant and appropriate requirements. 13 refs., 5 figs., 4 tabs

  6. Decommissioning and decontamination (burial ground stabilization) studies

    International Nuclear Information System (INIS)

    Cline, J.F.

    1980-01-01

    The decommissioning and decontamination of retired Hanford facilities and the future use of surrounding landscapes require isolation of contaminated wastes from the biosphere. Burial ground stabilization studies were conducted to determine the effectiveness of physical barriers for isolating contaminated wastes in shallow-land burial sites from plants and animals. This study was undertaken to determine the effectiveness of using a layer of loose rock between the waste and the surface soil covering to prevent both plant root and animal penetrations

  7. Transuranic element uptake and cycling in a forest over an old burial ground

    International Nuclear Information System (INIS)

    Murphy, C.E.; Tuckfield, R.C.

    1994-01-01

    The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study was established with the objective of determining the uptake of buried, low-level, transuranic waste from unlined earthen trenches by forest vegetation. From SRS startup in 1953 through 1974, solid waste contaminated with α-emitting transuranic nuclides was buried, unencapsulated, in earthen trenches. Burial records show that this material includes plutonium-238 ( 238 Pu), plutonium isotopes 239 and 240 ( 239,240 Pu), americium-241 ( 241 Am), and neptunium-237 ( 237 Np). In 1979, two tree plots were established, one over a trench in the burial ground and the other in an area without trenches. In the 2 years following establishment of the tree plots, 1979 and 1980, whole trees of each species were collected from each plot and analyzed for 239 Pu and 238 Pu. Beginning in 1986, needle samples were collected from selected pine trees in each of the plots. Because of poor growth and survival, the hardwood trees were not sampled after 1980. The results of data analysis support the conclusions that: (1) there is more 238 Pu uptake by pine tree seedlings than the other species, (2) there is greater transuranic radionuclide uptake in grown pine trees than in seedlings, and (3) there are greater concentrations of transuranic radionuclides in the grown pine trees on the trench plots than in the pine trees on the control plot. These data indicate that tree roots will extract transuranic isotopes from buried, low level waste. The amount of radioisotopes moved from the trenches to the surface is small and the level in the trees is low enough that dose from direct exposure will be very small. A model was developed to estimate the potential for the transfer from the SRS alpha trenches. The results suggest that even following 100 years of transport, the transuranic, alpha dose from consuming food crops

  8. Shallow-land burial of low-level radioactive wastes: preliminary simulations of long-term health risks

    International Nuclear Information System (INIS)

    Fields, D.E.; Little, C.A.; Emerson, C.J.; Hiromoto, G.

    1982-01-01

    PRESTO, a computer code developed for the Environmental Protection Agency for the evaluation of possible health effects associated with shallow-land rad-waste burial areas, has been used to perform simulations for three such sites. Preliminary results for the 1000 y period following site closure suggest that shallow burial, at properly chosen sites, is indeed an appropriate disposal practice for low-level wastes. Periods of maximum risk to subject populations are also inferred

  9. Radionuclide migration studies at the Savannah River Plant humid shallow land burial site for low-level waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Hoeffner, S.L.; King, C.M.

    1984-01-01

    A program of field, laboratory, and modeling studies for the Savannah River Plant low-level waste burial ground has been conducted for several years. The studies provide generic data on an operating shallow land burial site in a humid region. Recent results from individual studies on subsurface monitoring, lysimeter tests, soil-water chemistry, and transport modeling are reported. Monitoring continues to show little movement of radionuclides except tritium. Long-term lysimeter tests with a variety of defense wastes measure migration under controlled field conditions. One lysimeter was excavated to study radionuclide distribution on the soil column beneath the waste. New soil-water distribution coefficients (K/sub d/) were measured for Co-60, Sr-90, Ru-106, Sb-125, and I-129. Laboratory and field data are integrated by means of the SRL dose-to-man model, to evaluate effects of alternative disposal practices. The model recently has been used to evaluate TRU disposal criteria and to predict migration behavior of tritium, Tc-99, and I-129. 14 references, 2 tables

  10. SRS Burial Ground Complex: Remediation in Progress

    International Nuclear Information System (INIS)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-01

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities

  11. Riding Horse Harness (Based on Materials from the Chulkovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Grishakov Valeriy V.

    2013-12-01

    Full Text Available The items of riding horse harness (bits with psalia, stirrups, buckles, decorations of bridles are analyzed in the article on the basis of the materials from the Chulkovo (Murom burial ground site of the 8th-10th centuries, located on right bank of the Oka river. It has been established that the use of horse harness items by the Muroma culture population, which had left the Chulkovo burial ground, is in full correspondence with the general traditions of the Finno-Ugric peoples of the Volga river region characteristic of the 8th-10th centuries. The shapes of the bits correspond to both the steppe (bits with S-shaped and straight psalia and the local traditions (bits with two and three moving rings. A tendency to uniformity is observed in the tradition of stirrups production. The main differences of the Muroma burial grounds from the neighboring Mordovian ones consist in the presence of horse burials (not known among the Mordovians, and, on the other hand, in a practically complete lack of horse harness in the funeral set of human burials. It can be assumed that the importance of cavalry with the Muromа was lower than with the Mordovians who were living next to the steppe world.

  12. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  13. Examination of representative drum from 618-9 Burial Ground

    International Nuclear Information System (INIS)

    Duncan, D.R.; Bunnell, L.R.

    1992-10-01

    The work described in this report was conducted in pursuance of Task E of the Pacific Northwest Laboratory Solid Waste Technology Support Program for Westinghouse Hanford Company. Task E calls for a determination of the corrosion rate of low-carbon steels under typical Hanford Site conditions. To meet this objective, Pacific Northwest Laboratory examined one intact drum that was judged to be representative of the largely intact drums excavated at the 618-9 Burial Ground located west of the 300 Area at the Hanford Site. Six samples were examined to characterize the drum, its composition, and its corrosion and corrosion products. The drum, which was found empty, was constructed of low-carbon steel. Its surface appeared relatively sound. The drum metal varied in thickness, but the minimum thickness in the samples was near 0.020 in. The corrosion corresponds to approximately 25 to 35 mils of metal loss, roughly a 1 mil/yr corrosion rate. Corrosion products were goethite and maghymite, expected products of iron buried in soil. Apparently, the drum leaked some time ago, but the cause of the leakage is unknown because records of the drums and their burial are limited. The drum was empty when found, and it is possible that it could have failed by pitting rather than by general corrosion. A pitting rate of about 3.5 mils/yr would have caused loss of drum integrity in the time since burial

  14. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  15. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  16. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  17. Chemical speciation of plutonium in the radioactive waste burial ground at the Savannah River Plant

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1978-08-01

    The plutonium chemical species in two types of samples from the Savannah River Plant burial ground for radioactive waste were identified. Samples analyzed were water and sediment from burial ground monitoring well C-17 and soil from an alpha waste burial trench. Soluble plutonium in the monitoring well was less than 12A in diameter, was cationic, and contained about 43% Pu(VI) and 25% Pu(IV). The equilibrium distribution coefficient (K /sub d/) for soluble plutonium from the well water (pH 7) to burial ground soil was about 60. Soil plutonium from the waste trench was not cation-exchanged; 78% of the soil plutonium was associated with metallic oxides in the soil. Approximately 9% of the Pu was contained in the crystalline soil matrix. Thus, about 87% of the plutonium in the soil was in a relatively immobile form. Ion-exchangeable and organic acid forms of plutonium amounted to only about 2.5% each. The bulk of the plutonium now on burial ground soils will be immobile except for movement of soil particles containing plutonium. 6 tables

  18. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  19. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  20. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control

  1. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  2. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  3. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  4. Surface erosion and hydrology of earth covers used in shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Bent, G.C.

    1988-01-01

    Shallow land burial is the current method of disposal of low-level radioactive waste in the United States. The most serious technical problems encountered in shallow land burial are water-related. Water is reported to come into contact with the waste by erosion of earth covers or through infiltration of precipitation through the earth covers. The objectives of this study were to: compare and evaluate the effects of crested wheatgrass and streambank wheatgrass on surface erosion of simulated earth covers at Idaho National Engineering Laboratory (INEL), characterize the surface hydrology, and estimate cumulative soil loss for average and extreme rainfall events and determine if the waste will become exposed during its burial life due to erosion. 30 refs., 26 figs., 21 tabs

  5. Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4

    International Nuclear Information System (INIS)

    1994-06-01

    One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report

  6. Burial of a Man-At-Arms in Kudash I Burial Ground

    Directory of Open Access Journals (Sweden)

    Kazantseva Olga A.

    2017-07-01

    Full Text Available The article features a comprehensive analysis of items discovered in male burial 160 of Kudash I burial ground – a unique source of materials for the research of interactions between the local and foreign population on the Middle Kama region in 3rd – 5th centuries A.D. The monument is located in Bardymsky district of Perm Krai. The complex of metal objects comprises a set of personal protective armament rarely discovered in the Kama region: an open-work helmet, a set of plate armour, a sword, a spear head, a knife and "crooked scythes". The article contains a description of the grave, its structure, morphology and classification of findings, as well as the results of an investigation of the manufacturing technology of the following armament and implements: sword, spear head, knife, and "crooked scythe" conducted using the metallographic method. It also features a graphical reconstruction of the warriors’s protective armament – the helmet. The authors determined counterparts of the grave complex discovered at archaeological sites in the Middle Kama region and the Altai Mountains. The apparel of the man-at-arms represents a unique set of protective and offensive armament. The armour of the deceased is complemented by an open-work ceremonial helmet with an aventail, which suggests that the grave belonged to a military commander. The date of burial was determined on the basis of artefact study results as late 4th – early 5th centuries A.D.

  7. Status of low-level radioactive waste disposal: how to plan a disaster

    International Nuclear Information System (INIS)

    McArthur, W.C.

    1979-01-01

    The nuclear industry is faced with serious problems in the transportation and burial of low-level radioactive wastes. Soaring burial costs, state regulations regarding transportation routes, and lack of direction from regulatory agencies are problems that must quickly be resolved. In order to gain control of this situation four major steps must be taken. First, states must accept their fair share of responsibility in the waste problem. Regulatory agencies must recognize the seriousness of the problem and develop a schedule for action. The nuclear industry must assert itself in a positive manner regarding the safety of nuclear power, and the low-level waste burial ground situation must improve

  8. Technical data summary: Plan for closure of the 643-G burial ground

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    This report involves the actions of closing the 643-G burial ground which involves waste removal, stabilization, and capping. Remedial action involves the removing of the transuranic waste and closing of the grid wells. The closure cap for the burial site will consist of native soil, clay, and gravel. This will assure long-term physical and chemical stability. (MB)

  9. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  10. Low-level waste shallow burial assessment code

    International Nuclear Information System (INIS)

    Fields, D.E.; Little, C.A.; Emerson, C.J.

    1981-01-01

    PRESTO (Prediction of Radiation Exposures from Shallow Trench Operationns) is a computer code developed under United States Environmental Protection Agency funding to evaluate possible health effects from radionuclide releases from shallow, radioctive-waste disposal trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to a stable, local population for a 1000-year period following closure of the burial grounds. Several classes of submodels are used in PRESTO to represent scheduled events, unit system responses, and risk evaluation processes. The code is modular to permit future expansion and refinement. Near-surface transport mechanisms considered in the PRESTO code are cap failure, cap erosion, farming or reclamation practices, human intrusion, chemical exchange within an active surface soil layer, contamination from trench overflow, and dilution by surface streams. Subsurface processes include infiltration and drainage into the trench, the ensuing solubilization of radionuclides, and chemical exchange between trench water and buried solids. Mechanisms leading to contaminated outflow include trench overflow and downwad vertical percolation. If the latter outflow reaches an aquifer, radiological exposure from irrigation or domestic consumption is considered. Airborne exposure terms are evaluated using the Gaussian plume atmospheric transport formulation as implemented by Fields and Miller

  11. Alternatives To The Burial Of Low-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Price, J. Mark

    2008-01-01

    have been fully dismantled. Proven techniques and equipment are available to dismantle nuclear facilities safely. Most parts of a nuclear power plants do not become radioactive or are contaminated at very low levels and most metal can be recycled. There are obvious environmental benefits to the decontamination, recycle and reuse of materials. The benefits come primarily from the reduction of waste and eliminating the need to obtain fresh materials for the new product. The benefits of recycling in other industries are well recognized. Not having a waste management option can sometimes delay decommissioning of nuclear facilities. Therefore, the availability of a recycling route for the waste may accelerate decommissioning progress. With improving prospects for building new nuclear power plants, the industry would likely use the option if significant amounts of waste materials could be recycled economically. There is little consistency in national approaches to recycling radioactive waste. Many options for recycling allow for the release of materials into the public domain (after decontamination to allowable levels). There is not uniform endorsement of this practice from country to country and some stakeholders do not agree with this type of material release (often reduced to as unconditional release). There is a large amount of material that can have conditional release within the industry that assures consistent endorsement by stakeholders. This material includes: concrete, lead, carbon and stainless steel, and graphite. More work needs to be done to ensure consistency in regulation from country to country. The IAEA is working to this end

  12. Low-level radioactive waste management handbook series: corrective measures technology for shallow land burial

    International Nuclear Information System (INIS)

    1984-10-01

    The purpose of this document is to serve as a handbook to operators of low-level waste burial sites for dealing with conditions which can cause problems in waste isolation. This handbook contains information on planning and applying corrective actions, and is organized in such a way as to assist the operator in associating problems or potential problems with causative conditions. Thus, the operator is encouraged to direct actions at those conditions, rather than the possible temporary expedient of treating symptoms. In Chapter 2 of this handbook, corrective action planning is briefly presented. Chapter 3 discusses the application of corrective measures by addressing, in separate sections, the following conditions which can occur at burial sites: eroding trench cover; permeable trench cover; subsidence of trench; groundwater entering trenches; trench intrusion by deep-rooted plants; and trench intrusion by burrowing animals. In each of these sections, a condition is introduced and related to burial-site problems. It is followed by a discussion of alternative methods for correcting the condition. This discussion includes descriptive information, application considerations for these alternatives, a listing of potential advantages and disadvantages, presentation of generalized cost information, and in conclusion, a statement of recommendations regarding application of corrective action technologies. 66 references, 21 figures, 24 tables

  13. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport

  14. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.

  15. Demonstration of an initial screening phase for site selection for low level radioactive waste burial - an evaluation of relevant IAEA guidelines

    International Nuclear Information System (INIS)

    1984-04-01

    Low level radioactive wastes, arising from the use of radioisotopes in medicine and industry are accumulating throughout Australia. The rate of accumulation has not been large and storage of these wastes close to the point of use has proved practicable to date, but consideration must now be given to a central repository or repositories for these low level wastes. This report considers the question of selecting a site suitable for disposal of wastes by shallow ground burial. It attempts to asses the practicability of using factors suggested by the IAEA for the initial phase of site screening. The screening process described has essentially two stages. In the first, New South Wales was divided into broad structural units and these ranked in order of suitability. In the second stage, survey sites in which thick clay beds outcropped were delineated in the five highest ranking structural units. These survey sites were ranked on the basis of various geomorphological properties which largely described the hydrogeology of the site

  16. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    Science.gov (United States)

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  17. Characterization of the Hanford 300 area burial grounds. Decontamination and decommissioning regulatory issues

    International Nuclear Information System (INIS)

    Morris, F.A.; Smith, R.F.; Phillips, S.J.

    1979-03-01

    The Hanford 300 Area Burial Grounds characterization project has identified four management alternatives for disposition of the burial grounds. These alternatives are: (1) abandonment, (2) entombment, (3) perpetual care, and (4) exhumation and translocation. Major Federal statutes and regulations that could apply to management alternatives are identified along with the constraints that applicable laws could impose. This analysis includes explicit attention to the uncertainty surrounding various legal constraints. Also specified are legislative developments as well as trends in other agencies and the courts, obtained by review of legislative proceedings, statutes and regulations, that could result in legislation or policies posing additional constraints

  18. Integration of CERCLA and RCRA requirements at the Radioactive Waste Burial Grounds, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Hoffman, W.D.; Wyatt, D.E.

    1992-01-01

    The purpose of this paper to is present the comprehensive approach being taken at the Savannah River Site (SRS) to consolidate regulatory documents, characterization and assessment activities for 3 contiguous waste management facilities. These facilities cover 7.12 x 10 5 m 2 (194 acres) and include an Old Radioactive Waste Burial Ground, a Low Level Radioactive Waste Disposal Facility, and a closed Mixed Waste Management Facility. Each of these facilities include one or more operable units including solvent tanks, transuranic waste storage pads, research lysimeters and experimental confinement disposal vaults. All of these facilities have differing submittal dates for regulatory documents but similar and continuous environmental problems. The characterization and risk assessment require simultaneous efforts for all facilities to adequately define the nature and extent of past, present and future environmental impact. Current data indicates that contaminant plumes in both soil and water are comingled, interspersed and possibly exist internally within the contiguous facilities, requiring a combined investigative effort. This paper describes the combination of regulatory documents leading to this comprehensive and integrative approach for burial ground characterization at the Savannah River Site

  19. Applicability of a generic monitoring program for radioactive waste burial grounds at Oak Ridge National Laboratory and Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1978-07-01

    Six burial grounds were evaluated at Oak Ridge to determine which would be most suitable for testing the generic monitoring approach, and two were selected. Burial Ground 4 was chosen because it is known to be leaking radioactivity and a monitoring program is desirable to determine the source, pattern and extent of the leakage. Burial Ground 6 was chosen because the most complete radiologic and geologic data is available and modern burial practices have been utilized at this site. At the Idaho National Engineering Laboratory (INEL) only one burial ground exists, the Radioactive Waste Management Complex (RWMC). The data available on the burial grounds are insufficient for an adequate understanding of radionuclide migration patterns and accordingly, inadequate for the design of reliable monitoring programs. It was decided, therefore, that preliminary monitoring programs should be designed in order to obtain additional data for a later implementation of reliable monitoring programs. The monitoring programs designed for ORNL consist primarily of the installation of surface water monitoring stations, the surveillance of trench sump wells, a test boring program to study subsurface geologic conditions, a ground water sampling program and the installation of instrumentation, specifically infiltrometers and evaporation pans, to develop data on site water balances. The program designed for the INEL burial ground includes installation of trench sumps, a ground water monitoring program, test borings to further define subsurface geohydrologic conditions and the installation of instrumentation to develop data on the site water balance. The estimated costs of implementing the recommended programs are about $420,820 for monitoring Burial Grounds 4 and 6 at Oak Ridge and $382,060 for monitoring the RWMC at INEL. 12 figures

  20. Review of environmental surveillance data around low-level waste disposal areas at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-01-01

    White Oak Creek and Melton Branch tributary surface streams flow through the Oak Ridge National Laboratory (ORNL) reservation and receive treated low-level radioactive liquid waste which originates from various Laboratory operations. The streams receive additional low-level liquid waste generated by seepage of radioactive materials from solid-waste burial grounds, hydrofracture sites, and intermediate-level liquid-waste sites. Over the years, various liquid-waste treatment and disposal processes have been employed at ORNL; some of these processes have included: settling basins, impoundment, storage tanks, evaporation, ground disposal in trenches and pits, and hydrofracture. Burial of solid radioactive waste was initiated in the early 1940's, and there are six burial grounds at ORNL with two currently in use. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak watershed. In this paper, the solid waste burial grounds will be described in detail, and the environmental data tabulated over the past 29 years will be presented. The various monitoring systems used during the years will also be reviewed. The liquid effluent discharge trends at ORNL from the radioactive waste operations will be discussed

  1. Alternatives to the burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Price, J. Mark

    2007-01-01

    Available in abstract form only. Full text of publication follows: The approach for management of LLRW in different countries has evolved differently due to many factors such as culture and public sentiment, systems of government, public policy, and geography. There are also various methods to disposition LLRW including but not limited to: - Long term statutes and unconditional or conditional release of material, - Direct Burial, - Treatment (Processing) → Burial, - Treatment → Unconditional Release, - Recycle for Unconditional Release or Reuse Within Any Industry, - Controlled Recycle within Nuclear Industry. (author)

  2. Influences of engineered barrier systems on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Buckley, L.P.

    1987-09-01

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described

  3. Influences of engineered barrier systems on low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L. P.

    1987-09-15

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described.

  4. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  5. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  6. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  7. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. After grouting, soil-penetration tests disclosed that stability had been improved greatly. For example, refusal (defined as > 100 blows to penetrate 1 ft) was encountered in 17 of the 22 tests conducted within the trench area. Mean refusal depths for the two trenches were 3.5 and 2.6 m. Stability of the trench was significantly better than pregrout conditions, and at depths > 2.4 m, the stability was very near that observed in the native soil formation outside the trench. Tests within the trench showed lower stability within this range probably because of the presence of intermediate-sized soil voids (formed during backfilling) that were too small to be penetrated and filled by the conventional cement grout formulation. Hydraulic conductivity within the trench remained very high (>0.1 cm/s) and significantly greater than outside the trench. Postgrout air pressurization tests also revealed a large degree of intervoid linkage within and between the two trenches. To effectively reduce hydraulic conductivity and to develop stability within the upper level of the trench, injection of a clay/microfine cement grout into the upper level of the grouted trench is planned

  8. Geophysical Investigation of the 618-10 and 618-11 Burial Grounds, 300-FF-2 Operable Unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Bolin, D.J.; Mitchell, T.H.

    1997-09-01

    This document summarizes the results of geophysical investigations conducted at two radioactive solid waste burial grounds, 618-10 and 618-11. The burial grounds are located approximately 4.5 miles and 7 miles north of the 300 Area, respectively. These sites are within the 300-FF-2 Operable Unit, where geophysical techniques are being used to characterize the distribution of solid waste in the subsurface as part of the Limited Field Investigations for this operable unit

  9. Management of defense beta-gamma contaminated solid low-level wastes

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    In DOE defense operations, approx. 70,000 m 3 of beta-gamma low-level radioactive waste are disposed of annually by shallow land burial operations at six primary sites. Waste generated at other DOE sites are transported on public roads to the primary sites for disposal. In the practice of low-level waste (LLW) disposal in the US, the site hydrology and geology are the primary barriers to radioactive migration. To date, little emphasis has been placed on waste form improvements or engineered site modifications to reduce migration potential. Compaction is the most common treatment step employed. The performance of ground disposal of radioactive waste in this country, in spite of many practices that we would consider unacceptable in today's light, has resulted in very little migration of radioactivity outside site boundaries. Most problems with previously used burial grounds have been from subsidence at the arid sites and subsidence and groundwater contact at the humid sites. The radionuclides that have shown the most significant migration are tritium, 90 Sr, and 99 Tc. The unit cost for disposal operations at a given DOE site is dependent on many variables, but the annual volume to be disposed is probably the major factor. The average cost for current DOE burial operation is approximately $170/m 3 . 23 figures

  10. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  11. Field demonstration of improved shallow land burial practices for low-level radioactive solid wastes: preliminary site characterization and progress report

    International Nuclear Information System (INIS)

    Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.

    1982-12-01

    A 5-year field demonstration (ETF) of improved shallow land burial practices for low-level radioactive solid wastes in a humid environment evaluates the use of a trench liner and grout as alternate trench treatments for improving shallow land burial site performance in the humid East. The ETF is located within the Copper Creek thrust block of the Valley and Ridge Province of east Tennessee and is underlain by strata of the Middle to Late Cambrian Conasauga Group. The Maryville Limestone formation, which is composed of ribbon-bedded and interclastic limestones and dark grey shales and mudstones, comprises the bedrock immediately beneath the site. The bedrock and residuum structure are characterized by anticlinal folds with numerous joints and fractures, some of which are filled with calcite. Seismic and electrical resistivity geophysical methods were useful in characterizing the thickness of residuum and presence of structural features. Soils are illitic and range from podzolic to lithosols to alluvial in the vicinity of the ETF, but the original soil solum was removed in 1975 when the mixed hardwood forest was cleared and the site was planted in grasses. The remaining residuum consists of acidic soil aggregate and extensively weathered siltstone and sandstone which exhibit the original rock structure. Mean annual precipitation at the site is 1500 mm, although during the initial study period (10-1-80 to 9-30-81) the annual total was 939 mm. Runoff was estimated to be about 50% of the precipitation total, based on observations at two Parshall flumes installed at the site. Storm runoff is quite responsive to rainfall, and the lag time between peak rainfall and runoff is less than 15 min during winter storms. Tracer studies of the ground-water system, suggest that ground-water flow has two distinct components, one associated with fracture flow and the other with intergranular flow

  12. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests

  13. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Vaughan, N.D.; Tappen, J.

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented in the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description

  14. Cleanup Verification Package for the 118-F-6 Burial Ground

    International Nuclear Information System (INIS)

    Sulloway, H.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car

  15. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Daniel, D.E.

    1983-01-01

    Low-level radioactive waste has been produced since the early 1940's. Most of it has been buried in shallow pits at 11 existing sites. Several of the existing sites have performed poorly. Inability to control flow of surface and ground water into and out of disposal pits has been the most important problem. Lack of attention to design of earthen covers over the waste and improper emplacement of the waste in the pits have also contributed to poor performance. Several steps are recommended for improving disposal practices: (1) Waste settlement can be minimized by stacking wastes neatly into pits rather than dumping them randomly; (2) the earthen cover can be made to perform better by making it thicker and by maintaining it properly; and (3) groundwater contamination can be minimized by siting disposal facilities at locations with favorable geohydrologic characteristics. In addition, improved designs are needed for earthen covers, and technology for predicting ground water contamination in the saturated/unsaturated soils that underlie the waste also needs improvement

  16. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    International Nuclear Information System (INIS)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-01-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  17. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    Energy Technology Data Exchange (ETDEWEB)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  18. Migration studies at the Savannah River Plant shallow land burial site

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Ryan, J.P. Jr.; King, C.M.

    1983-01-01

    Radionuclide migration from the Savannah River Plant low-level waste burial ground was studied in ongoing programs that provide generic data on a shallow land burial site in a humid region and support local waste disposal operations. Field, laboratory, and theoretical work continued in four areas. (1) Subsurface Monitoring: Groundwater around the burial ground was monitored for traces of radioactivity and mercury. (2) Lysimeter Tests: Gamma-emitting radionuclides were identified by sensitive methods in defense waste lysimeter percolate waters. Results from these and other lysimeters containing tritium, I-129, or Pu-239 sources are given. (3) Soil-Water Chemistry: Experiments on specific factors affecting migration of Cs-137 showed that potassium significantly increases cesium mobility, thus confirming observations with trench waters. Distribution coefficients for ruthenium were measured. (4) Transport Modeling: Efforts to refine and validate the SRL dose-to-man model continued. Transport calculations were made for tritium, Sr-90, Tc-99, and TRU radionuclides. 12 references, 3 tables

  19. Beads of the Birsk Burial Ground in the Context of the Antiquities of the Early Middle Ages

    Directory of Open Access Journals (Sweden)

    Ruslanova Rida Raisovna

    2016-04-01

    Full Text Available Early Middle Ages in the Southern Urals is the time of the tumultuous ethnocultural processes, that is an echo of the era of the Great Migration. At this time, the bakhmutinskaya culture was formed (3rd-8th centuries A.D.. The Birsk burial ground is one of the unique monuments of this period – it appeared in the second third of the 1st millennium B.C. The Birsk burial ground is a fiducial monument for studying history, ethno-cultural, migration and trade processes occurring in the Southern Urals, and the content in the composition of grave goods makes it supplies an important source in the study of early medieval history of East European forest. A variety of types of beads from the Birsk burial ground allows suggesting that the necropolis was one of the major points on the caravan trade and exchange path. According to it, the exchange could take place on imports of products (furs, honey, metals. The article describes a set of beads from the Birsk burials – evidence of a monument in the system of early medieval antiquities (3rd-8th centuries A.D.. The complex morpho-technological research dealt with 218 complexes containing 6705 instances of beads and jewelry. The feature of the monument is the presence of necklaces jewelry from all the selected materials along with the material. The Birsk burial ground demonstrates various forms of products, colors used glass for monochrome and polychrome decorations. The presented work can be used in the study of material culture and trade exchange operations of the medieval population of the Urals.

  20. Female Headdress from Dubrovskiy Burial Ground of 4th–5th Centuries

    Directory of Open Access Journals (Sweden)

    Krasnopeоrov Alexander A.

    2017-03-01

    Full Text Available The article examines the remains of a female headdress from Dubrovskiy burial ground of Mazunino type in the Kama region of Udmurtia. The burial is defined by the Migration Period, and the leader of the excavations generally attributed it to the 4th – 5th centuries AD. As widely known, female dress was a status symbol, a sign of belonging to a tribe. The headdress studied here belonged to a young woman, whose status was demonstrated through the context of this collective burial and the grave goods. The type of the headdress is reconstructed by its constructive details, peculiar location of metallic decorations and preserved organics. According to the authors, the headdress had the front part (frontal piece on a solid base with decorative elements, and a soft back part (a shawl with metallic details. The authors refer to archaeological analogies and ethnographic parallels, which allow reconstructing the cultural context of the find.

  1. Treatment/Disposal Plan for Drummed Waste from the 300-FF-1 Operable Unit, 618-4 Burial Ground

    International Nuclear Information System (INIS)

    Lerch, J.A.

    1999-01-01

    The objective of this plan is to support selection of a safe, environmentally responsible, and cost-effective treatment and disposal method for drums containing depleted uranium metal chips submerged in oil that have been and will be excavated from the 618-4 Burial Ground. Remediation of the 300-FF-1 Operable Unit, 618-4 Burial Ground was initiated in fiscal year (FY) 1998 as an excavation and removal operation. Routine processes were established to excavate and ship contaminated soil and debris to the Environmental Restoration Disposal Facility (ERDF) for disposal

  2. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Tappen, J. (comps.)

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented in the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)

  3. Radiological survey of the low-level radioactive waste burial site at the Palos Forest Preserve, Illinois

    International Nuclear Information System (INIS)

    Hayes, K.A.

    1982-01-01

    Two landfill sites containing low-level radioactive waste material, Site A and Plot M, are located 14 miles southwest of Chicago, Illinois in the Palos Forest Preserve. Site A is the former location of the Argonne National Laboratory. Buried at Site A in 1956 were the dismantled reactor shells, building walls, and cooling towers from three of the world's first nuclear reactors. Plot M was used from 1943 to 1949 for burial of low-level radioactive wastes derived from Site A operations and from the University of Chicago Metallurgical Laboratory. Tritiated water was detected in 1973 in some of the Forest Preserve picnic wells located 500 to 1000 yards north of Plot M. An extensive surveillance program was initiated in 1976 to: (1) study the elevated tritium content of some picnic wells and its observed seasonal fluctuations, (2) establish if other radionuclides buried in Plot M or remaining at Site A have migrated, (3) establish the rate of groundwater movement in the glacial till and underlying dolomite aquifer, (4) determine the tritium content of the till and aquifer, and (5) predict future tritium levels in the well water. Several test wells were installed in the soil and dolomite bedrock to monitor radioactivity in groundwater, measure water levels, and provide other geohydrological information. Tritium has migrated from the Plot M burial trenches into the surrounding drift. The tritium plume, the contaminated zone in the drift in which tritium concentrations exceed 10 nanocuries per liter of water (nCi/L), has migrated at least 165 feet horizontally northward and 130 feet vertically downward to the bedrock surface. Small amounts of other radionuclides - uranium, plutonium, and strontium-90 - have been found in boreholes beneath the concrete cap covering Plot M, but not in the subsoil outside of the Plot. The radionuclide concentrations found to date are too low to result in any measureable radiation exposure to the public

  4. Assessment of solid low-level waste management at the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Hooker, R.L.

    1977-08-01

    Site description, facilities, operating practices, and assessment of solid low-level waste management at the Savannah River Plant are covered. The following recommendations are made. Programs to reduce the volume of waste generated at the source should be continued. Planning to utilize volume reduction by compaction and/or incineration should be continued and adopted when practical technology is available. Utilization of grading and ditching to reduce water infiltration into trenches and to control erosion should be continued. Burial ground studies should be continued to: measure Kd's of all important radionuclides in burial ground sediments; measure hydraulic conductivities in disturbed backfill and underlying undisturbed sediments at sufficient locations to give a statistically significant sampling; and measure water flow rates better, so that individual radionuclide rates can be computed

  5. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the 'metal line' of the P-10 Tritium Separation Project.

  6. On the Problem Related to Reconstructing the Social Structure of the Population that Had Founded Seliksa-Trofimovka (Ancient Mordovian Burial Ground in 4th—5th Centuries

    Directory of Open Access Journals (Sweden)

    Grishakov Valeriy V.

    2013-12-01

    Full Text Available The article is devoted to the problem of reconstruction of the social structure of the ancient Monrovian population that had established the 4th-5th-century Seliksa-Trofimovka burial ground in the Upper Sura river region. The materials of the male burials of the necropolis have been chosen for analysis as most socially informative. An attempt has been made to determine the relationship between the social status of the individual and its expression in ritual rites. The differences in the composition and quantity of grave goods made it possible to distinguish three groups of burials conventionally termed as "the poor", "the ordinary" and "the warriors." The latter group included three graves with swords. The necropolis has a row-based order layout; all the burials are on the ground level, with no traces of gravestones, and have the same northeast orientation. The property-based stratification in the analyzed community was apparently insignificant, while social stratification depended primarily on professional activities.

  7. State of the art review of alternatives to shallow land burial of low level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A review of alternatives to shallow land burial for disposal of low level radioactive waste was conducted to assist ORNL in developing a program for the evaluation, selection, and demonstration of the most acceptable alternatives. The alternatives were categorized as follows: (1) near term isolation concepts, (2) far term isolation concepts, (3) dispersion concepts, and (4) conversion concepts. Detailed descriptions of near term isolation concepts are provided. The descriptions include: (1) method of isolation, (2) waste forms that can be accommodated, (3) advantages and disadvantages, (4) facility and equipment requirements, (5) unusual operational or maintenance requirements, (6) information/technology development requirements, and (7) related investigations of the concept

  8. Geohydrology of the unsaturated zone at the burial site for low-level radioactive waste near Beatty, Nye County, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.D.

    1987-01-01

    Low-level radioactive solid waste has been buried in trenches at a site near Beatty, NV, since 1962. In 1976, as part of a national program, the US Geological Survey began a study of the geohydrology of the waste burial site to provide a basis for estimating the potential for radionuclide migration in the unsaturated zone beneath the waste burial trenches. The waste burial facility is in the northern Amargosa Desert about 170 kilometers (km) northwest of Las Vegas, NV. The site is underlain by poorly stratified deposits of gravelly or silty sand and sandy gravel, and thick beds of clayey sediments. A numerical analysis demonstrated that a potential exists for deep percolation despite high annual evaporation demands, and provided predictions of the time of year and the antecedent conditions that enhance the probability of deep percolation. Soil moisture profiles obtained monthly over an 18-month period demonstrate that deep percolation does occur. Calculation of downward moisture movement through the waste trench backfill material, on the basis of simplified assumptions, suggests that moisture could have penetrated as much as 6 m below land surface from 1963, when the oldest trenches were closed, to 1980, but that the moisture requirement for such penetration far exceeded the amount of moisture actually available. Steady-state downward movement of moisture at depths greater than 10 m and beneath the waste burial trenches would be on the order of 4 cu m/1,000 yr, assuming a steady flux rate of 0.1 microcentimeter/day. 37 refs., 32 figs., 17 tab

  9. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  10. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  11. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  12. The distinguishing characteristics of interlayer oxidation zone and burial ancient ground oxidation zone

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Zhou Wenbin

    1998-01-01

    The author discusses the main characteristics of interlayer oxidation zones and the burial ancient ground oxidation zones of Uranium deposit No. 512 in Xinjiang Uigur municipality. The epigenetic genesis, depending on some aquifer, the tongue-like in section, having the zonation along dip direction and having certain mineral assemblage are the typical features for interlayer oxidation zones

  13. Assessment of DOE low-level radioactive solid waste disposal storage activities: task 103. Final report

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    From a survey of DOE sites, facilities, and practices for the disposal/storage of low-level radioactive solid waste, the following can be summarized: (1) No health hazard has been reported. (2) Some burial grounds are releasing small quantities of radionuclides to the immediate environment. These releases are well within release limits at all sites with the exception of on-site concentrations at ORNL. At ORNL, concentrations in the Clinch River are less than 1% of the release limits. (3) Many practices have been instituted in the last few years which have improved disposal/storage operations considerably. The most notable are: (a) improved record keeping and a centralized computer data file, (b) improved burial site surface maintenance and drainage control, (c) initiation of the use of waste compactors and current plans for their use at most burial sites, (d) initiation of studies at major sites for evaluation of the long-term impact of buried waste, (e) improvement of modeling/monitoring programs at all major sites, (f) initiation of studies to provide engineering methods of reducing burial ground discharges at ORNL, and (g) initiation of the shallow land burial technologoy program.Overall, the low-level waste is being disposed of and stored in a safe and orderly manner. Recent and planned improvements will provide increased environmental protection. The only unsatisfactory area involves record keeping. Records of waste buried years ago are either poor or nonexistent. This makes it very difficult to evaluate the total impact of some 30 years of disposal operations. While some of this important history is lost forever, projects now under way should be able to reconstruct most of it

  14. Project TN-030: hydrogeology, ORNL radioactive waste burial grounds. US Geological Survey annual report, FY 82

    International Nuclear Information System (INIS)

    1982-01-01

    Near Burial Ground 3, five wells were cored through Unit F of the Chickamauga Limestone, previously considered to be a probable barrier to ground-water flow. Cores revealed that in this area Unit F actually consists of two continuous silty shale/shaley siltstone members with an interbedded limestone member. Weathering stains in the core and small-size solution openings revealed by televiewer logging indicate that this unit likely has greater permeability than previously described. A unique instrumentation system was designed and installed in six wells to provide information about hydraulic heads in the three geologic units immediately underlying the site. Sediment retrieved from two wells 450 feet and 1300 feet from the site was found to contain as much as 335 pCi/g and 0.83 pCi/g, respectively, of cesium-137. In Burial Ground 5 the construction of four clusters of piezometers of special design was compelted. The deepest wells were cored, geophysical logs were made of each piezometer, and hydraulic conductivities of the bedrock were measured in 50-foot depth increments. No contamination that could be measured by field instrumentation was found in the bedrock. Geophysical logs were made of several older wells in Burial Grounds 5 and 6 and the ILW area. Spectral logging identified the isotopes 60 Co and/or 137 Cs in several well bores. Tritium was found to still be present in water from wells used five years ago during tracer tests in two different areas, suggesting that an inefficient retardive mechanism for this nuclide exists in fine-grained geologic material

  15. Chronology of 3rd–5th Century Female Graves from Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2017-07-01

    Full Text Available The article represents the concluding part a series of works by the authors on the dating of burials from the unique 1st–5th century Tarasovo burial ground in the Middle Kama region. The first article was dedicated to the chronology of graves dating back to the early Nyrgynda stage (1st–2nd centuries of this monument. The second and third publications feature an analysis of the chronology of 3rd–5th century male burials. The present work describes 160 female burials of 3rd–5th centuries analyzed from the perspective of chronology. Similarly to previous research, the three main methods employed by the authors of this research include those of formal typology, cultural stratigraphy and the nearest neighbour method. A total of 12 chronological groups were singled out as a result: 1st half of 3rd century A.D. (group 1; 2nd half of 3rd century (2; 3rd century (3; 4th century (group 4; 2nd half of 3rd–4th centuries (5а; 3rd–4th centuries (5б; 1st half of 5th century (6; 2nd half of 5th century (7; 5th century (group 8; 2nd half of 4th–5th centuries (9; 4th–5th centuries (10; 2nd half of 3rd–5th centuries

  16. Permeability of covers over low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York. Water resources investigations (final) 1977-78

    International Nuclear Information System (INIS)

    Prudic, D.E.

    1980-09-01

    Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff

  17. Report on waste burial charges: Escalation of decommissioning waste disposal costs at low-level waste burial facilities

    International Nuclear Information System (INIS)

    1988-07-01

    One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plant, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised annually, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC, and contains values for the escalation of radioactive waste burial costs, by site and by year. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analysis, or may use an escalation rate at least equal to the escalation approach presented herein. 4 refs., 2 tabs

  18. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Gladney, E.S.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  19. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    Science.gov (United States)

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  20. Cleanup Verification Package for the 118-F-3, Minor Construction Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs

  1. Handling and treatment of low-level radioactive wastes from gaseous diffusion plants in the United States of America

    International Nuclear Information System (INIS)

    Wing, J.F.; Behrend, J.E.

    1984-01-01

    Gaseous diffusion plants in the United States of America currently generate very small quantities of low-level radioactive wastes. These wastes consist primarily of airborne effluent solid trapping media and liquid scrubber solutions, liquid effluent treatment sludges, waste oils and solvents, scrap metals and conventional combustible wastes such as floor sweepings, cleaning rags and shoe covers. In addition to waste emanating from current operations, large quantities of scrap metal generated during the Cascade Improvement Program are stored above ground at each of the diffusion plants. The radionuclides of primary concern are uranium and 99 Tc. Current radioactive waste treatment consists of uranium dissolution in weak acids followed by chemical precipitation and/or solvent extraction for uranium recovery. Current disposal operations consist of above ground storage of scrap metals, shallow land burial of inorganic solids and incineration of combustible wastes. With increased emphasis on reducing the potential for off-site radiological dose, several new treatment and disposal options are being studied and new projects are being planned. One project of particular interest involves the installation of a high temperature incinerator to thermally degrade hazardous organic wastes contaminated with low-level radioactive wastes. Other technologies being studied include fixation of uranium-bearing sludges in concrete before burial, decontamination of scrap metals by smelting and use of specially engineered centralized burial grounds. (author)

  2. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  3. Transuranic element uptake and cycling in a forest over an old burial ground

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Tuckfield, J.C.

    1992-01-01

    The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste

  4. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  5. Cover integrity in shallow land burial of low-level wastes: hydrology and erosion

    International Nuclear Information System (INIS)

    Lane, L.J.; Nyhan, J.W.

    1981-01-01

    Applications of a state-of-the-art technology for simulating hydrologic processes and erosion affecting cover integrity at shallow land waste burial sites are described. A nonpoint source pollution model developed for agricultural systems has been adapted for application to waste burial sites in semiarid and arid regions. Applications include designs for field experiments, evaluation of slope length and steepness, evaluation of various soil types, and evaluation of vegetative cover influencing erosion rates and the water balance within the soil profile

  6. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  7. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  8. Fire hazard analysis for the Westinghouse Hanford Company managed low-level mixed waste Trench 31 and 34

    International Nuclear Information System (INIS)

    Howard, B.J.

    1995-01-01

    This analysis is to assess comprehensively the risks from fire within the new lined landfills, provided by W-025 and designated Trench 31 and 34 of Burial Ground 218-W-5; they are located in the 200 West area of the Hanford Site, and are designed to receive low-level mixed waste

  9. The Savannah River Plant low-level waste segregation program

    International Nuclear Information System (INIS)

    Wheeler, V.B.

    1987-01-01

    To extend the life of the Savannah River Plant (SRP) Radioactive Waste Burial Ground, a sitewide program has been implemented to segregate waste that is essentially free of contamination from routine radioactive waste. Much of the low-level waste disposed of as radioactive has no detectable contamination and can be buried in a sanitary landfill. A Landfill Monitoring Facility (LMF) will be constructed at SRP to house the state-of-the-art technology required to provide a final survey on the candidate waste streams that had previously been classified as radioactive. 3 figs

  10. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    Science.gov (United States)

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  11. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  12. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    International Nuclear Information System (INIS)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-01-01

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies

  13. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  14. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  15. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  16. Interim Action Proposed Plan for the old radioactive waste burial ground (643-E)

    International Nuclear Information System (INIS)

    McFalls, S.

    1995-12-01

    This Interim Action Proposed (IAPP) is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this IAPP is to describe the preferred interim remedial action for addressing the Old Radioactive Waste Burial Ground (ORWBG) unit located in the Burial Ground Complex (BGC) at the Savannah River Site (SRS) in Aiken, South Carolina. On December 21, 1989, SRS was included on the National Priorities List (NPL). In accordance with Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), DOE has negotiated a Federal Facility Agreement (FFA, 1993) with EPA and SCDHEC to coordinate remedial activities at SRS. Public participation requirements are listed in Sections 113 and 117 of CERCLA. These requirements include establishment of an Administrative Record File that documents the selection of remedial alternatives and allows for review and comment by the public regarding those alternatives. The SRS Public Involvement Plan (PIP) (DOE, 1994) is designed to facilitate public involvement in the decision-making process for permitting closure, and the selection of remedial alternatives. Section 117(a) of CERCLA, 1980, as amended, requires publication of a notice of any proposed remedial action

  17. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  18. A sensitivity study of an evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Roesener, W.S.; Smith, T.H.; Jorgenson-Waters, M.J.; Sherick, M.J.

    1995-01-01

    This paper presents insights gained from an informal sensitivity study of an evaluation of disposal alternatives for Idaho National Engineering Laboratory low-level waste and low-level mixed waste. The insights relate to the sensitivity of the alternative rankings to changes in assumptions identified as open-quotes key uncertaintiesclose quotes. The result of the sensitivity study is that significant changes occur in the rankings when selected open-quotes key uncertaintiesclose quotes are varied over reasonable ranges. Three alternatives involving the use of (a) shallow land burial and boreholes or (b) greater-depth burial and boreholes rank high for all cases investigated. The other alternatives rank low in some or all cases

  19. Carbon burial and storage in tropical salt marshes under the influence of sea level rise.

    Science.gov (United States)

    Ruiz-Fernández, A C; Carnero-Bravo, V; Sanchez-Cabeza, J A; Pérez-Bernal, L H; Amaya-Monterrosa, O A; Bojórquez-Sánchez, S; López-Mendoza, P G; Cardoso-Mohedano, J G; Dunbar, R B; Mucciarone, D A; Marmolejo-Rodríguez, A J

    2018-07-15

    Coastal vegetated habitats can be important sinks of organic carbon (C org ) and mitigate global warming by sequestering significant quantities of atmospheric CO 2 and storing sedimentary C org for long periods, although their C org burial and storage capacity may be affected by on-going sea level rise and human intervention. Geochemical data from published 210 Pb-dated sediment cores, collected from low-energy microtidal coastal wetlands in El Salvador (Jiquilisco Bay) and in Mexico (Salada Lagoon; Estero de Urias Lagoon; Sian Ka'an Biosphere Reserve) were revisited to assess temporal changes (within the last 100years) of C org concentrations, storage and burial rates in tropical salt marshes under the influence of sea level rise and contrasting anthropization degree. Grain size distribution was used to identify hydrodynamic changes, and δ 13 C to distinguish terrigenous sediments from those accumulated under the influence of marine transgression. Although the accretion rate ranges in all sediment records were comparable, C org concentrations (0.2-30%), stocks (30-465Mgha -1 , by extrapolation to 1m depth), and burial rates (3-378gm -2 year -1 ) varied widely within and among the study areas. However, in most sites sea level rise decreased C org concentrations and stocks in sediments, but increased C org burial rates. Lower C org concentrations were attributed to the input of reworked marine particles, which contribute with a lower amount of C org than terrigenous sediments; whereas higher C org burial rates were driven by higher mass accumulation rates, influenced by increased flooding and human interventions in the surroundings. C org accumulation and long-term preservation in tropical salt marshes can be as high as in mangrove or temperate salt marsh areas and, besides the reduction of C org stocks by ongoing sea level rise, the disturbance of the long-term buried C org inventories might cause high CO 2 releases, for which they must be protected as a part of

  20. Integrated report on radionuclide migration at the Savannah River shallow land burial site

    International Nuclear Information System (INIS)

    Towler, O.A. Jr.

    1989-03-01

    The impact of the SRP Solid Radioactive Waste Burial Ground on the environment has been studied since the early 1970s in four subtasks: subsurface monitoring of groundwater, lysimeter tests of waste, soil-water chemistry effects, and radionuclide transport modeling. This document summarizes and integrates the results of the four subtasks. More information has been gathered on the behavior of radionuclides in a solid waste disposal facility located in a humid region than from any other waste disposal site in the world. The design of closure for the SRP Burial Ground has been given a firm technical basis. The limiting pathways for radionuclide migration have been determined to be infiltrating rainwater and root penetration. Closure designs must therefore address both these factors. The designs for new storage/disposal facilities have also been given a firm technical basis. The major conclusions are that tritium will be stored for decay and not allowed to contact the groundwater, waste containing long-lived radionuclides such as iodine-129 must be stored for later geologic disposal, and above and below ground concrete vaults should be used for disposal of other low-level radioactive waste. 61 refs., 18 figs. 8 tabs

  1. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  2. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  3. Conceptual costing study for the long-term management of the Port Hope area low-level radioactive wastes

    International Nuclear Information System (INIS)

    1989-12-01

    Comparative conceptual cost estimates for several possible options for the long-term management of the Port Hope area low-level radioactive wastes have been developed. Five potentially applicable concepts were considered in the study: shallow land burial, using either unlined trenches, lined trenches or concrete canisters; engineered storage mounds; above-ground concrete vaults; below-ground concrete vaults; and intermediate-depth caverns using either open stopes or shrinkage mining. The objective was to develop comparative estimates. The differences in costs between concepts reflect the differences in handling methodology or costs of additional engineered barriers around the stored waste. An in situ waste volume of 805 000 m 3 , relatively favorable site conditions, a four-year disposal schedule and a consistent costing basis were assumed for each concept. Limited effort was made to optimize specific facility designs or disposal operations. The projected disposal costs vary from $68/m 3 of waste for shallow land burial in unlined trenches, to $312/m 3 of waste disposal in concrete canisters in trenches. The results of this study are reasonably consistent with previous estimates prepared for the low-level Radioactive Waste Management Office

  4. Two items: Transcription of a presentation by Dr. E. L. Albenesius, ''SRS burial ground operation from an historical perspective''; video tape entitled ''Burial ground operation''

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1992-01-01

    On February 6, 1992, approximately 35 SRS personnel from DOE, WSRC, and Dames and Moore attended a very informative talk given by Dr. E.L. Albenesius who discussed the operation of the SRS Burial Ground from an historical perspective. Dr. Albenesius, a Du Point retiree, formerly served as research manager of SRL's Environmental Effects and Solid Waste Management Technology Divisions among other assignments. One notable point Dr. Albenesius made was in answer to a question concerning what was the most important thing that could be done to reduce the hazard to man from buried waste. His response was to remove as much plutonium as practical prior to closure. In order to preserve this valuable information for the record, the program was audiotaped from which a point-by-point chronological transcription, with minor editing, was prepared

  5. Low-level radioactive waste vitrification: effect of Cs partitioning

    International Nuclear Information System (INIS)

    Horton, W.S.; Ougouag, A.M.

    1986-01-01

    The traditional Low-Level Radioactive Waste (LLW) immobilization options are cementation or bituminization. Either of these options could be followed by shallow-land burial (SLB) or above-ground disposal. These rather simple LLW procedures appeared to be readily available, to meet regulatory requirements, and to satisfy cost constraints. The authorization of State Compacts, the forced closure of half of the six SLB disposal facilities of the nation, and the escalation of transportation/disposal fees diminish the viability of these options. The synergetic combination of these factors led to a reassessment of traditional methods and to an investigation of other techniques. This paper analyzes the traditional LLW immobilization options, reviews the impact of the LLW stream composition on Low-Level Waste Vitrification (LLWV), then proposes and briefly discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV)

  6. Chronology of the Third – Fifth Centuries Male Graves from the Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2016-09-01

    Full Text Available The article focuses on the chronological attribution of male graves from the late Mazunino stage of the Tarasovo burial ground and is a sequel to an earlier article about dating of the early Nyrgynda stage (1st – 2nd centuries of the same site. The three main methods employed in this research include those of formal typology, cultural stratigraphy and the nearest neighbor method. Eighty-six male graves of the third-fifth centuries were analyzed, with 12 identified as a result: first half of the 3rd c. AD (group 1, second half of the 3rd c. AD (2; 3rd c. (3; first half of the 4th c. (group 4; second half of the 3rd – 4th c. (5; third quarter of the 4th c. (6; fourth quarter of the 4th c. (group 7; second half of the 4th c. (8; second half of the 4th – 5th c. (9; 4th – 5th cc. (10; second half of the 3rd – 5th cc. (11 and 3rd – 5th cc. (12. This article minutes investigates the first six groups, while the rest will be covered in the next publication. Artifacts form the third – fifth century female graves of the Tarasovo burial ground will be studied separately.

  7. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  8. BLT [Breach, Leach, and Transport]: A source term computer code for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Suen, C.J.; Sullivan, T.M.

    1990-01-01

    This paper discusses the development of a source term model for low-level waste shallow land burial facilities and separates the problem into four individual compartments. These are water flow, corrosion and subsequent breaching of containers, leaching of the waste forms, and solute transport. For the first and the last compartments, we adopted the existing codes, FEMWATER and FEMWASTE, respectively. We wrote two new modules for the other two compartments in the form of two separate Fortran subroutines -- BREACH and LEACH. They were incorporated into a modified version of the transport code FEMWASTE. The resultant code, which contains all three modules of container breaching, waste form leaching, and solute transport, was renamed BLT (for Breach, Leach, and Transport). This paper summarizes the overall program structure and logistics, and presents two examples from the results of verification and sensitivity tests. 6 refs., 7 figs., 1 tab

  9. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste

  10. Geophysical investigation of trench 4, Burial Ground 218-W-4C, 200 west area

    International Nuclear Information System (INIS)

    Kiesler, J.P.

    1994-01-01

    This report contains the results of a geophysical investigation conducted to characterize Trench 4, located in Burial Ground 218-W-4C, 200 West Area. Trench 4 is where transuranic (TRU) waste is stored. The primary objective of these geophysical investigations was to determine the outer edges of the trench/modules and select locations for plate-bearing tests. The test locations are to be 5 to 8 ft. beyond the edges of the trench. Secondary objectives include differentiating between the different types of waste containers within a given trench, determining the amount of soil cover over the waste containers, and to locate the module boundaries. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the methods selected for this investigation

  11. Classification of burial rituals of the cemeteries without burial mounds in regions of the Tsarevskoe ancient settlement

    Directory of Open Access Journals (Sweden)

    Nedashkovsky Leonard F.

    2015-09-01

    Full Text Available Article is dedicated to analysis of burial rituals of the Golden Horde cemeteries without burial mounds in surroundings of the Tsarevskoe ancient settlement. 51 burials (19.9% of total number in mausoleums or in crypts can be attributed as burials of the Golden Horde aristocracy. In the graves found without burial mounds the most wide-spread were of western, south-western and north-western (which could be considered as azimuth deviation from western orientations (they comprise 94.9% of all burials, which are peculiar to the majority of the urban Muslim population of the Golden Horde. However it must be considered that 56 from these burials (21.9% of total number are burials of necropolis of the population of Old Russian settlement of the Vodyanskoe site. Comparing the aristocratic (in mausoleums and crypts burials without burial mounds in the Lower Volga, it is possible conclude that their percentage was significantly higher in the region of the Tsarevskoe settlement, than in other regions; these data allow to assume here the greatest density of residence of settled elite of the Golden Horde. The smallest share of Muslim burials in coffins in the Lower Volga (44.9% and the maximal one of burials with grave goods (13.6% recorded in the region of the Tsarevskoe site. Burial grounds in the region of the Tsarevskoe ancient settlement were in vicinity of the settlements, that is clearly testified about the degree of territorial closeness of cemeteries of settled population of the Golden Horde with urban and rural settlements of the considered period.

  12. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  13. Burial of downed deadwood is strongly affected by log attributes, forest ground vegetation, edaphic conditions, and climate zones

    Science.gov (United States)

    Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl

    2016-01-01

    Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...

  14. [The sanitary and hygienic state of solid garbage burial grounds in the stages of a life cycle].

    Science.gov (United States)

    Zomarev, A M; Vaĭsman, Ia I; Zaĭtseva, T A; Glushankova, I S

    2010-01-01

    The purpose of the study was to assess the sanitary-and-hygienic state of solid garbage (SG) burial grounds in the Perm Territory in different stage of a life cycle. This paper presents the results of the study of deposited waste, forming dump soil, and SG ground emissions by general sanitary and sanitary-microbiological parameters and their effect on environmental objects. The performed studies of the sanitary-and-hygienic situation on some grounds of the Perm Territory suggest that there is a need for setting up a system for sanitary-and-monitoring of SG ground and for elaborating engineering, organizational, and prophylactic measures to assure the sanitary-and-hygienic safety of objects and to control the quality and quantity of waste to be buried and the currents of emissions (ground body degassing, filtrating sewage drainage and purification).

  15. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  16. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  17. Corrective Measures Study Modeling Results for the Southwest Plume - Burial Ground Complex/Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Harris, M.K.

    1999-01-01

    Groundwater modeling scenarios were performed to support the Corrective Measures Study and Interim Action Plan for the southwest plume of the Burial Ground Complex/Mixed Waste Management Facility. The modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to Fourmile Branch. Modeling scenarios assessed include no action, vertical barriers, pump, treat, and reinject; and vertical recirculation wells

  18. Migration of radionuclides following shallow land burial

    International Nuclear Information System (INIS)

    Sedlet, J.; Golchert, N.W.

    1980-01-01

    A study of radionuclide migration was conducted at a facility used from 1944 to 1949 for the shallow land burial of radwaste produced during operations with two reactors and related nuclear research. It is situated in glacial drift 45 m thick. Underlying the drift is a generally level Silurian dolomite bedrock 60 m thick. The thickness of the drift decreases as the surface slopes downhill (north) until the dolomite reaches the surface and forms the bed of a river, 700 m to the north. This study was begun after tritiated water was detected in two picnic wells north of the facility, between the burial plot and the river. Surface and subsurface measurements indicate that tritium is migrating out of the burial site, but no other radionuclides have left the plot. The tritium concentrations decrease with distance from the plot. Tritium was found in the subsoil at all depths sampled, so the ground beneath and immediately around the plot contains tritium down to the dolomite aquifer. Time of travel of water from the burial plot to the nearest well is estimated to be 54 months. This would imply the peak concentration would reach the dolomite in about 35 years. By this time, 86% of the tritium would have disappeared by radioactive decay. The cyclical nature of the tritium content in the two wells implies that tritiated water is carried from the burial site by the spring rains when they recharge the groundwater supply

  19. Shallow land burial handbook

    International Nuclear Information System (INIS)

    Stinton, L.H.

    1983-01-01

    The facility development phases (preliminary analysis, site selection, facility design and construction, facility operation, and facility closure/post-closure) are systematically integrated into a logical plan for developing near surface disposal plans. The Shallow Land Burial Handbook provides initial guidance and concepts for understanding the magnitude and the complexity of developing new low-level radioactive waste disposal facilities

  20. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2006-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    TRodovsky, T.J.

    2007-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  4. Collapse and erosion at the low-level radioactive-waste burial site near Sheffield, Illinois

    International Nuclear Information System (INIS)

    Gray, J.R.; McGovern, L.L.

    1986-01-01

    Collapse and erosion are the dominant landform-modification processes at the Sheffield, Illinois, low-level radioactive-waste burial site. Records on collapse have been collected by the site contractor since 1978 and include data of inspection, location, and cavity dimensions. Fluvial sediment yield was measured by the US Geological Survey beginning in July 1982 from three gaged areas which drained two-thirds of the 20-acre site, and from a gaged 3.5-acre area in undisturbed terrain 0.3 mile south of the site. A total of 302 collapse cavities were recorded from October 1978 through September 1985. Based on the weight of earth material equivalent to cavity volume, an annual average of 6 tons of sediment per acre of site area has moved downward due to collapse. Sixty-two percent of the collapses occurred in swales between waste-disposal trenches or near trench boundaries, while the remainder occurred in earth material covers over trench interiors. Two-thirds of the collapses occurred during the months of February, March, and April. On-site fluvial sediment yield averaged 2 tons per acre per year from July 1982 through July 1984. Although this yield was approximately 200 times that from the undisturbed area, it is about one-half the annual sediment yield expected from a 20-acre row-crop agricultural basin on an 8% slope near Sheffield

  5. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  6. Low-level radioactive waste management technology development

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1985-01-01

    Although reviews of disposal practices and site performance indicated that there were no releases to the environment that would affect public health and safety, it became clear that: (a) several burial grounds were not performing as expected; (b) long-term maintenance of closed trenches could be a costly problem, and (c) more cost-effective methods could be developed for the treatment, packing, and disposal of low-level waste. As a result of these reviews, the Department of Energy developed the Low-level Waste Management Program to seek improvements in existing practices, correct obvious deficiencies, and develop site closure techniques that would avoid expensive long-term maintenance and monitoring. Such technology developments provide a better understanding of the physical and technical mechanisms governing low-level waste treatment and disposal and lead to improvement in the performance of disposal sites. The primary means of disposal of low-level waste has been the accepted and regulated practice of shallow land disposal, i.e., placement of low-level waste in trenches 5 to 10 meters deep with several meters of special soil cover. Department of Energy waste is primarily disposed at six major shallow land disposal sites. Commercial waste is currently disposed of at three major sites in the nation - Barnwell, South Carolina; Richland, Washington; and Beatty, Nevada. In the late 1970's public concern arose regarding the management practices of sites operated by the civilian sector and by the Department of Energy

  7. Safety analysis of the Chernobyl accident origin decontamination waste burials in Belarus

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryanyj, G.Z.; Golikova, N.B.

    2002-01-01

    Potential dangerous of the decontamination waste burials was estimated by means of the generalized multicompartmental model. Characteristics of 24 the most large and unfavorable decontamination waste burials are shown and an estimate of their safety is given. The burial effect zones were determined (100-300 m). A reliability of the forecasting estimate of potential dangerous radioactive contamination of ground waters near the burials was checked on example of the Dudichi decontamination waste burial

  8. Decommissioning of commercial shallow-land burial sites

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1979-01-01

    Estimated costs and safety considerations for decommissioning LLW burial grounds have been evaluated. Calculations are based on a generic burial ground assumed to be located at a western and an eastern site. Decommissioning modes include: (1) site stabilization followed by long-term care of the site; and (2) waste relocation. Site stabilization is estimated to cost from $0.4 million to $7.5 million, depending on the site and the stabilization option chosen. Long-term care is estimated to cost about $100,000 annually, with somewhat higher costs during early years because of increased site maintenance and environmental monitoring requirements. Long-term care is required until the site is released for unrestricted public use. Occupational and public safety impacts of site stabilization and long-term care are estimated to be small. Relocation of all the waste from a reference burial ground is estimated to cost more than $1.4 billion and to require more than 20 years for completion. Over 90% of the cost is associated with packaging, transportation, and offsite disposal of the exhumed waste. Waste relocation results in significant radiation exposure to decommissioning workers

  9. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-11-01

    The Bear Creek Burial Grounds (BCBG) are located on the southwest flank of Pine Ridge ∼1.5 miles west of the Oak Ridge Y-12 Plant in Bear Creek Valley. This facility consists of several contiguous disposal sites identified as Burial Grounds A, B, C, and D. Each burial site consists of a series of trenches used for disposal of solid wastes and, in some cases, liquid wastes. Initially, the RCRA Closure/Postclosure plan for the BCBG was intended to apply to A Area, C-West, B Area, and the walk-in pits for BCBG. However, a plan was provided to include the B Area in the walk-in pits so that both areas cold be closed under one cap. The closure plan for B Area and the walk-in pits is presented in this document. The actual quantity and identity of materials is uncertain. The largest volume of material disposed in BCBG consists of uranium-contaminated industrial trash (paper, wood, steel, glass, and rubble)

  10. Chronology of the 1st–2nd Century Graves from the Tarasovo Burial Ground

    Directory of Open Access Journals (Sweden)

    Goldina Rimma D.

    2016-03-01

    Full Text Available The article focuses on the chronology of graves dating back to the early (1st – 2nd centuries AD – Nyrgynda stage of the 1st – 5th century Tarasovo burial ground, a classical monument attributed to the Cheganda culture of the Pyany Bor cultural-historical community. Cultural stratigraphy is applied as a research method. Artifacts from the early stage were correlated for 37 male and 102 female complexes, separately. The analysis of grave goods from male burials showed the following three chronological groups, that can be distinguished at the Nyrgynda stage: 1st century (group 1, 2nd century (group 2 and 1st – 2nd centuries AD (group 3. The goods from female graves are more representative and various, so three more groups with shorter chronological lives can be singled out: the fi rst half of the 2nd century (group 2а, the second half of the 2nd century (group 2б and the 1st – fi rst half of the 2nd century (group 4. Certainly, the suggested chronology leaves room for any eventual corrections subject to new findings.

  11. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  12. DOE program for improvement practices for shallow burial of radioactive waste

    International Nuclear Information System (INIS)

    Dieckhoner, J.E.

    1978-01-01

    The practice of burying solid radioactive waste in relatively shallow pits or trenches at government nuclear sites dates back to the Manhattan Project. In some cases, where local conditions were considered unfavorable, intersite shipment of waste has been required. This general concept was later used at commercially-operated sites under Federal or state regulation. The purpose, scope, and results of a DOE program begun several years ago for improvements of burial ground disposal methods are reviewed. The program includes the re-evaluation of the original siting and of operating practices at existing burial grounds (including monitoring for migration of activity); the development of improved criteria for siting of new grounds that might be required as the defense site operations continue; and development of corrective measures such as diking and better draining for possible unsatisfactory conditions that might be detected. The possible applications of these findings to commercial burial grounds is discussed

  13. Assessment report: Application from OKG AB for a license according to the Act on Nuclear Activities concerning a shallow land burial/landfill for low-level nuclear waste in Simpevarp in the Oskarshamn municipality

    International Nuclear Information System (INIS)

    Lindbom, G.; Wiebert, A.; Norden, M.; Larsson, Carl-Magnus; Loefgren, T.; Lumpus, J.

    2000-10-01

    OKG AB has to SSI submitted an application for a license according to the Act on Nuclear Activities (1984:3) concerning a shallow land burial/landfill for low-level nuclear waste in Simpevarp in the Oskarshamn municipality. The application for a license covers permission to build, possess and operate a shallow land burial/landfill for low-level nuclear waste. Attached to the application is an environmental impact statement. An application for a license according to the Environmental Act (1998:808) has been submitted to the Environmental Court in Vaexjoe. SSI has circulated the application for consideration to the Swedish Nuclear Power Inspectorate, the Swedish Environmental Protection Agency, the County Government Board of Kalmar and the Oskarshamn municipality. SSI has informed the European Commission about the application in accordance with the EURATOM Treaty, article 37. This assessment report constitutes the base for the decision by SSI 2000-09-18 for approval and radiation protection conditions. In the report, earlier permissions for shallow land burials/landfills at the Swedish nuclear installations are described. This report shows the development of the legal system during the last years, the premises for the assessment of the application, and SSI's review of OKG's plans, consequence analysis and environmental impact statement

  14. About One of Burials of Novotitorovka Culture From the Territory of Kuban

    Directory of Open Access Journals (Sweden)

    Mariya A. Balabanova

    2017-03-01

    Full Text Available The article is devoted to the burial complex and the skull of the Novotitorovka culture from burial no. 35 of the Ovalny burial mound, Kalininsky district of the Krasnodar region. The burial itself was non-inventory, but it was synchronous with burial no. 26. Both burials were excavated from the level of the ancient surface and covered by the same barrow. The bones from the studied burial belonged to a young man, who died at the age of 20-25. His craniological type is characterized by meso-dolichocrania, ellipsoidal vertical norm, the average width of forehead, wide and low face, orthognathy-like in a vertical plane and slightly profiled at the level of low eye sockets. The face is also characterized by narrow and sharply protruding nasal bones. The article also deals with the possible relationship between the tribes of the Novotitorovka culture and the Azov-Black Sea sites of Catacomb culture. This conclusion is based on the results of intergroup comparison by the method of canonical analysis. The studied skull of the Novotitorovka culture has a morphological complex that characterizes the groups of burials of the Catacomb culture localized on the terraces of the Ingul river and on the terraces of the Don river left bank. This conclusion calls into question the archaeologists’ hypothesis on the connection of the the Novotitorovka culture with the tribes of the Novosvobodnenskaya culture and the Maykop culture.

  15. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  16. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  17. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  18. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  19. Statewide screening for low-level radioactive waste shallow land burial sites

    International Nuclear Information System (INIS)

    Staub, W.P.; Cannon, J.B.; Stratton, L.E.

    1984-01-01

    A methodology was developed for statewide low-level waste site screening based on NRC site selection criteria. The methodology and criteria were tested in Tennessee to determine their effectiveness in narrowing the choice of sites for more intensive localized site screening. The statewide screening methodology entailed two steps. The first step was to select one or more physiographic provinces wherein sites meeting the criteria were most likely to be found. The second step was to select one or more suitable outcrop bands from within the most favorable physiographic provinces. These selections were based entirely on examination of existing literature and maps at scales no larger than 1:250,000. The statewide screening project identified only one suitable physiographic province (the Mississippi Embayment region) and one favorable outcrop band (the Coon Creek Formation) within a three county area of western Tennessee. Ground water monitoring and predictability proved to be the most difficult criterion to meet. This criterion alone eliminated other outcrop bands in the Mississippi Embayment as well as the Eastern Highland Rim and Western Highland Rim physiographic provinces. Other provinces failed to meet several screening criteria. 3 references, 3 figures, 1 table

  20. Leaching studies of low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Dayal, R.; Arora, H.; Milian, L.; Clinton, J.

    1985-01-01

    A research program has been underway at the Brookhaven National Laboratory to investigate the release of radionuclides from low-level waste forms under laboratory conditions. This paper describes the leaching behavior of Cs-137 from two major low-level waste streams, that is, ion exchange bead resin and boric acid concentrate, solidified in Portland cement. The resultant leach data are employed to evaluate and predict the release behavior of Cs-137 from low-level waste forms under field burial conditions

  1. Long-term sequential monitoring of controlled graves representing common burial scenarios with ground penetrating radar: Years 2 and 3

    Science.gov (United States)

    Schultz, John J.; Walter, Brittany S.; Healy, Carrie

    2016-09-01

    Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D

  2. Design and construction of a low-level waste shallow land burial experimental facility

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Davis, E.C.

    1983-11-01

    The Environmental Sciences Division (ESD) of the Oak Ridge National Laboratory (ORNL) has been investigating improved shallow land burial (SLB) practices for disposing of low-level radioactive wastes in humid environments. Two improvements currently being studied are the use of a cement-bentonite grout applied to waste trenches before they are covered and the use of an impermeable Hypalon fabric liner, which completely surrounds the waste in a trench. A field-scale demonstration site, known as the Engineered Test Facility (ETF), has been established for these studies in the complex geologic setting typical of the Oak Ridge area. Design of the ETF was initiated in 1980 for purposes of (1) evaluating the ability of the grouted and lined trench treatments to minimize water contact and concurrent waste leaching, (2) evaluating selected waste disposal site characterization criteria, (3) integrating site characterization data into model development, and (4) validating the ETF site model and using it to predict long-term site performance. A total of nine trenches (six treated and three control) were excavated at the site in June of 1981. Bales of ORNL compacted waste were used to fill the 3m x 3m x 3m trenches, and, after treatment, all trenches were closed (backfilled and covered) according to current practice. Evaluation of the trench treatments is in progress using a series of inorganic and organic tracer tests designed to monitor water movement in three regions of interest: the trenches, the unsaturated zone around the trenches, and the saturated zone below the site. A successful demonstration of reduced waste leaching resulting from either of these two trench modifications described in this design and construction report will have immediate application to larger disposal sites having similar water-related problems. 9 references, 14 figures, 3 tables

  3. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  5. Radionuclide dynamics and health implications for the New York nuclear service center's radioactive waste burial site

    International Nuclear Information System (INIS)

    Matuszek, J.M.; Strnisa, F.V.; Baxter, C.F.

    1976-01-01

    A commercial radioactive waste burial site has operated since 1963 at the Western New York Nuclear Service Center. Solid low-level radioactive wastes are buried in trenches excavated from a very fine-grained heterogeneous mixture of silt and clay (silty till) and are then covered with the excavated material. Despite many operational precautions, water levels in three burial trenches rose to within a few centimeters of the covering material by late 1973. Activity levels of HTO, 90 Sr, and 137 Cs in trench water and core samples were measured to obtain preliminary information on the degree of subsurface radionuclide migration from the burial trenches into the surrounding soil. Tritium concentrations measured in void-space water from vertical cores appeared to peak in the cover material 1.5 to 2m below the ground surface. Concentrations of 90 Sr and 137 Cs in the silty till were greatest near the surface of the cover material. Concentrations of HTO and 90 Sr, measured in a series of slant-hole core samples collected until the trench was intercepted, showed tritium migration to have progressed less than 0.3m, while 90 Sr migration appeared to be somewhat less. The preliminary data suggest that: (a) radionuclide migration from the burial trenches into the undisturbed silty till is slight; (b) radioactivity in the surface soil is not necessarily caused by migration of trench water; (c) groundwater movement is not massive; (d) rainwater infiltration, with settlement and compaction of buried wastes, is the most likely cause of rising trench water levels; and (e) surface contamination may occur from spills during burial operations, from trench digging, and from deposition of stack effluents from a nearby nuclear fuel reprocessing plant. By January 1975 the steadily rising water levels in three trenches were approximately 1m above the undisturbed soil from which the trenches were excavated, resulting in increased radioactivity levels in local streams draining the site. To

  6. Limits for the burial of the Department of Energy transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Rodgers, J.C.

    1979-01-15

    Potential limits for the shallow earth burial of transuranic elements were examined by simplified models of the individual pathways to man. Pathways examined included transport to surface steams, transport to ground water, intrusion, and people living on the burial ground area after the wastes have surfaced. Limits are derived for each pathway and operational limits are suggested based upon a dose to the organ receiving the maximum dose rate of 0.5 rem/y after 70 years of exposure for the maximum exposed individual.

  7. Limits for the burial of the Department of Energy transuranic wastes

    International Nuclear Information System (INIS)

    Healy, J.W.; Rodgers, J.C.

    1979-01-01

    Potential limits for the shallow earth burial of transuranic elements were examined by simplified models of the individual pathways to man. Pathways examined included transport to surface steams, transport to ground water, intrusion, and people living on the burial ground area after the wastes have surfaced. Limits are derived for each pathway and operational limits are suggested based upon a dose to the organ receiving the maximum dose rate of 0.5 rem/y after 70 years of exposure for the maximum exposed individual

  8. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  9. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  10. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  11. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  12. WASTE-PRA: a computer package for probabilistic risk assessment of shallow-land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cox, N.D.; Atwood, C.L.

    1985-12-01

    This report is a user's manual for a package of computer programs and data files to be used for probabilistic risk assessment of shallow-land burial of low-level radioactive waste. The nuclide transport pathways modeled are an unsaturated groundwater column, an aquifer, and the atmosphere. An individual or the population receives a dose commitment through shine, inhalation, ingestion, direct exposure, and/or a puncture wound. The methodology of risk assessment is based on the response surface method of uncertainty analysis. The parameters of the model for predicting dose commitment due to a release are treated as statistical variables, in order to compute statistical distributions for various contributions to the dose commitment. The likelihood of a release is similarly treated as a statistical variable. Uncertainty distributions are obtained both for the dose commitment and for the corresponding risk. Plots and printouts are produced to aid in comparing the importance of various release scenarios and in assessing the total risk of a set of scenarios. The entire methodology is illustrated by an example. Information is included on parameter uncertainties, reference site characteristics, and probabilities of release events

  13. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  14. Estimation of the release and migration of nickel through soils and groundwater at the Hanford Site 218-E-12B Burial Ground

    International Nuclear Information System (INIS)

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.

    1994-05-01

    An assessment was performed to evaluate release and transport of nickel from large metal components containing nickel-bearing alloys at the Hanford Site 218-E-12B Burial Ground. The potential for nickel within the components to enter groundwater under the burial site was investigated by examining available data on the site's geology, geochemistry, and geohydrology to develop a conceptual model for release and transport of nickel from the components. In addition, laboratory studies were performed to provide information needed for the model, but which was not available from existing databases. Estimates of future concentrations of nickel radioisotopes ( 59 Ni and 63 Ni) and total elemental nickel in the unconfined aquifer and in the Columbia River were developed based on this information

  15. Studies of Pre-Mongol Bulgar Burials in the Territory of the Astrakhan Oblast

    Directory of Open Access Journals (Sweden)

    Kutukov Dmitriy V.

    2013-09-01

    Full Text Available The funeral ceremonial features traced in three Bulgar burials, which have been discovered during archaeological excavations on the burial grounds named "Shchuchii", "Posol’skii" and "Kovyl’nyi" (Astrakhan oblast, are discussed in the article. The burials are dated, respectively, to the early 10th century, the early 9th century, and the late 8th – early 9th centuries. The funeral gifts include mainly ceramic vessels. The "Posol’skii" burial site also yielded jewelry and weapon fragments (bow plates. In two burials ("Posol’skii" and "Kovyl’nyi", sheep bones were recorded. The burials apparently reflect the process of the Bulgars settling in the southern direction to the Lower Volga river area, up to its deltaic part

  16. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  17. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    International Nuclear Information System (INIS)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area

  18. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  19. Meteorology and climatology as parameters on low level waste disposal monitoring

    International Nuclear Information System (INIS)

    Culkowski, W.M.

    1982-01-01

    Once a site has been chosen for the burial of low level wastes, meteorological input is required in two forms, as climatology and as an estimator of airborne concentrations. The climatological data are fundamental to assessing hydrologic flow which may transport waste material from the original site. Airborne nuclear activity may occur by accidental release of material during the active burial phase or may result from gas formation in the trenches over a period of years

  20. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  1. Shallow-land-burial handbook

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Davis, E.C.

    1981-01-01

    The initial draft of the Shallow-Land Burial Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. The Handbook informs the reader of the current way in which low-level wastes are being handled, outlines the legal and institutional problems that would be involved in developing and licensing such a facility, and describes in some detail the considerations and data needs for siting, designing, operating, and closing such a facility. The initial draft is not a Handbook that provides answers to all questions, nor insures that following the steps detailed in the Handbook guarantees that the facility will be licensed. It does illustrate the types of actions that must be considered and the types of information required to achieve successful operations

  2. Shallow land burial: experience and developments at Oak Ridge and Los Alamos

    International Nuclear Information System (INIS)

    Warren, J.L.

    1979-01-01

    Since the mid-1940's, in excess of 250,000 m 3 of low- and intermediate-level radioactive solid waste, generated in operations at the Los Alamos Scientific Laboratory (LASL), has been disposed of by on-site shallow land burial and retrievable storage in dry volcanic tuff. Guidelines have been developed at LASL which regulate the construction of waste disposal facilities, burial and storage operations, disposal site maintenance and restoration, and documentation of all waste disposal activities. Monitoring programs at the past and current solid waste disposal sites have continued to show that, with the exception of low levels of tritium, no migration of contaminants away from their disposal location has been detected

  3. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    International Nuclear Information System (INIS)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems

  4. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  5. Processing of low-level wastes

    International Nuclear Information System (INIS)

    Vance, J.N.

    1986-01-01

    Although low-level wastes have been generated and have required processing for more than two decades now, it is noteworthy that processing methods are continuing to change. The changes are not only attributable to improvements in technology, but are also the result of changing regulations and economics and uncertainties regarding the future availabilities of burial space for disposal. Indeed, because of the changes which have and are taking place in the processing of low-level waste, an overview of the current situation is in order. This presentation is a brief overview of the processing methods generally employed to treat the low-level wastes generated from both fuel cycle and non-fuel cycle sources. The presentation is far too brief to deal with the processing technologies in a comprehensive fashion, but does provide a snapshot of what the current or typical processing methods are and what changes are occurring and why

  6. Effectiveness of a ground-surface polymer membrane covering as a method for limiting infiltration into burial trenches at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Lyverse, M.A.

    1987-01-01

    The Maxey Flats Disposal Site (MFDS) was operated as a shallow land burial site for low-level radioactive wastes for a period of 14 years (1963-1977). In 1977, radionuclides were found to be migrating from a closed disposal trench into an adjacent newly constructed trench. This discovery prompted closure of the site. Over time, deterioration of the shale and clay cover on the trenches had resulted from subsidence due to the collapse of buried metallic containers and the decomposition of various organic wastes within the trenches. This subsidence increased infiltration of water into the trenches as surface water was retained over the waste in potholes and small ponds. Although infiltration rates to the waste increased, seepage rates of leachate out of the bottom and sides of the trenches were very slow due to the low permeability of surrounding native shale soils (average hydraulic conductivity 4 x 10 -3 ft/day). In 1981, a program was implemented to correct deficiencies and stabilize the site. This paper describes the effectiveness of one design method where a low permeable (hydraulic conductivity -9 ft/sec) polyvinylchloride membrane cover (PVC) 0.015 to 0.020 inches thick was placed over the burial trenches. The covers were installed over trenches beginning in the fall of 1981. Each trench is equipped with several sumps for the collection and removal of leachate. Water-level data were collected on sumps from five trenches during the study period May 1978 to October 1984, which spanned a period prior to and after installation of the PVC cover. 3 references, 4 figures, 1 table

  7. Biobarriers used in shallow-burial ground stabilization

    International Nuclear Information System (INIS)

    Cline, J.F.

    1979-03-01

    These data show that cobblestone can be effective as a barrier to burrowing animals and insects, but not totally effective as a barrier to plant roots. Because of variable weather patterns at Hanford, five to six year studies are recommended for further evaluation of the effectiveness of different materials as biobarriers to radioactive substances. The following criteria must be met to present plant roots from entering buried waste and transporting radioactive or other elements to the soil surface where they can enter the food web: (1) the burial zone beneath the cover should be kept dry; (2) enough soil or other water-retaining substance should be placed in the cover to hold annual precipitation; (3) plants or other substances should be placed in the cover to remove soil moisture from site each year via evaporation and plant transpiration; and (4) different additions to the cover should be designed and placed over the buried waste to prevent burrowing animals from causing channelization of water through the cover to the lower levels. Stone size appeared to affect the plants' rate of root growth since root growth slowed in the air spaces between stones. Root toxin was 100% effective as a means of keeping roots out of the buried waste; this method could be used as a barrier modification where no plant cover is needed. 9 figures, 2 tables

  8. Report of the Task Force on Low-Level Radioactive Waste. Position paper

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Policy Council formed a Task Force in May 1980 to consider the problems associated with low-level radioactive waste disposal. Two major objectives were developed by the Task Force: (1) To recommend Federal policy for improving coordination and implementation of Federal and non-Federal programs that have been established to obtain solutions to existing low-level waste disposal problems, and (2) to recommend Federal policy for disposal of low-level waste containing minimal activity for which alternative disposal methods to existing shallow land burial practices may be acceptable for protecting the public health. These wastes constitute a significant fraction of what is currently classified as low-level radioactive wastes. Included are most of the wastes currently destined for shallow land burial from medical and research institutions, as well as from other sources. Such wastes include liquid scintillation vials, dry solids, animal carcasses, and paper trash; there are many items included which are needlessly classified, on a purely arbitrary basis, as radioactive waste merely because they contain detectable radioactive materials. It is this waste which is of major concern

  9. Measurement and interpretation of low levels of dissolved oxygen in ground water

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Solbau, R.D.

    1990-01-01

    A Rhodazine-D colorimetric technique was adapted to measure low-level dissolved oxygen concentrations in ground water. Prepared samples containing between 0 and 8.0 ??moles L-1 dissolved oxygen in equilibrium with known gas mixtures produced linear spectrophotometric absorbance with a lower detection limit of 0.2 ??moles L-1. Excellent reproducibility was found for solutions ranging in composition from deionized water to sea water with chemical interferences detected only for easily reduced metal species such as ferric ion, cupric ion, and hexavalent chromium. Such effects were correctable based on parallel reaction stoichiometries relative to oxygen. The technique, coupled with a downhole wire line tool, permitted low-level monitoring of dissolved oxygen in wells at the selenium-contaminated Kesterson Reservoir in California. Results indicated a close association between low but measurable dissolved oxygen concentrations and mobility of oxidized forms of selenium. -from Authors

  10. Safety assessment of alternatives to shallow-land burial of low-level radioactive waste: Volume 2, Environmental conditions affecting reliability of engineered barriers

    International Nuclear Information System (INIS)

    Cerven, F.; Otis, M.D.

    1987-09-01

    The need for new disposal capacity for low-level radioactive waste (LLW) has led to a re-examination of disposal practices. A number of enhancements and alternatives to traditional shallow-land burial have been proposed to meet the need for new capacity and to address various concerns about the performance history of existing commercial LLW sites. Fifteen potentially important degradation mechanisms for a LLW facility are identified, categorized, and analyzed to determine their importance to the proper functioning of the disposal facility over its 500-year lifetime. Wind storms, biological intrusion, mechanical settling, freeze/thaw cycling, chemical degradation, wind erosion, and water erosion were considered the most important mechanisms. Data supporting concrete structure long-term performance in sulfate environments and long-term cover performance in erosive and biological intrusion environments were obtained. Research on the performance of covers and concrete structures in the presence of the other listed degradation mechanisms is recommended. 18 refs., 16 figs., 9 tabs

  11. Groundwater flow and tritium migration from the SRS Old Burial Ground to Fourmile Branch

    International Nuclear Information System (INIS)

    Flach, G.P.; Hamm, L.L.; Harris, M.K.

    1996-04-01

    The objectives of this investigation are twofold. The initial goal is to devise and demonstrate a technique for directly incorporating fine-scale lithologic data into heterogeneous hydraulic conductivity fields, for improved groundwater flow and contaminant transport model accuracy. The ultimate goal is to rigorously simulate past and future tritium migration from the SRS Old Burial Ground towards Fourmile Branch, to better understand the effects of various remediation alternatives such as no action and capping. Large-scale variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport, following the relative locations of recharge and discharge areas. Incorporating realistic hydraulic conductivity heterogeneity into flow and transport models is paramount to accurate simulations, particularly for contaminant migration. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about heterogeneity, than other site characterization data

  12. Beads from Inhumation Rite Burials of Gnezdovo Burial Mound

    Directory of Open Access Journals (Sweden)

    Dobrova Olga P.

    2017-12-01

    Full Text Available The beads from 33 inhumation burials at Gnezdovo burial mound are examined in the article. The beads (total 367 were crafted from stretched tube (258, stretched stick (3, winding (45, press molding (2 pcs., welding (2 pcs., and mosaic beads (9 pcs.. The burial mound contains virtually no broken beads, including the settlement's most common yellow glass beads. Besides glass beads, cornelian, crystal, amber and faience beads have been registered among the burial mound material, as well as beads crafted with metal. Apart from beads, grave inventories contained a series of pendants with a bead strung on a wire ring. The considered complexes contain five pendants of this type. Besides Gnezdovo, similar pendants have been discovered in Kiev, Timerev, Pskov and Vladimir barrows. A comparison between bead sets from Gnezdovo and Kiev burial mounds allows to conclude that the general composition and occurrence frequency of beads is identical for these burials. At the same time, beads crafted with rock crystal, cornelian and metal are more frequently discovered in Kiev inhumations.

  13. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD

    Directory of Open Access Journals (Sweden)

    Sergey Mikhailovich Slepchenko

    2015-01-01

    Full Text Available We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.

  14. Some aspects of low-level radioactive-waste disposal in the US

    International Nuclear Information System (INIS)

    Schweitzer, D.G.; Davis, R.E.

    1982-01-01

    This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans

  15. Sediment Burial Intolerance of Marine Macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Vicki J Hendrick

    Full Text Available The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura, the queen scallop (Aequipecten opercularis and the sea squirt (Ciona intestinalis were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris and the anemone (Sagartiogeton laceratus, showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa. With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally

  16. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details

  17. Overview of the Nuclear Regulatory Commission Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Bishop, W.P.; Bell, M.J.; Dragonette, K.S.; Adam, J.

    1979-01-01

    Environmental impacts from Table S-3 of 10 CFR Part 51 are included in individual environmental impact statements for LWR's. In response to a U.S. Court of Appeals finding of inadequate documentation to support Table S-3, ''Environmental Survey of Reprocessing and Waste Management Portions of the LWR Fuel Cycle'' (NUREG-0116) and ''Public Comments and Task Force Responses Regarding Environmental Survey of the Reprocessing and Waste Portions of the LWR Fuel Cycle'' (NUREG-0216) were published. As a result of these in-house studies, an interim rule revising Table S-3 has been published. These documents include discussions of shallow land burial of low-level waste, past experiences and sensitivity calculations estimating potential dose commitments from the groundwater migration of the wastes. An NRC task force report (NUREG-0217) examining the Federal and Agreement State programs for regulating commercial low-level waste disposal recommends increasing the federal role in low-level waste disposal. The need to investigate alternatives to shallow land burial is identified. The NRC is developing a radioactive waste management program which includes a plan for the implementation of the task force recommendations, the development of environmental impacts for low-level waste disposal, development of standards and criteria, and the establishment of a regulatory framework and licensing procedures for the disposal of low-level radioactive waste

  18. Computerized methodology for evaluating the long-range radiological impact of shallow-land burial

    International Nuclear Information System (INIS)

    Fields, D.E.; Little, C.A.; Emerson, C.J.

    1981-01-01

    A computerized methodology has been implemented to calculate the risk to local and intermediate-range (up to 80 km distant) populations resulting from water- and air-borne transport of radionuclides present in low-level wastes buried in shallow trenches such as those used at Oak Ridge. Our computer code, PRESTO (Prediction of Radiation Effects from Shallow Trench Operations), was developed under United States Environmental Protection Agency funding to evaluate possible health effects resulting from shallow burial operations. Sources of contamination include radionuclide releases from the trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to at-risk populations for a 1000-year period following cessation of burial ground operations. Several classes of submodels are used in PRESTO to represent scheduled event, unit system response, and risk evaluation processes. Examples of scheduled events are trench cap failure, stabilization of insoluble surface contaminant, the onset of farming or reclamation practices, and human intrusion. Unit system response submodels simulate processes such as infiltration of rainwater into the trench and erosion of soil overburden from the trench cover. System response submodels generate parameters used repeatedly in the 1000-year simulation loop

  19. Evidence of skeletal treponematosis from the medieval burial ground of St. Mary Spital, London, and implications for the origins of the disease in Europe.

    Science.gov (United States)

    Walker, Don; Powers, Natasha; Connell, Brian; Redfern, Rebecca

    2015-01-01

    Treponematosis is a syndrome of chronic infectious diseases. There has been much debate on its origins and spread, particularly with regard to venereal syphilis, an unsightly and debilitating disease in preantibiotic populations. The osteological analysis of 5,387 individuals excavated by Museum of London Archaeology from the medieval burial ground of St. Mary Spital in London (dated c 1120-1539) provided an unprecedented opportunity to investigate the nature and prevalence of disease over a period of time. Twenty-five individuals were found with suspected treponematosis, originating from all but the earliest period of the burial ground. Descriptions of affected individuals from each period, together with supporting images, are provided. In this work, particular emphasis was given to the distribution of lesions on the skeleton and the variation in patterns by sex and over time. Little change was observed in the distribution of bony change between individuals dated to pre- and post-Columbian periods. However, a dramatic rise in the prevalence of the disease in the final period (c 1400-1539) may reflect documentary reports of a European epidemic from the late 15th century. © 2014 Wiley Periodicals, Inc.

  20. High integrity container evaluation for solid waste disposal burial containers

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1996-01-01

    In order to provide radioactive waste disposal practices with the greatest measure of public protection, Solid Waste Disposal (SWD) adopted the Nuclear Regulatory Commission (NRC) requirement to stabilize high specific activity radioactive waste prior to disposal. Under NRC guidelines, stability may be provided by several mechanisms, one of which is by placing the waste in a high integrity container (HIC). During the implementation process, SWD found that commercially-available HICs could not accommodate the varied nature of weapons complex waste, and in response developed a number of disposal containers to function as HICs. This document summarizes the evaluation of various containers that can be used for the disposal of Category 3 waste in the Low Level Burial Grounds. These containers include the VECTRA reinforced concrete HIC, reinforced concrete culvert, and the reinforced concrete vault. This evaluation provides justification for the use of these containers and identifies the conditions for use of each

  1. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  2. Taenia sp. in human burial from Kan River, East Siberia.

    Science.gov (United States)

    Slepchenko, Sergey Mikhailovich; Ivanov, Sergey Nikolaevich; Vybornov, Anton Vasilevich; Alekseevich, Tsybankov Alexander; Sergeyevich, Slavinsky Vyacheslav; Lysenko, Danil Nikolaevich; Matveev, Vyacheslav Evgenievich

    2017-05-01

    We present an arhaeoparasitological analysis of a unique burial from the Neftprovod II burial ground in East Siberia, which dated from the Bronze Age. Analysis of a sediment sample from the sacral region of the pelvis revealed the presence of Taenia sp. eggs. Because uncooked animal tissue is the primary source of Taenia, this indicated that the individual was likely consuming raw or undercooked meat of roe deer, red deer, or elk infected with Taenia. This finding represents the oldest case of a human infected with Taenia sp. from Eastern Siberia and Russia.

  3. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Conner, K.R.

    2000-12-12

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  4. Characterization of the Hanford 300 Area Burial Grounds. Task III: fluid transport and modeling

    International Nuclear Information System (INIS)

    Gee, G.W.; Simmons, C.S.

    1979-08-01

    In Task III, Fluid Transport and Modeling, a computer model was developed and applied to the 300 Area Burial Grounds to analyze the influence of potential evaporation and rainfall patterns on drainage. The model describes one-dimensional unsaturated flow. Fluid transport equations were evaluated to describe the driving forces of fluid flow. The data indicate that the major processes are evaporative drying, capillarity, and gravity flow. Thermally induced transport does not appear significant in the subsurface sediments of the area. Several empirical evaporation methods are available for assessing potential evaporation/evapotranspiration. Four methods were used with the unsaturated flow model. Ultimately, the Blaney-Criddle method was chosen for subsequent simulation examples because it relies only on the climatic data available and gave results comparable to the other methods tested. Simulations showed that a dry layer formation is important in controlling the soil-water balance in the profile. The surface dry layer acts as a mulch to retard the evaporative water losses and increase water storage. The most important climatic factor in determining drainage appears to be yearly rainfall distribution. When rainfall is distributed in fall or winter, during periods of low potential evaporation, both water storage and drainage are increased. Summer showers, on the other hand, were shown to add little to the annual water storage. Rainfall occurring in one year influences the subsequent annual drainage for several succeeding years because of annual changes in water storage capacity and the transient nature of unsaturated flow in the storage zone. 47 figures, 9 tables

  5. Preliminary hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    Science.gov (United States)

    Zehner, Harold H.

    1979-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)

  6. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  7. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  8. Licensing of alternative methods of disposal of low-level radioactive waste: Branch technical position, Low-Level Waste Licensing Branch

    International Nuclear Information System (INIS)

    Higginbotham, L.B.; Dragonette, K.S.; Pittiglio, C.L. Jr.

    1986-12-01

    This branch technical position statement identifies and describes specific methods of disposal currently being considered as alternatives to shallow land burial, provides general guidance on these methods of disposal, and recommends procedures that will improve and simplify the licensing process. The statement provides answers to certain questions that have arisen regarding the applicability of 10 CFR 61 to near-surface disposal of waste, using methods that incorporate engineered barriers or structures, and other alternatives to conventional shallow land burial disposal practices. This position also identifies a recently published NRC contractor report that addresses the applicability of 10 CFR 61 to a range of generic disposal concepts and which provides technical guidance that the staff intends to use for these concepts. This position statement combined with the above-mentioned NRC contractor report fulfills the requirements of Section 8(a) of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  9. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  10. System analysis of shallow land burial. Volume 2: technical background. Technical report, 26 November 1979-23 January 1981

    International Nuclear Information System (INIS)

    Lester, D.; Buckley, D.; Donelson, S.; Dura, V.; Hecht, M.

    1981-03-01

    This is volume two of a three volume set detailing the activities and results of the System Analysis of Shallow Land Burial Project. Activities under four project tasks are described: Task 1 - Identify Potential Radionuclide Release Pathways, Task 2 - Systems Model for Shallow Land Burial of Low-Level Waste, Task 3 - Sensitivity and Optimization Study and Task 4 - Reference Facility Dose Assessment

  11. On the Semantics of Plates from the Shilovka Burial Ground

    Directory of Open Access Journals (Sweden)

    Fonyakova (Chuvilo Natalia A.

    2013-03-01

    Full Text Available Among the finds made on the sites located in the Middle Volga region and Siberia, ivory plaques of high artistic value used to adorn combat saddle pommel are met. They would bear floral ornamentation or depict hunting scenes, reflecting the spiritual world of a nomad warrior. These images are dated widely, but not later than the 7th or 8th centuries. They were drawn with a sharp cutter and blackened down the lines. Of special interest are the bone plates from the Shilovka burial ground site (Uyanovsk oblast with the following images: two dragons in a heraldic posture, deer hunt scenes, horsemen in ambush, fight with a bear, and defense of the fortress. In the author’s opinion, the Shilovka plates depict a dramatic episode in the life of a Turkic warlord, which occurred in the midst of hostilities. During the hunt, a huge bear was unleashed against him. Part of his heavily armed convoy (or suite fled; some soldiers got ambushed (the enemy shot them from armor-piercing bows. Saving his life, the captain knelt and bent his bow, whose string broke at the most inopportune moment. Perhaps he died fighting a bear. One can assume that it was a stratagem of the enemy, which decided the outcome of the war. The symbol of victory on the plates is represented by the dragons, frozen in a heraldic posture, and expressing the basic principle of life characteristic of the nomad warriors in the Early Middle Ages: prosperity and well-being at a price of war and victories. The plaques were placed into the winner’s grave.

  12. Time-temperature-burial significance of Devonian anthracite implies former great (approx.6.5 km) depth of burial of Catskill Mountains, New York

    International Nuclear Information System (INIS)

    Friedman, G.M.; Sanders, J.E.

    1982-01-01

    Specimens of coalified plant debris in Tully-correlative strata of the Gilboa Formation (uppermost Middle Devonian) within the eastern Catskill Mountains of New York State have been converted to anthracite having a vitrinite reflectance of 2.5%. This implies a level of organic metamorphism (LOM) of 16. The specimens are about 350 m.y. old; if 200 m.y. is taken as the duration of the time of exposure to the maximum geothermal temperature, then the LOM of 16 and other thermal indicators imply a maximum temperature of 190 0 C. Using a geothermal gradient of 26 0 C.km -1 (17 0 F.1,000 ft -1 ), a former depth of burial of 6.5 km is implied. Such former deep burial is not usually inferred for the Catskills, but it is consistent with the idea that the thick (about 6.4 km or 21,000 ft) Carboniferous strata of northeastern Pennsylvania formerly extended northeast far enough to bury the Catskills. The lack of metamorphism of the Paleozoic strata lying about 4.5 km beneath the Tully-correlative rocks and exposed in the adjacent Hudson Valley places low limits on the former geothermal gradient; this supports the concept of great depth of former burial of the Catskills. For example, 6.5 km of former burial and a geothermal gradient of 26 0 C.km -1 imply a temperature of 307 0 C for the base of the Paleozoic. By contrast, only 1 km of former burial requires a geothermal gradient of 170 0 C.km -1 , which would have subjected the base of the Paleozoic to a temperature of 955 0 GAMMA, which is far higher than the 600 to 650 0 C recently inferred for the Acadian-age metamorphism of the Taconic allochthon in southwestern Massachusetts and adjoining areas

  13. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated.

  14. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated

  15. Final hazard classification and auditable safety analysis for the 300-FF-1 Operable Unit liquid waste sites, landfills, and Burial Ground 618-4

    International Nuclear Information System (INIS)

    Adam, W.J.; Larson, A.R.

    1996-12-01

    This document provides the hazard categorizations and classifications for the activities associated with the 300-FF-1 Operable Unit (OU) remediation. Categories and classifications presented are applicable only to the 300-FF-1 OU waste sites specifically listed in the inventory. The purpose of this remedial action is to remove contaminated soil, debris, and solid waste from liquid waste sites, landfills, and Burial Ground 618-4 within the 300-FF-1 OU. Resulting waste from this project will be sent to the Environmental Restoration Disposal Facility (ERDF) in the 200 West Area. The 300-FF-1 OU is part of the 300 Area of the Hanford Site and is next to the Columbia River. The objective of this remedial action is to reduce contamination at these waste sites to levels that are acceptable for industrial purposes. Specific remedial objectives (cleanup goals) for each contaminant of concern (COC) are provided in a table, along with the maximum soil concentration detected

  16. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  17. Design criteria burial containers for non-transuranic solid radioactive waste

    International Nuclear Information System (INIS)

    Hammond, J.E.

    1976-01-01

    The criteria, replace HW-83959 and apply to containers constructed specifically for the containment of beta-gamma radioactively contaminated waste removed from an area controlled by radiation work procedures, transported across an uncontrolled area where there is risk of a radiation release to the environs, and buried in an approved radioactive waste burial ground

  18. Evaluation of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.; Wehmann, G.; Thamer, B.J.; Card, D.H.

    1979-07-01

    A comparative analysis of the most viable alternatives for disposal of solid low-level radioactive wastes is presented to aid in evaluating national waste management options. Four basic alternative methods are analyzed and compared to the present practice of shallow land burial. These include deeper burial, disposal in mined cavities, disposal in engineered structures, and disposal in the oceans. Some variations in the basic methods are also presented. Technical, socio-political, and economic factors are assigened relative importances (weights) and evaluated for the various alternatives. Based on disposal of a constant volume of waste with given nuclear characteristics, the most desirable alternatives to shallow land burial in descending order of desirability appear to be: improving present practices, deeper burial, use of acceptable abandoned mines, new mines, ocean dumping, and structural disposal concepts. It must be emphasized that the evaluations reported here are generic, and use of other weights or different values for specific sites could change the conclusions and ordering of alternatives determined in this study. Impacts and costs associated with transportation over long distances predominate over differences among alternatives, indicating the desireability of establishing regional waste disposal locations. The impacts presented are for generic comparisons among alternatives, and are not intended to be predictive of the performance of any actual waste disposal facility

  19. Development of waste unit for use in shallow land burial

    International Nuclear Information System (INIS)

    Brodersen, K.

    1986-01-01

    A hexagonal waste unit has been developed for use in shallow land burial of low- and medium-level radioactive waste. The waste units used as overpack on empty standard 210 1 drums have been tested for tightness and mechanical resistance. Experimental burial of 21 empty full-size units has demonstrated the emplacement of the containers and the sealing of the crevises between them with molten bitumen. The development of the experimental burial with time is being followed. Three different conceptual designs for advanced burial systems using the hexagonal standard units are described. The outer barrier is a thick concrete structure covered by 2, 10 or 20 m soil, respectively. The waste units were cast from a normal high-quality concrete as well as from Densit, a new, very strong and impermeable type of concrete prepared by the combined use of silica-fume (microsilica) and a superplastizicer as additives. The migration of Cl - , Cs + and tritiated water was found to be much slower in Densit than in normal concrete. In combination with leaching measurements for Cs + from the same materials the results are used to present some theoretical considerations concerning transport through solution-filled pore systems as dependent on pore-size distribution, tortuosity, etc. A method based on neutron-activated cement cast in form of thin plates has been developed and used to study the dissolution chemistry of concrete. A preliminary model is presented. Indications for precipitation mechanisms were obtained. Densit was demonstrated to ensure a high degree of corrosion protection for steel reinforcement. The reason is mainly the high electrical resistivity combined with low diffusive transport in the material. The pozzolanic reaction results in somewhat lower pH in the pore water than in normal concrete, but the effect is not so pronounced that the passivation of steel reinforcement is endangered

  20. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    International Nuclear Information System (INIS)

    Cochran, J.R.

    1995-01-01

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites

  1. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  2. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    Science.gov (United States)

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These

  3. Oak Ridge Low Level Waste Management Task Force summary

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.

    1985-01-01

    New facilities are required in the next five years to manage low level radioactive wastes (LLW) produced on the Oak Ridge Reservation (ORR). The Central Waste Disposal Facility (CWDF) was planned to provide the needed additional facilities beginning in late 1985. The CWDF was planned as a shallow land burial facility to dispose of non-stabilized LLW. However, comments on the CWDF Draft Environmental Impact Statement (DEIS) received from the State of Tennessee, the Environmental Protection Agency, and the Nuclear Regulatory Commission identified major issues related to the treatment of alternatives as required by the National Environmental Policy Act, and the potential for unacceptable groundwater contamination resulting from shallow land burial of non-stabilized waste. A series of initial and detailed evaluations are being conducted to develop the basic environmental performance and cost information needed to compare several LLW management approaches and arrive at a proposed system for development. The evaluations are targeted for completion by October

  4. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    International Nuclear Information System (INIS)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-01-01

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a γ-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured γ-ray data acquired in an unusual configuration

  5. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  6. Evaluation of the ORNL area for future waste burial facilities

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Byerly, D.W.; Gonzales, S.

    1983-10-01

    Additional waste-burial facilities will be needed at ORNL within this decade. In order to find environmentally acceptable sites, the ORNL area must be systematically evaluated. This document represents the first step in that selection process. Geologic and hydrologic data from the literature and minor field investigations are used to identify more favorable sites for Solid Waste Storage Area (SWSA) 7. Also underway at this time is a companion study to locate a Central Waste Storage Area which could be used in the future to accommodate wastes generated by the X-10, Y-12, and K-25 facilities. From the several watershed options available, the Whiteoak Creek drainage basin is selected as the most promising hydrologic regime. This area contains all past and present waste-disposal facilities and is thus already well monitored. The seven bedrock units within the ORNL area are evaluated as potential burial media. Shales of the Conasauga Group, which are currently used for waste burial in the Whiteoak Creek drainage basin, and the Knox Group are considered the leading candidates. Although the residuum derived from and overlying the Knox dolomite has many favorable characteristics and may be regarded as having a high potential for burial of low-level wastes, at the present it is unproven. Therefore, the Conasauga shales are considered a preferable option for SWSA 7 within the ORNL area. Since the Conasauga interval is currently used for waste burial, it is better understood. One tract in Melton Valley that is underlain by Conasauga shales is nominated for detailed site-characterization studies, and several other tracts are recommended for future exploratory drilling. Exploration is also suggested for a tract in the upper Whiteoak Creek basin where Knox residuum is the shallow subsurface material

  7. Fragmenting the Chieftain : a practice-based study of Early Iron Age Hallstatt C elite burials in the Low Countries

    NARCIS (Netherlands)

    Vaart, van der S.A.

    2017-01-01

    There is a cluster of Early Iron Age (800–500 BC) elite burials in the Low Countries in which bronze vessels, weaponry, horse-gear and wagons were interred as grave goods. Mostly imports from Central Europe, these objects are found brought together in varying configurations in cremation

  8. Low-level radwaste solidification

    International Nuclear Information System (INIS)

    Naughton, M.D.; Miller, C.C.; Nelson, R.A.; Tucker, R.F.

    1983-01-01

    This paper reports on a study of ''Advanced Low-Level Radioactive Waste Treatment Systems'' conducted under an EPRI contract. The object of the study is to identify advanced lowlevel radwaste treatment systems that are commercially available or are expected to be in the near future. The current state-ofthe-art in radwaste solidification technology is presented. Related processing technologies, such as the compaction of dry active waste (DAW), containers available for radwaste disposal, and the regulatory aspects of radwaste transportation and solidification, are described. The chemical and physical properties of the currently acceptable solidification agents, as identified in the Barnwell radwaste burial site license, are examined. The solidification agents investigated are hydraulic cements, thermoplastic polymers, and thermosetting polymers. It is concluded that solidification processes are complex and depend not only on the chemical and physical properties of the binder material and the waste, but also on how these materials are mixed

  9. Identification of sites for the low-level waste disposal development and demonstration program

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Lee, D.W.

    1988-04-01

    This report presents the results of site selection studies for potential low-level radioactive waste disposal sites on the Oak Ridge Reservation (ORR). Summaries of the site selection procedures used and results of previous site selection studies on the ORR are included. This report includes recommendations of sites for demonstration of shallow land burial using engineered trench designs and demonstration of above-grade disposal using design concepts similar to those used in tumulus disposal. The site selection study, like its predecessor (ORNL/TM-9717, Use of DOE Site Selection Criteria for Screening Low-Level Waste Disposal Sites on the Oak Ridge Reservation), involved application of exclusionary site screening criteria to the region of interest to eliminate unacceptable areas from consideration. Also like the previous study, the region of interest for this study was limited to the Oak Ridge Department of Energy Reservation. Reconnaissance-level environmental data were used in the study, and field inspections of candidate sites were made to verify the available reconnaissance data. Five candidate sites, all underlain by Knox dolomite residuum and bedrock, were identified for possible development of shallow land burial facilities. Of the five candidate sites, the West Chestnut site was judged to be best suited for deployment of the shallow land burial technology. Three candidate sites, all underlain by the Conasauga Group in Bear Creek Valley, were identified for possible development of above-grade disposal technologies. Of the three sites identified, the Central Bear Creek Valley site lying between State Route 95 and Gum Hollow Road was ranked most favorable for deployment of the above-grade disposal technology

  10. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

  11. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    International Nuclear Information System (INIS)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G.

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base

  12. Treatment needs for greater-than-Class C low-level wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Brouns, R.A.; Burkholder, H.C.

    1988-01-01

    Greater-than-Class C (GTCC) radioactive wastes are those low-level wastes that exceed the 10CFR61 limits for shallow-land burial but are not within the historical definition of high-level wastes (i.e., spent fuel and first-cycle reprocessing wastes). The GTCC category can include all transuranic (TRU) wastes, although for the purposes of this paper, contact-handled defense TRU wastes are excluded because of the major efforts in the past decade to prepare them for disposal at the Waste Isolation Pilot Plant (WIPP). Thus, the GTCC category includes all high-activity and remote-handled TRU wastes regardless of origin. This paper defines the need for treatment of existing and projected GTCC low-level radioactive wastes in the United States. The sources, characteristics, treatment considerations, and methods for treatment are reviewed

  13. Shallow land burial - why or why not

    International Nuclear Information System (INIS)

    Thompson, W.T.; Ledbetter, J.O.; Rohlich, G.A.

    1979-01-01

    This paper summarizes a master's thesis on the state-of-the-art for shallow land burial of solid low-level radioactive wastes. The coverage of the thesis, which is condensed for this paper, ranges from site selection to problem case histories. Inherent in such coverage is the assessment of risk, the discussion of operational and management problems and the real significance of off-site migration. This topic is discussed in light of the stands taken that the migration is a serious problem and that it is not. Emphasis is on the engineering parameters of importance in site selection, and what pretreatment, if any, is needed

  14. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J. (comps.)

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.

  15. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    International Nuclear Information System (INIS)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques

  16. Low-level waste management in the South. Task 4.2 - long-term care requirements

    International Nuclear Information System (INIS)

    1983-01-01

    This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table

  17. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    Science.gov (United States)

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  18. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  19. Documentation associated with the shipping of Hot-Cell Waste from WESF 225-B to the 200W (218-W-3AE) burial grounds under shipment number RSR-37338

    International Nuclear Information System (INIS)

    PAWLAK, M.W.

    1998-01-01

    The purpose of this report is to compile the records generated during the Packaging and Shipping of WESF Hot-Cell Waste from the 225-B Facility to 200W (218-W-3AE) burial grounds. A total of six 55-gallon drums were packaged and shipped using the Chem-Nuc Cask in accordance with WHC-SD-TP-SARP-025, Rev.0 ''Safety Analysis Report for Packaging (Onsite) for Type B Material in the CNS-14-215H Cask''

  20. Exploration of the burial apartments in tomb complex AS 68. Preliminary report of the 2013 fall season

    Directory of Open Access Journals (Sweden)

    Hana Vymazalová

    2015-12-01

    Full Text Available Exploration of the tomb complex of king’s daughter Sheretnebty, which was discovered in 2012, continued in the archaeological season of 2013. In October–November, the work concentrated on the underground parts of the tombs, including the burial shafts and burial chambers. In tomb AS 68c, two shafts were unusually deep; at a depth of 11.00 m under the ground the burial chambers of a man and a woman had been hewn. The man’s chamber contained a large sarcophagus of fine limestone and the remains of his burial and his tomb equipment, while the woman’s chamber remained largely unfinished and contained her rather simple burial placed on the floor. The so far discovered evidence indicates that this was the burial of Princess Sheretnebty. Another four shafts in the tomb contained four other burials of a female and three males, most probably the couple’s descendants. In addition, the shafts in the two western rock-cut tombs were explored. In the tomb of Shepespuptah (AS 68b, a single shaft was dug in the tomb’s chapel, while the tomb owner was buried in a burial chamber south of the chapel. The shaft in the chapel was large but reached only 1.40 m deep and was never finished and never used for burial. The two shafts in the tomb of Duaptah (AS 68a revealed the burials of two men; the southern shaft belonged to Duaptah himself while the northern shaft to a certain Nefermin. The burials were mostly very simple, and all of them were disturbed by tomb robbers. The preserved bones might, however, still reveal important details about the individuals buried in the rock-cut tombs, and they will therefore be studied in order to trace the family relationships among the tomb owners.

  1. Grouting as a remedial technique for buried low-level radioactive wastes

    International Nuclear Information System (INIS)

    Spalding, B.P.; Hyder, L.K.; Munro, I.L.

    1985-01-01

    Seven grout formulations were tested in the laboratory for their ability to penetrate and to reduce the hydraulic conductivities of soils used as backfills for shallow land burial trenches. Soils from two sites, in Oak Ridge, TN, and Maxey Flats, KY were used and both are classified as Typic Dystrochrepts. Three soluble grout formulations (sodium silicate, polypropenamide [polyacrylamide], and 1,3-Benzenediol [resorcinol]-formaldehyde) were able to both penetrate soil and sand columns and reduce hydraulic conductivities from initial values of ca. 10 -4 m s -1 to -8 m s -1 . Three particulate grouts (lime [calcium oxide]-fly ash, fly ash-cement-bentonite, and bentonite alone) could not penetrate columns; such formulations would, therefore, be difficult to inject into closed burial trenches. Field demonstrations with both sodium silicate and polyacrylamide showed that grout could be distributed throughout a burial trench and that waste-backfill hydraulic conductivity could be reduced several orders of magnitude. Field grouting with polyacrylamide reduced the mean hydraulic conductivity of nine intratrench monitoring wells from 10 -4 to 10 -8 m s -1 . Grouting of low-level radioactive solid waste in situ, therefore, should be an effective technique to correct situations where leaching of buried wastes has or will result in groundwater contamination

  2. In situ grouting of a low-level radioactive waste trench

    International Nuclear Information System (INIS)

    Spence, R.D.; Godsey, T.T.; McDaniel, E.W.

    1987-11-01

    A shallow land burial trench containing low level radioactive waste was injected with a particulate grout to help control subsidence and radionuclide migration. The trench's accessible voids have been estimated at 20 vol %, and most of these voids appear to have been filled with grout. This injection was accomplished with a simple, labor intensive technique, and an inexperienced crew at an estimated cost of about $55,000. The grout costs $0.21/gal and 8081 gal was injected into the trench. 5 refs., 10 figs., 4 tabs

  3. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100 ampersand D3 and Y/ER-53 ampersand D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs

  4. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  5. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Abel, K.H.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1986-01-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field investigation was conducted in 1983 and 1984 to compliment the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater environment

  6. Effect of phosphogypsum on workers and population's radiation exposure in vicinity of phosphogypsum waste burial site

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Sawaf, A.

    1998-01-01

    The phosphogypsum waste burial site was studied in more details of radiation viewpoint. This waste results from phosphate industry. The study covered ground water, nearby houses, air and emission rates of radon from this waste burial site. Results showed increasing of radiation exposure in the studied site and nearby area for both workers and population. Fortunately, this area was studied before instruction of the waste burial site. So it was easy to compare the new results with the previous ones and see the difference. Indoor radon concentration increased about 70%. Results also showed high emission rates which result in significant dose. The site needs continuous monitoring because the amount of phosphogypsum is increasing. Also groundwater should be monitored continuously to see the effect of the waste in the future if it happened. (author)

  7. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  8. Hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    Science.gov (United States)

    Zehner, H.H.

    1983-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site cover an area of about 20 acres, and are located on a plateau, about 300 to 400 feet above surrounding valleys. All waste is buried in the Nancy Member of the Borden Formation, and most is in the weathered shale (regolith) part of this member. Recharge to the rocks is probably by infiltration of rainfall through regolith at the top of the hill. At least two water tables are present: near the base of the regolith, at a depth of about 25 feet and; in the Ohio Shale, at a depth of about 300 feet. About 95 percent of ground-water discharge to streams is from colluvium on hillsides and valley alluvium. The remaining 5 percent is discharge from bedrock, of which about 0.5 percent is from rocks underlying the burial area. Waste radionuclides in the subsurface, other than tritium, were observed only in the regolith of the Nancy Member. Only tritium was observed with certainty in deeper rocks and in the adjacent valley alluvium. Other waste radionuclides were in streamwater and stream sediment, and may have been transported with overland runoff from the surface of the burial site. (USGS)

  9. Permanent disposal by burial of highly radioactive wastes incorporated into glass

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1967-01-01

    A method has been developed at Chalk River for incorporating high-level fission product wastes from nuclear fuel processing into glass blocks for ultimate disposal. Nitric acid solutions of fission products were mixed with nepheline-syenite and lime in crucibles and fired in a kiln to a temperature of 1350 o C to form a glass with high resistance to leaching. Two test disposals of glass blocks were made into the ground below the water table. The first, in August 1958, contained about 300 Ci in 25 blocks of a highly resistant glass. The second, in May 1960, contained about 1100 Ci in 25 blocks of a less resistant formulation. Monitoring of the two tests has continued for eight and six years respectively. A soil sampling programme has indicated that the leaching rate tended to decrease with time and is now less than 10 -10 g/cm 2 per day, or two orders of magnitude lower than that predicted from laboratory leaching tests. These results indicate that the method is suitable for permanent disposal of high-level nuclear wastes and that the blocks could be buried unprotected in a controlled area, even in saturated sand of low exchange capacity. Burial above the saturated zone in an and region would result in even less release of radioactivity from the glass. (author)

  10. Future directions for the US Nuclear Regulatory Commission's low-level waste management program

    International Nuclear Information System (INIS)

    Starmer, R.J.

    1986-01-01

    The Low-Level Radioactive Waste Policy Act envisioned that all states would be able to dispose of commercial low-level waste generated within their borders by 1986, either individually or through interstate compacts. Based on the current status of state and compact efforts, it is clear that no new disposal sites will be available by 1986 or for some period thereafter. In the short-term, there is uncertainty that the existing disposal sites will remain open after January 1, 1986, or if restrictions will apply after that time. If restrictions occur, storage, treatment or even curtailed generation may result for individual waste producers. Other uncertainties clouding implementation of the Policy Act include the final configuration of regional compacts - in the northeast in particular - clear assignment of responsibility for disposal of classes of waste, the method of disposal - shallow land burial or alternatives - that will be employed for low-level waste, and regulation of mixed wastes, wastes which have both radioactive and non-radioactive hazardous constituents. The NRC strategy for low-level waste management aims to resolve or reduce these uncertainties, and to encourage transition to a stable, national system based on timely state action. NRC will continue development of regulatory and technical guidance for disposal site licensing and build on its capabilities to address specific areas of state concern, such as alternatives to shallow land burial, and site characterization and modeling. NRC also plans to expand state and compact outreach efforts to help ensure that our technical work is properly focused. The authors will also be directly assisting those states and compacts on technical matters they confront in actual disposal site development and licensing

  11. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  12. The making of urban ‘healtheries’: the transformation of cemeteries and burial grounds in late-Victorian East London☆

    Science.gov (United States)

    Brown, Tim

    2013-01-01

    This paper focuses on the conversion of disused burial grounds and cemeteries into gardens and playgrounds in East London from around the 1880s through to the end of the century. In addition to providing further empirical depth, especially relating to the work of philanthropic organisations such as the Metropolitan Public Gardens Association, the article brings into the foreground debates regarding the importance of such spaces to the promotion of the physical and moral health of the urban poor. Of particular note here is the recognition that ideas about the virtuous properties of open, green space were central to the success of attempts at social amelioration. In addition to identifying the importance of such ideas to the discourse of urban sanitary reformers, the paper considers the significance of less virtuous spaces to it; notably here, the street. Building on Driver's work on ‘moral environmentalism’ and Osborne and Rose's on ‘ethicohygienic space,’ this paper goes on to explore the significance of habit to the establishing of what Brabazon called ‘healtheries’ in late-Victorian East London. PMID:24882920

  13. The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1991-01-01

    The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These ''mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs

  14. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    International Nuclear Information System (INIS)

    Tuite, P.; Tuite, K.; O'Kelley, M.; Ely, P.

    1991-08-01

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types

  15. Effect of phosphogypsum on workers and population's radiation exposure in vicinity of phosphogypsum waste burial site

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Sawaf, A.M.

    1997-05-01

    The phosphogypsum waste burial site was studied in more details of radiation viewpoint. This waste results from phosphate industry. The study covered ground water, nearby houses, air and emission rates of radon from this waste burial site. Results showed increasing of radiation exposure in the studied site and nearby area for both workers and population. Fortunately, this area was studied before instruction of the waste burial site. So it was easy to compare the new results with the previous ones and see the difference. Indoor radon concentration increased about 70%. Results also showed high emission rates which result in significant dose. The site needs continuous monitoring because the amount of phosphogypsum is increasing. Also groundwater should be monitored continuously to see the effect of the waste in the future if it happened. (author). 5 refs., 7 figs., 5 tabs

  16. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  17. Organic Carbon Burial in Brazilian Mangrove Sediments (Invited)

    Science.gov (United States)

    Sanders, C.; Smoak, J. M.; Sanders, L.; Patchineelam, S.

    2010-12-01

    This study reviews the organic carbon (OC) burial rates in mangrove forests, margins and mud flats in geographically distinct areas of the Brazilian coastline. We exam the burial rates, taking into account the geomorphology of each region. Our initial results indicate that the Northeastern region of Brazil is sequestering significantly more OC than in the Southeastern areas, being that the mass sediment accumulation rates remained consistent within the forests as opposed to large variations found in the mudflats. The other pertinent factor was OC content, which differed substantially in respect to region. Given that the mangrove forests of the Southeastern regions of Brazil may be more susceptible to a rising sea level, as these areas are constricted by vast mountain ranges, this work attempts to put in perspective the possible impacts of climate change on mangrove ecosystems and OC burial along the Brazilian coastal ocean. We also compare our result to global averages.

  18. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  19. Agricultural aspects of monitoring and stabilization of shallow land-burial sites. Annual report, October 1, 1978-September 30, 1980

    International Nuclear Information System (INIS)

    Wallace, A.; Schulz, R.K.; Romney, E.M.; Nishita, H.; Herman, D.J.

    1980-02-01

    The year FY 1979 was a transition year between start up of work at the low level waste burial site at Maxey Flats, Kentucky and completion of previous work involving laboratory studies with radionuclides. All of our studies are designed to solve problems or verify situations that exist in the field. The thrust at Maxey Flats by this group involves soil moisture and radionuclide movement at that burial site in a humid region. Vegetation cover is being manipulated, rooting depth is being studied, water penetration and flow are being measured, radionuclide uptake by plants and concentration in components of soil moisture are being measured. Goals are to determine how water is penetrating trenches and how to minimize such penetration. Laboratory studies involve fission and transuranic radionuclides with a future focus placed primarily upon field problems related to low level waste burial problems and soils. Some past studies being completed involved transuranic elements and a cross-section of USA soils. Different sized containers have been involved in the studies so that results can be extrapolated to field conditions. Analytical work is almost completed and the data are being synthesized. Some preliminary organization of the data is included in this annual report. Concentration ratios, plant part discrimination ratios and radionuclide ratios are included in the initial evaluation. The laboratory phase of this study is to be completed in the next fiscal year with more effort being redirected toward field studies at the shallow land waste burial site. Separate abstracts have been prepared for 9 items in this report for inclusion in the Energy Data Base

  20. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  1. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  2. Low-level radioactive waste source term model development and testing: Topical report

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Kempf, C.R.; Suen, C.J.; Mughabghab, S.M.

    1988-08-01

    The Low-Level Waste Source Term Evaluation Project has the objective to develop a system model capable of predicting radionuclide release rates from a shallow land burial facility. The previous topical report for this project discussed the framework and methodology for developing a system model and divided the problem into four compartments: water flow, container degradation, waste form leaching, and radionuclide transport. Each of these compartments is described by submodels which will be coupled into the system model. From February 1987 to March 1988, computer models have been selected to predict water flow (FEMWATER) and radionuclide transport (FEMWASTE) and separate models have been developed to predict pitting corrosion of steel containers and leaching from porous waste forms contained in corrodible containers. This report discusses each of the models in detail and presents results obtained from applying the models to shallow land burial trenches over a range of expected conditions. 68 refs., 34 figs., 14 tabs

  3. Los Alamos Experimental Engineering Waste Burial Facility: design considerations and preliminary experimental plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The Experimental Engineered Waste Burial Facility is a field test site where generic experiments can be performed on several scales to get the basic information necessary to understand the processes occurring in low-level waste disposal facilities. The experiments include hydrological, chemical, mechanical, and biological factors. In order to separate these various factors in the experiments and to extrapolate the experimental results to actual facilities, experiments will be performed on several different scales

  4. Low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T [Radioactive Waste Management Center, Tokyo (Japan)

    1980-08-01

    In the development and utilization of nuclear energy, variety of radioactive wastes arise. A largest part is low level radioactive wastes. In Japan, they are concentrated and solidified, and stored in drums. However, no low level wastes have yet been finally disposed of; there are now about 260,000 drums of such wastes stored on the sites. In Japan, the land is narrow, and its structure is geologically unstable, so that the sea disposal is sought. On the other hand, the development of technology for the ground disposal has lagged behind the sea disposal until recently because of the law concerned. The following matters are described: for the sea disposal, preparatory technology studies, environment safety assessment, administrative measures, and international control; for the ground disposal, experiments, surveys, disposal site selection, and the concept of island repositories.

  5. Analysis of Chemical Composition of Non-Ferrous Metal Items from the Ananyino Burial Ground

    Directory of Open Access Journals (Sweden)

    Saprykina Irina А.

    2016-03-01

    Full Text Available The article presents results of an analysis conducted by the authors in order to study chemical composition of items from non-ferrous metals found on the Ananyino burial ground. A number of research methods, including OES, XRF and TXRF was applied to study a selection of 387 samples of arrow- and spearheads, celts, tail-pieces, warhammers, poleaxes, knives and daggers, as well as items of attire and jewelry, some sporadic details of harness and bridle. The fi ndings are quite comparable. The results were classifi ed by the geochemical principle of 1,0% alloyage threshold. It was found out that the sample primarily consists of copper items, including “pure” copper and copper with a wide range of trace elements (particularly, Ni, As, Sb. The core (48% consists of copper items with traces of antimony and arsenic, or “pure” copper (7%, tin or triple bronze (40%; it also includes some other types of alloys based on copper or silver (5%. As the analysis has shown, complex ores seem to be the most probable source of copper. Traditionally, the Urals, the Sayan and the Altay Mountains, Kazakhstan and the Northern Caucasus were regarded as the most probable minefi elds to supply ores to the barren regions of Eastern Europe. While ore sources for products made of metallurgical “pure” copper are localized within the Ural mining and metallurgical region, metal sources for items cast from different groups of alloys (rather than imports of ready-made products require further research.

  6. Hydrologic and geologic aspects of low-level radioactive-waste site management

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations

  7. Effect of high lying states on the ground and few low lying excited O+ energy levels of some closed-shell nuclei

    International Nuclear Information System (INIS)

    Ayoub, N.Y.

    1980-02-01

    The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)

  8. Effect of phosphogypsum on workers and population`s radiation exposure in vicinity of phosphogypsum waste burial site

    Energy Technology Data Exchange (ETDEWEB)

    Othman, I; Hushari, M; Raja, G; Sawaf, A M [Atomic Energy Commission, Dept. of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic)

    1997-05-01

    The phosphogypsum waste burial site was studied in more details of radiation viewpoint. This waste results from phosphate industry. The study covered ground water, nearby houses, air and emission rates of radon from this waste burial site. Results showed increasing of radiation exposure in the studied site and nearby area for both workers and population. Fortunately, this area was studied before instruction of the waste burial site. So it was easy to compare the new results with the previous ones and see the difference. Indoor radon concentration increased about 70%. Results also showed high emission rates which result in significant dose. The site needs continuous monitoring because the amount of phosphogypsum is increasing. Also groundwater should be monitored continuously to see the effect of the waste in the future if it happened. (author). 5 refs., 7 figs., 5 tabs.

  9. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  10. Problems of solidificated radioactive wastes burial into deep geological structures

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Leonov, E.A.; Romadin, N.M.; Shishcits, I.Yu.

    1981-01-01

    Perspectives are noted of the radioactive wastes burial into deep geopogical structures. For these purposes it has been proposed to investigate severap types of rocks, which do not have intensive gas-generation when beeng heated; salt deposits and clays. Basing on the results of calculations it has been shown that the dimentions of zones of substantial deformations in the case of the high-level radioactive wastes burial to not exceed several hundreds of meters. Conclusion is made that in the case of choosing the proper geotogicat structure for burial and ir the case of inclusion in the structure of the burial site a zone of sanitary alienation, it is possible to isolate wastes safely for all the period of preservation. Preliminary demands have been formulated to geological structures and underground burial sites. As main tasks for optimizatiop of burial sited are considered: determination of necessary types, number and reliability of barriers which ensure isolation of wastes; to make prognoses of the stressed and deformed state of a geological massif on the influence of thermal field; investigation in changes of chemical and physical properties of rocks under heat, radiative and chemical influence; estimation of possible diffusion of radioactivity in a mountin massif; development of a rational mining-thechnological schemes of the burual of wastes of different types. A row of tasks in the farmeworks of this probtem are sotved successfutty. Some resutts are given of the theoretical investigations in determination of zones of distructions of rocks because of heat-load [ru

  11. U-Th Burial Dates on Ostrich Eggshell

    Science.gov (United States)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  12. Radionuclides in a deciduous forest surrounding a shallow-land-burial site in the eastern United States

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.; McShane, M.C.

    1981-06-01

    The objective of this study was to determine if radioactive materials buried in trenches at the Maxey Flats burial ground in eastern Kentucky have migrated into the surrounding oak-hickory forest. Forest floor litter, minearl soil, and tree leaves were sampled and the radionuclide content measured

  13. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  14. Erosion of earth covers used in shallow land burial at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Depoorter, G.L.; Drennon, B.J.; Simanton, J.R.; Foster, G.R.

    1984-01-01

    The Los Alamos National Laboratory and the USDA-ARS examined soil erosion and water balance relationships for a trench cap used for the shallow land burial of low-level radioactive waters at Los Alamos, NM. Eight 3.05 by 10.7 m plots were installed with bare soil, tilled, and vegetated surface treatments on a 15 by 63 m trench cap constructed from soil and crushed tuff layers. A rotating boom rain simulator was used to estimate the soil erodibility and cover-management factors of the Universal Soil Loss Equation (USLE) for this trench cap and for two undisturbed plots with natural vegetative cover. The implications of the results of this study are discussed relative to the management of infiltration and erosion processes at waste burial sites and compared with similar USDA research performed throughout the USA

  15. High-level waste glass field burial tests at CRNL

    International Nuclear Information System (INIS)

    Melnyk, T.W.; Walton, F.B.; Johnson, H.L.

    1983-06-01

    In 1960 June, 25 nepheline syenite-based glass hemispheres containing the fission products 137 Cs, 90 Sr, 144 Ce and 106 Ru were buried below the water table in fluvial sand at the Chalk River Nuclear Laboratories of Atomic Energy of Canada Limited. Soil and groundwater concentrations of 90 Sr and 137 Cs have been determined since then and the data have been interpreted using kinetically limited migration models to deduce the leaching history of the glass for these burial conditions. The leaching history derived from the field data is compared to laboratory leaching of samples from a glass hemisphere retrieved in 1978, and also to pre-burial laboratory leaching of identical hemispheres. The time dependence of the leach rates observed for the buried specimens suggests that leaching is being inhibited by the formation of a protective surface layer, although no direct observation of this layer has been made. Using an average leach rate of 5.6 x 10 -14 kg/(m 2 .s) derived from the field data for the period 1966 to 1977, it is estimated that it would require approximately 20 million years to dissolve the glass hemispheres. The effect of the kinetic limitations of the fission-product/fluvial-sand interactions is discussed with respect to the migration of 90 Sr and 137 Cs over a 20-a time scale. It is concluded that kinetically limited sorption by oxyhydroxides rather than equilibrium ion exchange controls the long-term migration of 90 Cr; the action of the oxyhydroxides immobilizes the 90 Sr on the longer time scale. Cesium is initially rapidly bound to the micaceous fraction of the sand. On a longer time scale, slow remobilization of 137 Cs in particulate form is observed and is believed to be related to bacterial action

  16. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  17. Burial diagenesis of deep sea chalk as reflected in Biot's coefficient

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Alam, Mohammad Monzurul

    2013-01-01

    to limestone as burial increases and porosity decreases. The porosity decrease is accompanied by an increasing velocity to elastic waves, and consequently a decreasing Biot's coefficient, as estimated from velocity and density of core samples. When the effective burial stress is normalized to total horizontal....... In the ooze, we find that the natural compaction causes an increasing stress on grain contact area, indicating that the ooze particles become strongly strained. In the chalk section, contact cement is probably the reason why particles become less strained as porosity declines. In the limestone, stress...... on particles apparently is low and not correlated with porosity, probably because the pore-filling cementation in this interval causes Biot's coefficient to decline as burial increases. Limestone from the water zone of the North sea Chalk Group follows the same stress trend as deep sea limestone. These results...

  18. Survey of agents and techniques applicable to the solidification of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

    1981-12-01

    A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial

  19. Survey of agents and techniques applicable to the solidification of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

    1981-12-01

    A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

  20. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  1. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  2. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1979-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, NY, are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and/or reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  3. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1977-07-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y. are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and(or) reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  4. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  5. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  6. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  7. The NRC perspective on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, H.L. Jr.; Knapp, M.R.

    1987-01-01

    This paper describes the Nuclear Regulatory Commission's (NRC) actions in response to the Low-Level Radioactive Waste Policy Amendments Act (the Act) and NRC's assistance to States and Compacts working to discharge their responsibilities under the Act. Three of NRC's accomplishments which respond explicitly to direction in the Act are highlighted. These are: development of the capability of expedited handling of petitions addressing wastes below regulatory concern (BRC); development of capability to review and process an application within fifteen months; and development of guidance on alternatives to shallow land burial. Certain NRC efforts concerning special topics related to the Act as well as NRC efforts to assist States and Compacts are summarized

  8. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  9. Screening of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.J.; Thamer, B.J.; Christensen, D.E.; Wehmann, G.

    1978-10-01

    A systematic method for categorizing these disposal alternatives which provides assurance that no viable alternatives are overlooked is reported. Alternatives are categorized by (1) the general media in which disposal occurs, (2) by whether the disposal method can be considered as dispersal, containment or elimination of the wastes, and (3) by the applicability of the disposal method to the possible physical waste forms. A literature survey was performed and pertinent references listed for the various alternatives discussed. A bibliography is given which provides coverage of published information on low-level radioactive waste management options. The extensive list of disposal alternatives identified was screened and the most viable choices were selected for further evaluation. A Technical Advisory Panel met and reviewed the results. Suggestions from that meeting and other comments are discussed. The most viable options selected for further evaluation are: (1) improving present shallow land burial practices; (2) deeper depth burial; (3) disposal in cavities; (4) disposal in exposed or buried structures; and (5) ocean disposal. 42 references

  10. Structure of automated system for tracking the formation and burial of radioactive wastes

    International Nuclear Information System (INIS)

    Kozlov, A.A.

    1993-01-01

    Intermediate- and low-activity wastes are formed when radionuclides are used in science, industry, agriculture, and medicine. A centralized system, including territorial specialized complexes and radioactive-waste burial sites (RWBS), has been created for collection, processing, and long-term storage. At this time, however, the records kept of wastes for long-term storage and assessment of their preparation for burial do not come up to current scientific and technical requirements at most RWBSs in Russia. It is necessary, therefore, to create an automated tracking system. Earlier studies, considered the design of a system for monitoring and recording the handling of sources of ionizing radiation, which are the most hazardous part of the wastes. The novel proposed automated system incorporates distinctive functional elements and makes for higher quality waste processing and efficient data exchange. It performs such functions as recording the wastes earmarked for burial, processing, and long-term storage, and where they are stored in the RWBS; ensuring an optimum cycle of collection, transportation, processing, and long-term storage of wastes; recording planned monitored levels of discharges and ejections of substances at the RWBSs; recording the wastes delivered for storage and stored on RWBSs; making calculations, including an estimate of the costs of transport, processing, and storage of wastes for each enterprise, with allowance for penalties; classifying wastes according to processing methods and determining the optimum operating regime and technological facilities; identifying the parameters of wastes delivered for processing and burial; and predicting the deliveries of wastes to RWBSs, planning the construction of new special storage facilities and containers for temporary and long-term storage of wastes

  11. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-01-01

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  12. Modeling the flow of water in and around shallow burial trenches

    International Nuclear Information System (INIS)

    Suen, C.J.

    1988-01-01

    Water flow through a generic low-level waste burial trench has been modeled for a vertical cross-section perpendicular to the longitudinal axis of an elongated trenched, using the finite element code, FEMWATER, in two-dimensional vertical mode. The grid consists of 513 nodes and 468 variable-size quadrilateral elements, and the simulation domain is about 56 m (H) /times/ 34 m (V). The traench, which is situated in the unsaturated zone, measures approximately 28 m wide and 10 m deep in cross-section, and is composed of three types of soil - a high-conductivity gravel cap on top, a low-conductivity clay layer beneath it, and backfill soil in the waste burial region. The rest of the domain is made up of undisturbed soil. Different cases have been simulated by varying boundary conditions, geometry and hydraulic properties. These results are used in radionuclide transport calculations to determine the ''source term'' (4). In addition, numerical experiments provide valuable information in trench design, such as, the geometry of the moisture barrier. Results from these experiments indicates that a moderate extension (8 m) of the clay layer beyond the sides of the trench can significantly reduce the net water flow (by 42%). They also show that sparsely distributed waste package have minimal effect on the net flow through the trench. 10 refs., 7 figs., 3 tabs

  13. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  14. Biological intrusion of low-level-waste trench covers

    Science.gov (United States)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  15. Late Sarmatian Elite Military Burial From the Southern Urals

    Directory of Open Access Journals (Sweden)

    Krivosheev Mikhail Vasilyevich

    2015-12-01

    Full Text Available The article is devoted to the burial of a warrior of Late Sarmatian time from the Southern Urals. The complex from mound no. 4 of the burial mound Taksai I is distinguished by large size of barrow and grave. The reconstructed height of the mound was less than 2 meters. The depth of the burial pit was more than 3 meters. For Late Sarmatian culture such dimensions of sepulchral structures are unique. Under the mound the ritual platform from mainland soil was discovered. The found inventory of a warrior-rider included: horse bridle, a set of bladed weapons consisting of a long sword, dagger and knife, as well as a small bronze cauldron. Analysis of inventory allows us to date this burial to the second half of the 3rd century A.D. This burial belongs to an elite funerary complexes of Late Sarmatian culture and is a burial of professional warriors. This social stratum was formed in Late Sarmatian society at the end of the 2nd - first half of the 3rd century A.D. Most of these graves are dating back to the first half of the 3rd century A.D and were found in the Low Don and in the Volga region. The situation in these regions changed in that period due to the invasion of the tribes of the North-Caucasian origin. Their occurrence is associated with the destruction of the Tanais in the Lower Don region and the spread of graves in the T-shaped catacombs in the steppe monuments. The tradition of burying warriors-horsemen of high social status almost disappears in the Volga-Don steppes after the middle of 3rd century A.D. In the Southern Urals where these processes had an indirect influence, the existence of traditional hierarchies of Late Sarmatian society could continue until the end of the 3rd century A.D. Among the parts of a horse bridle the researchers discovered bronze B-shape buckle. These buckles are widely distributed in the 4th-5th centuries A.D. in the basin of the Kama river and the Danube river. The found buckle is the earliest currently known

  16. Phosphorus burial in the ocean over glacial-interglacial time scales

    Directory of Open Access Journals (Sweden)

    F. Tamburini

    2009-04-01

    Full Text Available The role of nutrients, such as phosphorus (P, and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17–40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites

  17. Experience and related research and development in applying corrective measures at the major low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Rose, R.R.; Mahathy, J.M.; Epler, J.S.; Boing, L.E.; Jacobs, D.G.

    1983-07-01

    A review was conducted of experience in responding to problems encountered in shallow land burial of low-level radioactive waste and in research and development related to these problems. The operating histories of eleven major disposal facilities were examined. Based on the review, it was apparent that the most effective corrective measures administered were those developed from an understanding of the site conditions which caused the problems. Accordingly, the information in this document has been organized around the major conditions which have caused problems at existing sites. These include: (1) unstable trench cover, (2) permeable trench cover, (3) subsidence, (4) ground water entering trenches, (5) intrusion by deep-rooted plants, (6) intrusion by burrowing animals, and (7) chemical and physical conditions in trench. Because the burial sites are located in regions that differ in climatologic, geologic, hydrologic, and biologic characteristics, there is variation in the severity of problems among the sites and in the nature of information concerning corrective efforts. Conditions associated with water-related problems have received a great deal of attention. For these, corrective measures have ranged from the creation of diversion systems for reducing the contact of surface water with the trench cover to the installation of seals designed to prevent infiltration from reaching the buried waste. On the other hand, corrective measures for conditions of subsidence or of intrusion by burrowing animals have had limited application and are currently under evaluation or are subjects of research and development activities. 50 references, 20 figures, 10 tables

  18. Management for low and intermediate level wastes in Brazil

    International Nuclear Information System (INIS)

    Franzen, H.R.

    1986-01-01

    A research and demonstration project was developed, to offer management options for low and intermediate level radioactive wastes. The project considered: the experience of other countries; the laws and regulations according to internationally accepted standards; criteria and recommendations; the technical, socio-political realities, and the expectation of our countrie related to the nuclear power plants. Preliminary guidelines for waste acceptance critetia were established. The solution for shallow land burial was a multibarrier system. Since, there is no final decision about the repository localization it was decided that the waste produced by nuclear power plants will be kept on-site and those from medicine, agriculture, industry and research are sent to the IPEN/CNEN-SP for treatment and temporary storage. (Author/M.C.K.) [pt

  19. Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide

    International Nuclear Information System (INIS)

    Spalding, B.P.; Fontaine, T.A.

    1990-01-01

    Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 x 10 -3 to 1.85 x 10 -5 cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents

  20. Experience with disposal of low-level radioactive waste: building confidence for and against the regulations

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Lowenthal, M.D.

    2001-01-01

    Following the controversy regarding the potential use of the Ward Valley site in California as a low level radioactive waste facility, an Advisory Group and a Scientific Panel were formed to recommend alternatives to the Governor. During the course of the Group and Panel deliberations, the arguments for and against near surface burial and waste classification were crystallized. In this paper we discuss the bases upon which the arguments were formed and what we can learn from them. (author)

  1. Experience with disposal of low-level radioactive waste: building confidence for and against the regulations

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E.; Lowenthal, M.D. [University of California, Dept. of Nuclear Engineering, CA (United States)

    2001-07-01

    Following the controversy regarding the potential use of the Ward Valley site in California as a low level radioactive waste facility, an Advisory Group and a Scientific Panel were formed to recommend alternatives to the Governor. During the course of the Group and Panel deliberations, the arguments for and against near surface burial and waste classification were crystallized. In this paper we discuss the bases upon which the arguments were formed and what we can learn from them. (author)

  2. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  3. Preliminary assessment of geologic materials to minimize biological intrusion of low-level waste trench covers and plans for the future

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Gladney, E.S.; Muller, M.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause radionuclide transport from a waste site. Preliminary results demonstrate that a sandy backfill material offers little resistance to root and animal intrusion through the cover profile. However, bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion through cover profiles compared with sandy backfill soil. However, bentonite clay barrier systems appear to be degraded by plant roots through time. Desiccation of the clay barrier by invading plant roots may limit the usefulness of bentonite clay as a moisture and/or biological carrier unless due consideration is given to this interaction. Future experiments are described that further examine the effect of plant roots on clay barrier systems and that determine the effectiveness of proposed biological barriers on larger scales and under various stress conditions

  4. Mound No. 24 of the Alebastrovo I Burial Ground and the Problem of Succession Among the Early Nomadic Cultures of the Southern Urals in the 6th – 4th and 3rd – 1st Centuries BC

    Directory of Open Access Journals (Sweden)

    Denis V. Maryksin

    2017-03-01

    Full Text Available The article focuses on one of the burial mounds – Alebastrovo I, which is situated in the middle reaches of the Ural river. The analysis of the burial rite and grave goods reveals the combination of features peculiar of the culture of early nomads from the 6th to the 4th centuries BC and later features typical for the 3rd – 1st centuries BC. The collective nature of the burial in a large square pit (burial no. 2 relates to early features. Such burials are typical for the 5th and 4th centuries BC. But a dagger with a direct crosshair and a crescent-shaped pommel found in the burial belongs to the 3rd – 1st centuries BC. Findings of a mirror, a spoon and a whorl also deserve special attention. On formal grounds a mirror belongs to the type “Skripkin 1.6” – with a flat disk without roll and stick in the form of a triangular stem. They appeared in Sauromatian time, but were not widespread. Most of these mirrors refer to the turn of the eras – the first centuries AD. However, in our view the mirror from Alebastrovo I has the greatest similarity with the mirror disks of the so-called “musical” mirrors, which date back to the 2nd half of the 4th century BC. The bone spoon belongs to the type I, peculiar of the Sauromatian-time things of the 6th – 4th centuries BC. However, the pattern is similar to that on the handle of the bone products of later time – the 3rd – 2nd centuries BC. Clay whorl has a pattern in the form of 4 sectors, decorated with grooves and pits. Analogies are available on this ornament spindles from the 3rd – 2nd centuries BC of the Kara-Abyz culture in the Southern Urals. According to the set of attributes, this burial mound dated to the second half of the 3rd - 2nd centuries BC. The finds from this burial mound confirm the conclusion of the first explorer B. F. Zhelezchikov about continuity of the development of the early nomadic culture of this region in the 6th – 3rd centuries BC.

  5. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  6. Sarmatian Burials Near the Astanino Village in the Eastern Crimea

    Directory of Open Access Journals (Sweden)

    Kropotov Viktor Valeryevich

    2015-06-01

    Full Text Available The present article contains the materials of two Sarmatian burials that had been studied in 1966-1967 years by the Kerch expedition of Institute of Archeology of Academy of Sciences of Ukraine (the chief of expedition – A.M. Leskov in the Astanino village in the Eastern Crimea. These burials had been made on small depth in embankments of barrows of the bronze epoch, therefore it is not possible to track contours of funeral constructions. The dead were laid on their backs, heads turned to the North and the North-West. The utensils buried in the same tombs included two ceramic gray-clay pelikes, two gray-clay bowls, a red-gloss vessel, a red-clay pottery, a set of glass and cornelian beads, and the Egyptian faience beads. These things allow to exactly date the investigated complexes within the second half of the 1st century BC – the beginnings of the 1st century AD. The main distinctive characteristics of Early-Sarmatian burials of Northern Pontic region consist in the use of already existing barrows for burial places, orientations of the dead in the Northern sector, the insignificant depth of burials. Therefore published monuments should be also referred to them. A small number of such complexes with their distribution on the quite big territory between the Don and Dnepr rivers testify to the low density of the nomadic population at that time. The antique sources of the end of the 2nd – 1st centuries BC mention the presence of Roxolani in the given region. The described complexes supplement our poor knowledge of Sarmatian antiquities of the Eastern Crimea and specify the direct contacts of nomads of Northern Pontic region to the antique centers, in immediate proximity from which they had been located.

  7. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  8. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  9. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base

  10. A container for storage and disposal of low-level waste

    International Nuclear Information System (INIS)

    Fish, R.L.; Butler, B.D.

    1989-01-01

    A unique concept for corrosion-resistant containers for storing and disposing of low-level radioactive, mixed and toxic wastes has been developed. The strength and low cost of carbon steel has been combined with the corrosion and abrasion resistance of a proprietary combination of polymers to provide an inexpensive alternative to currently available waste containers. The initial development effort has focused on a 55-gallon container, the B and W ECOSAFE-55 tm . However, Babcock and Wilcox (B and W) can develop a family of ECOSAFE waste containers using this technology to accommodate user-preferred configurations and volumes. The containers will be capable of accepting a wide range of low-level radioactive (LLRW) and industrial waste forms. Basic engineering design analyses and functional tests were performed to show compliance of the container with transportation functional requirements. These tests and analyses, along with chemical resistance tests, qualify the container for use in storing a wide range of radioactive and chemical wastes. For the container to be licensed for use as a high-integrity container in shallow land, low-level radioactive waste burial facilities, the Nuclear Regulatory Commission requires certain tests and analyses to demonstrate that container gross physical properties and identity can be maintained for 300 years. This paper describes the container concept in generic terms and provides information on the initial, ECOSAFE-55 container design, testing and engineering analysis efforts

  11. Burial ground as a containment system: 25 years of subsurface monitoring at the Savannah River Plant Facility

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1982-01-01

    As the Savannah River Plant (SRP) solid wastes containing small quantities of radionuclides are buried in shallow (20' deep) trenches. The hydrogeology of the burial site is described together with a variety of subsurface monitoring techniques employed to ensure the continued safe operation of this disposal facility. conclusions from over two decades of data collection are presented

  12. Review of criterias for shallow burial sites and geohydrological evaluation around the site of temporary storage of low-level solid radioactive wastes of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Chandra, U.; Marcelino, S.

    1986-01-01

    Some comments about norms of pollutants release from nuclear and other industries are made. For radioactive discharges, the strictly implemented national norms/criterias, are much more advanced technically than those existing for other pollutants. Based on the criterias of site selection and site evaluations, the site of IPEN for temporary storage of low level solid radioactive waster has been evaluated geohydrologically. Rainfall infiltration rate (297 cm/y) was determined by tritium labelling technique. Ground water velocity (max. 46.1 cm/d) and direction (to north) was determined by various radioactive (Br-82, I-131, Cr-51) tracers using single well techniques. (Author) [pt

  13. Roman Bronze Vessels From the Late Sarmatian Burial of the Lebedevka Burial-Ground in Western Kazakhstan

    Directory of Open Access Journals (Sweden)

    Treister Mikhail Yuryevich

    2015-12-01

    Full Text Available This paper is devoted to studying cultural monuments – bronze vessels, a jug and a basin from the barrow no. 1/1967 of the Lebedevka Late Sarmatian burial mound (Western Kazakhstan, dating back to the middle of the 3rd century AD at the latest. These items do not find exact parallels among the bronze vessels of provincial Rome. Although the shape of the jug handle with a curved leaf turned upright between two horizontally arranged swan heads has parallels on the so-called “composite jug with handles” (“gegliederten Henkelkrügen”, the cylindrical form of the jug’s neck peculiar of the glass jugs of allegedly Syrian manufacture of the second half of the 3rd-4th centuries AD is very unusual. Even more unusual is a basin with horizontally bent rim and elaborate handles with pearls on a high narrow stand-ring. The XRF analyses of the Lebedevka jug’s metal revealed that its body and handle were made of a copper-based alloy with very high admixtures of zinc (24-27 % and inconsiderable additions of lead (up to 3 %. A similar alloy was used for manufacturing a vessel in the form of a crouching young negro from Niederbieber. Most objects of provincial Roman import reached Western Kazakhstan via the Bosporan kingdom along the Northern branch of the Silk Road. The above discussed bronze vessels from Lebedevka let suggest, that the nomads could receive some import articles that were brought along the caravan routes leading from Egypt and Syria to the East.

  14. Sickly slaves, soldiers and sailors. Contextualising the Cape's 18th–19th century Green Point burials through isotope investigation

    NARCIS (Netherlands)

    Mbeki, Linda; Kootker, Lisette M.; Kars, Henk; Davies, Gareth R.

    2017-01-01

    Strontium isotope data of multiple dental enamel samples, and carbon and nitrogen isotope data of dentine and bone collagen samples from 27 individuals excavated from the mid-18th to mid-19th century Victoria & Albert Marina Residence paupers burial ground in the vicinity of Green Point, Cape Town,

  15. Soil burial biodegradation studies of palm oil-based UV-curable films

    Science.gov (United States)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  16. Soil burial biodegradation studies of palm oil-based UV-curable films

    International Nuclear Information System (INIS)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels

  17. Soil burial biodegradation studies of palm oil-based UV-curable films

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my; Abdurahman, Mohamad Norahiman, E-mail: iman5031@yahoo.com [Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Salih, Ashraf Mohammed, E-mail: ashraf.msalih@gmail.com [Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum, 1111 Sudan (Sudan); Fathy, Siti Farhana, E-mail: farhana811@hotmail.com [Laboratory of Molecular Biomedicine, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor (Malaysia); Azman, Anis Asmi, E-mail: anisasmi18@gmail.com; Hamidi, Nur Amira, E-mail: amirahamidi93@yahoo.com [School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 USM, Pulau Pinang (Malaysia)

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  18. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  19. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  20. Low-level waste disposal site geotechnical subsidence corrective measures: technical progress

    International Nuclear Information System (INIS)

    Phillips, S.J.; Winterhalder, J.A.; Gilbert, T.W.

    1983-01-01

    A geotechnical test facility has been constructed at the Hanford Site Richland Site Richland, Washington. The purpose of this facility is to quantitatively evaluate the performance of alternative technologies to ameliorate geomechanical subsidence in solid waste burial structures. Alternatives to be tested include; accelerating mass ground surface impact, and two optional subsurface rod injection/withdrawal techniques. The alternatives involve the principle of dynamic consolidation of buried waste and matrix materials. A description of the geotechnical test facility, the monitoring instrumentation used therein, laboratory soil mechanics data evaluation, and facility baseline monitoring data are presented. 6 references, 5 figures

  1. Potential role of biotic transport models in low-level-waste management

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Soldat, J.K.; Cadwell, L.L.; McKenzie, D.H.

    1982-01-01

    This paper is a summary of the initial results of a study being conducted for the US Nuclear Regulatory Commission (NRC) to determine the relevance of biotic pathways to the regulation of nuclear waste disposal. Biotic transport is defined as the actions of plants and animals that result in the transport of radioactive materials from a LLW burial ground to a location where they can enter exposure pathways to man. A critical review of the role of modeling in evaluating biotic transport is given. Both current applications and the need for future modeling development are discussed

  2. Textiles from Scythian burial complexes

    Directory of Open Access Journals (Sweden)

    Elena Fialko

    2013-12-01

    Full Text Available In Northern Black Sea steppes were excavated more than three thousand Scythian burial mounds. In the studied burials were discovered large quantities of artifacts, but leather and textile items are preserved only in a few cases. Some ideas about Scythian costume are found in the works of Greek authors. In this regard, extremely important is the funerary complex dated with the 4th century BC, discovered in barrow Vishnevaja Moghila (Zaporizhia region, Ukraine. In the crypt, which remained undisturbed over time, was found a burial of a Scythian girl. The unique condition of preservation of the textiles and leather findings allowed reconstructing the entire costume of the Scythian. It consisted of six layers of clothing. Various pieces of clothing were made from different materials: white linen cloth, orange satin fabric, reddish-brown fur, black cloth, fur, red skin. This discovery is one of a kind in the Northern Black Sea region, which is currently a reference example of female costume of early nomads of the region.

  3. Economic analysis of a volume reduction/polyethylene solidification system for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-01-01

    A study was conducted at Brookhaven National Laboratory to determine the economic feasibility of a fluidized bed volume reduction/polyethylene solidification system for low-level radioactive wastes. These results are compared with the ''null'' alternative of no volume reduction and solidification of aqueous waste streams in hydraulic cement. The economic analysis employed a levelized revenue requirement (LRR) technique conducted over a ten year period. An interactive computer program was written to conduct the LRR calculations. Both of the treatment/solidification options were considered for a number of scenarios including type of plant (BWR or PWR) and transportation distance to the disposal site. If current trends in the escalation rates of cost components continue, the volume reduction/polyethylene solidification option will be cost effective for both BWRs and PWRs. Data indicate that a minimum net annual savings of $0.8 million per year (for a PWR shipping its waste 750 miles) and a maximum net annual savings of $9 million per year (for a BWR shipping its waste 2500 miles) can be achieved. A sensitivity analysis was performed for the burial cost escalation rate, which indicated that variation of this factor will impact the total levelized revenue requirement. The burial cost escalation rate which yields a break-even condition was determined for each scenario considered. 11 refs., 8 figs., 39 tabs

  4. Derivation methods for clearance levels and safety assessments for very low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2001-01-01

    The clearance level was evaluated by the dose of concrete and metal when they would be recycled and reused from shallow land burial of radioactive facilities. The state of waste after clearance is not specified, so that we studied large scale of exposure pathways. The parameter values used for safety assessment were determined as the average values under the consideration of natural and social environment in Japan. Propriety of these values was confirmed by a probability analysis. On the safety assessment of very low-level waste disposal facility, the disposer pathway and parameters were determined under the consideration of special site conditions (natural and social environment) and properties of waste. However, the same exposure pathway of them used the same model for external (exposure by sky shine' s ray) and internal exposure. The calculation results of estimated pathway showed 1.2x10 -5 mSv/y the largest dose for the external exposure pathway by sky shine's ray. (S.Y.)

  5. Shallow Land Burial Technology - Humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.

    1983-01-01

    The Shallow Land Burial Technology - Humid Project is being conducted for the Department of Energy Low-Level Waste Management Program with the objective of identifying and demonstrating improved technology for disposing of low-level solid waste in humid environments. Two improved disposal techniques are currently being evaluated using nine demonstration trenches at the Engineered Test Facility (ETF). The first is use of a cement-bentonite grout applied as a waste backfill material prior to trench closure and covering. The second is complete hydrologic isolation of waste by emplacement in a trench that is lined on all four sides, top and bottom using synthetic impermeable lining material. An economic analysis of the trench grouting and lining demonstration favored the trench lining operation ($1055/demonstration trench) over trench grouting ($1585/demonstration trench), with the cost differential becoming even greater (as much as a factor of 6 in favor of lining for typical ORNL trenches) as trench dimensions increase and trench volumes exceed those of the demonstration trenches. In addition to the evaluation of trench grouting and lining, major effort has centered on characterization of the ETF site. Though only a part of the overall study, characterization is an extremely important component of the site selection process; it is during these activities that potential problems, which may obviate the site from further consideration, are found. Characterization of the ETF has included studies of regional and site-specific geology, the physical and chemical properties of the soils in which the demonstration trenches are located, and hydrology of the small watershed of which the ETF is a part. 12 references, 6 figures, 2 tables

  6. The Application of GPR in Florida for Detecting Forensic Burials

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; J. J. Schultz; S. Ono; H. Lee

    2003-01-01

    A study was performed at the University of Florida to measure ground penetrating radar(GPR) performance for detecting forensic burials. In controlled scenarios, 24 burials were constructed with pig cadavers. Two soils were utilized to represent two of the most common soil orders in Florida: an Entisol and an Ultisol. Graves were monitored on a monthly basis for time periods up to 21 months with grid data acquired with pulsed and swept-frequency GPR systems incorporating several different frequency antennas. A small subset of the graves was excavated to assess decomposition and relate to the GPR images during the test. The grave anomalies in the GPR depth profiles became less distinctive over time due to body decomposition and settling of the disturbed soil (backfill) as it compacted. Soil type was a major factor. Grave anomalies became more difficult to recognize over time for deep targets that were within clay. Forensic targets that were in sandy soil were recognized for the duration of this study. Time elapsed imagery will be presented to elucidate the changes, or lack thereof, of grave anomalies over the duration of this study. Further analysis was performed using Synthetic Aperture Radar (SAR) reconstruction of images in 2-D and 3-D.

  7. Application of biological barriers in maintaining the integrity of radioactivity in shallow burial grounds

    International Nuclear Information System (INIS)

    Cline, J.F.

    1979-05-01

    Stabilization of a shallow burial site requires some means of keeping buried radioactive wastes in place and preventing the movement of radioactive elements into the biosphere by various vectors present in the soil covering the burial site. By placing a barrier between the surface of the soil and the buried wastes, it would be possible to isolate the wastes from the biosphere and eliminate the movement of radioactive elements into the environment. An effective biobarrier would make it possible to grow plants over the buried wastes regardless of rooting habits; the plants would stabilize the surface soil, prevent wind erosion, and transpire soil water back into the air, thus preventing it from percolating downward through the buried wastes. This report summarizes the finding of a study undertaken to determine the effectiveness of natural cobblestones as a long-term biobarrier. In the initial field study, we investigated whether a thick layer of cobblestones would prevent plant roots and burrowing animals from reaching contaminated materials and transferring radionuclides to the soil surface. In a subsequent greenhouse study, three modifications of the cobblestone barrier were tested, including the addition of another layer of stones, one of asphalt, and one of a root toxin. These data show that cobblestone can be effective as a barrier to burrowing animals and insects, but not totally effective as a barrier to plant roots. Because of variable weather patterns at Hanford, five to six year studies are recommended for further studies on the effectiveness of different materials as biobarriers to radioactive substances. Stone size appeared to affect the plants' rate of root growth since root growth slowed in the air spaces between stones. Root toxin was 100% effective as a means of keeping roots out of the buried waste; this method could be used as a barrier modification where no plant cover is needed

  8. Design improvements on shallow-land burial trenches for disposing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Takamura, E.S.; Salsman, J.M.

    1984-01-01

    The lack of success of closed low-level radioactive waste disposal sites has prompted the federal government to increase regulation of these facilities. In order to meet these increased requirements, several waste trench improvements are necessary. These improvements to the trench include sandy-clay caps, compacted sandy-clay bottoms, in-place geophysical instruments and vadose zone sampling equipment, and concrete sidewalls. These design improvements presented in this paper should increase the containment of the radionuclides by decreasing the waste contact with infiltrating groundwater. The design improves on the monitoring and sampling methods for detecting radionuclides transported through the leachate or gas effluent streams. 13 references, 4 figures

  9. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  10. Formation of Burial Mounds of the Sarmatian Time in the Basin of the Esaulovsky Aksai River

    Directory of Open Access Journals (Sweden)

    Elena A. Korobkova

    2017-09-01

    Full Text Available The article deals with the features of the formation of the burial mounds in the basin of the Esaulovsky Aksai river in the Sarmatian period. Most of the burial mounds of the region begin to form in the Bronze Age and continue to function throughout the early, middle and early late-Sarmatian periods. Most of the burial mounds were located on the watersheds and above-flood terraces of different levels. All of them are characterized by same principles of planning, barrows in them are stretched in a chain in the natural form of the terrace on which the burial mound was built. The territories developed already in the Bronze Age were chosen for creating mounds in the early Sarmatian period. The main part of them is concentrated on a small section landplot of the middle course of the Esaulovsky Aksai river. During the Middle Sarmatian period, the main part of barrows were also located in the middle course of the Esaulovsky Aksai, but represented 2 plots. One of these plots continues to use large burial mounds of the previous period, and the other one undergoes the creation of small barrow groups consisting usually of two-three barrows containing the richest burials of the region with the “classical” set of Middle Sarmatian features. In the late Sarmatian period, as well as in the previous stages of the Sarmatian culture, the burial mounds of the middle course of the Esaulovsky Aksai continue to be used, which cease to function no later than at the first half of the 3rd century AD. But the territory of actively used burial mounds changes, and the main complexes of that time concentrate in the upper reaches, where new burial mounds are created and continue to function until the end of the Sarmatian era.

  11. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  12. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  13. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  14. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  15. Preliminary report on the hydrogeology of a low-level radioactive waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Erickson, J.R.

    1980-01-01

    The Sheffield low-level radioactive-waste disposal site is located on 20 acres of rolling terrain about 3 miles southwest of Sheffield, Illinois. Twenty-one trenches were constructed and filled with radioactive waste from August 1967 through April 1978. Forty-three test wells were installed by the U.S. Geological Survey on and adjacent to the site. Continuous cores were collected from 36 wells to help in defining the subsurface geology. The wells have been used for water sample collection and to monitor water-level changes. A tunnel, 6.5 feet in diameter by 290 feet in length, was constructed beneath four burial trenches to provide access for collection of hydrologic and geologic data. Pennsylvanian shale and mudstone deposits are overlain by Pleistocene glacial deposits consisting of the Teneriffe Silt, Glasford Formation, Roxana Silt, Peoria Loess, Parkland Sand, Cahokia Alluvium, and Henry Formation. Three till units of the Glasford Formation, the Hulick Till Member, the Radnor Till Member, and Till A have been identified on the site. Stratigraphic position indicates that the Hulick Till Member and Till A are probably variations of the same till. A continuous pebbly sand deposit, classified as part of the Toulon Member, extends across the middle of the site and continues off site on the northeast and southwest corners. Because of its relatively high hydraulic conductivity, this deposit will be a controlling factor in shallow groundwater movement and in any radionuclide migration. Ground water at the site is derived through infiltration of precipitation and as underflow from adjacent highlands. Precipitation averages 35 inches per year, 1 or 2 inches of which probably recharge the ground water. Runoff is estimated to be 12 to 15 inches per year and evapotranspiration about 20 inches. The fluctuation of water levels has been about 2.5 feet in hilltop wells, 3.6 feet in sidehill wells, and 5.9 feet in valley wells. Hydraulic conductivity of the materials comprising

  16. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill I, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1994-03-01

    This document refers to data concerning the Environmental Restoration Program implemented at the Oak Ridge Y-12 plant. Topics discussed include: Remediation plans for the burial grounds, sanitary landfill I, oil retention ponds, S-3 ponds, and the boneyard/burnyard at Y-12. This document also contains information about the environmental policies regulating the remediation

  17. Grout testing and characterization for shallow-land burial trenches at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tallent, O.K.; Sams, T.L.; Tamura, T.; Godsey, T.T.; Francis, C.L.; McDaniel, E.W.

    1986-10-01

    An investigation was conducted to develop grout formulations suitable for in situ stabilization of low-level and transuranic (TRU) waste in shallow-land burial trenches at Idaho National Engineering Laboratory (INEL). The acceptabilities of soil, ordinary particulate, and fine particulate grouts were evaluated based on phase separation, compressive strength, freeze/thaw, penetration resistance, rheological, water permeability, column, and other tests. Soil grouts with soil-to-cement weight ratios from 0.91 to 1.60 were found to be suitable for open trench or drum disposal. Ordinary particulate grouts containing type I,II Portland cement, class C fly ash, bentonite, water, and a fluidizer were formulated to fill large voids within the soil/waste matrix of a closed shallow-land burial trench. Fine particulate grouts containing fine (mean particle size, 9.6 m) cement and water were formulated to fill smaller voids and to establish a grout-soil barrier to prevent water intrusion into the grouted waste trench. Solution, or chemical grouts, were evaluated as possible substitutes for the fine particulate grouts

  18. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  19. Testing-ground investigations of radionuclide migration in temporary area for radioactive waste localization << Ryzhy Les >>.; Poligonnye issledovaniya migratsii radionuklidov na uchastke punkta vremennoj lokalizatsii radioaktivnykh otkhodov << Ryzhij les >>.

    Energy Technology Data Exchange (ETDEWEB)

    Dzhepo, S P; Skal` skij, A S; Bugaj, D A; Gudzenko, V V; Mogil` nyj, S A; Proskura, N I [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Geologicheskikh Nauk; [Admyinyistratsyiya zoni vyidchuzhennya, Chernobil` (Ukraine)

    1994-12-31

    Experimental investigations carried out on testing grounds have permitted studying hydrogeological and geochemical conditions, contamination levels of ground waters and mechanisms of radionuclide migration in the areas of radioactive waste burial in sector 2.1 of temporary area for radioactive waste localization << Ryzhy Les >>. Distribution coefficients for {sup 137} Cs and {sup 90} Sr as well as chemical forms of sorbed radionuclides have been determined under in situ conditions. Lateral rates of radionuclide migration in ground waters are estimated.

  20. Low-level radioactive wastes in subsurface soils

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-01-01

    Low-level radioactive wastes will continue to be buried in shallow-land waste disposal sites. Several of the burial sites have been closed because of the problems that developed as a result of poor site characteristics, types of waste buried, and a number of other environmental factors. Some of the problems encountered can be traced to the activities of microorganisms. These include microbial degradation of waste forms resulting in trench cover subsidence, production of radioactive gases, and production of microbial metabolites capable of complexation, solubilization, and bioaccumulation of radionuclides. Improvements in disposal technology are being developed to minimize these problems. These include waste segregation, waste pretreatment, incineration, and solidification. Microorganisms are also known to enhance and inhibit the movement of metals. Little is known about the role of autotrophic microbial transformations of radionuclides. Such microbial processes may be significant in light of improved disposal procedures, which may result in reductions in the organic content of the waste disposed of at shallow-land sites. 102 references, 5 figures, 19 tables

  1. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  2. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  3. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated

  4. About the problem of self-burial of radioactive wasters

    International Nuclear Information System (INIS)

    Kosachevskij, L.Ya.; Syui, L.S.

    1999-01-01

    Problem dealing with self-burial of finite thickness spherical container with radioactive waste into the melting rock was approached. The elaborated mathematical model in contrast to the available ones takes account of thermal losses in the hard rock and in the melting behind the container as well as, the back heat release at melting hardening. Calculation conducted for the particular case of self-burial into granite demonstrates that accounting of these factors increases essentially the maximum permissible radius when container remains in the solid state and decreases the rate of its burial [ru

  5. Site selection criteria for shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Falconer, K.L.; Hull, L.C.; Mizell, S.A.

    1982-01-01

    Twelve site selection criteria are presented. These are: (1) site shall be of sufficient area and depth to accommodate the projected volume of waste and a three dimensional buffer zone; (2) site should allow waste to be buried either completely above or below the transition zone between the unsaturated and saturated zones; (3) site should be located where flooding will not jeopardize performance; (4) site should be located where erosion will not jeopardize performance; (5) site should be located in areas where hydrogeologic conditions allow reliable performance prediction; (6) site should be located where geologic hazards will not jeopardize performance; (7) site should be selected with considerations given to those characteristics of earth materials and water chemistry that favor increased residence times and/or attenuation of radionuclide concentrations within site boundaries; (8) site should be selected with consideration given to current and projected population distributions; (9) site should be selected with consideration given to current and projected land use and resource development; (10) site should be selected with consideration given to location of waste generation, access to all-weather highway and rail routes, and access utilities; (11) site should be selected consistent with federal laws and regulations; (12) site should not be located within areas that are protected from such use by federal laws and regulations. These criteria are considered preliminary and do not necessarily represent the position of the Department of Energy's Low-Level Waste Management Program

  6. GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain.

    Science.gov (United States)

    Rubio-Melendi, David; Gonzalez-Quirós, Andrés; Roberts, Daniel; García García, María Del Carmen; Caunedo Domínguez, Amaya; Pringle, Jamie K; Fernández-Álvarez, José-Paulino

    2018-06-01

    Around 27,000 people were killed in the province of Asturias during the Spanish Civil War, with several thousands killed after the war ended. There are currently over 2,000 known mass burial locations throughout Spain, but many more are unknown. Geophysics is a useful tool employed to help in the active attempts to document and improve knowledge about victims from this conflict. This paper details a non-invasive study of the Cementerio de El Salvador, in the city of Oviedo, Northern Spain. Part of the cemetery contains a known mass burial with approximately 1,300 individuals from the Spanish Civil War and post-war repression eras. Multi-frequency near-surface geophysical techniques were undertaken, after permission, to enhance knowledge about which, if any, techniques should be used to detect, delineate and analyse such mass graves. Multi-frequency (250MHz and 500MHz) ground-penetrating radar surveys were acquired together with 2D and 3D Electrical Resistivity Tomography datasets. The results have established the limits of the mass grave and improve the knowledge of the internal mass grave structure. The paper also shows the importance of considering the climatic conditions during data acquisition. This has important implications for the successful detection of recent historical mass burials using near-surface geophysics. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Packaging design criteria modified fuel spacer burial box. Revision 1

    International Nuclear Information System (INIS)

    Stevens, P.F.

    1994-01-01

    Various Hanford facilities must transfer large radioactively contaminated items to burial/storage. Presently, there are eighteen Fuel Spacer Burial Boxes (FSBBs) available on the Hanford Site for transport of such items. Previously, the FSBBS were transported from a rail car to the burial trench via a drag-off operation. To allow for the lifting of the boxes into the burial trench, it will be necessary to improve the packagings lifting attachments and provide structural reinforcement. Additional safety improvements to the packaging system will be provided by the addition of a positive closure system and package ventilation. FSBBs that are modified in such a manner are referred to as Modified Fuel Spacer Burial Boxes (MFSBs). The criteria provided by this PDC will be used to demonstrate that the transfer of the MFSB will provide an equivalent degree of safety as would be provided by a package meeting offsite transportation requirements. This fulfills the onsite transportation safety requirements implemented in WHC-CM-2-14, Hazardous Material Packaging and Shipping. A Safety Analysis Report for Packaging (SARP) will be prepared to evaluate the safety of the transfer operation. Approval of the SARP is required to authorize transfer. Criteria are also established to ensure burial requirements are met

  8. Fluxes and burial of particulate organic carbon along the Adriatic mud-wedge (Mediterranean Sea)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S.

    2012-04-01

    Clinoform-shaped deposits are ubiquitous sedimentological bodies of modern continental margins, including both carbonate and silicoclastic platforms. They formed after the attainment of the modern sea level high-stand (mid-late Holocene) when river outlets and shoreline migrated landward. As clinoform-shape deposits are essential building blocks of the infill of sedimentary basins, they are sites of intense organic carbon (OC) deposition and account for a significant fraction of OC burial in the ocean during interglacial periods. In this study, we focused on sigmoid clinoforms that are generally associated with low-energy environments. In particular, we characterized the modern accumulation and burial of OC along the late-Holocene sigmoid in the Western Adriatic Sea (Mediterranean Sea). This sedimentary body consists of a mud wedge recognizable on seismic profiles as a progradational unit lying on top the maximum flooding surface that marks the time of maximum landward shift of the shoreline attained around 5.5 kyr cal BP. In the last two decades, several projects have investigated sediment dynamics and organic geochemistry along the Adriatic mud wedge (e.g., PRISMA, EURODELTA, EuroSTRATAFORM, PASTA, CIPE, VECTOR). All these studies increased our understanding of strata formation and organic matter cycling in this epicontinental margin. The overarching goal of this study was to combine the results gained during these projects with newly acquired data to assess fluxes to seabed and burial efficiency of organic carbon along the uppermost strata of the Adriatic mud-wedge. Our study benefited of an extensive number of radionuclide-based (Pb-210, and Cs-137) sediment accumulation rates and numerous biogeochemical data of surface sediments and sediment cores (organic carbon, total nitrogen, radiocarbon measurements, carbon stable isotopes, and biomarkers). In addition, because the accumulation of river-borne sediment may or may not be linked to a specific source, another

  9. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  10. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  11. Low-level radioactive waste source terms for the 1992 integrated data base

    International Nuclear Information System (INIS)

    Loghry, S.L.; Kibbey, A.H.; Godbee, H.W.; Icenhour, A.S.; DePaoli, S.M.

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF 6 ) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and open-quotes otherclose quotes. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF 6 conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992

  12. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  13. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  14. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  15. Results of the CRCPD survey of 1984 low-level radioactive waste: progress to mid-September, 1986

    International Nuclear Information System (INIS)

    Devine, T.L.

    1987-01-01

    The survey of 1984 low-level radioactive waste by the Conference of Radiation Control Program Directors, Inc., is the second such survey. The previous survey was for waste generated during 1982. The CRCPD survey of 1984 LLRW requested information concerning the license, the effluents and other on-site managed wastes, details of exported waste type, the capacity for storing waste prior to shipment and its average utilization during 1984. Details of the exported waste included waste type, processing and packaging, NRC class, burial site or broker to which the waste was sent, and anticipated waste generation by year and by class through 1989. Shortcomings of the questionnaire and preliminary results are discussed. Based on the results of the two surveys of low-level radioactive waste conducted by the CRCPD, and the serious discrepancies which exist between data on waste shipped by generators and that on waste received by disposal sites, the following recommendation is made. That a single, national repository be established for all data on the generation and ultimate disposition of low-level radioactive waste. 1 figure, 1 table

  16. Survey of microbiological effects in low-level radioactive waste disposed of to land

    International Nuclear Information System (INIS)

    McGahan, D.J.

    1987-01-01

    An evaluation of published literature was mounted to determine the current position of research into microbiological effects in low-level radioactive waste disposal sites and to assess the need for further research. It is concluded from the survey that the microbial activity present in domestic landfills also occurs in shallow land burial low-level radioactive waste disposal sites. The microbial activity results in the release of tritium as tritiated methane to the atmosphere and tritiated components to the leachate. Carbon-14 migration is also enhanced. It also accelerates the corrosion of steel and concrete used to contain the wastes. There is little evidence for enhanced migration of radionuclides as a result of their incorporation in bacteria but there is considerable evidence for enhancement resulting from the presence of complexing agents (such as ethylenediamine-tetraacetic acid and tributyl phosphate) in the waste. Research in this field has been observed to be very active in the United States. Its objective is to predict with more certainty the important parameters for future low-level radioactive waste site designs. Quantitative prediction of microbial effects and their magnitude is not easy to deduce from the published literature, and new site designs will differ markedly from those that have been in operation over the last thirty years. (author)

  17. 78 FR 76574 - Burial Benefits

    Science.gov (United States)

    2013-12-18

    ..., Congress' clear motivation was to make burial benefits ``easier to administer, i.e., through existing VA...'' means any action taken to honor the memory of a deceased individual. 38 CFR 38.600. 3.1701 Deceased...

  18. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  19. Examination of Conservatism in Ground-level Source Release Assumption when Performing Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    One of these assumptions frequently assumed is the assumption of ground-level source release. The user manual of a consequence analysis software HotSpot is mentioning like below: 'If you cannot estimate or calculate the effective release height, the actual physical release height (height of the stack) or zero for ground-level release should be used. This will usually yield a conservative estimate, (i.e., larger radiation doses for all downwind receptors, etc).' This recommendation could be agreed in aspect of conservatism but quantitative examination of the effect of this assumption to the result of consequence analysis is necessary. The source terms of Fukushima Dai-ichi NPP accident have been estimated by several studies using inverse modeling and one of the biggest sources of the difference between the results of these studies was different effective source release height assumed by each studies. It supports the importance of the quantitative examination of the influence by release height. Sensitivity analysis of the effective release height of radioactive sources was performed and the influence to the total effective dose was quantitatively examined in this study. Above 20% difference is maintained even at longer distances, when we compare the dose between the result assuming ground-level release and the results assuming other effective plume height. It means that we cannot ignore the influence of ground-level source assumption to the latent cancer fatality estimations. In addition, the assumption of ground-level release fundamentally prevents detailed analysis including diffusion of plume from effective plume height to the ground even though the influence of it is relatively lower in longer distance. When we additionally consider the influence of surface roughness, situations could be more serious. The ground level dose could be highly over-estimated in short downwind distance at the NPP sites which have low surface roughness such as Barakah site in

  20. Coordinated motility of cyanobacteria favor mat formation, photosynthesis and carbon burial in low-oxygen, high-sulfur shallow sinkholes of Lake Huron; whereas deep-water aphotic sinkholes are analogs of deep-sea seep and vent ecosystems

    Science.gov (United States)

    Biddanda, B. A.; McMillan, A. C.; Long, S. A.; Snider, M. J.; Weinke, A. D.; Dick, G.; Ruberg, S. A.

    2016-02-01

    Microbial life in submerged sinkhole ecosystems of the Laurentian Great Lakes is relatively understudied in comparison to seeps and vents of the deep-sea. We studied the filamentous benthic mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes. Measured speed of individual filaments ranged from 50 µm minute-1 or 15 body lengths minute-1 to 215 µm minute-1 or 70 body lengths minute-1 - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Pebbles and pieces of broken shells placed upon the mat in intact sediemnt cores were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling plankton debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats where life operates across sharp redox gradients. Analogous cyanobacterial motility in the shallow seas during Earth's early history, may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring carbon burial. We are now eagerly mapping and exploring life in deep-water aphotic sinkholes of

  1. Field testing an OREX reg-sign based open-quotes point of generationclose quotes low-level radioactive waste reduction program at FP ampersand L's St. Lucie Plant

    International Nuclear Information System (INIS)

    Payne, K.; Haynes, B.

    1996-01-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: the number of radioactive waste repositories now accepting new waste is limited; the current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum; the cost of burial is constantly increasing; onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning

  2. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  3. Migration of tritium from a nuclear waste burial site

    International Nuclear Information System (INIS)

    Hawkins, R.H.

    1975-09-01

    The Savannah River Plant (SRP) has routinely and continuously monitored the local environment (land, water, air, flora, and fauna) since 1951. As part of this intensive program, a three-part study was made to assess the tritium migration from an onsite burial ground for solid nuclear wastes and the resulting dose-to-man. A major source of tritium is buried, massive, Li-Al residues (referred to as melts) from the thermal extraction step in the SRP tritium production process. A melt with its extraction crucible and lid were immersed in water to measure the amounts of tritium released as HTO and HT to the water and to air. The result was a rapid release of 23 curies, of which approximately 99 percent was HTO that remained in the immersion water, and 1 percent was HT that passed into the air. (auth)

  4. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  5. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  6. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  7. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  8. DOE Low-Level Waste Management Program perspective on technology transfer: opportunities and challenges

    International Nuclear Information System (INIS)

    Large, D.E.

    1982-01-01

    The Department of Energy's Low-Level Waste Management Program (DOE LLWMP) perspective in regard to transfer of LLWMP technology to current and potential users in both the commercial and defense sectors is discussed. Past, present, and future opportunities and challenges for the whole nuclear waste management are indicated. Elements considered include: historical and evolutionary events and activities; the purpose of the Program and its inherent opportunities and challenges; achievements and expected accomplishments; supporters and interactors; packaging and delivering technology; implementing and serving potential users; determining and meeting users' needs; and identifying and responding to opportunities and challenges. The low-level waste management effort to improve shallow land burial technology began in FY 1977 and has expanded to include waste treatment and alternative disposal methods. Milestones have been established and are used as principal management control items. This technology, the Program Product, is described and is made available. This year, the Program has drafted criteria for inclusion in a DOE order for radioactive waste management operations at DOE sites

  9. Dialectics of Burial and Teritoriality in Barclays Ayakoroma's A ...

    African Journals Online (AJOL)

    This paper is conceived to investigate the subjects of death, burial, pride and territorial supremacy in African drama with special focus on A Matter of Honour by Barclays Ayakoroma. The study becomes crucial because the question of burial and struggle over rights of possession of a corpse by two parties has become a ...

  10. Sources, production rates and characteristics of ERDA low-level wastes

    International Nuclear Information System (INIS)

    Dieckhoner, J.E.

    1979-01-01

    In recent critical reviews of the long-standing practice of disposing of solid non-high-level radioactive waste by shallow earth burial, one recurring identified need was for better source-term information. As the major employer of this particular radioactive waste management technique for the past 30 years, ERDA recognizes the value of this type of information and has systematically collected it. The system used by the AEC and ERDA in the past was admittedly cumbersome, so in FY 1976 an improved, automated information management system was developed. This new system, called SWIMS (Solid Waste Information Management System), was designed to replace the older system and accept more detailed information from all ERDA solid, non-high-level radioactive waste generation, retrievable storage and shallow land burial activities. In FY 1977, SWIMS is in a trial phase in which modifications and clarifications are being made. In FY 1978, it will be fully operational. This paper presents data concerning the sources and characteristics of waste generated by ERDA facilities. Information on the cumulative status of ERDA's waste is presented, along with a comparison of the types of data collected under the old system and the new system

  11. About the burial of nuclear power plants, damaged or in the process of decommissioning

    International Nuclear Information System (INIS)

    Elbrond, J.

    1994-01-01

    Some underground mining methods leave deep empty holes in the earth's surface behind them. In this paper it is described how to use such mining methods for the burial of damaged nuclear power plants and for the decommissioning by burial of nuclear reactors. The design of a new power plant should be integrated with that of an escapeway - an underground arrangement for burial. The described mining methods are block caving for catastrophy burial, and various stoping methods for planned burial and decommissioning. Blind shaft sinking by full face boring machines for burial and decommissioning of the reactor vessel is also described. All the described activities of mining and shaft sinking are well known. The total costs of burial by these methods are estimated using standard mining industry cost data. These include the costs for normal mine ventilation and groundwater control. However, the estimates of the cost and duration do not include the capital and operational costs of the pre- and post burial activities of ventilation and groundwater control related to the radioactivity. (author)

  12. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    International Nuclear Information System (INIS)

    UYTIOCO EM

    2007-01-01

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation and Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington

  13. Preliminary research work on building of repositories for burial of NPP radioactive waste in loess beds

    International Nuclear Information System (INIS)

    Stefanov, G.; Prodanov, Ya.

    1984-02-01

    The choice of a disposal site for burial of intermediate and low-level wastes from the NPS depends on a complex of conditions, requirements and methods resulting from the complex geologo-geographic and demographic conditions in the People's Republic of Bulgaria. The analysis of the geologic conditions shows that the various structures of the rocks, the tectonism, the seismicity in vast regions, the lack of plateau basalts hinder the choice of convenient sites for radioactive waste disposal. In Bulgaria the loess massives are studied and proposals are made to use them as a suitable environment for building of radioactive waste repositories

  14. 20 CFR 416.1231 - Burial spaces and certain funds set aside for burial expenses.

    Science.gov (United States)

    2010-04-01

    ... children and step-children; an individual's brothers, sisters, parents, adoptive parents, and the spouses... are set aside for the burial arrangements of the eligible child's ineligible parent or parent's spouse... separation; i.e., a circumstance beyond an individual's control which makes conversion/separation impossible...

  15. Background information for the development of a low-level waste performance assessment methodology

    International Nuclear Information System (INIS)

    Shipers, L.R.

    1989-12-01

    This document identifies and describes the potential postclosure pathways of radionuclide release, migration, and exposure from low-level radioactive waste disposal facilities. Each pathway identified is composed of a combination of migration pathways (air, surface water, ground water, food chain) and exposure pathways (direct gamma, inhalation, ingestion, surface contact). The pathway identification is based on a review and evaluation of existing information, and not all pathways presented in the document would necessarily be of importance at a given low-level waste disposal site. This document presents pathways associated with undisturbed (ground water, gas generation), naturally disturbed (erosion, bathtubbing, earth creep, frost heave, plant and animal intruder), and inadvertent intruder (construction, agriculture) scenarios of a low-level waste disposal facility. 20 refs., 1 fig

  16. Strategy for the disposal of low- and intermediate-level radwastes in Canada

    International Nuclear Information System (INIS)

    Dixon, D.F.

    The intent of the strategy described is to optimize both safety and cost of disposal by classifying waste segments according to hazardous lifetime and to match these to two or more selected disposl concepts graded according to containment and isolation capabilities. The bulk of low- and intermediate-level radwastes arising in Canada are a relatively short-lived hazard requiring isolation for no more than a few hundred years. Burial of this segment at tens-of-metres in quatenary deposits has been proposed as a concept worth evaluating. It is expected that part of the low- and intermediate-level radwastes will be potentially hazardous for geological time periods. Once methods of isolation for long-lived fuel wastes have been identified, these could be utilized for wastes requiring isolation for longer than a few hundred years. Disposal of a hard-rock vault is being evaluated as a reference concept and costs are presented. It is proposed that waste classification may consider more than two categories to further reduce costs and to better accommodate the radiological character of wastes. The overall disposal strategy should be flexible enough to account for present waste management practices and anticipated future needs

  17. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    International Nuclear Information System (INIS)

    Freiesleben, Trine; Sohbati, Reza; Murray, Andrew; Jain, Mayank; Al Khasawneh, Sahar; Hvidt, Søren; Jakobsen, Bo

    2015-01-01

    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescence–depth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated luminescence-depth profile from a feldspar-rich granite cobble from an archaeological site near Aarhus, Denmark. This profile shows qualitative evidence for multiple daylight exposure and burial events; these are quantified using the model developed here. By determining the burial ages from the surface layer of the cobble and by fitting the new model to the luminescence profile, it is concluded that the cobble was well bleached before burial. This indicates that the OSL burial age is likely to be reliable. In addition, a recent known exposure event provides an approximate calibration for older daylight exposure events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible to determine the length of a fossil exposure, using a known natural light exposure as calibration. - Highlights: • Evidence for multiple exposure and burial events in the history of a single cobble. • OSL rock surface dating model improved to include multiple burial/exposure cycles. • Application of the new model quantifies burial and exposure events.

  18. Large-Scale Laboratory Experiments of Initiation of Motion and Burial of Objects under Currents and Waves

    Science.gov (United States)

    Landry, B. J.; Wu, H.; Wenzel, S. P.; Gates, S. J.; Fytanidis, D. K.; Garcia, M. H.

    2017-12-01

    Unexploded ordnances (UXOs) can be found at the bottom of coastal areas as the residue of military wartime activities, training or accidents. These underwater objects are hazards for humans and the coastal environment increasing the need for addressing the knowledge gaps regarding the initiation of motion, fate and transport of UXOs under currents and wave conditions. Extensive experimental analysis was conducted for the initiation of motion of UXOs under various rigid bed roughness conditions (smooth PVC, pitted steel, marbles, gravels and bed of spherical particles) for both unidirectional and oscillatory flows. Particle image velocimetry measurements were conducted under both flow conditions to resolve the flow structure estimate the critical flow conditions for initiation of motion of UXOs. Analysis of the experimental observations shows that the geometrical characteristics of the UXOs, their properties (i.e. volume, mass) and their orientation with respect to the mean flow play an important role on the reorientation and mobility of the examined objects. A novel unified initiation of motion diagram is proposed using an effective/unified hydrodynamic roughness and a new length scale which includes the effect of the projected area and the bed-UXO contact area. Both unidirectional and oscillatory critical flow conditions collapsed into a single dimensionless diagram highlighting the importance and practical applicability of the proposed work. In addition to the rigid bed experiments, the burial dynamics of proud UXOs on a mobile sand bed were also examined. The complex flow-bedform-UXOs interactions were evaluated which highlighted the effect of munition density on burial rate and final burial depth. Burial dynamics and mechanisms for motion were examined for various UXOs types, and results show that, for the case of the low density UXOs under energetic conditions, lateral transport coexists with burial. Prior to burial, UXO re-orientation was also observed

  19. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia.

    Science.gov (United States)

    Nalawade-Chavan, Shweta; McCullagh, James; Hedges, Robert

    2014-01-01

    Sungir (Russia) is a key Mid-Upper Palaeolithic site in Eurasia, containing several spectacular burials that disclose early evidence for complex burial rites in the form of a range of grave goods deposited along with the dead. Dating has been particularly challenging, with multiple radiocarbon dates ranging from 19,160±270 to 28,800±240 BP for burials that are believed to be closely similar in age. There are disparities in the radiocarbon dates of human bones, faunal remains and charcoal found on the floor of burials. Our approach has been to develop compound-specific methods using High Performance Liquid Chromatography (HPLC) to separate single amino acids, such as hydroxyproline, and thereby avoid the known human contamination on the bones themselves. Previously, we applied this technique to obtain radiocarbon dates of ∼30,000 BP for Sungir 2, Sungir 3 and a mammoth bone from the occupation levels of the site. The single amino acid radiocarbon dates were in good agreement with each other compared to all the dates previously reported, supporting their reliability. Here we report new hydroxyproline dates for two more human burials from the same site, Sungir 1 and Sungir 4. All five hydroxyproline dates reported are statistically indistinguishable and support an identical age for the group. The results suggest that compound-specific radiocarbon analysis should be considered seriously as the method of choice when precious archaeological remains are to be dated because they give a demonstrably contaminant-free radiocarbon age. The new ages are, together with the previously dated 'Red Lady of Paviland' human in the British Isles, the earliest for Mid Upper Palaeolithic burial behaviour in Eurasia, and point to the precocious appearance of this form of rite in Europe Russia.

  20. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia.

    Directory of Open Access Journals (Sweden)

    Shweta Nalawade-Chavan

    Full Text Available Sungir (Russia is a key Mid-Upper Palaeolithic site in Eurasia, containing several spectacular burials that disclose early evidence for complex burial rites in the form of a range of grave goods deposited along with the dead. Dating has been particularly challenging, with multiple radiocarbon dates ranging from 19,160±270 to 28,800±240 BP for burials that are believed to be closely similar in age. There are disparities in the radiocarbon dates of human bones, faunal remains and charcoal found on the floor of burials. Our approach has been to develop compound-specific methods using High Performance Liquid Chromatography (HPLC to separate single amino acids, such as hydroxyproline, and thereby avoid the known human contamination on the bones themselves. Previously, we applied this technique to obtain radiocarbon dates of ∼30,000 BP for Sungir 2, Sungir 3 and a mammoth bone from the occupation levels of the site. The single amino acid radiocarbon dates were in good agreement with each other compared to all the dates previously reported, supporting their reliability. Here we report new hydroxyproline dates for two more human burials from the same site, Sungir 1 and Sungir 4. All five hydroxyproline dates reported are statistically indistinguishable and support an identical age for the group. The results suggest that compound-specific radiocarbon analysis should be considered seriously as the method of choice when precious archaeological remains are to be dated because they give a demonstrably contaminant-free radiocarbon age. The new ages are, together with the previously dated 'Red Lady of Paviland' human in the British Isles, the earliest for Mid Upper Palaeolithic burial behaviour in Eurasia, and point to the precocious appearance of this form of rite in Europe Russia.

  1. Underwater Munitions Expert System to Predict Mobility and Burial

    Science.gov (United States)

    2017-11-14

    for predicting the location and possible burial of underwater munitions is required to advise site managers as they plan...that region above the given UXO relative density, which is defined as the UXO density divided by the sand grain density, ( nominally 2650 g...0.0 + 2.5*dsed ; % nominal bed roughness if no burial % (Potentially in future version, ripple height

  2. Annual Status Report (FY2014) 200 West and 200 East Performance Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2015-03-24

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original does methodology developed in the performance assessment analyses.

  3. Deep-burial microporosity in upper Jurassic Haynesville oolitic grainstones, East Texas

    Science.gov (United States)

    Dravis, Jeffrey J.

    1989-07-01

    Bossier sequences; (3) absence of freshwater porosity fabrics; (4) lack of precompactional freshwater cements; (6) pervasive pressure solution in the microporous grainstones, including extensive grain interpenetration; (6) preservation of abundant microporosity directly adjacent to pressure solution seams in porous grainstones; (7) development of identical microporosities in mineralogically stable calcitic grains which rarely leach in freshwater; (8) microporosity development which postdates formation and cementation of fractures in the reservoir facies; and (9) calcite cements occluding primary porosity whose geochemical attributes are inconsistent with precipitation from freshwater but are consistent with a burial origin. This regional, core-based case study reveals that the contact between the Haynesville and overlying Bossier Shale is a marine "drowning unconformity" Physical, petrographic and geochemical evidence for regional subaerial exposure at the end of Haynesville deposition, due to a eustatic fall in sea level, is not present, questioning the validity of interpreting local or global sea level history from seismic and well log data in the absence of critical core control.

  4. Shallow land burial technology: humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Yeh, G.T.

    1984-01-01

    Applying engineered modifications to present shallow land burial (SLB) practices is one method of ensuring safe operation and improving overall disposal-site performance. Two such engineered modifications, trench lining and grouting, are being demonstrated and evaluated at the Oak Ridge National Laboratory (ORNL) Engineered Test Facility (ETF), using nine 28-m 3 experimental trenches containing compacted low-level waste (LLW). Concurrent to this field demonstration experiment, two finite-element hydrologic models have been developed to model water movement and solute transport at a waste disposal site. This paper covers progress made in these two areas during FY 1984. Though the economic analysis of the two trench treatments favored Hypalon lining (lining costs were 33% lower at this demonstration scale), results of field experiments examining waste hydrologic isolation favored the cement-bentonite grout treatment. Data from water pump-out and water pump-in tests, combined with observed intratrench water-level fluctuations, suggest that the original goal of constructing watertight liners in three experimental trenches was not achieved. In addition, trench-cover subsidence of approx. 2% of the total trench depth has been measured over two of the three lined trenches but has not occurred over any of the three grouted or three control (untreated) trenches. The evaluation of the two trench treatments is continuing. However, results indicate that the cement-bentonite treatment, implemented at a cost of $160/m 3 of grout, provides a degree of waste isolation not afforded by the lined and control trenches and should be considered for use at SLB sites with water-related problems. 11 references, 6 figures, 2 tables

  5. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Science.gov (United States)

    Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.

    2017-02-01

    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2~0.1 PAL (present atmospheric level), but that stability is lost at pO2counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.

  6. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    Science.gov (United States)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  7. Recent Advances in Observations of Ground-level Auroral Kilometric Radiation

    Science.gov (United States)

    Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.

    2011-12-01

    Recently LaBelle and Anderson [2011] reported the first definitive observations of AKR at ground level, confirmed through simultaneous measurements on the Geotail spacecraft and at South Pole Station, Antarctica. The initial observations consisted of three examples recorded in 2004. An Antarctic observing site is critical for observing ground level AKR which is obscured by man-made broadcast signals at northern hemisphere locations. Examination of 2008 austral winter radio data from Antarctic Automatic Geophysical Observatories (AGOs) of the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) network and South Pole Station reveals 37 ground level AKR events on 23 different days, 30 of which are confirmed by correlation with AKR observed with the Geotail spacecraft. The location of the Geotail spacecraft appears to be a significant factor enabling coincident measurements. Six of the AKR events are detected at two or three ground-level observatories separated by approximately 500 km, suggesting that the events illuminate an area comparable to a 500-km diameter. For 14 events on ten nights, photometer and all-sky imager data from South Pole and AGOs were examined; in ten cases, locations of auroral arcs could be determined at the times of the events. In eight of those cases, the AKR was detected at observatories poleward of the auroral arcs, and in the other two cases the aurora was approximately overhead at the observatory where AKR was detected. These observations suggest that the AKR signals may be ducted to ground level along magnetic field lines rather than propagating directly from the AKR source region of approximately 5000 km altitude. Correlations between structures in the AKR and intensifications of auroral arcs are occasionally observed but are rare. The ground-level AKR events have a local time distribution similar to that of AKR observed from satellites, peaking in the pre-midnight to midnight sector. This data base of >30

  8. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  9. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae).

    Science.gov (United States)

    Baughman, William B; Nelson, Peter N; Grieshop, Matthew J

    2015-06-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  10. Effect of Time and Burial Depth on Breaking Seed dormancy and Germination of Weed Seeds

    Directory of Open Access Journals (Sweden)

    marzie mazhari

    2016-02-01

    order to evaluate the effects of time and burial depth on breaking seed dormancy and percentage of germination of 27 dominants weed in Shahrekord region, an experiment was conducted at the research field at Shahrekord University in 2013. The experimental design set as factorial based on completely randomized design with three replications. Treatments consisted of three burial time levels (1, 2 and 3 months and 4 burial depth (0, 5, 15 and 25 cm from surface soil layer after 1, 2 and 3 months of burial. Results and Discussion: Results showed that the time and the depth of burial treatments had significant effect on breaking seed dormancy and germination percentage. Seeds retrieved from the soil surface showed highest dormancy percentage and breaking dormancy with increasing the depth and time of seed burial. The results showed that the effects of three burial times, burial depth and interaction of burial time and burial depth had significant effects on dormancy breaking and germination of weed seeds. The bitter herbs of expression and parsnip, the highest percentage of seed dormancy breaking. Germination of Geobelia alopecuoides and Anthriscus sylvestris was observed from seed burial depth of 15 cm. However, the germination percentage, between two and three seed burial months, did not show any significant difference. In this study, Convolvulus arvensies, Rumex acetisella and, Avena fatua in the highest depth (25 cm had the maximum seed germination. Tillage would bury weed seeds and may help to preserve some seeds, because the seeds on the soil surface or near it, are prone to hunting or decay that eventually, their number is reduced in the soil seed bank. Weed seeds of Centurea cyanus, Geobelia alopecuoides, Turgeniala tifolia, Tragopogon collinus, Bromus dantoniae and Anthriscus sylvestris had more germination percentage with increasing depth to 15 cm, but beyond this depth due to the negative impacts of increased depth, seed germination declined sharply. In fact, the

  11. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    Science.gov (United States)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short

  12. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions

    DEFF Research Database (Denmark)

    Mort, Haydon P; Slomp, Caroline P; Gustafson, Bo G

    2010-01-01

    . Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca–P formation or biogenic Ca–P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased......In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present...... be accounted for in budgets and models for the Baltic Sea....

  13. Burial trench dynamic compaction demonstration at a humid site

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1985-01-01

    This task has the objective of determining the degree of consolidation which can be achieved by dynamic compaction of a closed burial trench within a cohesive soil formation. A seven-year-old burial trench in Solid Waste Storage Area (SWSA) 6 of Oak Ridge National Laboratory (ORNL) was selected for this demonstration. This 251 m 3 trench contained about 80 Ci of mixed radionuclides, mostly 90 Sr, in 25 m 3 of waste consisting of contaminated equipment, dry solids, and demolition debris. Prior to compaction, a total trench void space of 79 m 3 was measured by pumping the trench full of water with corrections for seepage. Additional pre-compaction characterization included trench cap bulk density (1.68 kg/L), trench cap permeability (3 x 10 -7 m/s), and subsurface waste/backfill hydraulic conductivity (>0.01 m/s). Compaction was achieved by repeatedly dropping a 4-ton steel-reinforced concrete cylinder from heights of 4 to 8 m using the whipline of a 70-ton crane. The average trench ground surface was depressed 0.79 m, with some sections over 2 m, yielding a surveyed volumetric depression which totaled to 64% of the measured trench void space. Trench cap (0 to 60 cm) bulk density and permeability were not affected by compaction indicating that the consolidation was largely subsurface. Neither surface nor airborne radioactive contamination were observed during repeated monitoring during the demonstration. Dynamic compaction was shown to be an excellent and inexpensive (i.e., about $20/m 2 ) method to collapse trench void space, thereby hastening subsidence and stabilizing the land surface. 15 refs., 10 figs., 3 tabs

  14. Some interactive factors affecting trench-cover integrity on low-level waste sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Lane, L.J.; Steger, J.G.; DePoorter, G.L.

    1982-01-01

    This paper describes important mechanisms by which radionuclide can be transported from low-level waste disposal sites into biological pathways, discuss interactions of abiotic and biotic processes, and recommends environmental characteristics that should be measured to design sites that minimize this transport. Past experience at shallow land burial sites for low-level radioactive wastes suggest that occurrences of waste exposure and radionuclide transport are often related to inadequate trench cover designs. Meeting performance standards at low-level waste sites can only be achieved by recognizing that physical, chemical, and biological processes operating on and in a trench cover profile are highly interactive. Failure to do so can lead to improper design criteria and subsequent remedial action procedures that can adversely affect site stability. Based upon field experiments and computer modeling, recommendations are made on site characteristics that require measurement in order to design systems that reduce surface runoff and erosion, manage soil moisture and biota in the cover profile to maximize evapotranspiration and minimize percolation, and place bounds on the intrusion potential of plants and animals into the waste material. Major unresolved problems include developing probabilistic approaches that include climatic variability, improved knowledge of soil-water-plant-erosion relationships, development of practical vegetation establishment and maintenance procedures, prediction and quantification of site potential and plant succession, and understanding the interaction of processes occurring on and in the cover profile with deeper subsurface processes

  15. Mine burial in the seabed of high-turbidity area—Findings of a first experiment

    Science.gov (United States)

    Baeye, Matthias; Fettweis, Michael; Legrand, Sebastien; Dupont, Yves; Van Lancker, Vera

    2012-07-01

    The seabed of the North Sea is covered with ammunition dating back from World Wars I and II. With increasing human interference (e.g. fisheries, aggregate extraction, harbor related activities), it forms a threat to the safety at sea. In this study, test mines were deployed on a sandy seabed for 3 months to investigate mine burial processes as a function of hydrodynamic and meteorological conditions. The mine experiment was conducted in a shallow (9 m), macrotidal environment characterized by highly turbid waters (yearly and depth-averaged suspended particulate matter concentration of 100 mg l-1). Results showed some variability of the overall mine burial, which corresponded with scouring processes induced by a (sub-) tidal forcing mechanism. The main burial events however were linked to storm-related scouring processes, and subsequent mine roll into the resulting pit. Two storms affecting the mines during the 3-month experiment resulted in enduring increases in burial volume to 60% and 80%, respectively. More cyclic and ephemeral burial and exposure events appear to be linked to the local hydrodynamic regime. During slack tides, suspended sediment settles on the seabed, increasing the burial volume. In between slack tides, sediment is resuspended, decreasing the burial volume. The temporal pattern of this never reported burial mechanism, as measured optically, mimics the cyclicity of the suspended sediment concentration as recorded by ultrasonic signals at a nearby benthic observatory. Given the similarity in response signals at the two sites, we hypothesize that the formation of high-concentrated mud suspensions (HCMS) is a mechanism causing short-term burial and exposure of mines. This short-term burial and exposure increase the chance that mines are 'missed' during tracking surveys. Test mines contribute to our understanding of the settling and erosion of HCMS, and thus shed a light on generic sedimentary processes.

  16. Advances in the self-burial concept for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Logan, S.E.

    1996-01-01

    The self-burial concept for deep geological disposal of high-level radioactive waste seeks to utilize the radioactive decay heat emitted by the wastes to melt rock and allow descent by gravity into crystalline rock for isolation. Logan developed the governing equations for the self-disposal process in a paper published in 1973 and 1974 showing that moderate waste concentrations in capsules 1 to 2 m in diameter could descend through granite or basalt to considerable depths, in some cases grater than 10 km. Safety considerations related to filling, handling, and initial cooling of such large capsules prior to release, plus the severe container material environment, has prevented use of the concept. Byalko in Russia recently proposed using a sulfur-filled borehole as a conduit for conveying small capsules down to an accumulation zone at a safe depth of several kilometers. This advance in the self-burial concept overcomes previous problems with self-burial. First, capsules of 0.3 m or less in diameter are relatively simple to fill and handle. Second, investigations indicate that once emplaced at an initial accumulation depth, rock-melting can proceed without an enveloping waste container

  17. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    International Nuclear Information System (INIS)

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs

  18. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  19. Low ground clearance vehicle detection and warning.

    Science.gov (United States)

    2015-06-01

    A Low Ground Clearance Vehicle Detection : System (LGCVDS) determines if a commercial : motor vehicle can successfully clear a highwayrail : grade crossing and notifies the driver when : his or her vehicle cannot safely traverse the : crossing. That ...

  20. BURYIT/ANALYZ: a computer package for assessment of radiological risk of low-level radioactive waste land disposal

    International Nuclear Information System (INIS)

    Fisher, J.E.; Cox, N.D.; Atwood, C.L.

    1984-11-01

    This report is a user's manual for a partially completed code for risk assessment of a low-level waste shallow-land burial site, to be used in the licensing of burial sites. This code is intended as a tool to be used for considering nuclide transport mechanisms, including atmospheric, groundwater, erosion, and infiltration to an underlying aquifer. It also calculates doses to individuals and the population through direct exposure, inhalation, and ingestion. The methodology of the risk assessment is based primarily on the response surface method of uncertainty analysis. The parameters of a model for predicting dose commitment due to a release are treated as statistical variables in order to compute statistical distributions for various dose commitment contributions. The likelihood of a release is also accounted for by statistically evaluating the arithmetic product of the dose commitment distributions with the probability of release occurrence. An example is given using the atmospheric transport pathway as modeled by a code called BURYIT. The framework for using other release pathways is described in this manual. Information on parameter uncertainties, reference site characteristics, and probabilities of release events is included

  1. An operational-oriented approach to the assessment of low probability seismic ground motions for critical infrastructures

    Science.gov (United States)

    Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose

    2018-01-01

    Extreme natural hazard events have the potential to cause significant disruption to critical infrastructure (CI) networks. Among them, earthquakes represent a major threat as sudden-onset events with limited, if any, capability of forecast, and high damage potential. In recent years, the increased exposure of interdependent systems has heightened concern, motivating the need for a framework for the management of these increased hazards. The seismic performance level and resilience of existing non-nuclear CIs can be analyzed by identifying the ground motion input values leading to failure of selected key elements. Main interest focuses on the ground motions exceeding the original design values, which should correspond to low probability occurrence. A seismic hazard methodology has been specifically developed to consider low-probability ground motions affecting elongated CI networks. The approach is based on Monte Carlo simulation, which allows for building long-duration synthetic earthquake catalogs to derive low-probability amplitudes. This approach does not affect the mean hazard values and allows obtaining a representation of maximum amplitudes that follow a general extreme-value distribution. This facilitates the analysis of the occurrence of extremes, i.e., very low probability of exceedance from unlikely combinations, for the development of, e.g., stress tests, among other applications. Following this methodology, extreme ground-motion scenarios have been developed for selected combinations of modeling inputs including seismic activity models (source model and magnitude-recurrence relationship), ground motion prediction equations (GMPE), hazard levels, and fractiles of extreme ground motion. The different results provide an overview of the effects of different hazard modeling inputs on the generated extreme motion hazard scenarios. This approach to seismic hazard is at the core of the risk analysis procedure developed and applied to European CI transport

  2. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  3. Customary right to befitting burial: a jurisprudential appraisal of four ...

    African Journals Online (AJOL)

    These symbols reveal unique rights for the people's entitlement. Among the rights to which an African is entitled is the right to befitting burial/funerals. This right comes with it, certain duties and/or obligations. The aim of this paper is to deconstruct the elements of applicable burial customs with a view to demonstrating their ...

  4. Burial container subsidence load stress calculations

    International Nuclear Information System (INIS)

    Veith, E.M.

    1995-11-01

    This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks

  5. Design for the second phase Rokkasho LLW burial facility

    International Nuclear Information System (INIS)

    Kumata, Tadamasa

    1997-01-01

    Rokkasho Low Level radioactive Waste management center of Japan Nuclear Fuel Limited (hereafter called JNFL) has been operating for five years and about 90,000 (200 liter) drums have already been buried. Currently, JNFL is planning the 2nd phase of the burial program. The basic design of the new facility has been completed and applied for license additionally. Wastes buried in the 2nd phase facility are mainly dry active wastes from nuclear power plants. Inflammable wastes except for plastics are incinerated before they are disposed, because organic materials can generate gas and their degraded materials affect the distribution coefficients of the radionuclides. Most of the aluminum wastes which can generate hydrogen gas by corrosion are also removed from the waste. The 2nd phase facility accepts metal, plastics and non-flammable wastes. These are solidified with mortar in the 200 liter drums at the power plants. The radioactive inventory of the 2nd phase facility is considered to be as much as that of the 1st phase facility. (author)

  6. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  7. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  8. Improved gamma spectrometry of very low level radioactive samples

    International Nuclear Information System (INIS)

    Pineira, T.H.

    1989-01-01

    Today, many laboratories face the need to perform measurements of very low level activities using gamma spectroscopy. The techniques in use are identical to those applicable for higher levels of activities, but there is a need to use better adapted materials and modify the measurement conditions to minimize the background noise around the area. This paper presents the design of a very low level activity laboratory which has addressed the laboratory itself, the measuring chamber and the detector. The lab is constructed underground using specially selected materials of construction. The lab atmosphere is filtered and recycled with frequent changeovers. The rate of make-up fresh air is reduced and is sampled high above ground and filtered

  9. Resurrection imageries: A study of the motives for extravagant burial rituals in ancient Egypt

    Directory of Open Access Journals (Sweden)

    Jock M. Agai

    2015-03-01

    Full Text Available Unlike in the New Testament whereby faith in Christ can resurrect the dead, the ancient Egyptians believed that the bereaved created the resurrection of their deceased through burial rituals and by encouraging the living to serve their kings. They thought that faith alone in god or the gods was not enough to resurrect the dead, thus they seemingly superimposed resurrection alongside burials. Using the various forms of Egyptian burial rituals and evaluated from the perspective of the Christian concept of resurrection, this researcher attempts to search for the motives behind specific Egyptian burial rituals. The researcher proposes that the activities of the bereaved or of the living over the dead were paramount in resurrecting the dead in ancient Egypt. The purpose of this research is, firstly, to explain how the Egyptian burial rituals influenced their thoughts on resurrection and, secondly, to show that the Egyptian god(s might have depended on the living to raise the dead.Intradisciplinary and/or interdisciplinary implications: The ancient Egyptians lived their lives mainly to satisfy the interests of the dead, hence their extensive burial rituals. Whilst they believed in the power of the gods to raise the dead, there seemed to be another motive behind their burial practices which suggested that the living may have had more power to raise the dead. The power was realised in the activities of the living in the form of burials, tomb designs, mummification, food offering, and in remembering the dead. This research explains that these burial activities were relevant in resurrecting the dead without which the gods alone were not able to do that.

  10. Low-level-signal data acquisition for the MFTF superconducting-magnet system

    International Nuclear Information System (INIS)

    Montoya, C.R.

    1981-01-01

    Acquisition of low level signals from sensors mounted on the superconducting yin-yang magnet in the Mirror Fusion Test Facility (MFTF) imposes very strict requirements on the magnet signal conditioning and data acquisition system. Of the various types of sensors required, thermocouples, strain gages, and voltage taps produce very low level outputs. These low level outputs must be accurately measured in the harsh environment of slowly varying magnetic fields, cryogenic temperatures, high vacuum, pulse power and 60 Hz electrical noise, possible neutron radiation, and high common mode voltage resulting from superconducting magnet quench. Successful measurements require careful attention to grounding, shielding, signal handling and processing in the data acquisition system. The magnet instrumentation system provides a means of effectively measuring both low level signals and high level signals from all types of sensors

  11. CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243

    International Nuclear Information System (INIS)

    Taylor, G.

    2009-01-01

    The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed compliance with disposal limits. Other sites used much more detailed models to demonstrate compliance. These more detailed models tend to be correlation-based rather than mechanistically-based. With the US DOE's Low Level Waste Disposal Federal Review Group (LFRG) moving towards embracing a risk-based, best estimate with an uncertainties type of analysis, the conservative treatment of the cementitious barriers seems to be obviated. The CBP is creating a tool that adheres to the LFRG chairman's paradigm of continuous improvement

  12. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Science.gov (United States)

    Izzah Mohamad Hashim, Nur; Noor, Norazian Mohamed; Yasina Yusof, Sara

    2018-03-01

    In Malaysia, ground-level ozone (O3) is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate matter (PM10), Non-methane hydrocarbon (NmHC), Sulphur dioxide (SO2)) and weather parameters (i.e. wind speed (WS), wind direction (WD), temperature (T), ultraviolet B (UVB)) for ten years period (2003-2012) in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May) for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  13. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Directory of Open Access Journals (Sweden)

    Mohamad Hashim Nur Izzah

    2018-01-01

    Full Text Available In Malaysia, ground-level ozone (O3 is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO, Nitrogen dioxide (NO2, Particulate matter (PM10, Non-methane hydrocarbon (NmHC, Sulphur dioxide (SO2 and weather parameters (i.e. wind speed (WS, wind direction (WD, temperature (T, ultraviolet B (UVB for ten years period (2003-2012 in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  14. 30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor...

  15. A controlled monitoring study of simulated clandestine graves using 3D ground penetrating radar

    CSIR Research Space (South Africa)

    van Schoor, Michael

    2017-06-01

    Full Text Available A controlled three-dimensional ground penetrating radar monitoring study over simulated clandestine graves was conducted near Pretoria, South Africa, in which the detectability of graves as a function of post-burial interval was assessed...

  16. Design and heat transfer calculations of burial-bunker for one-stage melting converter for vitrification of high-level radioactive waste

    International Nuclear Information System (INIS)

    Pioro, L.S.; P'Yanykh, K.E.; Pioro, I.L.

    2001-01-01

    Widespread application of radioactive materials in different branches of industry, particularly in power engineering, has created a global problem in the area of ecological-disposal of radioactive waste (RAW). In general, three methods for reprocessing and disposal of RAW with high-level radionuclides are used: reservoir storage; burial in boreholes; and vitrification (solidification into glass blocks). Analysis of the recent methods of high level RAW (HLRAW) localization has shown that the most reliable method for long-term storage is vitrification. Vitrification allows to decrease by more than one order of magnitude the volume of HLRAW which is intended for long-term storage, and also to decrease leaching rates by 3-4 orders. This method includes incorporation of waste into physicochemical conglomerates during glass processing from active nuclides and neutral charging materials. Usually, this method consists of multistage processes. One-stage vitrification methods are seldom considered. (author)

  17. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  18. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    DEFF Research Database (Denmark)

    Freiesleben, Trine Holm; Sohbati, Reza; Murray, Andrew

    2015-01-01

    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure...... and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescenceedepth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated...... events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible...

  19. "Interred with their bones" - linking soil micromorphology and chemistry to unlock the hidden archive of archaeological human burials

    Science.gov (United States)

    Brothwell, Don; Usai, Maria-Raimonda; Keely, Brendan; Pickering, Matt; Wilson, Clare

    2010-05-01

    , including those not identifiable by micromorphology. 4: Organic chemical analysis: Organic residues will be analysed by gas (GC) or liquid (LC) chromatography and selected fractions by mass spectrometry (MS; GC-MS and LC-MS). MALDI imaging will produce image maps of the soil sections with false color images representing lipids, proteins and peptides Relevance of the research and expected results This soil study will reveal hidden secrets that inform understanding of cultural practices of and environmental conditions experienced by past civilisations. It will deliver a comprehensive inventory of soil morphology and chemistry for a wide range of archaeological human burial environments, linking morphological and chemical characteristics both at a general level and at a level that visually and chemically resolves individual microscopic remains. Thus, excavation of archaeological human graves, for cultural reconstruction and to understand mortuary practices, archaeological burial practices and aspects of human health, will be enhanced dramatically.

  20. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Science.gov (United States)

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  1. Soil Burial of Polylactic Acid/Paddy Straw Powder Biocomposite

    Directory of Open Access Journals (Sweden)

    Noorulnajwa Diyana Yaacob

    2015-12-01

    Full Text Available The objective of this work was to study the biodegradability of polylactic acid (PLA/paddy straw powder (PSP biocomposites. Environmental degradation was evaluated by composting the biocomposite samples into the soil. Different techniques, including mechanical tests and scanning electron microscopy (SEM, were used to obtain a view of the degradation that occurred during the soil burial of the biocomposites. Results of the mechanical tests showed that an increasing content of PSP in the biocomposites decreased the tensile strength and elongation at break (EB, while it increased the modulus of elasticity after six months of exposure. Scanning electron microscopy on the surface after soil burial showed that the filler was poorly wetted by the matrix. This explains the reduction in tensile strength and the elongation at break after soil burial. Differential scanning calorimetry results indicated that the crystallinity of the biocomposites increased with longer composting periods.

  2. 30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... medium-voltage resistance grounded systems to portable and mobile equipment shall include a fail safe... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and...

  3. RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-04-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. In January 1993, the Closure Plan was revised to include inspection and maintenance criteria and to reflect that future monitoring and remediation would be conducted as part of the ongoing Comprehensive Environmental Response, Compensation, and Liability Act activities at the Oak Ridge Y-12 Plant. This Closure Plan revision is intended to reflect the placement of the Kerr Hollow Quarry debris at the Walk-In Pits, revise the closure dates, and acknowledge that the disposition of a monitoring well within the closure site cannot be verified

  4. Introduction: Life Space and Burial Space in the Post-Apartheid City ...

    African Journals Online (AJOL)

    Landscapes of the dead are always, simultaneously, landscapes of the living. It is this coterminousness of life and death that gives the burial site its salience and emotional power. Different societies, at different times, renegotiate the relationship between what anthropologists call 'life space\\' and 'burial space\\', depending on ...

  5. Migration and biological transfer of radionuclides from shallow land burial

    International Nuclear Information System (INIS)

    1990-12-01

    This document is the final report of the Coordinated Research Programme (CRP) on the Migration and Biological Transfer of Radionuclides from Shallow Land Burial. It contains a description of the objectives of the CRP, its meetings, its achievements and the work of this individual members. Some early experiences in the operation of shallow land repositories have indicated that in the short-term, at least, radioactive wastes can be disposed of safely. However, while these experiences are encouraging, the safety of shallow-land burial for radioactive wastes remains to be demonstrated in the longer term. Some of the industrialized and more developed countries represented have well established disposal programmes for low level wastes (UK, France, USA, Japan, Sweden, Czechoslovakia, Argentina, India) while some of the developing countries represented are still at the preliminary planning stage (Thailand, Iraq). Accordingly, the interests of the participants are concerned with different aspects. Those from countries with existing facilities tend to be more interested in the development and improvement of safety assessment techniques and of a coherent long term disposal philosophy. Participants from countries without disposal facilities tend to be mainly concerned with basic experimental studies aimed at obtaining an understanding of radionuclide behaviour in soils. However, this division was by no means complete and on-going experimental studies were also reported by participants from USA, Canada and France. A total of 11 research agreements and 5 research contracts were allocated, but in addition a number of independent observers attended each of the three Research Coordination Meetings (RCMs). The RCMs were held in Vienna 4-8 November 1985, Oak Ridge, Tennessee, USA, 7-11 September 1987, and Paris, France 17-21 April 1989. Refs, figs and tabs

  6. De minimis applications for alternative disposal of very low level radioactive waste at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.

    1986-01-01

    Existing NRC regulations provide no minimum level of radioactivity in waste from a licensee's facility that may be disposed of in a manner other than as radioactive waste. With one exception, in 10CFRsection20.306, licensees may dispose of certain levels of tritium and carbon-14 in liquid-scintillation and animal-carcass waste without regard to its radioactivity. In the interim, before specific or generic provisions for disposing of very low level radioactive wastes are adopted through rule making, licensees have another alternative for obtaining approval to dispose of large volumes of materials contaminated with very low levels of radioactivity under provision 10CFRsection20.302(a) ''Method for obtaining approval of proposed disposal procedures.'' This paper provides the experiences of obtaining both NRC and states (North Carolina and South Carolina) approval for disposing of very low-level radioactive wastes from Duke Power Company's nuclear stations. The approved disposal procedures include landfarming of water treatment residues, on-site disposal (burial) of sand and feedwater heaters, and include offsite release for treatment and disposal of sanitary sewage sludge. In summary, users of radioactive materials should not exclude this approach in their quest to reduce the volume of radioactive waste. It is expected that such submittals could provide a data base for further development of generic limits for radioactive wastes

  7. Microstrip linear phase low pass filter based on defected ground structures for partial response modulation

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas

    2018-01-01

    We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing the characte......We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....

  8. Changes in CaCO3 Burial Trump the Biological Pump

    Science.gov (United States)

    Toggweiler, J.; Dunne, J. P.

    2008-12-01

    The dramatic increases in atmospheric CO2 at the ends of ice ages are usually attributed to a one-two punch coming from the ocean. First, a weakened biological pump vents organically cycled CO2 from the deep ocean via changes in the ventilation of the deep ocean around Antarctica. The initial CO2 increase is then augmented by an enhancement of CaCO3 burial due to a process called CaCO3 compensation (after Broecker, W. S and T.-H. Peng, Global Biogeochem. Cycles, 1, 15-29, 1987). Here, we argue that the importance of the biological pump has been exaggerated. The main effect comes from circulation-induced changes in the burial of CaCO3. As shown in a recent paper by Andreas Schmittner and co-authors (Schmittner, A., E. Brook and J. Ahn, Impact of the ocean's overturning circulation on atmospheric CO2, in Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr. 173, A. Schmittner, J. Chiang, and S. Hemming, eds., pp. 209-246, AGU, 2007) changes in the ventilation of the deep ocean around Antarctica gave rise to 20-30 ppm increases in atmospheric CO2 every 5,000-7,000 years during isotope stages 3 and 4 (30,000 to 70,000 years ago). None of these venting events gave rise to a compensation response. Meanwhile, Jaccard et al. (Science, 308, 1003-1006, 2005) show that all the big CO2 increases during terminations through stage 11 were accompanied by huge increases in CaCO3 burial. This suggests that the enhanced burial of CaCO3 is obligatory rather than compensatory with respect to the dramatic CO2 increases. Broecker and Peng's compensation idea is based on an assumption that the rain of CaCO3 to the sea floor is the same everywhere. More specifically, it assumes that there is no spatial correlation between the production of CaCO3 at the surface and the burial on the sea floor. We find instead that the production and burial of CaCO3 tend to be co-located in regional "hot spots" and that burial in the hot spots balances the input of Ca++ and HCO3- ions in rivers. The

  9. Assessment of Hanford burial grounds and interim TRU storage

    International Nuclear Information System (INIS)

    Geiger, J.F.; Brown, D.J.; Isaacson, R.E.

    1977-08-01

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes

  10. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  11. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    Full Text Available Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  12. Incineration as a low-level radioactive waste disposal alternative for the very low level (approx. 200 mCi/yr) institutional waste generator

    International Nuclear Information System (INIS)

    Miller, S.D.

    1982-01-01

    As a result of increased shipping costs and decreased land availability, serious questions have arisen regarding the continued use of shallow land burial for disposal of institutional radioactive wastes. These factors are of special significance to very low-level waste generators such as Arizona State University whose most recent waste shipment averaged approximately 2 mCi per shipped barrel at an effective cost of over $100 per mCi disposed - a total cost of over $14,000. Recent studies have shown incineration to be an attractive waste disposal alternative both in terms of volume reduction of waste, and in its expected insignificant radiological and environmental impact. Arizona State University has purchased an incinerator and has initiated a program to incinerate radioactive wastes. Licensing restrictions involving stack monitoring for a variety of possibly hazardous effluents and 10CFR20 restrictions affecting incineration of certain isotopes could render the change to incineration completely inefficient unless accompanied by a rigorous program of waste segregation designed to ease licensing restrictions. This paper reviews incinerator technology as it applies to radioactive waste management and presents the analysis performed during the licensing phase, along with some of the difficulties inherent in the development process

  13. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    International Nuclear Information System (INIS)

    Le Cozannet, Gonéri; Raucoules, Daniel; Garcin, Manuel; Lavigne, Franck; Wöppelmann, Guy; Gravelle, Médéric; Da Sylva, Sylvestre; Meyssignac, Benoit

    2015-01-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year −1 . Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)

  14. Reading Ground Water Levels with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  15. Radionuclide contaminant analysis of rodents at a waste burial site, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Biggs, J.R.; Bennett, K.D.; Fresquez, P.R.

    1996-01-01

    Small mammals were sampled at two waste burial sites (Sites 1 and 2) at Area G, TA-54, and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for americium ( 241 Am), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), total uranium (U), and examined by gamma spectroscopy (including cesium [ 137 Cs]). Significantly higher (parametric t-test at p = 0.05) levels of total U, 241 Am, 238 Pu, and potassium ( 40 K) were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, P = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, P = 0.0195) 239 Pu concentrations in carcasses than either Site 1 or Site 3

  16. Commercial radioactive waste disposal: marriage or divorce

    International Nuclear Information System (INIS)

    Corbett, J.S.

    1977-01-01

    It is shown that the state (South Carolina) is doing a good job in regulating the South Carolina disposal facility of Chemo-Nuclear Inc., and that there is no need for the NRC to reassert Federal control. The efforts in developing a low-level site in New Mexico are described. The NRC Task Force report on Federal/state regulation of commercial low-level radioactive waste burial grounds is discussed

  17. Mirrors in the Burial Rites of Saryarka Population in the Golden Horde Period

    Directory of Open Access Journals (Sweden)

    Khasenova Bakhyt M.

    2017-12-01

    Full Text Available The authors analyze the mirrors which were originally discovered in ancient Turkic burials, but became widely spread as late as in the Golden Horde period, which was largely accounted for by the intensification of contacts due to the establishment of the Mongol Empire. High-quality Chinese mirrors and their local imitations have been discovered across the entire vast territory in which the steppe peoples established new state formations. The authors support the opinion advanced by many researchers, according to which the mirrors represent ritual items. There is evidence of the fact that in the ancient Turkic period mirrors were characteristic of female burials. This information is partially confirmed for the developed medieval period as well, for paleoanthropological characteristics are not always available. The authors provide information on the conditions in which mirrors have been discovered in the burials of the historical period in question. The article features the first description of individual mirrors discovered in the burials of the steppe area of Kazakhstan. Of considerable interest is the discovery of one of the mirrors underneath a grave in a female burial conducted in accordance with the Muslim funerary rite. The authors attempt to identify the role of individual items in the burial rite of the medieval period, in this case mirrors, as a marker of gender identity.

  18. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Science.gov (United States)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.

  19. Funeral dress and textiles in 17th and 19th century burials in Ostrobothnia, Finland

    NARCIS (Netherlands)

    Lipkin, S.; Vajanto, K.; Kallio-Seppä, T.; Kuokkanen, T.; Niinimäki, S.; Väre, T.; van Bommel, M.; Grömer, K.; Pritchard, F.

    2015-01-01

    The 17th-19th-century burial materials from northern Ostrobothnia are studied in order to consider the value, origin and meaning of textiles especially in child burials. The focus is on the preservation, quality and dyes of burial textiles unearthed at the yard of Oulu Cathedral as well as the

  20. Burial history of two potential clay host formations in Belgium

    International Nuclear Information System (INIS)

    Mertens, J.; Wouters, L.; Van Marcke, Ph.

    2004-01-01

    When dealing with long term stability of repository host rocks, it is important to consider and learn from all past geological events since the deposition of the formations. The burial history of the Boom Clay and Ypresian Clays, both considered as potential host rocks in Belgium, illustrates that the North Belgian region was tectonically relatively stable since deposition. In Northern Belgium, where both formations are located at a few hundreds meters of depth, tectonic movements were relatively small and no significant uplifts took place. The burial history of the Boom Clay in Mol, where the HADES underground research facility is located illustrates this. On the poster, the burial history for both formations is presented at two locations each: one location in the outcrop region and one research site location, where the formation is currently buried under a few 100 metres of sediment. (authors)