WorldWideScience

Sample records for low-intensity microwave radiation

  1. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Keratomodelling with low-intensity ultraviolet radiation of excimer laser

    International Nuclear Information System (INIS)

    Vitrishchak, I.B.; Vorontsov, V.V.; Murzin, A.G.; Polikarpov, S.S.; Soms, L.N.

    1990-01-01

    A study was made on possibility of keratomodelling with low-intensive UV-radiation of excimer laser with subablation energy density in a pulse. Model specimens of polymers and cornea tissue were used. It is shown that the range of threshold energy density in a pulse expands with increase of UV-radiation wave length and contracts with increase of pulse repetition frequency. This range appeared to be different for polymers and cornea tissue. It was revealed that cornea tissue represented a complex high-molecular bipolymer with high water content

  3. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  4. A new influence model of low intensive ionizing radiation on organism

    International Nuclear Information System (INIS)

    Bulanova, K.Ya.; Lobanok, L.M.; Berdnikov, M.V.; Ignatenko, A.O.; Konoplya, E.F.

    2006-01-01

    The data and facts about the influence of ionizing radiation in small doses and low intensity on cardiovascular system and blood sells of experimental animals are given in the article. The ideas about its signal perception are used to illustrate and explain the mechanisms of low intensive physical nature factors influencing on organism. The leading role of quantitative information change in the process of forming physiological and pathologic influence of radiation on organism is supposed. The influence of X-ray small doses emission on human organism was analyzed on the basis of entropy calculation with the help of mathematical conversion characteristic of finger-tips luminosity. This method helped us to understand that the amount of information in the system was changed during post-radiation period. (authors)

  5. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  6. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  7. Influence of continuous microwave irradiation of low intensity on the behaviour of albino rats

    International Nuclear Information System (INIS)

    Rynskov, V.V.

    1985-01-01

    A study was made of a single 10 min exposure of albino rats to microwaves (6 GHz, 0.2 MW/cm 2 ) on their orientative-trying reaction. The locomotive activity, attentiveness and trying activity of the experimental animals were found to increase

  8. Reception of low-intensity millimeter-wave electromagnetic radiation by the electroreceptors in skates

    International Nuclear Information System (INIS)

    Akoev, G.N.; Avelev, V.D.

    1995-01-01

    Low intensity millimeter-wave electromagnetic radiation of less than 10 mW cm -2 power intensity has a nonthermal effect on the body and it is widely used in medical practice for treatment of various diseases. Nevertheless, the effect of EMR on biological tissues is not understood. The skin and its sensory receptors are considered to be responsible for EMR reception, but this has yet to be confirmed. The present experiments were designed to study the effect of millimeter-wave electromagnetic radiation on the ampullae of Lorenzini in skates, which are very sensitive to weak electrical stimuli at low frequency. (author)

  9. [Pulse flows of populations of cortical neurons under low-intensity pulsed microwave: interspike intervals].

    Science.gov (United States)

    Chizhenkova, R A

    2014-01-01

    Pulse flows of populations of cortical neurons were investigated on unanesthetized nonimmobilized rabbits prior, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.5-1.0 mW/cm2) in continuous and pulse-modulated modes with a frequency of 5, 20 and 100 Hz. The changes in the characteristics of interspike intervals resulted from these exposures. The peculiarity of rearrangements of pulse flows and their dynamics was determined by modes of irradiation.

  10. Specific features of peroxide stress in children permanently exposed to low-intensity radiation

    International Nuclear Information System (INIS)

    Durnov, L.A.; Bajkova, V.N.; Mayakova, S.A.; Polyakov, V.G.; Kolosov, E.A.; Dumbrajs, K.O.; Gracheva, I.V.; Zakharova, N.V.; Leonidova, Yu.A.; Romanova, L.F.

    2000-01-01

    To study the peculiarities of peroxide stress in children residing at the territories with chronic low-intensity radiation effects, the investigation was performed of tyrosine level, indices of the intensity of free radical lipid peroxidation and antioxidant system status in children and teenagers living in Sverdlovsk and Kolpnyansk districts of the Orel region contaminated due to the Chernobyl accident. Regions mentioned are characterized by low-intensity contamination with radionuclides (mainly 90 Sr, 131 I, 137 Cs), 25% an increase in tyrosine content, 1.8 times in malonic dial, 25-40 % in catalase and superoxide dismutase activity was revealed in blood plasma. Contents of A and E vitamins, glutathione and glutathione-depending enzymes are decreased. It is recommended to observe children health in regions contaminated as a result of the Chernobyl accident and correct failed redox processes using antioxidative vitamins [ru

  11. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  12. Results of using low-intensity laser radiation for plumbum intoxication

    Science.gov (United States)

    Dejneka, S. Y.

    1999-11-01

    We have studied the noninvasive effect of low-intensive laser impulse radiation in the infrared spectrum region on the liver projection site in experimental lead intoxication achieved by means of intragastric administration of Pb acetate to albino rats over a period of 30 days in a dose of 30 mg/kg. We determined a number of indices in laboratory animals which characterized the state of the nervous system, immune system, muscular performance efficiency. We have also investigated the hematologic indices and the blood and urinary delta-aminolevulinic acid content as well as the plumbum levels in the blood, urine and the animals' inner organs.

  13. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  14. Low intensity radiation in diapazone of high frequency as factor of the survival modification of differentiated plant cells

    International Nuclear Information System (INIS)

    Tordiya, N.V.

    2005-01-01

    The combined effect of low intensity electromagnetic emission in high frequency range (EMI HF) and ionizing radiation on survival of the differential cells of high plant water Elodea canadensis is investigated. It was established, that EMI HF is radioprotective modification of the radiation injury of plant cell

  15. Low-intensity laser radiation in complex treatment of inflammatory diseases of parodontium

    Science.gov (United States)

    Sokolova, Irina A.; Erina, Stanislava V.

    1995-04-01

    The problem of complex treatment of inflammatory disease of parodontium has become very acute and actual at the moment. The diseases of inflammatory nature are considered to be the most vital issues of the day. The state of the local immune system of oral cavity plays the most important role in the complicated mechanism of inflammatory process development in the tissues of parodontium. Recently physical factors have become predominant in the system of complex therapy of parodontitis. The application of low-intense laser radiation (LLR) is considered to be the most important and up-to-date method in the preventive dentistry. There were 60 patients of average damage rate suffering from chronic generalizing parodontitis at the age of 25 up to 55 under observation. The major goal of examination was to get the objective results of the following methods' application: parodontium index (Russel, 1956), hygiene index (Fyodorov, Volodkina, 1971), Bacterioscopy of dental-gingival pockets content, simple and broadened stomatoscopy (Kunin, 1970), SIgA level determination in mixed saliva (Manchini et all, 1965) and R-protein level in gingival blood (Kulberg, 1990). All the patients were split into 2 groups. The first group (30 patients) has undergone the laser therapy course while the second group of 30 patients couldn't get it (LLR). Despite the kind of therapy they have undergone, all the patients have got the local anti-inflammatory medicamental therapy. The results of clinical observations have proved the fact that laser therapy application makes it possible to shorten the course of treatment in 1.5 times. The shifts of oral cavity local resistance take place in case of chronic generalizing parodontitis. The direct immunostimulating effect could be observed as a result of LLR- therapy application. The close connection of both anti-inflammatory medicamental and LLR-therapy has proved the possibility of purposeful local immune status correction in case of parodontitis.

  16. Low-intensive proton generators for radiation testing; Nizkointensivnyj protonnyj generator dlya radiatsionnykh ispytanij

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, I V; Gurbich, A F; Semenov, A V

    1994-12-31

    Experiment is conducted and calculations are performed grounding the possibility of creating a low-intensity proton generator based on nuclear reaction. The necessity in such a proton source is defined by the need of conducting long-term testings and by the absence of appropriate equipment.

  17. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  18. Effects of the low-intensity red laser radiation on the fluoride uptake in enamel. A clinical trial

    International Nuclear Information System (INIS)

    Nakasone, Regina Keiko

    2004-01-01

    Fluoride has been the most important preventive method on development of the caries. This in vivo study evaluated the effects of low-intensity red laser radiation on the fluoride uptake in enamel. Ten healthy participants were recruited for this study. The two maxillary central incisors of each volunteer to be biopsied were used and divided into 4 groups: group G C (control, which was untreated; group G F (fluoride), which received topical acidulated phosphate fluoride (APF) 1,23% treatment for 4 minutes; group G LF (laser + fluoride), which was irradiated with a low-intensity diode laser (λ= 660 nm and dose= 6 J/cm 2 ) with APF application after irradiation and group G FL (fluoride + laser), which received APF before irradiation using the same parameters as G LF . The determination of fluoride was performed using a fluoride ion electrode after an acid-etch enamel biopsy. The results show a significant increase of the fluoride uptake in enamel for groups G F , G LF and G FL when compared to control group. Although a percentage increase of 57% was observed for G LF with respect to G F , there were no statistical differences among treated groups. These findings suggest that low-intensity laser radiation used before APF could be employed in the clinical practice to prevent dental caries. (author)

  19. [Analgesia evoked by combined effect of corvitin and low-intensity microwaves on acupuncture points in mice of different genetic strains with somatic pain].

    Science.gov (United States)

    Hura, O V; Bahats'ka, O V; Lymans'kyĭ, Iu P

    2011-01-01

    The level of analgesia has been investigated in mice of two genotypes C57BL/6J Bl/6j and CBA/CaLac with the somatic pain caused by the formalin test after irradiation of acupuncture point E-36 by microwaves of low intensity (30-300 GHz, density of a stream of capacity of 3-10-9 B(T)/cm2) on a background entered corvitin (20 mg/kg). It is shown, that the action of these two factors causes significant analgesia with different levels: 43% in C57BL/6J Bl/6j mice and 33% in CBA/CaLac mice. The intensity of analgesia after action of microwaves and corvitin exceeds the level attained during separate use of these factors.

  20. [The specific features of the development of metabolic and regenerative processes under the action of low-intensity electromagnetic radiation in radiation exposure conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Yu N; Mihajlik, L V; Nikulina, L A; Geniatulina, M S

    The experiments on male white rats with the use of biochemical, photo-optical, and electron-microscopic techniques have demonstrated that the use of low-intensity electromagnetic radiation of ultrahigh frequency (EMR UHF) and low-intensity low-frequency magnetic field (MF) during the post-irradiation period (within 21 days after exposure to radiation) enhanced the metabolic and regenerative processes in the testes and liver. It was shown that the application of MF largely intensified the antioxidant activity whereas EMR UHF preferentially stimulated the biosynthetic processes as well as the processes of cellular and intracellular regeneration.

  1. Cellular and genetic effects and recovery of heat-damaged cells of Saccharomyces cerevisiae by low intensity electromagnetic radiation at 915 MHz

    International Nuclear Information System (INIS)

    Sheikh, I.H.

    1984-01-01

    Studies were conducted on two genetically well known strains of Saccharomyces cerevisiae (Wild Type) and repair deficient mutant (UVS). Results obtained showed clear genetic difference between normal and mutants based on UV sensitivity, percent survival at elevated temperatures and high intensity electromagnetic radiation. At the cellular level, both strains showed a consistent increase in the recovery rate of heat damaged cells when exposed to low intensity FMR as compared to sham (non irradiated cells) at 915 MHz. The percent recovery of wild type was higher than mutant. At the molecular level, the uptake of tritiated uridine into thermally damaged cells which were recovered by low level EMR was significantly higher than sham. Total RNA isolated from irradiated cells and sham showed visible differences in the intensity of RNA bands. Gross quantitative analyses suggest more RNA production in radiation recovered cells as compared to sham. Results presented in this dissertation provide conclusive evidence that low level microwave radiation can be used in the recovery of heat damaged cells

  2. The influence of chronic gamma-radiation of low intensity on Bombyx mori L. embryogenesis

    International Nuclear Information System (INIS)

    Yusifov, N.I.; Kuzin, A.M.; Agaev, F.A.; AN Azerbajdzhanskoj SSR, Baku

    1989-01-01

    γ-Irradiation of a grain during embryogenesis at an intensity only 100 times exceeding that of the natural radioactive background reduces by 4-7 h the average time of embryogenesis for different species and hybrides of the grain. The 10- and 40-time increase in the radiation intensity decreases the stimulatory effect and leads to the delay in the development

  3. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'

    International Nuclear Information System (INIS)

    Blay, Alberto

    2001-01-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm 2 per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  4. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    Science.gov (United States)

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  5. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  6. Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity Black Light radiation or simulated solar radiation as excitation source

    International Nuclear Information System (INIS)

    Pelentridou, Katerina; Stathatos, Elias; Karasali, Helen; Lianos, Panagiotis

    2009-01-01

    Aqueous solutions of the herbicide azimsulfuron have been treated by a photocatalytic process employing titania nanocrystalline films as photocatalyst. Results showed that solutions of this herbicide at maximum possible concentration can be photodegraded in a time of a few hours by using low intensity UVA radiation comparable with that of the UVA of solar noon. Similar results have also been obtained with simulated solar radiation. Thus heterogeneous photocatalysis can be employed for the treatment of waters polluted by this herbicide

  7. Radiation-induced liver injury showing low intensity on T2-weighted images noted in Budd-Chiari syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Harushi [Tokyo Univ. (Japan). Graduate School of Medicine; Yoshioka, Hiroshi; Saida, Yukihisa; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Mori, Kensaku [Tsukuba Univ., Ibaraki (Japan). Hospital; Ahmadi, T. [Shahid Beheshti Univ. of Medical Sciences, Teheran (Iran, Islamic Republic of); Okumura, Toshiyuki [Ibaraki Prefectural Central Hospital, Tomobe (Japan)

    2002-04-01

    Although it is documented that radiation can cause density or intensity changes on computed tomography or MR imaging in the irradiated hepatic parenchyma, few researchers have reported or understood the MR presentation of changes in hepatic parenchyma following radiotherapy in the patient with Budd-Chiari syndrome. The purpose of this study was to investigate the MR appearance of hepatic radiation injury in Budd-Chiari syndrome and to consider the underlying pathophysiology. The MR examinations of two patients with Budd-Chiari syndrome was compared with those of 11 patients without Budd-Chiari syndrome. The two groups, both of which suffered from hepatocellular carcinoma, underwent 50-72 Gy of proton-beam irradiation during a period of 14-43 days. Examinations including T1- and T2-weighted imaging, superparamagnetic iron oxide-enhanced imaging, and dynamic study were performed 3-10 weeks after the end of irradiation. Radiation-induced hepatic injury was observed as a low-intensity area on T2-weighted images and on delayed phase images of dynamic study in the Budd-Chiari patients, and as iso- or high-intensity areas on both images in the patients without Budd-Chiari syndrome. US-guided needle biopsy from the irradiated area in one patient with Budd-Chiari syndrome revealed mostly necrotic tissue and fibrous tissue. These MR features of hepatic radiation injury in Budd-Chiari syndrome were considered to be due to severe hepatic fibrosis. (author)

  8. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    Science.gov (United States)

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  9. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  10. [The action of low-intensity extremely high-freguency electromagnetic radiation on growth parameters for bacteria Enterococcus hirae].

    Science.gov (United States)

    Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A

    2008-01-01

    It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.

  11. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

    Science.gov (United States)

    Campisi, Agata; Gulino, Marisa; Acquaviva, Rosaria; Bellia, Paolo; Raciti, Giuseppina; Grasso, Rosaria; Musumeci, Francesco; Vanella, Angelo; Triglia, Antonio

    2010-03-31

    The exposure of primary rat neocortical astroglial cell cultures to acute electromagnetic fields (EMF) in the microwave range was studied. Differentiated astroglial cell cultures at 14 days in vitro were exposed for 5, 10, or 20min to either 900MHz continuous waves or 900MHz waves modulated in amplitude at 50Hz using a sinusoidal waveform and 100% modulation index. The strength of the electric field (rms value) at the sample position was 10V/m. No change in cellular viability evaluated by MTT test and lactate dehydrogenase release was observed. A significant increase in ROS levels and DNA fragmentation was found only after exposure of the astrocytes to modulated EMF for 20min. No evident effects were detected when shorter time intervals or continuous waves were used. The irradiation conditions allowed the exclusion of any possible thermal effect. Our data demonstrate, for the first time, that even acute exposure to low intensity EMF induces ROS production and DNA fragmentation in astrocytes in primary cultures, which also represent the principal target of modulated EMF. Our findings also suggest the hypothesis that the effects could be due to hyperstimulation of the glutamate receptors, which play a crucial role in acute and chronic brain damage. Furthermore, the results show the importance of the amplitude modulation in the interaction between EMF and neocortical astrocytes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. [The ultrastructure of Sertoli cells and spermatogonia in the rats exposed to radiation under conditions of therapeutic and prophylactic application of low-intensity electromagnetic emission].

    Science.gov (United States)

    Korolev, Y N; Bobrovnitskii, I P; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2018-04-09

    it has been demonstrated in various experimental studies that radiation exposure produces a negative impact on the processes of spermatogenesis associated with the disturbances of the microcirculation processes in the testes and the development of cellular and intracellular disintegration expressed as destructive changes in the cells leading to their death. The objective of the present study was to detect the ultrastructural abnormalities in the cells of Sertoli and spermatogonia under conditions of their exposure to radiation and to identify the peculiarities of their regeneration under the influence of the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation (EMR) and low-intensity low-frequency magnetic field (MF). The experiments were carried out on 28 non-pedigree mature male rats with the body weight 180-220 g that were divided into four groups. The first study group was comprised of the animals exposed to radiation followed by the application of low-intensity ultra-high frequency UHF electromagnetic radiation EMR. The rats in the second study group experienced effects of radiation and low-intensity low-frequency MF. The animals of the third (control) group were exposed to radiation alone, and those comprising the fourth group 1 (only radiation exposure) were considered to be intact. The studies with the use of electron microscopy showed that the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation and low-intensity low-frequency magnetic field caused the decrease in the number and the severity of post-radiation defects in the treated cells together with the increase of the number and size of mitochondria as well as hyperplasia of ribosomes; moreover, it promoted cellular and intracellular regeneration. UHF electromagnetic radiation had a more pronounced stimulating effect on the regeneration processes as compared with low-frequency MF

  13. Risks of long-term effect of microwave radiation from mobile communication systems on human organism

    International Nuclear Information System (INIS)

    Chekhun, V.F.; Yakimenko, Yi.L.; Tsibulyin, O.S.; Sidorik, Je.P.; Chekhun, V.F.; Yakimenko, Yi.L.; Tsibulyin, O.S.; Sidorik, Je.P.

    2011-01-01

    It has been detected that commercial models of cell phones on the market of Ukraine sometimes emit microwaves in intensity by 1-2 orders of magnitude higher than the national safety limit for non-ionizing radiation. The survey of Ukrainian students has revealed an active usage of cell phones and a high percent of youth with the subjective feeling of physical discomfort and/or pain in head during cell phone talks. A significant time-dependent biological activity of the certain modes of low-intensity microwave radiation on the model of bird somitogenesis has been demonstrated.

  14. Method for Correction of Consequences of Radiation-Induced Heart Disease using Low-Intensity Electromagnetic Emission under Experimental Conditions.

    Science.gov (United States)

    Bavrina, A P; Monich, V A; Malinovskaya, S L; Yakovleva, E I; Bugrova, M L; Lazukin, V F

    2015-05-01

    Effects of successive exposure to ionizing irradiation and low-intensity broadband red light on electrical activity of the heart and myocardium microstructure were studied in rats. Lowintensity red light corrected some ECG parameters, in particular, it normalized QT and QTc intervals and voltage of R and T waves. Changes in ECG parameters were followed by alterations in microstructure of muscle fi laments in the myocardium of treatment group animals comparing to control group.

  15. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  16. Diminution of acute radiation reaction of mouse skin with low-intensity infrared laser/red diodes-emitted light

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Klimakov, B.D.; Goldobenko, G.V.; Vajnson, A.A.

    2000-01-01

    Efficiency of the application of different regimes of laser treatment of radiation-induced skin reactions in mice feet is compared. Posterior limb feet of mice were exposed to acute X radiation at 30-36 Gy dose or fractionated radiation at 45 Gy dose. In the day of primary irradiation or different time later the feet were treated using magnetic infrared laser therapeutic MILTA-01 apparatus. Magnetic and light components of the MILTA-01 apparatus reduce the effect of radiation on mice skin corresponding two time decrease in X-radiation dose [ru

  17. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  18. Effects of Microwave Radiation on Oil Recovery

    Science.gov (United States)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  19. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia

    International Nuclear Information System (INIS)

    Castilho Filho, Thyrso

    2003-01-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser (λ=780 nm) during 10 seconds, with an energy density of 7.5 J/cm 2 on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  20. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    International Nuclear Information System (INIS)

    Ribeiro, Martha Simoes

    2000-01-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  1. Role NO in realization of disorders of reactivity of an aorta after affecting an low intensive ionizing radiation: age aspects

    International Nuclear Information System (INIS)

    Solov'eva, N.G.

    2008-01-01

    The ionizing radiation in a dose 1 Gy mediates depressing of vasodilatation functions of an endothelium against the background of discriminated variations of neurohumoral regulations of reactivity of an aorta for young and old rats. The radiation-induced modification of physiological function of endothelial NO executes the key role in these age variations. (authors)

  2. [The combined action of drinking mineral water and low-intensity electromagnetic radiation under the immobilization stress conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Yu N; Bobrovnitsky, I P; Geniatulina, M S; Mikhailik, L V; Nikulina, L A; Bobkova, A S; Yakovlev, M Yu

    2015-01-01

    The present study carried out on white male rats in experiments with the use of biochemical, radioimmunological, and electron- microscopic methods. It was shown that the combined treatment with potable mineral water (MV) and low-intensity electromagnetic radiation (LIEMR) of ultrahigh frequency (power density less than 1 pW/cm2, the frequency about 1000 MHz) facilitated the activation of metabolic and intracellular regenerative processes in the liver and testes. One of the advantages of the combined application of MV and LIEMR over the single-factor treatment manifested itself as the weakening of stress reactions, the increase in the frequency of the plastic processes, and the more harmonious development of different forms of intracellular regeneration. The results of the study provide a deeper insight ino the mechanisms underlying the combined actions of drinking mineral water and low-intensity electromagnetic radiation; also, they justify the application of these factors for the protection of the reproductive system and the entire body from stress-induced disorders.

  3. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  4. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  5. ULTRA-LOW INTENSITY PROTON BEAMS FOR RADIATION RESPONSE RELATED EXPERIMENTS AT THE U-120M CYCLOTRON

    Directory of Open Access Journals (Sweden)

    Tomas Matlocha

    2018-05-01

    Full Text Available The U-120M cyclotron at the Nuclear Physics Institute (NPI of the Czech Academy of Sciences in Rez is used for radiation hardness tests of electronics for high-energy physics experiments. These tests are usually carried out with proton fluxes of the order of 105–109 proton·cm−2·s−1. Some tests done for the upgrade of the Inner Tracking System of the ALICE experiment at CERN, however, required proton beam intensities several orders of magnitude lower. This paper presents a method which has been developed to achieve the proton beam flux of the order of 1 proton · cm−2·s−1. The method is mainly based on reduction of the discharge current in the cyclotron internal Penning type ion source. Influence of this new operation mode on the lifetime of ion source cathodes is discussed.

  6. Radiofrequency radiation leakage from microwave ovens

    International Nuclear Information System (INIS)

    Lahham, A.; Sharabati, A.

    2013-01-01

    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm -1 with an average value equalling 3.64 μW cm -2 . Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm -2 . The highest radiation leakage from any tested oven was ∼16.4 μW cm -2 , and found in two cases only. In no case did the leakage exceed the limit of 1 μWcm -1 recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age. (authors)

  7. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  8. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  9. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I.

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities

  10. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2017-07-01

      This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 mins is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  11. [The influence of pulsed low-intensity laser radiation of the red (635 nm) and infrared (904 nm) spectra on the human mesenchymal stem cells in vitro].

    Science.gov (United States)

    Moskvin, S V; Kliuchnikov, D Iu; Antipov, E V; Volchkov, S E; Kiseleva, O N

    2014-01-01

    Mesenchymal stem cells (MSC) have for a long time been an object of investigation with a view to elucidating the prospects for their application in clinical medicine and cosmetology. One of the approaches to the non-specific regulation of the activity of these cells at the stage of preliminary in vitro combination is the treatment with low-intensity laser radiation (LILR). The objective of the present study was to evaluate the possibility of using pulsed LILR of the infrared and red spectra for this purpose. We used the 4th passage adhesive MSC cultures based at the umbilical tissue of a donor who gave the informed consent to participate in the study. The source of illumination was a Lazmik-VLOK laser therapeutic apparatus (RU No RZN 2014/1410 dated 06.02.2014) with the matrix laser infrared radiation heads (wavelength 904 nm, light pulse length 108 ns, frequency 1500 Hz). The apparatus was operated either in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.05 and 0.14 mW/cm2 and the red spectrum (wavelength 635 nm, light pulse length 144 ns, frequency 1500 Hz) or in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.03 and 0.12. The exposition was 5 min in both regimes. The study has demonstrated that neither the morphological structure nor the viability of mesenchymal stem cells changed under the influence of energy and time parameters used in experiments. The number of cells was shown to slightly increase in comparison with control. The most pronounced effect was documented after illumination with pulse infrared (904 nm) LILR in the multi-frequency Lazmik regime. The maximum effect was observed during a period between days 1 and 3 of cultivation.

  12. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays.

    Science.gov (United States)

    Gapeyev, Andrew B; Aripovsky, Alexander V; Kulagina, Tatiana P

    2015-03-01

    The effects of extremely high-frequency electromagnetic radiation (EHF EMR) on thymus weight and its fatty acids (FA) content and FA composition in X-irradiated mice were studied to test the involvement of FA in possible protective effects of EHF EMR against ionizing radiation. Mice were exposed to low-intensity pulse-modulated EHF EMR (42.2 GHz, 0.1 mW/cm(2), 20 min exposure, 1 Hz modulation) and/or X-rays at a dose of 4 Gy with different sequences of the treatments. In 4-5 hours, 10, 30, and 40 days after the last exposure, the thymuses were weighed; total FA content and FA composition of the thymuses were determined on days 1, 10, and 30 using a gas chromatography. It was shown that after X-irradiation of mice the total FA content per mg of thymic tissue was significantly increased in 4-5 h and decreased in 10 and 30 days after the treatment. On days 30 and 40 after X-irradiation, the thymus weight remained significantly reduced. The first and tenth days after X-rays injury independently of the presence and sequence of EHF EMR exposure were characterized by an increased content of polyunsaturated FA (PUFA) and a decreased content of monounsaturated FA (MUFA) with unchanged content of saturated FA (SFA). Exposure of mice to EHF EMR before or after X-irradiation prevented changes in the total FA content in thymic tissue, returned the summary content of PUFA and MUFA to the control level and decreased the summary content of SFA on the 30th day after the treatments, and promoted the restoration of the thymus weight of X-irradiated mice to the 40th day of the observations. Changes in the content and composition of PUFA in the early period after treatments as well as at the restoration of the thymus weight under the combined action of EHF EMR and X-rays indicate to an active participation of FA in the acceleration of post-radiation recovery of the thymus by EHF EMR exposure.

  13. Biologic effects and health hazards of microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Czerski, P; Ostrowski, K; Shore, M L; Silverman, C., Suess, M.J.; Waldeskog, B

    1974-01-01

    Proceedings of an international symposium held in Warsaw, 15--18 Oct. 1973, sponsored by the World Health Organization, the U.S. Department of Health, Education and Welfare, and the Polish Scientific Council to the Minister of Health and Social Welfare are presented. It covered numerous aspects of exposure to microwave radiation. The papers more specifically relating to occupational exposure to microwaves deal with: measurement of microwave radiations, clinical manifestations, neurological findings, health status of microwave workers, blood protein disorders, effects of electromagnetic fields in densely populated areas, microwave cataract and concomitant pathology, retinal changes, assessment of lens translucency in microwave workers. A list of participants at the symposium and an author and subject index are appended.

  14. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  15. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  16. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    Science.gov (United States)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  17. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  18. Removal of Pseudomonas aeruginosa in hospital air using microwave radiation

    Directory of Open Access Journals (Sweden)

    firouz valipour

    2013-09-01

    Conclusion: Microwave radiation with high functionality can be used to remove bacterial air pollutions. They can help to control biological agents in hospitals and medical centers with good efficiency.

  19. The distinguishing effects of low-intensity electromagnetic radiation of different extremely high frequencies on Enterococcus hirae: growth rate inhibition and scanning electron microscopy analysis.

    Science.gov (United States)

    Hovnanyan, K; Kalantaryan, V; Trchounian, A

    2017-09-01

    A low-intensity electromagnetic field of extremely high frequency has inhibitory and stimulatory effects on bacteria, including Enterococcus hirae. It was shown that the low-intensity (the incident power density of 0·06 mW cm -2 ) electromagnetic field at the frequencies of 51·8 GHz and 53 GHz inhibited E. hirae ATCC 9790 bacterial growth rate; a stronger effect was observed with 53 GHz, regardless of exposure duration (0·5 h, 1 h or 2 h). Scanning electron microscopy analysis of these effects has been done; the cells were of spherical shape. Electromagnetic field at 53 GHz, but not 51·8 GHz, changed the cell size-the diameter was enlarged 1·3 fold at 53 GHz. These results suggest the difference in mechanisms of action on bacteria for electromagnetic fields at 51·8 GHz and 53 GHz. A stronger inhibitory effect of low-intensity electromagnetic field on Enterococcus hirae ATCC 9790 bacterial growth rate was observed with 53 GHz vs 51·8 GHz, regardless of exposure duration. Scanning electron microscopy analysis showed that almost all irradiated cells in the population have spherical shapes similar to nonirradiated ones, but they have increased diameters in case of irradiated cells at 53 GHz, but not 51·8 GHz. The results are novel, showing distinguishing effects of low-intensity electromagnetic field of different frequencies. They could be applied in treatment of food and different products in medicine and veterinary, where E. hirae plays an important role. © 2017 The Society for Applied Microbiology.

  20. The influence of microwave radiation on the failure of rocks

    Directory of Open Access Journals (Sweden)

    Lovás Michal

    2000-09-01

    Full Text Available The heating and processing of materials using microwaves becomes increasingly popular for industrial applications. Compared to conventional heating, microwave processing can provide a rapid, the production of materials with unique properties, and reductions in manufacturing costs and processing times.The positive influence of the microwave radiation on the faulting of the individual rocks is described. At the heating of the heterogeneous ores, the microwaves have an selective effect for individual mineral components. Owing to the different degree of to heating and thermal dilatation the stress and destructive attendants arise, which increase the faulting of rocks. The rate of the faulting has been investigated on the basis of measurement of the elastic waves motion velocity by the impulse-dynamic method.On the basis of the measured values of elastic wave motion in the observed rocks before and after their microwave heating the coefficient of faulting was computed according to the relation (1. Subsequently, from these coefficients the rate of faulting was determined for individual rocks according to Jaeger (Table 1.Various rate of rocks faulting caused by the radiation depend on their ability to absorb microwave power. High rate of faulting was observed in rocks with strong absorption of microwave power unlike from substances which weakly absorb the radiation. Particularly, a high rate of faulting after microwave heating was observed at samples of limestone (Rožòava-Jovice and magnesite (Haèava. Low rate of faulting was obtained in the case of granodiorite (Podhradová, granite (Hnilec, sandstone (Horelica, marble (Koelga and andesite (Hubošovce.The influence of microwave energy on the rate of rocks faulting was confirmed. The new knowledge can be applied for the intensification of the rock disintegration processes.

  1. Measurements of nonionizing radiation emitted from microwave oven

    International Nuclear Information System (INIS)

    Elnour, Yassir Elnour Osman

    2014-05-01

    There is an increase in the usage of microwave oven which is used electromagnetic radiation in the microwave range, which believed to be harmful to human health. The measurements were taken at distance of range(0-100) cm from the microwave oven. The study concluded that the risk possibility of the radiation increases at high mode. We measured the power density, magnetic field and signal strength of microwave oven using the SPECTRAN high frequency (HF-6080) detector. The experimental results of power density were found to be (3.78-208000) nW/m 2 and magnetic field is (0.001-0.744) mA/m. These values are less than the exposure limits recommended. (author)

  2. Plasma acceleration by means of microwave radiation pressure

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1977-01-01

    In the electric discharge of gas with microwaves, intense reflection waves occur simultaneously with the discharge, so the plasma ionized and formed by the microwaves is accelerated due to large radiation pressure. The basic experiment made, aiming at plasma gun, is described. In the gas electric discharge, the plasma flow velocity proportional to the reflected power is obtained. For 550 W microwave input power, the plasma velocity of 1 x 10 4 m/s was obtained. The accelerated plasma is bunched; its front as mass travels, recombines and disappears. (Mori, K.)

  3. Effects of the low-intensity red laser radiation on the fluoride uptake in enamel. A clinical trial; Avaliacao dos efeitos da radiacao laser de emissao vermelha em baixa intensidade na incorporacao de fluor no esmalte. Estudo clinico

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Regina Keiko

    2004-07-01

    Fluoride has been the most important preventive method on development of the caries. This in vivo study evaluated the effects of low-intensity red laser radiation on the fluoride uptake in enamel. Ten healthy participants were recruited for this study. The two maxillary central incisors of each volunteer to be biopsied were used and divided into 4 groups: group G{sub C} (control, which was untreated; group G{sub F} (fluoride), which received topical acidulated phosphate fluoride (APF) 1,23% treatment for 4 minutes; group G{sub LF} (laser + fluoride), which was irradiated with a low-intensity diode laser ({lambda}= 660 nm and dose= 6 J/cm{sup 2}) with APF application after irradiation and group G{sub FL} (fluoride + laser), which received APF before irradiation using the same parameters as G{sub LF}. The determination of fluoride was performed using a fluoride ion electrode after an acid-etch enamel biopsy. The results show a significant increase of the fluoride uptake in enamel for groups G{sub F}, G{sub LF} and G{sub FL} when compared to control group. Although a percentage increase of 57% was observed for G{sub LF} with respect to G{sub F}, there were no statistical differences among treated groups. These findings suggest that low-intensity laser radiation used before APF could be employed in the clinical practice to prevent dental caries. (author)

  4. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  5. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  6. Effect of microwave radiation on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, G.; Depci, T.; Ataman, N. [Middle East Technical University, Ankara (Turkey). Mining Engineering Department

    2009-07-01

    Most low-rank coals are high in moisture and acid functional groups, therefore showing poor floatability. Drying, which removes the water molecules trapped in the pores and adsorbed at the surface of coal, decreases the hydrophilic character and improves the floatability. Microwave heating, whose simplest application is drying, was applied at 0.9 kW power level for 60 sec exposure time in the experiments to decrease the moisture content of coal in order to enhance the hydrophobicity. The flotation tests of microwave-treated coal by using heptanol and octanol lead to a higher flotation yield and ash removal than original coal.

  7. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  8. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  9. Hopping Conductivity Enhanced by Microwave Radiation

    International Nuclear Information System (INIS)

    Ovadyahu, Z

    2012-01-01

    Hopping conductivity is enhanced when exposed to microwave (MW) fields. Data taken on several Anderson-localized systems and granular-aluminium are presented to illustrate the generality of the phenomenon. It is suggested that the effect is due to a field-enhanced hopping, which is the ac version of a non-ohmic effect familiar from studies in the dc transport regime.

  10. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis and ovary of Sprague Dawley rats was ... Microwave (MW) radiation is a non-ionizing electromagnetic radiation ..... microwave field and not in any way related to indirect.

  11. Effects of low-intensity GaAlAs laser radiation (λ=660 nm) on dentine-pulp interface after class I cavity preparation

    International Nuclear Information System (INIS)

    Godoy, Bruno Miranda

    2003-01-01

    The aim of this study was to investigate the effects of low-intensity irradiation with GaAlAs laser (red emission) on the ultrastructure of dentine-pulp interface after conventionally prepared class I cavity preparation. Two patients with 8 premolars for extraction indicated for orthodontic reasons. Class I cavities were prepared in these teeth that were then divided into two groups. The first group received a treatment with laser with continuous emission, λ=660 nm, with maximum power output of 30 mW. The dosimetry applied was of approximately 2J/cm 2 , directly and perpendicularly into the cavity in only one section. After the irradiation, the cavities were filled with composite resin. The second group received the same treatment, except by the laser therapy. Twenty-eight days after the preparation, the teeth were extracted and were processed for transmission electron microscopy analysis. Two sound teeth, without any preparation, were also studied. The irradiated group presented odontoblastic processes in higher contact with the extracellular matrix and the collagen fibers appeared more aggregated and organized than those of control group. These results were also observed in the healthy-teeth. Thus, we suggest that laser irradiation accelerates the recovery of the dental structures involved in the cavity preparation at the pre-dentine level. (author)

  12. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  13. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  14. Angular anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1982-01-01

    The theory of fluctuations in the cosmic microwave background radiation is reviewed. Anisotropy on large-scale (dipole and quadrupole) and on small scales is discussed. The smoothing effects of secondary ionization (fractional ionization x) are found to be unimportant over an angular scale greater than approx.= 5(OMEGAx)sup(1/3) degrees. (author)

  15. [The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of bacteria Escherichia coli and the role of medium pH].

    Science.gov (United States)

    Tadevosian, A; Kalantarian, V; Trchunian, A

    2007-01-01

    It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.

  16. Mast cells behavior analysis: non mineralized wall of suprabony periodontal pockets submitted to low intensity laser radiation. (An in anima nobile study)

    International Nuclear Information System (INIS)

    Silveira, Livio de Barros

    2001-01-01

    For this study 20 patients with periodontal disease were selected. The treatment required for all of then was the gingivectomy, a ressective periodontal surgery. This technique consists of removing the whole excess of gingival tissue with the intent of reestablishing the anatomy and the correct function. The gingival area was submitted to 2 different wavelengths and then histologically analysed to search for alterations, mainly concerning mast cells behavior, a blood cell responsible, among other things, for blood vases enlargement. During the surgical procedure each gingival area was submitted to infrared low intensity laser (λ = 785 nm) or to red laser (λ = 688 nm), both with 50 mW of power and fluence of 8 J/cm 2 . A third area was analysed, the control area, in which no laser treatment was employed. The samples were fixated in formol, cut and stained by hematoxyline eosine and toluidine blue. Based on the result we can conclude: the 2 wavelengths used in this study led to the reduction in the number of mast cells present in the tissue as well as to the increase on the degranulation of the remaining mast cells, considered statistically significant taken the degranulation index and; there was no significant difference caused by the action of the two laser wavelengths λ=785 nm and λ=688 nm -50 mW of power and fluence of 8 J/cm 2 -, over the degranulation of the mast cells; the length and width of the randomly chosen blood vases were not statistically different among the analysed groups. (author)

  17. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  18. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  19. Radiation protection in occupational exposure to microwave electrotherapy units

    International Nuclear Information System (INIS)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-01-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  20. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    Science.gov (United States)

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  1. Microwave radiative transfer intercomparison study for 3-D dichroic media

    International Nuclear Information System (INIS)

    Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C.

    2007-01-01

    Three different numerical methods capable of solving the radiative transfer of microwave radiation within 3-D dichroic media are compared. A case study, represented by an intense rain shaft populated by perfectly oriented oblate raindrops, is analysed in detail, including a discussion of the behaviour of all four Stokes components. Results demonstrate an acceptable agreement between all Monte Carlo methods. The method based on a discrete ordinates scheme agrees only qualitatively with the Monte Carlo outputs. Because of its lower computational cost the backward Monte Carlo technique based on importance sampling represents the most efficient way to face passive microwave radiative transfer problems related to optically thick 3-D structured clouds including non-spherical preferentially oriented hydrometeors

  2. Some remarks on non-monotonic effects at low radiation intensities, on the problem of extrapolating doses between high and low intensities and on the problem of thresholds

    International Nuclear Information System (INIS)

    Delattre, P.

    1983-01-01

    On the basis of a general descriptive framework which takes into account the intensity factor and the time distribution of radiation, a detailed justification for which is to be found in earlier publications, the three fundamental problems mentioned in the title of this paper can be approached in a new way. If the biological effect e for a given dose D delivered at different radiation intensities phi is studied, we find that the curve e=f(phi) can exhibit non-monotonic shapes. This type of phenomenon is known in pharmacology and toxicology and may well exist also for low- or medium-intensity radiation effects. Extrapolation of the effects of a given dose between high and low radiation intensities phi is usually carried out by means of an empirical linear or linear-quadratic formulation. This procedure is insufficiently justified from a theoretical point of view. It is shown here that the effects can be written in the form e=k(phi)D and that the factor of proportionality k(phi) is a generally very complicated function of phi. Hence, the usual extrapolation procedures cannot deal with certain ranges of values of phi within which the effects observed at a given dose may be greater than when the dose is delivered at higher intensity. The problem of thresholds is actually far more difficult than the current literature on the subject would suggest. It is shown here, on the basis of considerations of qualitative dynamics, that several types of threshold must be defined, starting with a threshold for the radiation intensity phi. All these thresholds are interrelated hierarchically in fairly complex ways which must be studied case by case. These results show that it is illusory to attempt to define a universal notion of threshold in terms of dose. The conceptual framework used in the proposed approach proves also to be very illuminating for other studies in progress, particularly in the investigation of phenomena associated with ageing and carcinogenesis. (author)

  3. On the cosmic microwave background radiation

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-12-01

    Full Text Available In this article we will try to give a pale idea to the reader of what could be the Cosmic Microwave Background (RCFM that, according to the traditional Big Bang model, was generated by a primordial explosion. With this purpose we find it very important to present a brief historical summary of how the Microcosm, based on the Standard Model of Elementary Particle Physics (MPPE, and the Macrocosm, based on the Standard Big Bang Model (MPBB, have evolved over time. In addition, in the final part of the article we will analyze the two physical processes presented in the literature that seek to explain the RCFM: Bariogenesis and Plasma Quark-Gluon.

  4. Interaction of low-intensity nuclear radiation dose with the human blood: Using the new technique of CR-39NTDs for an in vitro study

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Jaafar, Mohamad S.

    2011-01-01

    Complete blood counts were analyzed for 30 samples of human blood with radiation dose rate ranging between 10 and 41 μSv/h using a Radium-226 source with different time of exposure. A new technique involving a nuclear track detector type CR-39(CR-39 NTDs) was used to estimate the alpha particle density incident on the blood samples. The results show that the ranges of alpha particle in blood samples and on the surface of CR-39NTDs vary exponentially with energy of alpha particles. This depends on the restricted energy loss and target density. Changes in the blood components due to irradiation occurred for different durations of irradiation, and the duration of irradiation that influenced the blood samples in this study was 6 min. The change in red blood cell (RBC) was negligible, so it is less affected than other blood components. In addition, most changes in the blood contents began at a low radiation dose (10.38-13.41 μSv/h). For the doses 13.41-21.77 μSv/h, platelet (PLT) counts increased rapidly and adversely with the RBC and white blood cell (WBC) due to chromosomal aberration. Besides, rapid PLT count reduction rapidly at high dose (42.1 μSv h) causes thrombocytopenia; in contrast, WBC increased, which is an indication of cancer caused due to increase in alpha particle dose. Generally, our results are in agreement with the essentials of blood content and the principles of biological radiation interaction.

  5. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  6. Effects of microwave radiation on peripheral lymphocyte subpopulations in rats

    Directory of Open Access Journals (Sweden)

    Jin-ling YIN

    2011-10-01

    Full Text Available Objective To investigate the effects and mechanisms of microwave radiation on peripheral lymphocyte subpopulations in Wistar rats.Methods A total of 100 Wistar rats(180-220g were exposed to microwave with different average power densities of 5,10,30 and 60 mW/cm2,and sham exposure of 0mW/cm2 was performed in a control group at the same time.At day 1,7,14 and 28 after microwave irradiation,the changes in peripheral CD3+,CD4+,CD8+ T cells,ratio of CD4+/CD8+ and CD45RA+ B lymphocyte in rats were analyzed by flow cytometry(FCM.Results The CD3+ T cells decreased significantly in 10-30mW/cm2 groups at day 7 and in 5-30 mW/cm2 groups at day 14 after radiation as compared with control group(P < 0.05,and CD4+ T cells decreased significantly in 10mW/cm2 group at day 14 after radiation as compared with control group(P < 0.01.From day 1 to day 14 after radiation,CD8+ T cells showed a reduction in number in all irradiated groups when compared with the control,but statistical significance was only found in the 30mW/cm2 group(P < 0.05.The CD4+/CD8+ ratio increased in 5mW/cm2 group on day 1,while decreased significantly in 5-30mW/cm2 groups on day 14 after radiation as compared with control group(P < 0.05.After microwave exposure,however,CD45RA+ B cells in 30mW/cm2 group at day 1 and in 30-60mW/cm2 groups at day 14 after radiation increased significantly in a dose-dependent manner.Conclusion A definite dosage of microwave radiation,ranging from 5-60mW/cm2,may induce changes in subpopulations of peripheral lymphocytes and cause acute immune function impairment in rats.

  7. Could unstable relic particles distort the microwave background radiation?

    International Nuclear Information System (INIS)

    Dar, A.; Loeb, A.; Nussinov, S.

    1989-01-01

    Three general classes of possible scenarios for the recently reported distortion of the microwave background radiation (MBR) via decaying relic weakly interacting particles are analyzed. The analysis shows that such particles could not reheat the universe and cause the spectral distortion of the MBR. Gravitational processes such as the early formation of massive black holes may still be plausible energy sources for producing the reported spectral distortion of the MBR at an early cosmological epoch. 24 references

  8. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  9. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Science.gov (United States)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  10. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    Robinette, C.D.; Silverman, C.; Jablon, S.

    1980-01-01

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  11. SMRT: A new, modular snow microwave radiative transfer model

    Science.gov (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  12. Generalized Chaplygin gas and cosmic microwave background radiation constraints

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2003-01-01

    We study the dependence of the location of the cosmic microwave background radiation peaks on the parameters of the generalized Chaplygin gas model, whose equation of state is given by p=-A/ρ α , where A is a positive constant and 0<α≤1. We find, in particular, that observational data arising from Archeops, BOOMERANG, supernova and high-redshift observations allow constraining significantly the parameter space of the model. Our analysis indicates that the emerging model is clearly distinguishable from the α=1 Chaplygin case and the ΛCDM model

  13. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  14. Low-intensity conflict in multinational corporations

    DEFF Research Database (Denmark)

    Lauring, Jakob; Andersen, Poul Houman; Storgaard, Marianne

    2017-01-01

    in four Danish MNCs. Findings: They describe consequences of low-intensity conflict and identify three types of actions by headquarters’ representatives that could lead to the development of low-intensity conflicts, namely, ignoring, bypassing and educating. Originality/value: Very few studies have dealt......Purpose: This paper aims to identify antecedents for, and consequences of, low-intensity inter-unit conflict in multinational corporations (MNCs). Inter-unit conflict in MNCs is an important and well-researched theme. However, while most studies have focused on open conflict acknowledged by both...... parties, much less research has dealt with low-intensity conflicts. Still, low-intensity conflicts can be highly damaging – not least because they are rarely resolved. Design/methodology/approach: The authors used a qualitative approach to understanding low-intensity conflict relying on 170 interviews...

  15. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  16. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis ... electromagnetic radiation present in the environment and ..... intrinsic (quantum) energy is too low to dislodge an .... wave on brain enzymes of developing rat brain.

  17. The local contribution to the microwave background radiation

    International Nuclear Information System (INIS)

    Pecker, Jean-Claude; Narlikar, Jayant V.; Ochsenbein, Francois; Wickramasinghe, Chandra

    2015-01-01

    The observed microwave background radiation (MBR) is commonly interpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20 th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suitably thermalized, yields a temperature of ∼2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed. (paper)

  18. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  19. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  20. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  1. Interaction of ultrahigh energy cosmic rays with microwave background radiation

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Kanevskij, B.L.; Vardanyan, V.V.

    1989-01-01

    The formation of the bump and black-body cutoff in the cosmic-ray (CR) spectrum arising from the π-meson photoproduction reaction in collisions of CR protons with the microwave background radiation (MBR) photons is studied. A kinetic equation which describes CR proton propagation in MBR with account of a catastrophic of the π-meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with spectrum obtained under assumption of continuous energy loss approximation. However spectra from local sources especially for the times of propagation t>10 9 years differ noticeably from those obtained in the continuous loss approximation. 24 refs.; 5 figs

  2. On the anisotropies of cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Molnar, Z.

    1996-01-01

    The work gives a brief overview of the topic of cosmic microwave background radiation anisotropies. Then is deals with the so-called Rees-Sciama affect; i.e. with the anisotropies arising between the last scattering surface and us due to transparent huge irregularities. Using the formulas of Special Theory of Relativity it is proven that in the neighbourhood of expanding spherical body the Meszaros calculation (Meszaros 1994) are correct; the inaccuracy is maximally of order 10 -12 . Then the profile of the blue shift of expansion caused by an expanding sphere is calculated for the case, when the radius of this sphere is much smaller that the relevant Hubble radius. Hence the profiles of the shifts of light periods through a void and through a supercluster are given in the most general cases. These cases contain all the three Friedmannian models and both the synchronous and asynchronous clusters. Then the obtained profiles are explicitly decomposed into the sum of the multipole terms, and it is shown that the observed difference between the measured direction of the maximum of dipole anisotropy of cosmic microwave background radiation and the result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect. This means that no alternative exists to the two possibilities for the explanation of the data of Lauer and Postman; either the either the huge system of Abell clusters is streaming, or the Friedmannian model is queried. The third possibility is, of course, that the data of observations of Lauer and Postman are incorrect. However, any of these three possibilities seem to be strange enough; hence, the problems coming from data of Lauer and Postman further holds. This is the key result of paper. As a further technical result it is also shown that in principle there is no upper limit of Rees-Sciama effect. (author)

  3. Occupational exposure to microwave radiation in diathermia units

    International Nuclear Information System (INIS)

    Martinez, M.A.; Ubeda, A.; Tellez, M.; Santa Olalla, I.

    2006-01-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  4. Occupational exposure to microwave radiation in diathermia units

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Ubeda, A. [Hospital Ramon y Cajal, Servicio de Investigacion-BEM, Madrid (Spain); Tellez, M.; Santa Olalla, I. [Hospital La Paz, Servicio de Radiofisica y Radioproteccion, Madrid (Spain)

    2006-07-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  5. RADIOFREQUENCY AND MICROWAVE RADIATION HEALTH EFFECTS AND OCCUPATIONAL EXPOSURE

    Directory of Open Access Journals (Sweden)

    Ivana Damnjanović

    2011-12-01

    Full Text Available In the recent years, there have been considerable discussion and concern about the possible hazards of RF/MW radiation. More recently, the growth and development in personal mobile communications have focused attention on the frequencies associated with this technology. A number of studies have examined the health effects of RF/MW electromagnetic fields (EMFs, originating from occupational exposure, hobbies, or residence near the radio or television transmitters. Particularly controversial are the biophysical mechanisms by which these RF fields may affect biological systems. General health effects reviews explore possible carcinogenic, reproductive and neurological effects. Health effects by exposure source have been observed in radar traffic devices, wireless communications with cellular phones, radio transmission, and magnetic resonance imaging (MRI. Several epidemiological surveys have suggested associations with non-specific complaints such as headache, tiredness, sleep disturbance, loss of memory, and dizziness. These findings, which echo reports of illness associated with other types of radiofrequency (RF radiation, relate not only to the use of mobile phones, but also to residence near the mobile phone base stations and other settings involving occupational exposure. The biological effects suggest that some precautions are necessary, and preventive approaches are highly recommended. Further researches are required to give more information about the effects of microwave radiation on our health, especially in occupational setting and professionally exposed workers.

  6. The Local Contribution to the Microwave Background Radiation(MBR)

    Science.gov (United States)

    Narlikar, Jayant V.; Pecker, Jean-Claude; Wickramasinghe, N. Ch.

    2010-11-01

    In the early fifties, from the early theories of the big bang universe, Gamow, Alpher & Herman have predicted the existence of a "cosmological" microwave background radiation, corresponding to a black body of a few Kelvins. When, in 1964, Penzias & Wilson, observed a radiation at 2.7K, the scientific world concluded quickly it was a proof, a final proof, of the big bang type cosmologies. But it should be realized that, in the beginning of the XX-th century, several authors, from Guillaume to Eddington, have predicted the same thing in a static Universe. We have redone the calculations of Eddington, and based them on the recent and very accurate photometric results from the satellite Hipparcos. In the absence of any expansion, of any big bang type behaviour, we compute the local temperature induced by the reradiation by local matter of stellar radiation, and we found it to be in excellent agreement with the observations. This result, completed by a careful discussion, could lead to a dramatic revision of the classical cosmological concepts.

  7. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian

    2011-01-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10 12 W cm -2 normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10 -8 . The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  8. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-05-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10{sup 12} W cm{sup -2} normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10{sup -8}. The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  9. Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-05-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W). The perforation was evaluated using different techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The results of the oxidation of carbonaceous materials indicated that the relative amount of oxygen functional groups increased without total oxidation of carbon up to 60 s. After 60 s, the amount of functional groups decreased as the total oxidation started suddenly. Afterwards, at around 120 and 420 s, the oxidation of Ag-decorated CNTAs reached the point of total perforation and total cutting, respectively. Though carbon decomposition terminated at around 420 s, the total pore volume and surface area increased continuously. This was attributed to the steady growth of Ag nanoparticles located between CNTAs.

  10. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  11. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  12. Low-intensity pulsed ultrasound: Nonunions

    Directory of Open Access Journals (Sweden)

    Dijkman Bernadette

    2009-01-01

    Full Text Available Nonunions occur in 5-10% of fractures and are characterized by the failure to heal without further intervention. Low intensity pulsed ultrasound therapy has been developed as an alternative to surgery in the treatment of nonunions. We describe a systematic review on trials of low-intensity pulsed ultrasound therapy for healing of nonunions. We searched the electronic databases Medline and the Cochrane library for articles on ultrasound and healing of nonunions published up to 2008. Trials selected for the review met the following criteria: treatment of at least one intervention group with low intensity pulsed ultrasound; inclusion of patients (humans with one or more nonunions (defined as "established" or as a failure to heal for a minimum of eight months after initial injury; and assessment of healing and time to healing, as determined radiographically. The following data were abstracted from the included studies: sample size, ultrasound treatment characteristics, nonunion location, healing rate, time to fracture healing, fracture age, and demographic information. We found 79 potentially eligible publications, of which 14 met our inclusion criteria. Of these, eight studies were used for data abstraction. Healing rates averaged 87%, (range 65.6%-100% among eight trials. Mean time to healing was 146.5 days, (range 56-219 days. There is evidence from trials that low-intensity pulsed ultrasound may be an effective treatment for healing of nonunions. More homogeneous and larger controlled series are needed to further investigate its efficacy.

  13. Photonuclear physics with low intensity photon beams

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1985-01-01

    Experiments in photonuclear physics are discussed that require a low intensity photon beam and large acceptance detectors. This combination is especially suitable for the investigation of photoprocesses on nucleons and light nuclei. A specific experimental setup for the electron stretcher ring ELSA is presented. (orig.)

  14. [Level of microwave radiation from mobile phone base stations built in residential districts].

    Science.gov (United States)

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  15. Loads due to stray microwave radiation in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Johan W. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Eindhoven University of Technology, P.O. Box 513, 5600 AZ Eindhoven (Netherlands); Udintsev, Victor S.; Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Hirsch, Matthias; Laqua, Heinrich P. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany); Maassen, Nick [Eindhoven University of Technology, P.O. Box 513, 5600 AZ Eindhoven (Netherlands); Ma, Yunxing; Polevoi, Alexei; Sirinelli, Antoine; Vayakis, George; Walsh, Mike J. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    High-power microwaves generated by gyrotrons will be extensively used in ITER for a variety of purposes such as assisting plasma breakdown, plasma heating, current drive, tearing mode suppression and as a probing beam for the Collective Thomson Scattering diagnostic. In a number of these schemes absorption of the microwaves by the plasma will not be full and in some cases there could be no absorption at all. This may result in a directed beam with a high microwave power flux or – depending on location and plasma conditions – an approximately isotropic microwave power field. The contribution of electron cyclotron emission to these power densities is briefly discussed. Exposure to in-vessel components leads to absorption by metals and ceramics. In this paper microwave power densities are estimated and, following a brief review of absorption, thermal loads on in-vessel components are assessed. The paper is concluded by a discussion of the current approach to control such loads.

  16. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  17. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    Science.gov (United States)

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  18. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  19. Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction

    Directory of Open Access Journals (Sweden)

    Yu.D. Ivanov

    2016-03-01

    Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.

  20. Effect of Gamma Radiation and Microwave Cooking on Aeromonas Hydrophila in Bolti Fish Fillet

    International Nuclear Information System (INIS)

    Mohamad, W.S.; Megahed, A.A.; El-Ghaiaty, H.A.; Hafez, T.A.

    2016-01-01

    The objective of this study is to determine the bactericidal effect of gamma and microwave radiation on Aeromonas hydrophila inoculated in fish fillets. The study revealed that treatment of fish fillets with a dose of 1 kGy gamma radiation reduced the population of A.hydrophila by 104 cfu/g, while the dose of 2 and 3 kGy completely eliminated the microorganism. Treatment of fish fillets with microwave cooking for 1 and 2 minutes completely eliminated the microorganism. The physical examination of fish after gamma radiation treatment revealed that the used doses had no significant changes on fish fillets. The changes in protein profile (amino acids %) depended on radiation dose and period of cooking in microwave alongside controls while the total protein content was not affected.

  1. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    ... disorganization in the testis of exposed group with increasing SARs. These results suggest that MW radiation has the potential to affect both male and female fertility adversely. Keywords: 2.45 GHz microwave radiation, histopathology, DNA single strand break, ovary, testis. African Journal of Biotechnology Vol. 12(2), pp.

  2. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  3. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  4. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  6. Behavioral teratologic studies using microwave radiation: is there an increased risk from exposure to cellular phones and microwave ovens?

    Science.gov (United States)

    Jensh, R P

    1997-01-01

    The objective of the investigations presented in this review was to determine if there are adverse effects due to chronic prenatal microwave exposure in rats at term and/or alterations in neonatal and adult offspring psychophysiologic development and growth. Following the establishment of a nonhyperthermal power density level of microwave radiation, pregnant rats were exposed throughout pregnancy to continuous wave 915 MHz, 2450 MHz, or 6000 MHz radiation at power density levels of 10, 20, or 35 mW/cm2, respectively. Teratologic evaluation included the following parameters: maternal weight and weight gain; mean litter size; maternal organ weight and organ weight/body weight ratios; body weight ratios of brain, liver, kidneys, and ovaries; maternal peripheral blood parameters including hematocrit, hemoglobin, and white cell counts; number of resorptions and resorption rate; number of abnormalities and abnormality rate; mean term fetal weight. Mothers were rebred, and the second, nonexposed litters were evaluated for teratogenic effects. Exposed offspring were evaluated using the following perinatal and adult tests: eye opening, surface righting, negative geotaxis, auditory startle, air righting, open field, activity wheel, swimming, and forelimb hanging. Offspring were also monitored for weekly weight and weight gain. Animals exposed to 915 MHz did not exhibit any consistent significant alterations in any of the above parameters. Exposure to 2450 MHz resulted only in a significantly increased adult offspring activity level compared to nonexposed offspring. Offspring exposed to 6000 MHz radiation exhibited an initial slight, but significant, retardation in term weight, while mothers had a significantly reduced monocyte count. No changes in any of the other term parameters were observed. A few postnatal parameters were affected in offspring exposed to 6000 MHz. Weekly weights were lower in the exposed offspring, but they recovered by the fifth week. Eye opening was

  7. Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels

    Directory of Open Access Journals (Sweden)

    Peio Lopez-Iturri

    2015-01-01

    Full Text Available The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied.

  8. Low-Intensity Repetitive Exercise Induced Rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Mina Tran

    2015-01-01

    Full Text Available Rhabdomyolysis is a rare condition caused by the proteins of damaged muscle cells entering the bloodstream and damaging the kidneys. Common symptoms of rhabdomyolysis are muscle pain and fatigue in conjunction with dark urine; kidney damage is a common symptom among these patients. We present a case of a 23-year-old woman who displayed myalgia in the upper extremities caused by low-intensity and high-repetition exercise. She was successfully diagnosed and treated for exertional rhabdomyolysis. This patient had no significant medical history that would induce this condition. We urge the emergency medical community to observe and monitor patients that complain of myalgia to ensure they are not suffering from rhabdomyolysis even in atypical cases.

  9. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  10. Examination of the effects of ionising radiation on microwave transmission

    International Nuclear Information System (INIS)

    Excell, P.S.; Rousseau, M.

    1981-05-01

    It is proposed to use microwave heating to dry glass fibre 'slugs' soaked with an aqueous solution of fission product compounds. The method has been tested using two geometries (normal and oblique incidence) in equipment built at AERE Harwell. Tests have so far only been conducted with simulated fission product mixtures (the same chemicals using non-radioactive isotopes). A number of problems have already arisen which could affect the feasibility of microwave heating in this application and the possibility of further problems is envisaged when radioactive mixtures are used. The object of the investigation reported here was to assess the likely overall feasibility of the proposed process, in particular to assess the possibility that highly radioactive material may lower the threshold for electrical breakdown, and to suggest improvements that will mitigate potential problems. The layout of the proposed process is shown. (author)

  11. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  12. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  13. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  14. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  15. Responses of the mouse to microwave radiation during estrous cycle and pregnancy

    International Nuclear Information System (INIS)

    Rugh, R.; Ginns, E.I.; Ho, H.S.; Leach, W.M.

    1975-01-01

    A new facility for microwave irradiation of mice that will provide reproducible dosimetry is described. The waveguide used provided the integral dose rate to experimental animals under stable and controlled environmental conditions of relative humidity and temperature, variables which have been found to be critical in microwave studies. In terms of average absorbed lethal dose, the female mouse was found to be more sensitive to microwave irradiation during estrus than during diestrus. Teratogenesis (e.g., exencephalies) after sublethal irradiation of pregnant mice at 8 gestation days resulted from absorbed doses within the range of 3 to 5 calories per gram of body weight, and was never an all-or-none response. The incidence and variety of effects produced (hemorrhage, resorption, stunting, and fetal death) indicate that the cause and effect relationships are neither linear nor well enough established and understood to permit prediction of the biological effects either in the mouse of other species. As the absorbed dose of radiant energy is increased to the 8-day pregnant mouse, the probability of it producing at least one exencephaly is likewise increased. Nevertheless, the determination of the absorbed dose of microwave energy in each mouse is one step closer to determining the precise absorbed-dose-effect relationship for microwave exposures. A total of 1096 mice were exposed to microwave radiation and separately monitored to gather the related data. (U.S.)

  16. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  17. Effect of low-level intensity EHF radiation on endurance and reproductivity of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Shakhbazov, V.G.; Chepel', L.M.; Bulgakov, B.M.; Sirenko, S.P.; Belous, O.I.; Fisun, A.I.

    1999-01-01

    The effect of the low-intensity microwaves on three gene-radiations of the imago Drosophila Melanogaster has been investigated out. The radiation source was tuned from 37 to 53 GHz. The thermoimmunity and reproductivity of the first generation of females and males of imago after processing by radiation. The obtained effect can be considered as physiological heterosis

  18. Microwave radiation is effective at disinfecting dental stone surfaces without changing their physical properties.

    Science.gov (United States)

    Bona, Ariel José; Amaral-Brito, Mauro Gustavo; Rodrigues, José Augusto; Peruzzo, Daiane Cristina; França, Fabiana Mantovani Gomes

    2017-01-01

    The aims of this study were to evaluate the effectiveness of different microwave radiation regimens for disinfection of type IV dental stone surfaces and to assess the influence of these regimens on surface roughness and dimensional change following disinfection. Three hundred cylindrical (20 × 2-mm) test specimens were made in type IV stone and divided into subgroups of 20 according to the microorganisms tested (Staphylococcus aureus, Escherichia coli, or Candida albicans) and the 900-W microwave radiation protocol (cycles of 3, 5, or 7 minutes; a positive control; or a negative control). To test physical changes, 80 test specimens were made with the same dimensions except that they had 2 parallel and symmetrical indentations measuring 8 × 4 mm. These specimens were divided into 4 subgroups of 20 each (a subgroup for each radiation time and a negative control). The mean dimensional change and roughness data were analyzed by mixed models for repeated measures and Tukey-Kramer tests. Disinfection was analyzed with descriptive statistics. For E coli and C albicans, all radiation times proved effective at sterilizing the test specimens. For S aureus, sterilization was achieved with 5 and 7 minutes of exposure; however, colonies were observed in 10 Petri dishes (50%) exposed to 3 minutes of microwave radiation. No statistically significant difference in dimensional change or surface roughness was observed for any radiation regimen (P > 0.05).

  19. Dark energy and the cosmic microwave background radiation

    Science.gov (United States)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  20. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  1. Effects of fetal microwave radiation exposure on offspring behavior in mice

    International Nuclear Information System (INIS)

    Zhang Yanchun; Li Zhihui; Gao Yan; Zhang Chenggang

    2015-01-01

    The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. (author)

  2. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  3. Analysis of low-intensity scintillation spectra

    International Nuclear Information System (INIS)

    Muravsky, V.; Tolstov, S.A.

    2002-01-01

    The maximum likelihood algorithms for nuclides activities estimation from low intensity scintillation γ-ray spectra have been created. The algorithms treat full energy peaks and Compton parts of spectra, and they are more effective than least squares estimators. The factors that could lead to the bias of activity estimates are taken into account. Theoretical analysis of the problem of choosing the optimal set of initial spectra for the spectrum model to minimize errors of the activities estimation has been carried out for the general case of the N-components with Gaussian or Poisson statistics. The obtained criterion allows to exclude superfluous initial spectra of nuclides from the model. A special calibration procedure for scintillation γ-spectrometers has been developed. This procedure is required for application of the maximum likelihood activity estimators processing all the channels of the scintillation γ-spectrum, including the Compton part. It allows one to take into account the influence of the sample mass density variation. The algorithm for testing the spectrum model adequacy to the processed scintillation spectrum has been developed. The algorithms are realized in Borland Pascal 7 as a library of procedures and functions. The developed library is compatible with Delphi 1.0 and higher versions. It can be used as the algorithmic basis for analysis of highly sensitive scintillation γ- and β-spectrometric devices. (author)

  4. Cytogenetic monitoring of personnel occupationally exposed to microwave radiation of GEM radar

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, Vera; Gajski, Goran; Brumen, Vlatka

    2008-01-01

    In the present study we analyzed and followed-up on the DNA damaging effects of microwave radiation of GEM radar equipment within microwave field of 10 μW/cm 2 to 10 mW/cm 2 in personnel occupationally exposed to frequency range of 1.5 GHz to 10.9 GHz. The single cell gel electrophoresis (SCGE)/comet assay as a tool for the bio monitoring of individuals accidentally, environmentally or occupationally exposed to physical or chemical agents was used to evaluate possible genotoxic effect on peripheral human blood lymphocytes. The comet assay is a method that allows efficient determination of single strand breaks (SSB) and double-strand breaks (DSB), as well as alkali-labile sites in the DNA of single cells. The comet assay was carried out under alkaline conditions. We measured the baseline comet assay effect in whole blood samples. Parameter of the comet assay was studied in workers occupationally exposed to microwave radiation of GEM radar and in corresponding unexposed control subjects. It was found that in the subjects who were occupationally exposed to microwave radiation, the levels of DNA damage increased compare to control group and showed interindividual variations. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of exposed group was 13.54±1.44 as opposed to control mean value that was 13.15±1.39. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). The results of this study indicate that individuals occupationally exposed to microwave frequency of GEM radar equipment may experience an increased genotoxic risk, emphasizing the importance of individual bio monitoring, limiting exposure and radiation safety programs. (author)

  5. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'; Efeitos da radiacao laser em baixa intensidade no mecanismo de osseointegracao de implantes: estudo 'in vivo'

    Energy Technology Data Exchange (ETDEWEB)

    Blay, Alberto

    2001-07-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm{sup 2} per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  6. Evaluation of the ocular protection for low intensity therapeutic lasers

    International Nuclear Information System (INIS)

    Cordon, Rosely

    2003-01-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  7. Selected properties of the potato snacks expanded in the microwave radiation

    Directory of Open Access Journals (Sweden)

    Mitrus Marcin

    2018-01-01

    Full Text Available The results of measurements of the selected properties of the extruded potato pellets and snacks expanded in the microwave field are presented in the paper. The potato pellets with the addition of the baking soda were prepared with a single screw extruder TS-45. The snacks were obtained by pellets expansion in a conventional microwave oven. The expansion index and the hardness of the pellets and the snacks, as well as, the texture properties of the snacks were evaluated during this study. The results showed that baking soda addition reduced the potato pellet expansion during their extrusion. This was an effect of a smaller thickness of the obtained pellets. The addition of baking soda had positive influence on potato snacks expansion in microwave radiation. The higher content of the soda additive resulted in lower hardness of pellets during cutting tests. The opposite effect was observed during texture measurements of the snacks. The addition of baking soda increased hardness of the expanded snacks. Soda addition lowers crispness and fragilityof the potato snacks expanded in the microwave radiation.

  8. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  9. Low-intensity pulsed ultrasound: Fracture healing

    Directory of Open Access Journals (Sweden)

    Mundi Raman

    2009-01-01

    Full Text Available Annually, millions of people across the world are inflicted with bone fracture injuries. Untimely healing is a significant burden in terms of socioeconomic costs, personal costs, and patients′ quality of life. Low-intensity pulsed ultrasound (LIPUS has gained much attention as a potential adjunctive therapy for accelerating fresh fracture healing, but its efficacy remains controversial. This paper is presented in two parts a literature review followed by a systematic review. The literature review highlights the physiology of fracture healing and the influence LIPUS exerts on cells and molecules involved in this healing process. In part two, we present a systematic review of randomized controlled trials (RCTs assessing the clinical effectiveness of LIPUS in accelerating the time to fracture healing. The electronic databases we searched for the systematic review are as follows: MEDLINE (from 1996 to November 2008, EMBASE (from 1996 to November 2008, and Healthstar (from 1966 to October 2008. A two-step screening process was used to assess the eligibility of studies yielded by our search. The first step was a review of titles and abstracts for the selection of studies that met the following criteria: (i inclusion of skeletally mature patients with a fresh fracture, (ii a minimum of two treatment arms with at least one arm receiving LIPUS treatment and another arm receiving placebo, (iii random allocation of patients to the different treatment arms, (iv radiological assessment of time to fracture healing, and (v publication in the English language. In the second step, selected articles were reviewed in full text. Eligible trials were all scored independently by two reviewers for methodological reporting quality using the 15-item CLEAR NPT checklist (Checklist to Evaluate the Report of a Nonpharmacological Trial. We identified a total of seventy seven studies, nine of which met our inclusion criteria after the initial screening. Of these nine

  10. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    Science.gov (United States)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  11. Investigation of the Surface Filamentary Discharge in Focus of Microwave Radiation

    Science.gov (United States)

    2010-08-01

    microwave radiation 5a. CONTRACT NUMBER ISTC Registration No: 3784 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Kirill...NUMBER(S) ISTC 07-7011 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. (approval given by local...contract to the International Science and Technology Center ( ISTC ), Moscow Project ISTC # 3784p (077011) Investigation of the surface filamentary

  12. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  13. Microwave radiation, in the absence of hyperthermia, has no detectable effect on synapsin I levels or phosphorylation

    International Nuclear Information System (INIS)

    Browning, M.D.; Haycock, J.W.

    1988-01-01

    Recent reports have indicated that microwave radiation can produce effects on a variety of cell types in vitro. To determine whether microwave radiation might be neurotoxic, the effects of microwave radiation on synapsin I have been examined. Synapsin I is a neuron-specific phosphoprotein that is present in all neurons, where it is localized to the presynaptic terminal and is associated with synaptic vesicles. O'Callaghan and Miller have demonstrated that studies of such neuron-specific proteins can provide reliable indices of neurotoxicity. We have used a radioimmunoassay for synapsin I to determine whether microwave irradiation has any effect on the levels of synapsin I. Neither acute nor chronic exposure to microwave irradiation had any detectable effect on synapsin I levels. We have also examined the calcium-dependent phosphorylation of synapsin I in synaptosomes isolated from rats that had been subjected to microwave radiation. The phosphorylation of synapsin I in synaptosomes reflects numerous components of the presynaptic aspect of neuronal transmission. At intensities below that required to produce mild hyperthermia, no effects of microwave irradiation were seen on synapsin I phosphorylation

  14. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats.

    Science.gov (United States)

    Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar

    2017-01-01

    Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.

  15. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  16. A unique combination of infrared and microwave radiation accelerates wound healing.

    Science.gov (United States)

    Schramm, J Mark; Warner, Dave; Hardesty, Robert A; Oberg, Kerby C

    2003-01-01

    Light or electromagnetic radiation has been reported to enhance wound healing. The use of selected spectra, including infrared and microwave, has been described; however, no studies to date have examined the potential benefit of combining these spectra. In this study, a device that emits electromagnetic radiation across both the infrared and microwave ranges was used. To test the effects of this unique electromagnetic radiation spectrum on wound healing, two clinically relevant wound-healing models (i.e., tensile strength of simple incisions and survival of McFarlane flaps) were selected. After the creation of a simple full-thickness incision (n = 35 rats) or a caudally based McFarlane flap (n = 33 rats), animals were randomly assigned to one of three treatment groups: untreated control, infrared, or combined electromagnetic radiation. Treatment was administered for 30 minutes, twice daily for 18 days in animals with simple incisions, and 15 days in animals with McFarlane flaps. The wound area or flap was harvested and analyzed, blinded to the treatment regimens. A p value of less than 0.05 obtained by analysis of variance was considered to be statistically significant. Animals receiving combined electromagnetic radiation demonstrated increased tensile strength (2.62 N/mm2) compared with animals receiving infrared radiation (2.36 N/mm2) or untreated controls (1.73 N/mm2, p radiation had increased flap survival (78.0 percent) compared with animals receiving infrared radiation (69.7 percent) and untreated controls (63.1 percent, p radiation provided a distinct advantage in wound healing that might augment current treatment regimens.

  17. Composite materials for protection against electromagnetic microwave radiation

    International Nuclear Information System (INIS)

    Senyk, IV; Barsukov, VZ; Savchenko, BM; Shevchenko, KL; Plavan, VP; Shpak, Yu V; Kruykova, OA

    2016-01-01

    A fairly wide range of carbon-polymer composite materials was synthesized and studied in terms of their potential to protect people and electronic equipment from exposure to electromagnetic radiation (EMR). The materials studied included three main groups: (1) PVC polymer composites filled with various carbon-containing fillers (colloidal graphite, thermally expanded graphite, acetylene black, graphitized carbon black, carbon nanotubes, graphene) at concentrations ranging from 5 to 20%; (2) carbon cloth - commercial and modified with nanometal additives (e.g., nanoparticles of Cu, TiN, etc.); (3) highly-filled polymer-carbon composites in the form of paint. The transmission rate a of electromagnetic radiation was investigated for such materials in the frequency range of 10 GHz as well as their electrical conductivity. The results showed that the shielding ability of the materials of group (2) is significantly higher than that of the materials of group (1), which is probably due to the presence of strong internal skeleton of conductivity. Nevertheless, some highly-filled mixed polymer-carbon composites in the form of paint demonstrate even more shielding ability than carbon cloth and could be used for the defense against EMR. (paper)

  18. Microwave radiation safety assessment around mobile telephone base station (MTBS) in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Mohd Anuar Abd Majid; Mohamad Amirul Nizam Mohamad Thari; Ahmad Fazli Ahmad Sanusi; Roslan Md Dan; Sahirudden Mohd Nor

    2006-01-01

    Mobile telephone is one of the fastest popular consumer product introduced in the market. Since more people are using mobile telephone, the number of mobile telephone base station (MTBS) in Malaysia had also increased in order to provide a better coverage services to consumer. The antennas that are required for the mobile (or cellular) telephone network are located at MTBS. This antenna emits radio frequency (RF) and microwave (MW) radiation. Due to the concerns that has been raised by the people that are living or working nearby to MTBS about the possibility of adverse health effects that might occur due to the exposure of this radiation, a project of microwave radiation safety assessment around MTBS by MINT was carried out (September 2003 - January 2006). It was involved with 128 MTBS from three biggest service providers in Malaysia. This assessment is required to establish a baseline data in term of pattern and trend of the radiation emission from the facilities as well as to develop a public confident. In this paper, it will describe the fact that radiation is critical to the MTBS system and without the radiation, the MTBS system is functionless. It will also highlight the result of the assessment's work that has been carried out by MINT around MTBS mounted on the rooftops and towers. The average reading varies between the detection limit of the instrument 2 ( 2 (7.204 V/m). The highest average reading corresponds to about 2.0% of the Suruhanjaya Komunikasi dan Multimedia Malaysia (MCMC) exposure limit for public. The finding of this measurement confirms that the presence of RF and MW radiation in public accessible area around the base station was very low and comparable to the radiation levels in other places away from MTBS. There is also no evidence, from any laboratory or epidemiology studies that the exposure to RF energy levels recommended limits has any health significance for humans. (Author)

  19. Analysis of the electromagnetic radiation generated by a multipactor discharge occurring within a microwave passive component

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M; Quesada, F; Alvarez, A [Department of Information and Communication Technologies, Technical University of Cartagena, Cartagena (Murcia) (Spain); Gimeno, B [Departamento de Fisica Aplicada y Electromagnetismo-ICMUV, Universidad de Valencia, Valencia (Spain); Miquel-Espanya, C; Raboso, D [European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Noordwijk (Netherlands); Anza, S; Vicente, C; Gil, J [Aurora Software and Testing S.L., Valencia, Valencia (Spain); Taroncher, M; Reglero, M; Boria, V E, E-mail: benito.gimeno@uv.e [Departamento de Comunicaciones-ITEAM, Universidad Politecnica de Valencia (Spain)

    2010-10-06

    Multipactoring is a non-linear phenomenon that appears in high-power microwave equipment operating under vacuum conditions and causes several undesirable effects. In this paper, a theoretical and experimental study of the RF spectrum radiated by a multipactor discharge, occurring within a realistic microwave component based on rectangular waveguides, is reported. The electromagnetic coupling of a multipactor current to the fundamental propagative mode of a uniform waveguide has been analysed in the context of the microwave network theory. The discharge produced under a single-carrier RF voltage regime has been approached as a shunt current source exciting such a mode in a transmission-line gap region. By means of a simple equivalent circuit, this model allows prediction of the harmonics generated by the discharge occurring in a realistic passive waveguide component. Power spectrum radiated by a third-order multipactor discharge has been measured in an E-plane silver-plated waveguide transformer, thus validating qualitatively the presented theory to simulate the noise generated by a single-carrier multipactor discharge.

  20. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)

    2016-12-01

    The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.

  1. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  2. A New Microwave Shield Preparation for Super High Frequency Range: Occupational Approach to Radiation Protection.

    Science.gov (United States)

    Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher

    2016-01-01

    Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects.  According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.

  3. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, E A; Abdel-Fatah, O M [Dept. of Biochem., Faculty of Agric., Cairo University. (Egypt); El-Adawy, M; Badea, M Y [Food Technol. Dept., National Center for Research and Radiation Technol., Atomic Energy Authority (Egypt)

    2000-07-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone.

  4. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    Abdel-Rahim, E.A.; Abdel-Fatah, O.M.; El-Adawy, M.; Badea, M.Y.

    2000-01-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  5. Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme

    Science.gov (United States)

    Singh, Anang K.; Burada, P. S.; Bhattacharya, Susmita; Bag, Sudipta; Bhattacharya, Amitabha; Dasgupta, Swagata; Roy, Anushree

    2018-05-01

    We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.

  6. Features of interaction of fullerenes with microwave radiation

    International Nuclear Information System (INIS)

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  7. The Effect of 2.45 GHz Microwave Radiation on Brain Cell Apoptosis in Sprague Dawley Rats

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah; Rozaimah Abdul Rahim; Zulkifli Yusof

    2016-01-01

    Microwave radiation is a part of non-ionizing electromagnetic radiations present in the environment and is now being perceived as health risks. The study was performed to investigate the effect of 2.45 GHz microwave radiation on brain cell apoptosis in Sprague Dawley rat. In the research done, 32 Sprague Dawley rat were used and divided into four groups; control group, G1 (1 month exposure), G2 (2 months exposure) and G3 (3 months exposure). The presence of apoptotic activity in control group was compared molecularly with exposed group through DNA ladder test. Each exposed group were irradiated in GTEM cell at frequency of 2.45 GHz located at RF/ MW laboratory. There was presence of necrotic instead of apoptotic activity in brain cell and increase in weight of Sprague Dawley rat. Therefore the effect of 2.45GHz microwave radiation shown no presence of apoptosis and increase in weight of Sprague Dawley rat. (author)

  8. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  9. The Usefulness Cytogenetic Biomarkers in Assessment of Occupational Exposure to Microwave Radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    In recent years there has been growing interest in the health effects of the electromagnetic radiation's designated extremely low frequency (ELF) and radiofrequency radiation (RFR). Available data on cytogenetic consequences of microwave exposure on the induction of chromosome damage are contradictory, mostly because of different experimental conditions of in vitro and in vivo studies. It has been suggested that exposure to radiofrequency radiation may have genetic effects, which predispose to the development of cancer or birth defects. For the detection of early biological effects of DNA-damaging agents, well-established cytogenetic biomarkers are used. Comet assay was also successfully introduced detection of primary DNA damage and micronucleus assay for simultaneous detection of chromosome damage and spindle disfunction. The chromatid breakage assay, allowing selection of persons with a defect in DNA repair, is also an additional marker in human biomonitoring. Susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes may reflect the way a person deals with carcinogenic challenges. The objective of the present study the assessment of primary DNA damage, chromosome and spindle disfunctions as well as the mutagen sensitivity in peripheral blood leukocytes in radar-facility workers daily exposed to microwave radiation and corresponding control. As sensitive biomarkers three endpoints were chosen: the alkaline comet assay, micronucleus assay and chromatid breakage assay (bleomycin sensitivity test). A large number of experimental and epidemiological studies have been carried out to elucidate the possible health hazards associated with human exposure to ELF or RF electromagnetic fields. The results presented here indicate that the alkaline comet assay, as reliable biomarker of exposure, can be successfully applied in study of DNA damaging effects in microwave exposed subjects. The fact that the comet assay is a microdosimetric

  10. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  11. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  12. Observation of microwave radiation using low-cost detectors at the ANKA storage ring*

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Müller, A S; Nasse, M; Smale, N; Caspers, F; Peier, P

    2011-01-01

    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually use...

  13. Biological effects of exposure to non-ionising electromagnetic fields and radiation: III radiofrequency and microwave radiation

    International Nuclear Information System (INIS)

    Saunders, R.D.; Kowalczuk, C.I.; Sienkiewicz, Z.J.

    1991-12-01

    The biological effects of experimental exposure to radiofrequency (RF) and microwave radiation above 100 kHz are reviewed with the intention of providing a summary of effects directly relevant to considerations of the health and safety of exposed people. The biological bases for restricting exposures are also briefly discussed. Studies of the possible effects of electromagnetic field exposure on human populations are described in a separate report. The majority of the biological effects of acute exposure to radiofrequency (RF) and microwave radiation are consistent with responses to induced heating, resulting either from frank rises in tissue or body temperature of about 1 0 C or more, or from responses involved in minimising the total heat load. Most responses have been reported at specific energy absorption rates (SARs) above about 1-2 W kg -1 in different animal species exposed under various environmental conditions. These animal, particularly primate, data indicate the sorts of responses that are likely to occur in humans subject to a sufficient heat load. In addition, most animal and cell culture data indicate that RF and microwave exposure is not mutagenic and so will not result in somatic mutation or in hereditary effects; such exposure is therefore unlikely to initiate cancers. With some exceptions that are described below, restrictions on the acute exposure of humans to RF or microwave radiation should be based on the acute responses to raised body temperature. It seems probable that healthy people can tolerate short-term (minute-hour) rises in body temperature of up to about 1 0 C. This rise is well below the maximum tolerable increase but nevertheless represents a significant thermal load. The evidence suggests that the exposure of resting humans in moderate environments at whole-body SARs of 1 W kg -1 , and up to 4 W kg -1 for short periods, will result in body temperature rises of less than 1 0 C. A restriction of whole-body SAR for healthy people to 0

  14. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  15. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  16. Fast microwave detection system for coherent synchrotron radiation study at KEK: Accelerator test facility

    International Nuclear Information System (INIS)

    Aryshev, A.; Araki, S.; Karataev, P.; Naito, T.; Terunuma, N.; Urakawa, J.

    2007-01-01

    A fast room temperature microwave detection system based on the Schottky Barrier-diode detector was created at the KEK ATF (Accelerator Test Facility). It was tested using Coherent Synchrotron Radiation (CSR) generated by the 1.28 GeV electron beam in the damping ring. The speed performance of the detection system was checked by observing the CSR from a multi-bunch (2.8 ns bunch separation time) beam. The theoretical estimations of CSR power yield from an edge of bending magnet as well as new injection tuning method are presented. A very high sensitivity of CSR power yield to the longitudinal electron distribution in a bunch is discussed

  17. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    Science.gov (United States)

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  18. Theoretical investigations of the anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1981-01-01

    In this work, the anisotropy of the cosmic microwave background radiation is calculated within the context of the standard Big Bang cosmological model. The results of the calculations for different initial conditions are compared to the observational data available in order to try to learn more about conditions in the early universe. It is found that a model which has isothermal fluctuations superimposed on the standard model can explain all of the observations so far. In fact, a range of models with different initial densities can explain the observations. There is not enough information at present to choose among these models, but more data should be available in the near future

  19. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  20. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  1. Can the anisotropy of microwave background radiation be discovered at present?

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Kocharyan, A.A.

    1990-10-01

    An effect leading to a decrease of perturbations of Microwave Background Radiation after recombination epoch is investigated. Behaviour of correlation functions for null geodesics flow enables one to evaluate the role of this effect based purely on geometrical and topological properties of the Universe. Possible anisotropy of MwB in open Friedmannian Universe is shown to decrease due to this effect to a level far below present experimental accuracy. The fractal nature of the large scale structure of the Universe is also discussed. (author). 20 refs

  2. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  3. Development of radiation detectors based on KMgF3:Tb nano crystals synthesized by microwave

    International Nuclear Information System (INIS)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A.; Gonzalez M, P. R.; Mendoza A, D.

    2015-10-01

    The development of new thermoluminescent (Tl) materials of the size of KMgF 3 :Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF 3 COO) 2 and potassium K(CF 3 COO), finally the synthesis of KMgF 3 :Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF 3 obtained without doping and doped with Tb +3 ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of 60 Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  4. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  5. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  6. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  7. Microwave hyperthermia as an adjuvant to radiation therapy. Summary experience of 256 multifraction treatment cases

    International Nuclear Information System (INIS)

    Bicher, H.I.

    1985-01-01

    Analysis is presented of a series of 256 human tumors treated under multifraction protocol regimes with standard controlled hyperthermia parameters and increasing doses of radiation therapy. Air cooled microwave applicators intracavitary and interstitial antennae operating at 915 or 300 MHz were used in various sites. Temperatures were measured by micro-thermocouples. Minimum tumor temperatures of 42 0 C were maintained at 1 hour, twice weekly. Treatment included a radiation dose of 1600-1700 rads. Tumor response was 94% with 60% or more total response. Frequency and duration of total responses depended mainly on the radiation dose. Skin tumors, melanomas, chest wall recurrences responded better than head and neck or intrapelvic recurrences. Side effects observed were minor burns; proctitis or oesophagitis with intracavitary devices; ulcerations or fistulae due to rapid tumor regression; 4 cases of pleuritis treating chest wall. Overall toxicity was less than 5%. In conclusion: 1) Combination heat-low dose radiation offers good palliation. 2) Response depends on radiation dose. 3) Combination of full dose radiation therapy plus hyperthermia proves to be well tolerated

  8. The Exposure Duration and Distance Effects of Microwave Radiation from Wireless Routers on Sperm Parameters of Wistar Rats

    Directory of Open Access Journals (Sweden)

    S Safari

    2015-12-01

    Full Text Available Background & aim: As a communication technology, Wi-Fi allows electronic devices such as laptops to exchange data or connect to a network resource such as the Internet via a wireless network access point  using 2.4 GHz microwave radiation. However, with the exponential development of wireless communication technology, the public concern regarding the safety of this technology has increased rapidly. The main goal of this study was to assess the bio effects of duration of exposure of an animal model to 2.4 GHz microwave radiation emitted from a common Wi-Fi router on sperm quality. Method: In the present experimental study, 84 male Wistar rats were used. The mice were randomly divided based on the duration of exposure to microwave radiation and distance to the modem into seven groups of 12. Group II rats were exposed to 2.4 GHz microwave radiation for 2 hours per day in term of 7 days at a distance of 30 cm from the router. The rats in this group were allowed to live for 53 days then sacrificed and semen samples analyzed. Rats in all the groups except group II, were sacrificed 30 min to 1 hr.After exposure. To analyze the results, The Mann-Whitney and Kruskal-Wallis tests were used. Result: The average sperm with normal morphology, testes weight and number of spermatogonial cells after exposure to microwave radiation decreased. With increasing exposure time and reduce the distance to the modem, testis weight and the number of spermatogonia cells significantly reduced. Conclusion: Beams of microwave radiation from Wi-Fi modems leads to sperm morphological changes and weight loss of testicular spermatogonia. With increasing exposure time and reduce the distance to the modem, testis weight and the number of spermatogonia cells significantly reduced.

  9. Low-intensity beam diagnostics with particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G. [INFN-LNS, Via S. Sofia 44/A Catania, 95125 (Italy); De Martinis, C.; Giove, D. [INFN-LASA, Via F.lli Cervi 201 Segrate (Midway Islands), 20090 (Italy)

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. {copyright} {ital 1997 American Institute of Physics.}

  10. Low-intensity beam diagnostics with particle detectors

    International Nuclear Information System (INIS)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G.; De Martinis, C.; Giove, D.

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. copyright 1997 American Institute of Physics

  11. Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation

    Science.gov (United States)

    Dadras, Sedigheh; Faraji, Maryam

    2018-05-01

    In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.

  12. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  13. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  14. The vertical pattern of microwave radiation around BTS (Base Transceiver Station) antennae in Hashtgerd township.

    Science.gov (United States)

    Nasseri, Simin; Monazzam, Mohammadreza; Beheshti, Meisam; Zare, Sajad; Mahvi, Amirhosein

    2013-12-20

    New environmental pollutants interfere with the environment and human life along with technology development. One of these pollutants is electromagnetic field. This study determines the vertical microwave radiation pattern of different types of Base Transceiver Station (BTS) antennae in the Hashtgerd city as the capital of Savojbolagh County, Alborz Province of Iran. The basic data including the geographical location of the BTS antennae in the city, brand, operator type, installation and its height was collected from radio communication office, and then the measurements were carried out according to IEEE STD 95. 1 by the SPECTRAN 4060. The statistical analyses were carried out by SPSS16 using Kolmogorov Smirnov test and multiple regression method. Results indicated that in both operators of Irancell and Hamrah-e-Aval (First Operator), the power density rose with an increase in measurement height or decrease in the vertical distance of broadcaster antenna. With mix model test, a significant statistical relationship was observed between measurement height and the average power density in both types of the operators. With increasing measuring height, power density increased in both operators. The study showed installing antennae in a crowded area needs more care because of higher radiation emission. More rigid surfaces and mobile users are two important factors in crowded area that can increase wave density and hence raise public microwave exposure.

  15. Radioprotection of Wistar Rat Lymphocytes Against Microwave Radiation Mediated by Bee Venom

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Gajski, G.

    2011-01-01

    Microwave radiation is a type of non-ionising electromagnetic radiation present in the environment, and is a potential threat to human health. Cytogenetic studies of microwave radiation conducted in vitro and in vivo, yielded contradictory and often intriguing experimental results. Some reports suggest that exposure of human cells to radiofrequency radiation does not result in increased cytogenetic damage. On the other hand, there is a range of studies showing that radiofrequency radiation can indeed induce genetic alteration after exposure to electric field. Bee venom is used in traditional medicine to treat variety of conditions, such as arthritis, rheumatism, back pain and skin disease. In recent years it has been reported that bee venom possesses antimutagenic, proinflammatory, anti-inflammatory, antinociceptive, and anticancer effects. In addition to the wide range of the bee venom's activities, it also possesses a radioprotective capacity that was noted against X-ray and gamma radiation in various test systems. The aim of the present study was assessment of the radioprotective effect of bee venom against 915 MHz microwave radiation-induced DNA damage in the Wistar rat's lymphocytes in vitro. The possible genotoxic effect of bee venom alone was also assessed on non-irradiated lymphocytes. The alkaline comet assay was used as a sensitive tool in The assessment of DNA damage was performed using the alkaline comet assay and the Fpg-modified comet assay that is more specific technique in detection of DNA strand breaks and oxidative stress. Whole blood was collected from adult male Wistar rats (11 weeks old, approximate body weight 350 g)by cardiac puncture under sterile conditions in heparinized vacutainer tubes. After collection, blood was divided into 1 ml aliquots and placed into 24-well culture plates according to the exposure conditions. Bee venom was added to lymphocyte cultures in final concentration of 1 μg/ml, 4 h prior to irradiation and immediately

  16. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  17. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia.

    Science.gov (United States)

    Hou, Rui; Xu, Yanjun; Lu, Qijie; Zhang, Yang; Hu, Bing

    2017-10-01

    Angiogenesis plays an important role in tumor growth, invasiveness, and metastasis. It is well established that prostate cancer is exposed to fluctuating oxygen tensions and both acute and chronic hypoxia exist, and these conditions can upregulate angiogenesis-associated proteins such as hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A. Low-frequency low-intensity ultrasound with microbubbles can induce obvious microvessel damage in tumors, cause cell necrosis or apoptosis. However, there is no information about whether the blocking blood effect of low-frequency low-intensity ultrasound with microbubbles has an influence on hypoxia environment of prostate cancer. Therefore, we investigated the impact of different low-frequency low-intensity ultrasound with microbubbles radiation times on prostate tumors, observed the change in the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A protein levels, as well as cell proliferation, apoptosis, and tumor volume. The results indicated that as the radiation was repeated four times on each treatment day, the effects of interruption were durable, the cell proliferation was inhibited, and apoptosis was promoted, and the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were lower in the treatment group than in the control group. When the radiation was carried out once per treatment day, the hypoxia response was stimulated, the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were higher compared with the control group, and cell proliferation was promoted. In addition, the tumor volume increased obviously in the hypoxia-stimulated group, whereas tumors grew slowly in the hypoxia-suppressed group. The results of this work demonstrated that under the same conditions, different radiation times of low-frequency low-intensity ultrasound with microbubbles affect the hypoxia response differently, and the

  18. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  19. USE OF THE MICROWAVE RADIATION FOR UPGRADING OF A BIOMASS ALCOHOLIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Anna Nowicka

    2017-04-01

    Full Text Available Perform pretreatment is crucial particularly in the case of the use of hard-degradable biomass, the biochemical susceptibility to degradation, for example, alcoholic fermentation is limited. Biomass disintegration processes lead to the destruction of compact structures and release of the organic substance to the phase dissolved in a resultant increase in the concentration of dissolved easily degradable organic substances. Effective pretreatment should meet several criteria, including ensuring the separation of lignin from cellulose, to increase the share of amorphous cellulose, provide a higher porosity substrates, eliminate waste sugars limit formation of inhibitors, minimize energy costs. The aim of this paper is to show the possibilities of using electromagnetic microwave radiation for pre-treatment plant biomass before the fermentation process of alcohol and comparison of the effectiveness of the described method with other commonly used techniques of pre-treatment. The substrate subjected to microwave treatment has a fast rate of hydrolysis and a high content of glucose in the hydrolyzate, which increases the efficiency of the production of bioethanol.

  20. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  1. Humoral immunity of Japanese quail subjected to microwave radiation during embryogeny

    International Nuclear Information System (INIS)

    Hamrick, P.E.; McRee, D.I.; Thaxton, P.; Parkhurst, C.R.

    1977-01-01

    Fertile Japanese quail eggs were exposed to continuous wave microwave radiation at an intensity of 5 mW/cm 2 (50 W/m 2 ) and a frequency of 2450 Mhz. The absorbed power density was determined to be 4.03 W/kg. The eggs were exposed throughout the first 12 days of the normal incubation period of 17.5 days. Non-exposed control eggs were incubated in a chamber identical to the exposure chamber. After hatching, exposed and control quail were reared in the conventional laboratory manner. Weekly body weight measurements were made to compare the growth patterns of exposed and control quail. The weights of the exposed male at the ages of 4 and 5 weeks were 12 and 7%, respectively, less than the control males. These differences approached statistical significance (P<=0.05). At 5 weeks of age the quail were challenged with sheep red blood cells (SRBC) and the levels of the anti-SRBC antibodies were determined. The levels of specific anti-SRBC antibodies, determined 4 days after antigen challenges, were of the same magnitude for both the exposed and control quail. Following this assessment of humoral immunity, the quail were sacrificed and the bursa of Fabricius and spleen were removed and a comparison was made of exposed and control birds. The weights of the bursa of Fabricius and spleen were not altered significantly by the microwave exposure. (author)

  2. Effect of Radiation Leakage of Microwave Oven on Rat Serum Testosterone at Pre and Post Pubertal Stage

    Directory of Open Access Journals (Sweden)

    Y Zare

    2008-01-01

    Full Text Available Introduction: Since discovery of high frequency waves, their biological effects have been in great attention. Increased male fertility problems proposed their possible relation to use of microwaves. Testes are of very active body tissues, which can be affected by these waves. Age of exposure may also be an important factor. Methods: This study was carried out to evaluated testosterone level in rats exposed to microwave radiation at pre and post puberty. For this study 18 adult (2 month old and 18 immature (1 month old male rats were selected and each group divided in two groups, control and test group. Test groups were exposed to 2450 MHZ microwaves produced by microwave oven (LG Brant, three times a day, 30 minute each time. Control groups were kept in laboratory at same temperature and light condition. After 60 days blood was collected by heart puncture and testosterone was measured in serum by RIA method. Mean testosterone levels were compared by T-test. Result: The results showed that in immature group testosterone has not changed significantly compare to control group; however in adult group this value was significantly decreased in test group in comparison with control (P<0.005. Conclusion: exposure to microwaves leakage of microwave oven decreased testosterone in adult male rats, which may be due to its direct effect on Leydig cells or indirectly through its effect on pituitary and hypothalamus.

  3. Glial reaction in visual centers upon whole-body combined irradiation with microwaves and x-radiation

    International Nuclear Information System (INIS)

    Logvinov, S.V.

    1989-01-01

    A single whole-body preirradiation with thermogenous microwaves modifies the dynamics of the glial reactions of visual centers of ginea pigs induced by median lethal X-radiation doses. A combination of the two factors products the synergistic effect, estimated by the degree of alteration of astrocytes and oligodendroglyocytes at early times after exposure, leads to early activation of microglia, and reduces radiation-induced alterations in glia at later times (25-60 days)

  4. The cosmic microwave background radiation and the dog in the night

    Science.gov (United States)

    Partridge, R. B.

    The spectrum and angular distribution of the cosmic microwave background radiation (CMBR) are characterized, summarizing the results of recent observations. The emphasis is on null experiments which have established upper limits on anisotropies and spectral distortion. The benefits and pitfalls of null experiments are recalled; the generally observed isotropy of the CMBR and the possible ways anisotropy could be introduced are discussed; and data from searches for anisotropy on arcmin, degree, and arcsec scales are presented in tables and graphs and analyzed in detail. The observed CMBR spectrum is shown to be generally consistent with a black body at temperature 2.75 + or - 0.04 K at wavelengths from 0.1 to 12 cm, although some recent data (Kogut et al., 1988) seem to confirm the presence of distortion due to the Suniaev-Zel'dovich effect at wavelength 3.0 cm.

  5. Magnetic tunnel structures: Transport properties controlled by bias, magnetic field, and microwave and optical radiation

    International Nuclear Information System (INIS)

    Volkov, N.V.; Eremin, E.V.; Tarasov, A.S.; Rautskii, M.V.; Varnakov, S.N.; Ovchinnikov, S.G.; Patrin, G.S.

    2012-01-01

    Different phenomena that give rise to a spin-polarized current in some systems with magnetic tunnel junctions are considered. In a manganite-based magnetic tunnel structure in CIP geometry, the effect of current-channel switching was observed, which causes bias-driven magnetoresistance, rf rectification, and the photoelectric effect. The second system under study, ferromagnetic/insulator/semiconductor, exhibits the features of the transport properties in CIP geometry that are also related to the current-channel switching effect. The described properties can be controlled by a bias, a magnetic field, and optical radiation. At last, the third system under consideration is a cooperative assembly of magnetic tunnel junctions. This system exhibits tunnel magnetoresistance and the magnetic-field-driven microwave detection effect.

  6. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  7. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    Science.gov (United States)

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  8. Hot gas in clusters of galaxies, cosmic microwave background radiation and cosmology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Presence of the hot (kTe ~ 3 - 10 KeV) rarefied gas in the clusters of galaxies (most massive gravitationally bound objects in the Universe) leads to the appearance of  "shadows"  in the angular distribution of the Cosmic Microwave Background (CMB) Radiation and permits to measure the peculiar velocities of these clusters relative to the unique coordinate frame where CMB is isotropic. I plan to describe the physics leading to these observational effects. Planck spacecraft, ground based South Pole and Atacama Cosmology Telescopes discovered recently more than two thousand of unknown before Clusters of Galaxies at high redshifts detecting these "shadows" and traces of kinematic effect, demonstrating the correlation of the hot gas velocities with mass concentrations on large scales. Giant ALMA interferometer in Atacama desert resolved recently strong shocks between merging clusters of galaxies. Newly discovered clusters of galaxies permit to study the rate of growth of the large scale structur...

  9. Athermal alterations in the structure in the canalicular membrane and ATPase activity induced by thermal levels of microwave radiation

    International Nuclear Information System (INIS)

    Phelan, A.M.; Neubauer, C.F.; Timm, R.; Neirenberg, J.; Lange, D.G.

    1994-01-01

    Sprague-Dawley rats (200-250 g) were exposed 30 min/day for 4 days to thermogenic levels (rectal temperature increase of 2.2 degrees C) of microwave radiation [2.45 GHz, 80 mW/cm 2 , continuous-wave mode (CW)] or to a radiant heat source resulting in an equivalent increase in body temperature of 2.2 degrees C. On the fifth day the animals were sacrificed and their livers removed. The canalicular membranes were isolated and evaluated for adenosinetriphosphatase (ATPase) activity, total fatty acid composition and membrane fluidity characteristics. Mg ++ -ATPase activity (V max ) decreased by 48.5% in the group exposed to microwave radiation, with no significant change in the group exposed to radiant heat. The decrease in Mg ++ -ATPase was partially compensated by a concomitant increase in Na + /K + -ATPase activity (170% increase in V max over control) in animals exposed to microwave radiation, while no change occurred in the group exposed to radiant heat. This alteration in ATPase activity in the group exposed to microwave radiation is associated with a large decrease in the ratio of saturated to unsaturated fatty acids. Conversely, the group exposed to radiant heat had an increase in the ratio of saturated to unsaturated fatty acids. The most dramatic changes were found in the levels of arachidonic acid. Finally, the electron paramagnetic resonance (EPR) spin label technique used to measure the fluidity of the canalicular membranes of the animals in the three groups (sham, microwave radiation and radiant heat) indicated that the results were different in the three groups, reflecting the changes found in their fatty acid composition. The physiological response to open-quotes equivalentclose quotes thermal loads in rats is expressed differently for different types of energy sources. Possible mechanisms producing these divergent thermogenic responses are discussed. 34 refs., 3 figs., 2 tabs

  10. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Basic Science Research Institute, Ewha Womans University, Seoul 03760 (Korea, Republic of); Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-10-20

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  11. Detection of hot gas in clusters of galaxies by observation of the microwave background radiation

    International Nuclear Information System (INIS)

    Gull, S.F.; Northover, K.J.E.

    1976-01-01

    It is stated that satellite observations have indicated that many rich clusters are powerful sources of x-rays. This has been interpreted as due to either thermal bremsstrahlung from very hot gas filling the clusters or as inverse Compton scattering of photons by relativistic electrons. Spectral evidence appears to favour a thermal origin for the radiation, implying the existence of large amounts of hot gas. This gas may be a major constituent of the Universe, and independent confirmation of its existence is very important. Observations are here reported of small diminutions in the cosmic microwave background radiation in the direction of several rich clusters of galaxies. This is considered to confirm the existence of large amounts of very hot gas in these clusters and to indicate that the x-radiation is thermal bremsstrahlung and not inverse Compton emission. The observations were made in 1975/1976 using the 25m. telescope at the SRC Appleton Laboratory at a frequency of 10.6 GH2, and details are given of the technique employed. (U.K.)

  12. Radiation protection in occupational exposure to microwave electrotherapy units; Proteccion radiologica en exposicion ocupacional a microondas en unidades de electroterapia

    Energy Technology Data Exchange (ETDEWEB)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-07-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  13. On a low intensity 241 Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    In this paper, a new design and construction of a low intensity (100 mCi) 241Am -ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design.

  14. Can low-intensity extracorporeal shockwave therapy improve erectile dysfunction?

    DEFF Research Database (Denmark)

    Olsen, Anne B; Persiani, Marie; Boie, Sidsel

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether low-intensity extracorporeal shockwave therapy (LI-ESWT) can be used as a treatment for men with erectile dysfunction of organic origin. MATERIALS AND METHODS: This prospective, randomized, blinded, placebo-controlled study included 112 ...... are needed. KEYWORDS: Erectile dysfunction; extracorporeal shockwave; penis...

  15. Effect of Leaked Radiation from Microwave Oven on Bone Marrow of Male Rats in Pre and Post Pubertal Stage

    Directory of Open Access Journals (Sweden)

    G Jelodar

    2011-01-01

    Full Text Available Introduction: Increasing hematological diseases along with increased use of microwaves in different systems proposed possible correlation between them. Age of exposure to wave is also an important factor. This study was conducted to evaluate the effect of radiation leakaged from microwave oven on hemopoitic bone marrow cells at pre and post pubertal. Methods: Fourteen male mature (2 months old and 14 male immature rats(one month old were randomly divided in to four groups (control and test. Test groups were exposed, three times a day each time 30 min for 60 days, to microwaves produced by microwave oven. After sixty days, animals were sacrified and bone marrow samples were collected from femural bones. Percent of variose cells type and their morphology were evaluated in 500 cells of each smear. Results: exposure to microwave did not exert visible morphological alteration. In the immature experimental group significant decrease in percent of basophilic rubricyte, polychromatic rubricyte, meta rubricyte and all the erythroid cell types observed(P<0.05, whereas, meta myelocyte, notrophilic band, total myeloid cell types and prolifrative cells, other cell types and the myeloid/erythroid ratio significantly increased(P<0.05. In the mature group, however, a significant decrease in percent of meta rubricyte and myelocyte cells observed(P<0.05, although prolifrative cells and all other cell types were significantly increasing in this group. Conclusion: In conclusion, the radiation leaked from microwave oven in the experimental conditions had no effect on the morphology of hemopoitic bone marrow cells, though the number of these cells was altered especially in immature group.

  16. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing

    Science.gov (United States)

    Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre

    2017-01-01

    This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow

  17. Effect of the Great Attractor on the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, E [Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics; Gorski, K M [Los Alamos National Lab., NM (USA); Dekel, A [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1990-06-07

    ANISOTROPY in the cosmic microwave background radiation (CMB) is expected as a result of fluctuations in gravitational potential caused by large-scale structure in the Universe. The background radiation is redshifted as it climbs out of gravitational wells. Here we present a map of the anisotropy in CMB temperature {Delta}T/T of our region of the Universe as viewed by a distant observer, predicted on the basis of the gravitational potential field. We calculate this field in the vicinity of the Local Group of galaxies from the observed peculiar (non-Hubble) velocities of galaxies, under the assumption that the peculiar motions are induced by gravity. If the cosmological density parameter {Omega} is 1, the gravitational potential field of the Great Attractor and surrounding regions produces a maximum Sachs-Wolfe anisotropy of {Delta}T/T=(1.7{plus minus}0.3) x 10{sup -5} on an angular scale of 1deg. Doppler and adiabatic contributions to this anisotropy are expected to be somewhat larger. If similar fluctuations in the gravitational potential are present elsewhere in the Universe, the anisotropy present when the CMB was last scattered should be visible from the Earth, and should be detectable in current experiments. A fundamental test of whether gravity is responsible for the generation of structure in the Universe can be made by looking for the imprint in the CMB of deep potential wells similar to those found in our neighbourhood, (author).

  18. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  19. Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating.

    Science.gov (United States)

    González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E

    2018-05-15

    The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available The growing list of herbicide-resistant biotypes and environmental concerns about chemical use has prompted interest in alternative methods of managing weeds. This study explored the effect of microwave energy on paddy melon (Cucumis myriocarpus plants, fruits, and seeds. Microwave treatment killed paddy melon plants and seeds. Stem rupture due to internal steam explosions often occurred after the first few seconds of microwave treatment when a small aperture antenna was used to apply the microwave energy. The half lethal microwave energy dose for plants was 145 J/cm2; however, a dose of at least 422 J/cm2 was needed to kill seeds. This study demonstrated that a strategic burst of intense microwave energy, focused onto the stem of the plant is as effective as applying microwave energy to the whole plant, but uses much less energy.

  1. Influence of microwave radiation on the post harvest decay and quality of peach fruits in cold storage

    International Nuclear Information System (INIS)

    Azarpajoun, E.; Nikkhah, SH.

    2009-01-01

    This research has been carried out in Khorasan Agricultural and Natural Resources research center to study the effect of microwave radiation on storage time and control of peach fruit rot. Peach cultivars (Alberta, Red, White and Green of Mashad) were harvested in the first and second decades of June, July and September, sorted and stored at 4°C for 12 hours. Then fruits were treated with a Microwave with the Frequency at 2450 MHZ and two intensities, low (200 w) and high (800 w) for 30, 60 and 120 seconds, the treated and control fruits were laid on in plastic trays, packed in perforated polyethylene bags and stored in cold storage (0°C and 90-95% relative humidity) for 2 months. The qualitative tests including fruit rot, total soluble solids, titrable acidity, weight loss, firmness and color were assayed after 15, 30, 45 and 60 days. Sensory attributes were measured after 60 days storage. The experimental design was factorial in frame of completely randomized design. Multiple range test (Duncan) were used to compare the means. The results showed that treating the fruit with microwave decreased the fruit rot and increased pH, flesh firmness and total soluble solids of treated peach. Microwave radiation with the 800w for 60 seconds maintained the qualitative characteristics of fruits. Panel test confirmed these results. (author)

  2. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Science.gov (United States)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  3. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  4. A map of the cosmic microwave background radiation from the Wilkinson Microwave Anisotropy Probe (WMAP), showing the large-scale fluctuations (the quadrupole and octopole) isolated by an analysis done partly by theorists at CERN.

    CERN Multimedia

    2004-01-01

    A recent analysis, in part by theorists working at CERN, suggests a new view of the cosmic microwave background radiation. It seems the solar system, rather than the universe, causes the radiation's large-scale fluctuations, similar to the bass in a song.

  5. Low-intensity training dissociates metabolic from aerobic fitness

    DEFF Research Database (Denmark)

    Helge, J W; Damsgaard, R; Overgaard, K

    2008-01-01

    This study investigated the effect of prolonged whole-body low-intensity exercise on blood lipids, skeletal muscle adaptations and aerobic fitness. Seven male subjects completed a 32-day crossing of the Greenland icecap on cross-country skies and before and after this arm or leg cranking was perf......This study investigated the effect of prolonged whole-body low-intensity exercise on blood lipids, skeletal muscle adaptations and aerobic fitness. Seven male subjects completed a 32-day crossing of the Greenland icecap on cross-country skies and before and after this arm or leg cranking...... sensitive lipase activity was similar in arm and leg muscle prior to the expedition and was not significantly affected by the crossing. In conclusion, an improved blood lipid profile and thus metabolic fitness was present after prolonged low-intensity training and this occurred in spite of a decreased...... aerobic fitness and an unchanged arm and leg muscle hormone-sensitive lipase activity....

  6. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  7. Safety assessment of RF and microwave radiation emitted by the mobile telephone base station (MTBS) in Malaysia: experience and challenge

    International Nuclear Information System (INIS)

    Roha Tukimin; Rozaimah Abd Rahim; Mohamad Amirul Nizam; Mohd Yusof Mohd Ali

    2007-01-01

    Non-ionising radiation (NIR) is known to be hazardous if the amount received is excessive. It is a fact that NIR, including extremely low frequency (ELF) electromagnetic fields, radiofrequency (RF) and microwave radiation can be found almost everywhere generated by both natural and man-made source. This is due to increase in demand for telecommunication and wireless technology which is become very important and as part of our lives. However, the widespread of the relevant technology contributed more NIR man-made sources exposure to the human. Due to public concern their potential of causing such health hazard, members of public and companies approached and request NIR Group of Nuclear Malaysia to carry out surveys and safety assessments of radiofrequency and microwave radiation emitted by the mobile telephone base station (MTBS) erected near the residential area or installed on the rooftop of the commercial building. Objective of the survey was to assess the presence of radiofrequency and microwave radiation and to identify radiation level which may lead to significant personnel exposure. Findings of the survey was compared to the standard guidelines issued by Malaysian Communication and Multimedia Commission (MCMC) and International Committee on Non-Ionising Radiation Protection (ICNIRP). This paper highlights the works that had been carried out by NIR Group of Nuclear Malaysia from 1997 to 2007. We will share the experience and challenge in carried out the NIR safety assessment at mobile telephone base station. Results of the assessment work will be used to develop non-ionising radiation database for future reference in Malaysia. (Author)

  8. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    Pavicic, I.; Trosic, I.; Sarolic, A.

    2005-01-01

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x10 4 cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO 2 . Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  9. Low-intensity red and infrared lasers on XPA and XPC gene expression

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Ferreira-Machado, S C; Geller, M; Paoli, F

    2014-01-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols. (letter)

  10. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  11. Radiation characteristics of a coaxial waveguide with eccentric inner conductor for application in hyperthermia and microwave reflex therapy

    Directory of Open Access Journals (Sweden)

    R. Herschmann

    2007-06-01

    Full Text Available This paper examines the radiation characteristics of a contact emitter conceived for application in hyperthermia and microwave reflex therapy. It is important to analyse the distribution of power density in the near field area, as the radiator's therapeutic sphere of activity is localized here. The contact emitter is a coaxial radiator with an eccentric course of the inner conductor. According to Huygens principle, a theoretical view of the near field radiation characteristics is made by determining the equivalent current densities in the emitter aperture. It is shown that by an eccentric shift of the inner conductor, an almost isotropic near field radiation pattern and power density can be achieved. For this, the electromagnetic field in the emitter aperture is determined by using a Bipolar coordinate system. This calculation considers only the fundamental TEM mode of the contact emitter. Besides the theoretical results near and far fields are simulated using the programme system Ansoft HFSS.

  12. Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture.

    Science.gov (United States)

    Piątkowski, Marek; Janus, Łukasz; Radwan-Pragłowska, Julia; Bogdał, Dariusz; Matysek, Dalibor

    2018-04-01

    A new type of promising chitosan beads with advanced properties were obtained under microwave radiation according to Green Chemistry principles. Biomaterials were prepared using chitosan as raw material and glutamic acid/1,5-pentanodiol mixture as crosslinking agents. Additionally beads were modified with Tilia platyphyllos extract to enhance their antioxidant properties. Beads were investigated over their chemical structure by FT-IR analysis. Also their morphology has been investigated by SEM method. Additionally swelling capacity of the obtained hydrogels was determined. Lack of cytotoxicity has been confirmed by MTT assay. Proliferation studies were carried out on L929 mouse fibroblasts. Advanced properties of the obtained beads were investigated by studying pH sensitivity and antioxidant properties by DPPH method. Also susceptibility to degradation and biodegradation by Sturm Test method was evaluated. Results shows that proposed chitosan beads and their eco-friendly synthesis method can be applied in cell therapy and tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A measurement of the medium-scale anisotropy in the cosmic microwave background radiation

    Science.gov (United States)

    Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Inman, C. A.; Kowitt, M. S.; Meyer, S. S.; Page, L. A.; Puchalla, J. L.; Silverberg, R. F.

    1994-01-01

    Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.

  14. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  15. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    Energy Technology Data Exchange (ETDEWEB)

    Andueza, Ángel; Sevilla, Joaquín [Dpto. Ing. Eléctrica y Electrónica Universidad Pública de Navarra, 31006 Pamplona (Spain); Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona (Spain); Wang, Kang [Laboratoire de Physique des Solides, UMR CNRS/Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Pérez-Conde, Jesús [Dpto. de Física Universidad Pública de Navarra, 31006 Pamplona (Spain)

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  16. A limit of the anisotropy of the microwave background radiation on arc minute scales

    International Nuclear Information System (INIS)

    Readhead, A.C.S.; Lawrence, C.R.; Myers, S.T.; Sargent, W.L.W.; Hardebeck, H.E.

    1989-01-01

    After adjustment for observational parameters, various models predict an upper anisotropy limit of microwave background radiation of delta T/T less than 0.00017 at the 95 percent confidence level for uncorrelated patches of sky that are uniform on a 2-arcsec scale. This limit is more than a factor of 2 lower than previous limits on comparable angular scales. Results obtained assuming Gaussian fluctuations place useful constraints on models of galaxy formation based on adiabatic or isocurvature fluctuations in baryonic matter, provided that any reionization of the intergalactic medium occurred at z less than 40. Adiabatic models are ruled out with greater than 95 percent confidence, and isocurvature models with Omega less than 0.8 are inconsistent with the measured limits. Nonbaryonic models with early reionization predict anisotropy levels up to a factor of 3 below the present limit. The lowest predictions come from models with biased galaxy formation, nonbaryonic matter, and early reionization and are as much as a factor of 10 below the present sensitivity limit. The predictions of most popular contending theories of galaxy formation are within reach of the techniques used in this study. 112 refs

  17. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  18. Contribution to the theoretical study of a high power microwave radiation produced by a relativistic electron beam

    International Nuclear Information System (INIS)

    Sellem, F.

    1997-01-01

    This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.)

  19. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Science.gov (United States)

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  20. Low-intensity interference effects and hidden-variable theories

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V [Universidade Estadual de Campinas (Brazil). Inst. de Matematica

    1978-05-11

    The double-slit interference experiment and other similar experiments in the low-intensity limit (that is, one photon in the apparatus at a time) are examined in the spirit of Bell's work from the point of view of hidden-variable theories. It is found that there exists a class of hidden-variable theories which disagrees with quantum mechanics for a certain type of interference experiment. A manufactured conceptualization of this class, which is a particle view of interference, is described. An experiment, which appears to be feasible, is proposed to examine this disagreement.

  1. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  2. Temperature-specific inhibition of human red cell (Na/sup +//K/sup +/) ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz (CW) microwave radiation. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersected between 23 and 24 C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 C. Exposure of membrane suspensions to a 6 W/kg dose rate at 1 C intervals between 23 and 27 C, resulted in an activity change only for the Na+/K+ ATPase at 25 C. The activity decreased by approximately 35% compared to sham-irradiated samples. An hypothesis based on the interaction of microwave radiation with enzyme structure during a conformational rearrangement is proposed as an explanation for the effect.

  3. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  4. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  5. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Daniel, E-mail: daniel.kersting@usp.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/USP), Sao Paulo, SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica; Marinucci, Gerson; Silva, Leonardo G.A. e, E-mail: marinuci@ipen.br, E-mail: gasilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  6. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    International Nuclear Information System (INIS)

    Kersting, Daniel; Wiebeck, Helio

    2013-01-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  7. Blood-brain barrier permeation in the rat during exposure to low-power 1.7-GHz microwave radiation

    International Nuclear Information System (INIS)

    Ward, T.R.; Ali, J.S.

    1985-01-01

    The permeability of the blood-brain barrier to high-and low-molecular-weight compounds has been measured as a function of continuous-wave (CW) and pulsed-microwave radiation. Adult rats, anesthetized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin, were exposed for 30 min at a specific absorption rate of 0.1 W/kg to 1.7-GHz CW and pulsed (0.5-microseconds pulse width, 1,000 pps) microwaves. After exposure, the brain was perfused and sectioned into nine regions, and the radioactivity in each region was counted. During identical exposure conditions, temperatures of rats were measured in eight of the brain regions by a thermistor probe that did not perturb the field. No change in uptake of either tracer was found in any of the eight regions as compared with those of sham-exposed animals

  8. Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter

    International Nuclear Information System (INIS)

    Libertin, C.R.; Woloschak, G.E.; Panozzo, J.; Groh, K.R.; Chang-Liu, Chin-Mei; Schreck, S.

    1994-01-01

    Previous work by our group and others has shown the modulation of human immunodeficiency virus (HIV) promoter or long terminal repeat (LTR) after exposure to neutrons and ultraviolet radiations. Using HeLa cells stably transfected with a construct containing the chloramphenicol acetyl transferase (CAT) gene, the transcription of which is mediated by the HIV-LTR, we designed experiments to examine the effects of exposure to different types of radiation (such as γ rays, ultraviolet and sunlight irradiations, electromagnetic fields and microwaves) in HIV-LTR-driven expression of CAT. These results demonstrated ultraviolet-light-induced transcription from the HIV promoter, as has been shown by others. Exposure to other DNA-damaging agents such as γ rays and sunlight (with limited exposures) had no significant effect on transcription mediated by HIV-LTR, suggesting that induction of HIV is not mediated by just any type of DNA damage but rather may require specific types of DNA damage. Microwaves did not cause cell killing when cells in culture were exposed in high volumes of medium, and the same cells showed no changes in expression. When microwave exposure was carried out in low volumes of medium (so that excessive heat was generated) induction of HIV-LTR transcription (as assayed by CAT activity) was evident. Electromagnetic field exposures had no effect on expression of HIV-LTR. These results demonstrate that not all types of radiation and not all DNA-damaging agents are capable of inducing HIV. We hypothesize that induction of HIV transcription may be mediated by several different signals exposure to radiation. 22 refs., 8 figs

  9. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  10. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Wattieaux, G.; Yousfi, M.; Merbahi, N.

    2013-01-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10 14 cm −3 , the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case

  11. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Heidari S

    2011-04-01

    Full Text Available Saeed Heidari Keshel1, S Neda Kh Azhdadi2, Azadeh Asefnezhad2, Mohammad Sadraeian3, Mohamad Montazeri4, Esmaeil Biazar51Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch - Islamic Azad University; 3Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran; 4Faculty of Medical Sciences, Babol University of Medical Sciences, Babol; 5Department of Chemistry, Islamic Azad University, Tonekabon, IranAbstract: Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.Keywords: surface topography, polyurethane, plasma treatment, cellular investigation

  12. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  13. Very low intensity storage-ring profile monitor

    International Nuclear Information System (INIS)

    Hardek, T.; Kells, W.; Lai, H.

    1981-01-01

    The Fermilab Colliding Beams Group has now accomplished several cooling experiments (electron and stochastic methods) on proton beams in the ''electron cooling'' synchrotron ring built for this purpose. A key to analyzing the performance of any test cooling system is a complete set of beam diagnostics to measure the beam emittances in all three planes. For longitudinal emittance the authors use Schottky scans (although very low intensities make this difficult, necessitating a departure from the conventional method by bunching the beams). A description is given of the MCP telescope and readout which evolved independently as a complete monitor system using residual gas in lieu of Mg vapor. To date all transverse measurements of coasting beam profiles have been obtained in this mode. 2 refs

  14. Low-Intensity Extracorporeal Shockwave Therapy in Sexual Medicine

    DEFF Research Database (Denmark)

    Fode, Mikkel; Lowenstein, Lior; Reisman, Yacov

    2017-01-01

    INTRODUCTION: Low-intensity extracorporeal shockwave therapy (LI-ESWT) has emerged as a treatment option for male sexual dysfunction. However, results have been contradictory. AIM: To investigate the knowledge, practice patterns, and attitudes regarding LI-ESWT among experts in sexual medicine....... METHODS: A study-specific questionnaire was handed out at the 18th Congress for the European Society for Sexual Medicine. Participants were queried on their knowledge about LI-ESWT and about their use of the equipment. MAIN OUTCOME MEASURES: Descriptive data on the knowledge of LI-ESWT and perception...... of treatment effects. RESULTS: One hundred ninety-two questionnaires were available for analysis. Most respondents were physicians (79.7%) and most of these specialized in urology (58.9%). Overall, 144 of 192 (75%) reported that they were familiar with LI-ESWT in sexual medicine. Twenty-seven (14.1%) had...

  15. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    Science.gov (United States)

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  16. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  17. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  18. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  19. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lee

    2017-10-01

    Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics

  20. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...... are transferred to a large high-speed computer for bulk processing and for the production of isophot and equiphase contour maps or profiles. The performance of the system is demonstrated through results for a single conical horn, for interacting rectangular horns, for multiple cylindrical scatterers...

  1. Low Intensity Laser Therapy Applied in the Healing of Wounds

    Science.gov (United States)

    Kahn, Fred; Matthews, Jeffrey

    2009-06-01

    Objective: The aim of this study was to determine the outcomes of Low Intensity Laser Therapy (LILT) on wound healing for patients presenting with pain, compromised neurological and physical function and tissue damage associated with vascular/diabetic ulcerations of the lower extremity. Methods: A retrospective case review of six patients treated with LILT (GaAlAs SLD, 660 nm, 750 mW, 3.6 J/cm2; GaAlAs SLD, 840 nm, 1,500 mW, 6.48 J/cm2; GaAlAs laser, 830 nm, 75 mW, 270 J/cm2) was conducted of clinical features including pain, measured by visual analogue scale (VAS), motor function, measured by range of motion (ROM) and visual outcome, measured by wound dimensions for six patients (n = 6; 5 males, 1 female; age = 67.83 years). Results: Significant progress with regard to alleviation of pain (ΔVAS = -5), improvements in motor function (ΔROM = +40%), epithelialization (wound closure rate = 3%/week) and complete wound closure was achieved. No recurrence of pathology at least one month post cessation of therapy was evident (x¯% reduction in wound area = 100%). Conclusions: LILT achieved consistent, effective and clear endpoints, was cost effective, created no adverse effects and ultimately led to the salvage of extremities.

  2. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  3. Evaluation of low-intensity physical activity by triaxial accelerometry.

    Science.gov (United States)

    Midorikawa, Taishi; Tanaka, Shigeho; Kaneko, Kayoko; Koizumi, Kayo; Ishikawa-Takata, Kazuko; Futami, Jun; Tabata, Izumi

    2007-12-01

    To develop regression-based equations that estimate physical activity ratios [energy expenditure (EE) per minute/sleeping metabolic rate] for low-to-moderate intensity activities using total acceleration obtained by triaxial accelerometry. Twenty-one Japanese adults were fitted with a triaxial accelerometer while also in a whole-body human calorimeter for 22.5 hours. The protocol time was composed of sleep (8 hours), four structured activity periods totaling 4 hours (sitting, standing, housework, and walking on a treadmill at speeds of 71 and 95 m/min, 2 x 30 minutes for each activity), and residual time (10.5 hours). Acceleration data (milligausse) from the different periods and their relationship to physical activity ratio obtained from the human calorimeter allowed for the development of EE equations for each activity. The EE equations were validated on the residual times, and the percentage difference for the prediction errors was calculated as (predicted value - measured value)/measured value x 100. Using data from triaxial accelerations and the ratio of horizontal to vertical accelerations, there was relatively high accuracy in identifying the four different periods of activity. The predicted EE (882 +/- 150 kcal/10.5 hours) was strongly correlated with the actual EE measured by human calorimetry (846 +/- 146 kcal/10.5 hours, r = 0.94 p types of activities and estimate EE for low-intensity physical activities associated with modern lifestyles.

  4. Assessment of radiofrequency/microwave radiation emitted by the antennas of rooftop-mounted mobile phone base stations

    International Nuclear Information System (INIS)

    Keow, M. A.; Radiman, S.

    2006-01-01

    Radiofrequency (RF) and microwave (MW) radiation exposures from the antennas of rooftop-mounted mobile telephone base stations have become a serious issue in recent years due to the rapidly evolving technologies in wireless telecommunication systems. In Malaysia, thousands of mobile telephone base stations have been erected all over the country, most of which are mounted on the rooftops. In view of public concerns, measurements of the RF/MW levels emitted by the base stations were carried out in this study. The values were compared with the exposure limits set by several organisations and countries. Measurements were performed at 200 sites around 47 mobile phone base stations. It was found that the RF/MW radiation from these base stations were well below the maximum exposure limits set by various agencies. (authors)

  5. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  6. Study of viability on the destruction of weed seeds in the soil by microwave radiation

    International Nuclear Information System (INIS)

    Velazquez-Marti, B.; Osca, J.M.; Jorda, C.; Marzal, A.

    2003-01-01

    This work has been carried out to study the thermic effects over weed seeds in typical orchard soil irradiated by its surface with microwave. A previous treatment was carried out in a domestic microwave oven, using 660-watt power. With this laboratory oven, we have investigated three kind of weed seeds: Lolium perenne, Sinopsis alba and Setaria sativa. These previous experiments showed a important decrease of germination with short irradiating times. After previous treatment, a microwave applicator, designed to achieve wide distribution of superficial irradiation energy, was evaluated. This applicator is powered by a 4-kilowatt magnetron through a slotted waveguide. With this oven, we have investigated two kind of weed seeds at several depths: Lolium perenne and Brassica napus var. oleifera. For a soil column, temperature increments reduce seeds germination to a maximum of 5 centimetres. Deeper, the increments of temperature are very low for short irradiating times, so it will be negligible for our purpose. This applicator lets approach better to real treatments focused into the development of a continuous microwave oven for disinfecting seedbed and greenhouse crop substratum. (author) [es

  7. Radiofrequency/Microwave Radiation Biological Effects and Safety Standards: A Review

    Science.gov (United States)

    1994-06-01

    reported that a 50 year old woman had developed cataracts after intermittent exposure to a 2.45 GHz microwave oven. The incident power density levels were...include: Survelance, Communications, Command and Control, Intelligence, Signal Processing, Computer Sience and Technology, Electrom Technology, Photoracs and laiity Saences. S* I l I

  8. Low-intensity laser irradiation use for oral and lip precancer treatment

    Science.gov (United States)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  9. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  10. Assessing Low-Intensity Relationships in Complex Networks

    Science.gov (United States)

    Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes

    2016-01-01

    Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes. PMID:27096435

  11. GARLIC — A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    International Nuclear Information System (INIS)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-01-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code — GARLIC — is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus. - Highlights: • High resolution infrared-microwave radiative transfer model. • Discussion of algorithmic and computational aspects. • Jacobians by automatic/algorithmic differentiation. • Performance evaluation by intercomparisons, verification, validation

  12. Propagation of microwave radiation through an inhomogeneous plasma layer in a magnetic field

    Science.gov (United States)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Mashek, I. Ch; Pashchina, A. S.; Pervov, A. Yu; Petrovskiy, V. P.; Ryazanskiy, N. M.; Shkatov, O. Yu

    2018-01-01

    The problem of reliable microwave communication through a plasma sheath has its origin from the beginning of space flights. During reentry of spacecraft, the plasma layer can interrupt the communication. At sufficiently high plasma density, the plasma layer either reflects or attenuates radio wave communications to and from the vehicle. In this work, we present a simple analytical one-dimensional algorithm to study the propagation of electromagnetic (EM) waves through a nonuniform plasma layer in a static nonuniform magnetic field. The experimental study of the EM wave transmission and reflection through plasma layer was carried out on the (i) microwave set and (ii) on the unit using a high-voltage pulsed discharge.

  13. Study of properties of chloroprene rubber devulcanizate by radiation in microwave

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Araujo, Sumair G.; Landini, Liliane; Lugao, Ademar B., E-mail: scagliusi@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Among the vulcanized elastomers, the chloroprene rubber (DuPont Neoprene{sup R} - generic name) possesses a good performance, being one of the most used in the current days. However, this kind of polymer causes a serious environmental problem if it is not reprocessed or recycled. A worldwide method that has been used and that is an important tool in the rubber devulcanization is microwave irradiation at high temperature Elastomer waste may be devulcanized without depolymerization and allows a new vulcanization into a product having physical properties essentially equivalent to the original vulcanized. In this work, the chloroprene samples were irradiated in microwave generator equipment with 2,450 MHz (frequency) and 1,000 W to 3,000 W (power). The properties of samples (according to ASTM standards) were analyzed before and after irradiation. The degraded material after irradiation will be tested for re-use. (author)

  14. Study of properties of chloroprene rubber devulcanizate by radiation in microwave

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Araujo, Sumair G.; Landini, Liliane; Lugao, Ademar B.

    2009-01-01

    Among the vulcanized elastomers, the chloroprene rubber (DuPont Neoprene R - generic name) possesses a good performance, being one of the most used in the current days. However, this kind of polymer causes a serious environmental problem if it is not reprocessed or recycled. A worldwide method that has been used and that is an important tool in the rubber devulcanization is microwave irradiation at high temperature Elastomer waste may be devulcanized without depolymerization and allows a new vulcanization into a product having physical properties essentially equivalent to the original vulcanized. In this work, the chloroprene samples were irradiated in microwave generator equipment with 2,450 MHz (frequency) and 1,000 W to 3,000 W (power). The properties of samples (according to ASTM standards) were analyzed before and after irradiation. The degraded material after irradiation will be tested for re-use. (author)

  15. Biological effects of 2450 MHZ microwave radiation on Raji-Cell in vitro

    International Nuclear Information System (INIS)

    Tan Ming; Zhang Mengdan; Xu Hao.

    1988-01-01

    A water circulating microwave exposure system designed by the authors was used to investigate the thermal and nonthermal biological effects at different power density (1.0mw/cm 2 , 3.9mw/cm 2 , 6.2mw/cm 2 , 8.3mw/cm 2 , 10.5mw/cm 2 ). The results show that the growth of Raji-Cell is inhibited significantly by microwave exposure in 8.3 mw/cm 2 and 10.5 mw/cm 2 groups in temperature controlled test (below 37.0 deg C). It shows that while the growth curve goes down, the rate of inhibition and time of generation increase. The degree of inhibition would increase when the medium temperature was not controlled. And, the mechanisms of thermal and nonthermal biological effects were discussed

  16. Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound.

    Science.gov (United States)

    Rigby, Justin H; Taggart, Rebecca M; Stratton, Kelly L; Lewis, George K; Draper, David O

    2015-11-01

    The heating characteristics of a stationary device delivering sustained acoustic medicine with low-intensity therapeutic ultrasound (LITUS) are unknown. To measure intramuscular (IM) heating produced by a LITUS device developed for long-duration treatment of musculoskeletal injuries. Controlled laboratory study. University research laboratory. A total of 26 healthy volunteers (16 men, 10 women; age = 23.0 ± 2.1 years, height = 1.74 ± 0.09 m, mass = 73.48 ± 14.65 kg). Participants were assigned randomly to receive active (n = 20) or placebo (n = 6) LITUS at a frequency of 3 MHz and an energy intensity of 0.132 W/cm(2) continuously for 3 hours with a single transducer or dual transducers on the triceps surae muscle. We measured IM temperature using thermocouples inserted at 1.5- and 3-cm depths into muscle. Temperatures were recorded throughout treatment and 30 minutes posttreatment. We used 2-sample t tests to determine the heating curve of the LITUS treatment and differences in final temperatures between depth and number of transducers. A mild IM temperature increase of 1 °C was reached 10 ± 5 minutes into the treatment, and a more vigorous temperature increase of 4 °C was reached 80 ± 10 minutes into the treatment. The maximal steady-state IM temperatures produced during the final 60 minutes of treatment at the 1.5-cm depth were 4.42 °C ± 0.08 °C and 3.92 °C ± 0.06 °C using 1 and 2 transducers, respectively. At the 3.0-cm depth, the maximal steady-state IM temperatures during the final 60 minutes of treatment were 3.05 °C ± 0.09 °C and 3.17 °C ± 0.05 °C using 1 and 2 transducers, respectively. We observed a difference between the temperatures measured at each depth (t78 = -2.45, P = .02), but the number of transducers used to generate heating was not different (t78 = 1.79, P = .08). The LITUS device elicited tissue heating equivalent to traditional ultrasound but could be sustained for multiple hours. It is a safe and effective alternative tool

  17. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Geller, M; Paoli, F

    2014-01-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA. (paper)

  18. Autoacceleration of electron beam and microwave radiation in the diaphragmed waveguide

    International Nuclear Information System (INIS)

    Kolomensky, A.A.; Meskhy, G.O.; Yablokov, B.N.

    1977-01-01

    The energy of a portion of beam electrons can be increased by means of the autoacceleration mechanism. In these experiments, an electron accelerator with parameters 0.5 to 1.0 MeV, 20 to 30 kA, 40 to 50 ns was used. A hollow beam was passed through a diaphragmed waveguide. At its output, the electron spectrum and microwave spectrum were measured simultaneously. About 10% of the electrons increase their energy as compared with the maximum input energy, whereby 3% increase their energy more than by a factor of two. The energy multiplication for the tail electrons turns out to be 3 to 4 times the initial value. About 10% of the beam input power is spent on the increase of electron energy. The pulse microwave power generated is in the range 2.7 to 2.9 GHz and its total measured power was approx. 0.4 GW, which corresponds to approx. 20% of the input beam power. Experiments show that effects of autoacceleration and microwave generation are interdependent and should be studied together

  19. Compton scattering of microwave background radiation by gas in galaxy clusters

    International Nuclear Information System (INIS)

    Gould, R.J.; Rephaeli, Y.

    1978-01-01

    Based on data on the X-ray spectrum of the Coma cluster, interpreted as thermal bremsstrahlung, the expected brightness depletion from Compton scattering of the microwave background in the direction of the cluster is computed. The calculated depletion is about one-third that recently observed by Gull and Northover, and the discrepancy is discussed. In comparing the observed microwave depletion in the direction of other clusters which are X-ray sources it is found that there is no correlation with the cluster X-ray luminosity, while a dependence proportional to L/sub x//sup 1/2/ is expected. Consequently, the microwave depletion observations cannot yet be taken as good evidence for a thermal bremsstrahlung origin for the X-ray emission. The perturbation from Compton scattering of photons on the high-frequency (Wien) tail of the blackbody distribution is computed and found to be much larger than predicted in previous calculations. In the Wien tail the effect is a relative increase in the blackbody intensity that is appreciably greater in magnitude than the depletion in the Rayleigh-Jeans domain

  20. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  1. Effects of low-intensity GaAlAs laser radiation ({lambda}=660 nm) on dentine-pulp interface after class I cavity preparation; Efeitos da radiacao laser GaAlAs ({lambda}=660 nm) em baixa intensidade na interface dentina-polpa pos-preparo cavitario classe 1

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, Bruno Miranda

    2003-07-01

    The aim of this study was to investigate the effects of low-intensity irradiation with GaAlAs laser (red emission) on the ultrastructure of dentine-pulp interface after conventionally prepared class I cavity preparation. Two patients with 8 premolars for extraction indicated for orthodontic reasons. Class I cavities were prepared in these teeth that were then divided into two groups. The first group received a treatment with laser with continuous emission, {lambda}=660 nm, with maximum power output of 30 mW. The dosimetry applied was of approximately 2J/cm{sup 2}, directly and perpendicularly into the cavity in only one section. After the irradiation, the cavities were filled with composite resin. The second group received the same treatment, except by the laser therapy. Twenty-eight days after the preparation, the teeth were extracted and were processed for transmission electron microscopy analysis. Two sound teeth, without any preparation, were also studied. The irradiated group presented odontoblastic processes in higher contact with the extracellular matrix and the collagen fibers appeared more aggregated and organized than those of control group. These results were also observed in the healthy-teeth. Thus, we suggest that laser irradiation accelerates the recovery of the dental structures involved in the cavity preparation at the pre-dentine level. (author)

  2. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  3. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  4. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    Science.gov (United States)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident

  5. Influence of a microwave radiation on dissolution kinetics of UO2, CeO2, and Co3O4 in nitric environment

    International Nuclear Information System (INIS)

    Joret, Laurent

    1995-01-01

    This research thesis addresses the issue of dissolution oxides present in spent nuclear fuels. As previous studies outlined important increases of oxide dissolution rate when submitted to microwaves, the issue is then to apply such a technique to PuO 2 which is the most difficult oxide to dissolve. As plutonium may be handled only in certified laboratories and under strict safety conditions, the author studied the influence of a microwave radiation on the dissolution kinetics of other and various metallic oxides in a nitric environment. The choice of this nitric environment is imposed by conditions met in the nuclear industry. Oxides are chosen according to two criteria: dissolution times ranging from few minutes to few days, various responses to electromagnetic radiation (different values for the real and imaginary parts of their dielectric permittivity). Three oxides are retained: UO 2 and CeO 2 (to model PuO 2 ) and Co 3 O 4 . After a recall of some theoretical aspects of the response of a dielectric material to an electromagnetic field, a comparison between conventional and microwave heating, the author presents the main results obtained by using microwaves in chemistry (organic synthesis, ceramic sintering, acid dissolution). He reports the experimental study of nitric dissolution of oxides by conventional heating, and the dielectric characterisation of the studied oxides. He presents the experimental microwave set-up, and reports and discusses experimental results obtained for the dissolution of UO 2 , CeO 2 and Co 3 O 4 in HNO 3 [fr

  6. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  7. The great wall in the CfA survey: Its origin and imprint on the microwave background radiation

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    1990-01-01

    The Great Wall (GW) found in the latest CfA survey has clearly started out as an aspherical overdense region. We model its evolution after recombination and the imprint its time-dependent gravitational potential leaves on the microwave background radiation (MBR). We approximate GW as an oblate ellipsoid and show that it started at recombination with an almost spherical shape, but with an initial density contrast, δ i , much smaller than it had to be in the spherical model in order to reach the observed GW density contrast of q∝5. The resultant δ i is compatible with the r.m.s. value of δρ/ρ on the GW scale at recombination for models with the n -6 -5 depending on Ω and q. Therefore, MBR observations in that direction can further constrain Ω and the bias factor of the light distribution. (orig.)

  8. Low Intensity laser therapy in patients with burning mouth syndrome: a randomized, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Norberto Nobuo SUGAYA

    Full Text Available Abstract The aim of this study was to assess the effectiveness of low intensity laser therapy in patients with Burning Mouth Syndrome (BMS. Thirty BMS subjects were randomized into two groups – Laser (LG and Placebo (CG. Seven patients dropped out, leaving 13 patients in LG and 10 patients in CG. Each patient received 4 irradiations (laser or placebo twice a week, for two consecutive weeks (blinded to the type of irradiation received. Infrared laser (AsGaAI irradiations were applied to the affected mucosa in scanning mode, wavelength of 790 nm, output power of 20 mW and fluence of 6 J/cm2. A visual analogue scale (VAS was used to assess the therapeutic effect before and after each irradiation, and at all the control time periods: 7, 14, 30, 60 and 90 days after the last irradiation. One researcher delivered irradiation and another recorded the results. Both researchers were blinded, the first to the results, and the second to the type of radiation applied. The results were categorized according to the percentage of symptom level variation, and showed a statistically better response in LG in only two categories of the control checkpoints (p=0.02; Fisher’s Exact Test. According to the protocol used in this study, low intensity laser therapy is as beneficial to patients with BMS as placebo treatment, indicating a great emotional component of involvement in BMS symptomatology. Nevertheless, there were positive results in some statistical analyses, thus encouraging further research in BMS laser therapy with other irradiation parameters.

  9. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing; Interacao da radiacao laser linearmente polarizada de baixa intensidade com tecidos vivos: efeitos na acelaracao de cicatrizacao tissular em lesoes de pele

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Martha Simoes

    2000-07-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm{sup 2}. Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  10. Mast cells behavior analysis: non mineralized wall of suprabony periodontal pockets submitted to low intensity laser radiation. (An in anima nobile study); Verificacao do comportamento de mastocitos na parede nao mineralizada da bolsa periodontal supra-ossea submetida a radiacao laser de baixa intensidade. (Estudo in anima nobile)

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Livio de Barros

    2001-07-01

    For this study 20 patients with periodontal disease were selected. The treatment required for all of then was the gingivectomy, a ressective periodontal surgery. This technique consists of removing the whole excess of gingival tissue with the intent of reestablishing the anatomy and the correct function. The gingival area was submitted to 2 different wavelengths and then histologically analysed to search for alterations, mainly concerning mast cells behavior, a blood cell responsible, among other things, for blood vases enlargement. During the surgical procedure each gingival area was submitted to infrared low intensity laser ({lambda} = 785 nm) or to red laser ({lambda} = 688 nm), both with 50 mW of power and fluence of 8 J/cm{sup 2}. A third area was analysed, the control area, in which no laser treatment was employed. The samples were fixated in formol, cut and stained by hematoxyline eosine and toluidine blue. Based on the result we can conclude: the 2 wavelengths used in this study led to the reduction in the number of mast cells present in the tissue as well as to the increase on the degranulation of the remaining mast cells, considered statistically significant taken the degranulation index and; there was no significant difference caused by the action of the two laser wavelengths {lambda}=785 nm and {lambda}=688 nm -50 mW of power and fluence of 8 J/cm{sup 2}-, over the degranulation of the mast cells; the length and width of the randomly chosen blood vases were not statistically different among the analysed groups. (author)

  11. Application of the Non-Intervention Principle to Low-Intensity Cyber Operations

    OpenAIRE

    Adamson, Liisi

    2015-01-01

    Present work focuses on the non-intervention principle and low-intensity cyber operations. More specifically, its main question is, whether the principle of non-intervention applies to low-intensity cyber operations and if it does, is the legal framework of non-intervention principle an effective way to regulate peacetime low-intensity cyber operations. Information Age and the rapid development of ICTs have provided hostile actors the opportunity to exploit the advantages cyberspace offe...

  12. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  13. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  14. MICROWAVES IN ORGANIC SYNTHESIS

    Science.gov (United States)

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  15. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  16. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    Science.gov (United States)

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  17. Response of exfoliated human buccal epithelium cells to combined gamma radiation, microwaves, and magnetic field exposure estimated by changes in chromatin condensation and cell membrane permeability

    Directory of Open Access Journals (Sweden)

    K. А. Kuznetsov

    2016-11-01

    Full Text Available Modulation of the biological effects produced by ionizing radiation (IR using microwave and magnetic fields has important theoretical and practical applications. Response of human buccal epithelium cells to different physical agents (single and combined exposure to 0.5–5 Gy γ-radiation (60Co; microwaves with the frequency of 36.64 GHz and power densities of 0.1 and 1 W/m2, and static magnetic field with the intensity of 25 mT has been investigated. The stress response of the cells was evaluated by counting heterochromatin granules quantity (HGQ in the cell nuclei stained with orcein. Membrane permeability was assessed by the percentage of cells stained with indigocarmine (cells with damaged membrane. The increase of heterochromatin granules quantity (HGQ, i.e. chromatin condensation was detected at the doses of 2 Gy and higher. Changes in the cell membrane permeability to indigocarmine expressed the threshold effect. Membrane permeability reached the threshold at the doses of 2–3 Gy for the cells of different donors and did not change with the increase of the dose of γ-radiation. Cells obtained from different donors revealed some individual peculiarities in their reaction to γ-radiation. The static magnetic field and microwaves applied before or after γ-radiation decreased its impact, as revealed by means of HGQ assessment.

  18. Assessment of DNA sensitivity in peripheral blood leukocytes after occupational exposure to microwave radiation: the alkaline comet assay and chromatid breakage assay

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2002-01-01

    The people of industrialised societies are continuously exposed to increasing levels of electromagnetic fields (EMF) emitted by various electrical installations and telecommunication systems. In recent years there has been growing interest in the health effects of the electromagnetic radiation's designated extremely low frequency (ELF) and radiofrequency radiation (RFR). It is known that exposure to microwave radiation has different biological effects on eye, the nervous system and its function, circulatory and the reproductive system. Available data on cytogenetic consequences of microwave exposure on the induction of chromosome damage are sometimes contradictory, mostly because of different experimental conditions of in vitro and in vivo studies. However, in occupationally exposed persons elevated levels of DNA damage as expressed by means of cytogenetic endpoints were observed. Positive results in induction of micronuclei are also reported after in vitro exposure to microwave radiation on human lymphocytes. It has been suggested that exposure to radiofrequency radiation may have genetic effects which predispose to the development of cancer, particularly lymphoma and leukaemia, and also birth defects such as Down's syndrome

  19. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  20. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    Science.gov (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  1. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. II. Postnatal psychophysiologic evaluations

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Wistar rats (36) were exposed daily throughout pregnancy to a power density level of 35 mW/cm 2 of 6000-MHz microwave radiation (11), sham irradiated (10), or used as control animals (15). Litters were culled to a maximum of eight F 1 /sub a/ offspring/litter (total = 124) on Postnatal Day 1 and subjected to a series of reflex tests beginning Day 3. Mothers were rebred 10 days after weaning. Teratologic evaluations were completed on 263 F 1 /sub b/ offspring. Weekly weights were recorded for 298 F 1 /sub a/ offspring. At 60 days, behavioral testing was initiated on 121 offspring. At 90 days, offspring were bred within/across groups. Teratologic evaluations were completed on 659 F 2 term fetuses. Organ weight analyses were completed on 17 mothers and 181 F 1 /sub a/ adult offspring, and blood analyses on 21 mothers and 131 offspring. Sex differences within groups were observed in four behavioral tests and in blood data. Significant differences between groups were observed for: F 1 /sub b/ term fetal weight; F 1 /sub a/ eye opening, postnatal growth to the fifth week, water T-maze and open field test results; and several organ/body weight ratios. These results indicate that exposure to 6000-MHz radiation at this power density level may result in subtle long-term neurophysiologic alterations not detectable at term using conventional morphologic teratologic procedures

  2. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. II. Postnatal phychophysiologic evaluations

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Wistar rats (36) were exposed daily throughout pregnancy to a power density level of 35 mW/cm 2 of 6000-MHz microwave radiation (11), sham irradiated (10), or used as control animals (15). Litters were culled to a maximum of eight F 1 /sub a/ offspring/litter (total = 124) on Postnatal Day 1 and subjected to a series of reflex tests beginning Day 3. Mothers were rebred 10 days after weaning. Teratologic evaluations were completed on 263 F 1 /sub b/ offspring. Weekly weights were recorded for 298 F 1 /sub a/ offspring. At 60 days, behavioral testing was initiated on 121 offspring. At 90 days, offspring were bred within/across groups. Teratologic evaluations were completed on 659 F 2 term fetuses. Organ weight analyses were completed on 17 mothers and 181 F 1 /sub a/ adult offspring, and blood analyses on 21 mothers and 131 offspring. Sex differences within groups were observed in four behavioral tests and in blood data. Significant differences between groups were observed for: F 1 /sub b/ term fetal weight; F 1 /sub a/ eye opening, postnatal growth to the fifth week, water T-maze and open field test results; and several organ/body weight ratios. These results indicate that exposure to 6000-MHz radiation at this power density level may result in subtle long-term neurophysiologic alterations not detectable at term using conventional morphologic teratologic procedures

  3. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  4. Sources of exposure to radiofrequency and microwave radiations in the UK

    CERN Document Server

    Allen, S G

    1983-01-01

    A comprehensive survey is presented of sources of radiofrequency and microwave fields in the United Kingdom that give rise to the exposure of both workers and the general public. The information is presented in the context of the existing guidelines for the restrictions of exposures to such fields and of proposed new guidelines based on restricting the rate of energy absorption averaged over the human body to 0.4 watts per kilogram or, at frequencies below 3 MHz, limiting field strengths to 600 volts per metre. It is concluded that unless account is taken of time averaging relaxations and possible modifying factors relating to energy absorption arising under near field and partial body exposure conditions, there may be difficulties in applying the proposed guidelines to the use of radio frequencies for industrial heating purposes and to some portable and mobile transmitters used for communications.

  5. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  6. Dielectric and magnetic losses of microwave electromagnetic radiation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V; Tchmutin, I A; Ryvkina, N G; Kalinin, Y E; Sitnikoff, A V

    2003-01-01

    We have studied dielectric and magnetic losses in granular structures constituted by ferromagnetic nanoparticles (Co, Fe, B) in an insulating amorphous a-SiO sub 2 matrix at microwave frequencies, in relation to metal concentration, substrate temperatures and gas content, in the plasma atmosphere in sputtering and annealing. The magnetic losses are due to fast spin relaxation of nanoparticles, which becomes more pronounced with decreasing metal content and occur via simultaneous changes in the granule spin direction and spin polarization of electrons on exchange-split localized states in the matrix (spin-polarized relaxation mechanism). The difference between the experimental values of the imaginary parts of magnetic permeability for granular structures prepared in Ar and Ar + O sub 2 atmospheres is determined by different electron structures of argon and oxygen impurities in the matrix. To account for large dielectric losses in granular structures, we have developed a model of cluster electron states (CESs)....

  7. Hospital waste sterilization: a technical and economic comparison between radiation and microwave treatments

    International Nuclear Information System (INIS)

    Tata, A.; Beone, F.

    1995-01-01

    Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastic, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process. (author)

  8. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  9. Pulsed-low intensity ultrasound enhances extracellular matrix production by fibroblasts encapsulated in alginate

    Directory of Open Access Journals (Sweden)

    Siti PM Bohari

    2012-12-01

    Full Text Available In this study, the effect of pulsed-low intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by 3T3 fibroblasts encapsulated in alginate was evaluated. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content and dimethylamine blue assay for glycosaminoglycan content were performed on samples from cell cultures treated with pulsed-low intensity ultrasound and a control group. Pulsed-low intensity ultrasound shows no effect on cell proliferation, while collagen and glycosaminoglycan contents were consistently higher in the samples treated with pulsed-low intensity ultrasound, showing a statistically significant difference (p < 0.05 on day 10. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both groups. These results suggest that pulsed-low intensity ultrasound shows no effect on cell proliferation but has potential for inducing collagen and glycosaminoglycan production in cells cultured in alginate gels.

  10. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    International Nuclear Information System (INIS)

    Franco, Jose G.; Franco, Suely S.H.; Franco, Caio H.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  11. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose G.; Franco, Suely S.H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Franco, Caio H.; Arthur, Paula B.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente

    2013-07-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  13. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  14. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  15. Genotoxicity and oxidative stress of microwave radiation role of ascorbic acid

    International Nuclear Information System (INIS)

    Desouky, O.S.; Abdel Karim, M.A.; Deiaa El Deen, D.A.; Nayal, N.A.

    2005-01-01

    Radiofrequency fields and especially microwaves are very important part of electromagnetic spectrum that can produce generations of reactive oxygen species, and thus can affect DNA and cause chromosomal aberrations. So this effect can be diminished by the supplement of an antioxidant such as ascorbic acid. In this study, the proposed protective role of ascorbic acid was tested against the EMF induced chromosomal aberrations and lipid peroxidation. The present study proved that EMF had a clastogenic effect on the bone marrow cells of mice, either with the exposure to EMF; 950 MHz or frequency EMF; 2450 MHz. This effect was evidenced by structural and numerical chromosomal aberrations. The study also proved that EMF had an effect on oxidative stress, evidenced by increase in the level of lipid peroxide, in a dose dependent manner. So, the mechanism of EMF induced chromosomal aberrations can be explained by this oxidative stress induced by EMF exposure. The present study showed that ascorbic acid had a protective effect against both EMF induced chromosomal aberrations and oxidative stress, when it is applied concomitantly with EMF exposure either at frequency of 950 MHz or 2450 MHz. this is evident by decreases in the level of lipid peroxide and decrease in chromosomal aberrations

  16. Flexible composite via rapid titania coating by microwave-assisted ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... carbon fibre via microwave-assisted hydrothermal synthesis (MHS) ... Nanoparticles; titanium dioxide; microwave-assisted hydrothermal synthesis; carbon fibre. ..... study, the carbon fibre absorbs microwave radiation and con-.

  17. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  18. Features of transformation of impurity-defect complexes in СdTe:Сl under the influence of microwave radiation

    Directory of Open Access Journals (Sweden)

    Budzulyak S. I.

    2014-08-01

    Full Text Available High-resistance cadmium telluride single crystals are promising material for production of ionizing radiation detectors. To increase crystal resistance, they are doped with chlorine. The detector quality depends on uniformity of chlorine impurity distribution over crystal. It is known that low-dose microwave irradiation can homogenize impurity distribution in a specimen. In the present work, we made an attempt to improve the detector material quality by using such post-technological treatment, as well as to study state variation for impurity-defect complexes. To this end, the effect of microwave irradiation on transformation of impurity-defect complexes in CdTe:Cl single crystals was investigated using low-temperature photoluminescence. It is shown that activation of ClTe donor centers by microwave irradiation for 10 s and presence of VCd acceptor centers in the specimens under investigation effectively facilitate formation of (VNd–ClTe defect centers at which excitons are bound. Detailed investigations of the band form for donor-acceptor pairs (DAPs in CdTe:Cl single crystals made it possible to determine the Huang—Rhys factor (that characterizes electron-phonon interaction in CdTe:Cl DAPs as a function of microwave treatment duration. It is shown for single crystals with NCl = 5·1017 cm–3 and 5·1019 cm–3 that the Huang—Rhys factor grows with microwave irradiation dose. This is related to both homogenization of donor and acceptor centers distribution and increase of donor—acceptor spacing. It is shown that microwave irradiation of CdTe:Cl single crystals results in concentration reduction for separate cadmium vacancies VCd because of formation of (VNd—ClTe defect centers at which excitons are bound.

  19. The Effect of Solvent, Hydrogen Peroxide and Dioxide Titanium on Degradation of PCBs, Using Microwave Radiation in Order to Reduce Occupational Exposure

    Directory of Open Access Journals (Sweden)

    Tajik Reza

    2014-07-01

    Full Text Available Polychlorinated biphenyls (PCBs are one group of persistent organic pollutants (POPs that are of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment remains a very difficult challenge because the compounds are highly hydrophobic and have very low solubility in water. A 900 W domestic microwave oven, pyrex vessel reactor, pyrex tube connector and condensing system were used in this experiment. Radiation was discontinuous and ray powers were 540, 720 and 900 W. The PCBS were analyzed by GC-ECD. The application of microwave radiation and H2O2/TiO2 agents for the degradation of polychlorinated biphenyl contaminated oil was explored in this study. PCB – contaminated oil was treated in a pyrex reactor by microwave irradiation at 2450 MHz with the addition of H2O2/TiO2. A novel grain TiO2 (GT01 was used. The determination of PCB residues in oil by gas chromatography (GC revealed that rates of PCB decomposition were highly dependent on microwave power, exposure time, ratio to solvent with transformer oil in 3:1, the optimal amount of GT01 (0.2 g and 0.116 mol of H2O2 were used in the study. It was suggested that microwave irradiation with the assistance of H2O2/TiO2 might be a potential technology for the degradation of PCB – contaminated oil. The experiments show that MW irradiation, H2O2 oxidant and TiO2 catalyst lead to a degradation efficiency of PCBs only in the presence of ethanol. The results showed that the addition of ethanol significantly enhanced degradation efficiency of PCBs.

  20. Photooptical response of the blood plasma to the low-intensity red light

    International Nuclear Information System (INIS)

    Mints, R.I.; Skopinov, S.A.; Yakovleva, S.V.

    1990-01-01

    Photooptical response to low-intensity red light by irradiation of the whole blood as well as of its pigmentless plasma part is investigated. It is shown by the example of blood irradiation that the mechanism of action of low-intensity red light on the blood is not directly related to pigmented molecular complexes. The conclusion is made, that the effect of low-intensity red light on living organisms includes mechanism not utilizing light absorption by a specialized molecule-photoreceptor as a primary photophysical act

  1. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. I. Morphologic analysis at term

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Thirty-six pregnant Wistar strain albino rats were exposed throughout pregnancy to 6000-MHz microwave radiation at a power density level of 35 mW/cm 2 or were used as controls. The irradiation did not cause a significant increase in maternal body temperature as measured by a rectal thermocouple. The rats were randomly assigned to one of four groups: home cage control (5), anechoic chamber control (10), sham-irradiated concurrent control (10), and irradiated (11). All animals were killed on the 22nd day of gestation, and maternal tissues were removed and weighed and maternal blood samples were taken. The 384 resultant fetuses and their placentas were individually weighed, fixed, and dissected to determine normality. Teratologic evaluation included the following parameters: maternal weight and weight gain; mean litter size; maternal organ weight and organ weight/body weight ratios; body weight ratios of brain, liver, kidneys, and ovaries; maternal peripheral blood parameters including hematocrit, hemoglobin, and white cell counts; number of resorptions and resorption rate; number of abnormalities and abnormality rate; mean term fetal weight. The irradiated fetuses exhibited slight but statistically significant growth retardation at term. Term maternal monocyte count was also significantly depressed. No other parameters differed between the control groups and the irradiated group

  2. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  3. Modeling of microwave heating of metallic powders

    International Nuclear Information System (INIS)

    Buchelnikov, V.D.; Louzguine-Luzgin, D.V.; Anzulevich, A.P.; Bychkov, I.V.; Yoshikawa, N.; Sato, M.; Inoue, A.

    2008-01-01

    As it is known from the experiment that bulk metallic samples reflect microwaves while powdered samples can absorb such a radiation and be heated efficiently. In the present paper we investigate theoretically the mechanisms of penetration of a layer of metallic powder by microwave radiation and microwave heating of such a system

  4. Radiation losses in the microwave Ku band in magneto-electric nanocomposites

    Directory of Open Access Journals (Sweden)

    Talwinder Kaur

    2015-08-01

    Full Text Available A study on radiation losses in conducting polymer nanocomposites, namely La–Co-substituted barium hexaferrite and polyaniline, is presented. The study was performed by means of a vector network analyser, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy and a vibrating sample magnetometer. It is found that the maximum loss occurs at 17.9 GHz (−23.10 dB, 99% loss which is due to the composition of a conducting polymer and a suitable magnetic material. A significant role of polyaniline has been observed in ESR. The influence of the magnetic properties on the radiation losses is explained. Further studies revealed that the prepared material is a nanocomposite. FTIR spectra show the presence of expected chemical structures such as C–H bonds in a ring system at 1512 cm−1.

  5. A comparison of radiative transfer models for predicting the microwave emission from soils

    Science.gov (United States)

    Schmugge, T. J.; Choudhury, B. J.

    1981-01-01

    Noncoherent and coherent numerical models for predicting emission from soils are compared. Coherent models use the boundary conditions on the electric fields across the layer boundaries to calculate the radiation intensity, and noncoherent models consider radiation intensities directly. Interference may cause different results in the two approaches when coupling between soil layers in coherent models causes greater soil moisture sampling depths. Calculations performed at frequencies of 1.4 and 19.4 GHz show little difference between the models at 19.4 GHz, although differences are apparent at the lower frequency. A definition for an effective emissivity is also given for when a nonuniform temperature profile is present, and measurements made from a tower show good agreement with calculations from the coherent model.

  6. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    Science.gov (United States)

    Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas

    2018-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.

  7. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro

    NARCIS (Netherlands)

    Korstjens, C.M.; van der Rijt, R.H.H.; Albers, G.H.; Semeins, C.M.; Klein-Nulend, J.

    2008-01-01

    We investigated whether low-intensity pulsed ultrasound (LIPUS) stimulates chondrocyte proliferation and matrix production in explants of human articular cartilage obtained from donors suffering from unicompartimental osteoarthritis of the knee, as well as in isolated human chondrocytes in vitro.

  8. Effectiveness of low intensity behavioral treatment for children with autism spectrum disorder and intellectual disability

    NARCIS (Netherlands)

    Peters-Scheffer, N.C.; Didden, H.C.M.; Mulders, M.; Korzilius, H.P.L.M.

    2013-01-01

    To determine the effectiveness of low intensity behavioral treatment (LIBT) supplementing regular treatment in young children with autism spectrum disorder (ASD) and intellectual disability (ID) standardized tests of cognition, adaptive behavior, interpersonal relations, play, language,

  9. Features of Microwave Radiation and Magnetographic Characteristics of Solar Active Region NOAA 12242 Before the X1.8 Flare on December 20, 2014

    Science.gov (United States)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.; Yasnov, L. V.

    2017-12-01

    This paper continues the cycle of authors' works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65-10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1-3 days before the large flares.

  10. Benefits of a low intensity exercise programme during haemodialysis sessions in elderly patients

    Directory of Open Access Journals (Sweden)

    Vicent Esteve Simo

    2015-07-01

    Conclusions: (1 An adapted low intensity exercise programme improved muscle strength, functional capacity and health-related quality of life in our elderly patients on HD. (2 Our results highlight the benefits from exercise in HD patients even in this elderly population. (3 In elderly patients on HD, it is worth considering an adapted low intensity intradialytic exercise programme as a part of a comprehensive care.

  11. Influence of the magnetic field in the time evolution of the solar explosion radiation in X-ray and microwaves

    International Nuclear Information System (INIS)

    Costa, J.E.R.

    1983-01-01

    It has been made a theoretical development, sel-consistent with recent models for the explosive source, applied to time delays of peak emission at different microwave frequencies, and between microwaves and hard X-ray emission. A working hipothesis has been assumed with the adoption of a growing magnetic field during the solar flare explosion, and therefore contributing to a growth in microwave emission, differential in frequency, producing delays of maximum emission towards lower microwave frequencies, and delays of microwave maximum emission with respect to hard X-rays. It has been found that these delays are consistent with a growth in the magnetic field of about 14% by assuming both thermal and non-thermal models. This variation in magnetic field has been associated to movements of thermal sources downwards in the solar atmosphere, and it has been found that the estimated velocities of displacement were consistent compared to characteristic velocities of anomalous conduction fronts of thermal models. (Author) [pt

  12. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  13. Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Parmentier, R. D.; Christiansen, Peter Leth

    1984-01-01

    furnish the current and field dependence of the oscillation configuration, from which can be calculated average voltages, frequencies, and power spectra. Simulation and experimental results are in good agreement with regard to the lobe structure of the height of the first zero-field step and/or second...... Fiske step in magnetic field and the field dependence of the radiation frequency within the various lobes, including details such as hysteresis between lobes. The simulations predict an alternation of the dominant frequency component with increasing field that accounts well for the experimental...

  14. Fabrication of novel structures to enhance the performance of microwave, millimeter wave and optical radiators

    Science.gov (United States)

    Gbele, Kokou

    full depletion-recovery cycle in the nonequilibrium state. The third part discusses work in the microwave and millimeter wave frequency regimes. A new method to fabricate Luneburg lenses was proposed and demonstrated. This type of lens is well known; it is versatile and has been used for many applications, including high power radars, satellite communications, and remote sensing systems. Because the fabrication of such a lens requires intricate and time consuming processes, we demonstrated the design, fabrication and testing of a Luneburg lens prototype using a 3-D printing rapid prototyping technique both at the X and Ka-V frequency bands. The measured results were in very good agreement with their simulated values. The fabricated X-band lens had a 12 cm diameter and produced a beam having a maximum gain of 20 dB and a beam directivity (half-power beam width (HPBW)) ranging from 12° to 19°). The corresponding Ka-V band lens had a 7 cm diameter; it produced a beam with a HPBW about the same as the X-band lens, but with a maximum gain of more than 20 dB.

  15. Commissioning with low-intensity beams helps prepare CMS for this year’s physics run. This event is one of the first low-intensity collisions recorded in the CMS detector, during the early hours of 23 April 2016

    CERN Multimedia

    AUTHOR|(CDS)2068005

    2016-01-01

    Commissioning with low-intensity beams helps prepare CMS for this year’s physics run. This event is one of the first low-intensity collisions recorded in the CMS detector, during the early hours of 23 April 2016

  16. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  17. The influence of radiation and microwave agents on some properties of haemopoietic stem cells

    International Nuclear Information System (INIS)

    Barakina, N.F.; Rakhmanina, O.N.

    1985-01-01

    Sublethal irradiation of donors leads to a change in some properties of bone marrow haemopoetic stem cells (HSC) during the exponential growth (days 1-8) of the syngeneic recipients in the spleen. They are: an increase in the rate of proliferation, a slight reduction in time of the population doubling, and a tendency toward an increase in the percentage of cells settled in the spleen after transplantation. Theses changes in the properties of HSC provide a more rapid repopulation thereof as compared to HSC of intact mice. In all appearance, a pretreatment of donors with AET and 2ADT does not influence the HSC changes induced by radiation, and, at the same time, retains the number of HSC at a high level

  18. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  19. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.

    Science.gov (United States)

    Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T

    2018-05-01

    This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effects of 2450 MHz microwave radiation on meiosis and reproduction in male mice

    International Nuclear Information System (INIS)

    Manikowska-Czerska, E.; Czerski, P.; Leach, W.M.

    1988-01-01

    A series of studies to examine effects od continuous wave 2450 MHz radiation on meiosis and on chromosomes of germ cells in male CBA/CAY or ICR mice, by means of the spermatocyte (SCT), heritable translocation (HTT) and dominant lethal (DLT) tests is presented. Animals were exposed in an environmentally controlled waveguide system during two consecutive weeks, 30 minutes daily, six days a week. Specific absorption rates (SAR) were used in the range from 0.05 to 20 W/kg. With the SCT, it was demonstrated that chromosomal translocations can be induced by exposure during the first meiotic prophase, particularly during initial and early pachytene stages. The HTT results demonstrated that balanced translocations may be recovered among offspring of exposed males. The DLT provided confirmatory data on effects during prophase and indicated that chromosomal damage may be also induced by exposure of spermatids, during the maturation stage, and of spermatozoa. No changes were observed in spermatogonia. Thus, the effects of exposure were limited to one spermatogenic cycle. Genetically significant effects were induced at an SAR of 2 W/kg in the testes. For comparison, an SAR of 0.4 W/kg is used commonly as a basis for occupational exposure limits

  1. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  2. Industrial assessment of radiofrequency and microwave radiations: case study at electronic manufacturing industries in Penang

    International Nuclear Information System (INIS)

    Mohd Zaid Abdullah

    1996-01-01

    In electronic manufacturing industry, the applications of an equipment emitting radiofrequency radiation (RFR) are numerous and Increasing. It is known that exposure to RFR at sufficiently high intensity and duration can produce a variety of adverse health effects. This paper presents some results from an extensive studies in the RFR field measurements at frequency range from 100 MHz to 1 GHz. All measurements were performed inside factories located at the Penang Free Trade Zone. In this case, the factories chosen are those that manufacture the electronic components whereby the applications of RFR equipment are likely to be intensive compared to other type of industries. The measurement system used in this study are the portable spectrum-analyzer, the passive log-periodic antenna and a desktop computer for data analysis. Results from this study have indicated that the RFR exposure levels in most factories are in the range of 7.7 x 10 sup -4 - 4.31 x 10 sup -3 Wm sup -2 and 0.01 - 0. 741 Vm sup -1 for power density and electric strength measurement respectively. These ranges are at least 100 times lower compared to the RFR protection guidelines proposed by the American National Standard Institute (ANSI). However, the exposure levels inside the factory are consistently 10 sup -3 - 10 sup -4 higher than the levels caused by natural sources and is about 10 sup 2 - 10 sup 6 higher than the levels measured at a distance of 30 m from a low-power output mobile phone transmitter. In the case of the health effect assessment, no sufficient evidence has been found to indicate the potential consequences resulting from excessive RFR exposure. Nonetheless, many factories surveyed are unaware of the existence of the international guidelines and codes on the safe use of radiofrequency energy even though, some measures are being taken to protect their employees against RFR

  3. Combined application of sub-toxic level of silver nanoparticles with low powers of 2450 MHz microwave radiation lead to kill Escherichia coli in a short time

    Directory of Open Access Journals (Sweden)

    Bardia Varastehmoradi

    2013-09-01

    Full Text Available   Objective(s: Electromagnetic radiations which have lethal effects on the living cells are currently also considered as a disinfective physical agent.   Materials and Methods: In this investigation, silver nanoparticles were applied to enhance the lethal action of low powers (100 and 180 W of 2450 MHZ electromagnetic radiation especially against Escherichia coli ATCC 8739. Silver nanoparticles were biologically prepared and used for next experiments. Sterile normal saline solution was prepared and supplemented by silver nanoparticles to reach the sub-inhibitory concentration (6.25 μg/mL. Such diluted silver colloid as well as free-silver nanoparticles solution was inoculated along with test microorganisms, particularly E. coli. These suspensions were separately treated by 2450 MHz electromagnetic radiation for different time intervals in a microwave oven operated at low powers (100 W and 180 W. The viable counts of bacteria before and after each radiation time were determined by colony-forming unit (CFU method. Results: Results showed that the addition of silver nanoparticles significantly decreased the required radiation time to kill vegetative forms of microorganisms. However, these nanoparticles had no combined effect with low power electromagnetic radiation when used against Bacillus subtilis spores. Conclusion: The cumulative effect of silver nanoparticles and low powers electromagnetic radiation may be useful in medical centers to reduce contamination in polluted derange and liquid wastes materials and some devices.

  4. Microwave Heating of a Liquid Stably Flowing in a Circular Channel Under the Conditions of Nonstationary Radiative-Convective Heat Transfer

    Science.gov (United States)

    Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.

    2018-05-01

    A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.

  5. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    Science.gov (United States)

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  6. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    Science.gov (United States)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  7. Generation and acceleration of high-current annular electron beam in linear induction accelerator and generation of the power microwave radiation from Cherenkov TWT

    International Nuclear Information System (INIS)

    Abubakirov, E.V.; Arkhipov, O.V.; Bobyleva, L.V.

    1990-01-01

    The section of linear induction accelerator (LIA) with a strong guiding magnetic field (up to 1.5 T), with output beam power up to 2 GW and beam pulse duration 60 ns is created and investigated by experiment. The beam energy gain is equal to 10 keV/sm with explosive emission is used; the large length of the beam propagation (1.5 m) without spolling of the beam with high beam energy gain has been established. The microwave radiation power about 30-100 MW has achieved from relativistic Cherenkov travelling wave tube with high exponential gain on the basis of LIA and high-current diode

  8. Evaluation of the ocular protection for low intensity therapeutic lasers; Avaliacao da protecao ocular para lasers terapeuticos em baixa intensidade

    Energy Technology Data Exchange (ETDEWEB)

    Cordon, Rosely

    2003-07-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  9. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  10. Radiation sickness

    Science.gov (United States)

    ... exposure to ionizing radiation. There are two main types of radiation: nonionizing and ionizing. Nonionizing radiation comes in the form of light, radio waves, microwaves and radar. These forms usually don't cause tissue damage. ...

  11. Microwave Irradiation

    Indian Academy of Sciences (India)

    Way to Eco-friendly, Green Chemistry. Rashmi ... The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; ... of microwave heating in organic synthesis since the first contri-.

  12. Low intensity pulsed ultrasound (LIPUS) for bone healing: A clinical practice guideline

    NARCIS (Netherlands)

    R.W. Poolman (Rudolf); Agoritsas, T. (Thomas); Siemieniuk, R.A.C. (Reed A C); I. Harris (Ian); I.B. Schipper (Inger); Mollon, B. (Brent); Smith, M. (Maureen); Albin, A. (Alexandra); Nador, S. (Sally); Sasges, W. (Will); S. Schandelmaier; Lytvyn, L. (Lyubov); T. Kuijpers (Ton); Van Beers, L.W.A.H. (Loes W A H); M.H.J. Verhofstad (Michiel); P.O. Vandvik (Per)

    2017-01-01

    textabstractDoes low intensity pulsed ultrasound (LIPUS) accelerate recovery in adults and children who have experienced bone fractures or osteotomy (cutting of a bone)? An expert panel rapidly produced these recommendations based on a linked systematic review triggered by a large multi-centre

  13. A scintillating fibre-based profiler for low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Amato, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gu, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Raia, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Rovelli, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    1997-01-11

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.).

  14. A scintillating fibre-based profiler for low intensity ion beams

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Amato, A.; Ciavola, G.; Cuttone, G.; Gu, M.; Raia, G.; Rovelli, A.

    1997-01-01

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.)

  15. EFFECT OF HIGH & LOW INTENSITIES OF AEROBIC EXERCISE ON PHYSICAL FITNESS INDEX

    Directory of Open Access Journals (Sweden)

    Madhusudhan

    2015-06-01

    Full Text Available BACKGROUND: Aerobic exercise reduces body fat and improves weight control, increases HDL&Vo2 max. Also improves PFI (physical fitness index which is defined as ability to carry out daily tasks with vigour and alertness without undue fatigue. Though aerobic exercise is found to improve physical fitness, the relative merits of different intensities of aerobi c exercise in improving physical fitness is still uncertain. AIM: The present study was conducted to know the Effect of High & low intensity aerobic training on physical fitness index. MATERIALS & METHODS : 80 sedentary men (18 - 40 years were randomized in to 2 equal groups (High Intensity & low intensity group . The High [80% HR max] & Low intensity [50 % HR max] groups underwent aerobic exercise training using Bicycle ergo meter (COSCO at 900kpm & 540kpm, for 15mins/day & 30mins/day respectively, 5days a week, for a period of 14weeks. Physical fitness index of each subject was recorded by Modified Harvard step test before & after intervention. RESULTS : After 14 weeks of aerobic training both the exercise groups had improvement in PFI, but high intensity gr oup had a significant (p<0.05 improvement in PFI (97.18 - 101.14 than low intensity group (98.12 - 100.6. CONCLUSION : High intensity aerobic exercise is effective in improving physical fitness.

  16. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  17. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    International Nuclear Information System (INIS)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T 4 endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T 4 endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T 4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  18. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G., E-mail: adnfonseca@ig.com.br [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria. Lab. de Ciencias Radiologicas; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Instituto de Ciencias Biologicas. Departamento de Morfologia

    2015-10-15

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T{sub 4} endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T{sub 4} endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T{sub 4} endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  19. High or low intensity aerobic fitness training in fibromyalgia: does it matter?

    NARCIS (Netherlands)

    van Santen, Marijke; Bolwijn, Paulien; Landewé, Robert; Verstappen, Frans; Bakker, Carla; Hidding, Alita; van der Kemp, Désirée; Houben, Harry; van der Linden, Sjef

    2002-01-01

    To determine the efficacy of training in fibromyalgia (FM), we compared the effects of high intensity fitness training (HIF) and low intensity fitness training (LIF). Thirty-seven female patients with FM were randomly allocated to either a HIF group (n = 19) or a LIF group (n = 18). Four patients (1

  20. Low Intensity Shock Wave Treatment for Erectile Dysfunction-How Long Does the Effect Last?

    Science.gov (United States)

    Kitrey, Noam D; Vardi, Yoram; Appel, Boaz; Shechter, Arik; Massarwi, Omar; Abu-Ghanem, Yasmin; Gruenwald, Ilan

    2018-03-01

    We studied the long-term efficacy of penile low intensity shock wave treatment 2 years after an initially successful outcome. Men with a successful outcome of low intensity shock wave treatment according to the minimal clinically important difference on the IIEF-EF (International Index of Erectile Function-Erectile Function) questionnaire were followed at 6, 12, 18 and 24 months. Efficacy was assessed by the IIEF-EF. Failure during followup was defined as a decrease in the IIEF-EF below the minimal clinically important difference. We screened a total of 156 patients who underwent the same treatment protocol but participated in different clinical studies. At 1 month treatment was successful in 99 patients (63.5%). During followup a gradual decrease in efficacy was observed. The beneficial effect was maintained after 2 years in only 53 of the 99 patients (53.5%) in whom success was initially achieved. Patients with severe erectile dysfunction were prone to earlier failure than those with nonsevere erectile dysfunction. During the 2-year followup the effect of low intensity shock wave treatment was lost in all patients with diabetes who had severe erectile dysfunction at baseline. On the other hand, patients with milder forms of erectile dysfunction without diabetes had a 76% chance that the beneficial effect of low intensity shock wave treatment would be preserved after 2 years. Low intensity shock wave treatment is effective in the short term but treatment efficacy was maintained after 2 years in only half of the patients. In patients with milder forms of erectile dysfunction the beneficial effect is more likely to be preserved. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. The influence of non thermal coherent EMR with low intensity and extremely high frequency on total activity and isoenzyme composition of peroxidase

    International Nuclear Information System (INIS)

    Nerkararyan, A.V.; Shahinyan, M.A.; Khachatryan, A.V.; Vardevanyan, P.O.

    2011-01-01

    In this work the influence of non-thermal coherent electromagnetic radiation (EMR) with low intensity and extremely high frequency on intensity of wheat developing germ metabolism has been investigated. Particularly, total activity and isoenzymatic composition of peroxidase of germ cells have been determined during their growth. The role of water in formation of organism response reaction to the external physical field effect has also been investigated. It has been shown, that water appears to be a primary element of extremely high frequency EMR effect on bio system. Extremely high frequency EMR irradiation of germinating seeds and the cultivation of dry seeds and their germs by irradiated water stimulate peroxidase synthesis in germ cells. The redistribution of quantitative composition of peroxidase molecular forms takes place in germ cells effected by EMR with extremely high frequency and low intensity

  2. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  3. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    Science.gov (United States)

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  4. Effects of the low-intensity laser therapy on the prevention of dental caries induced in rats

    International Nuclear Information System (INIS)

    Mueller, Karin Praia

    2004-01-01

    The purpose of this study was to investigate the effects of low intensity laser therapy, associated or not to an acidulated phosphate fluoride, on the prevention of dental caries induced in rats. It was used 40 wistar rats, female, weaned with 18 days, fed with a cariogenic diet during 48 days and inoculated orally with Streptococcus mutans by three consecutive days starting from the second day of the diet. On the fifth day of experiment the animals were divided into five groups: G c (control) the animas were no submitted to any treatment; G L (laser) irradiation with low power laser (GaAlAs, λ=660 nm, P=30 mW, Δt=5 sec, 5 J/cm 2 ); G F (fluoride) topical application of acidulated phosphate fluoride (APF 1,23%) for four minutes; G LF (laser + fluoride) irradiation with low power laser followed by topical application of acidulated phosphate fluoride; G FL (fluoride + laser) topical application of acidulated phosphate fluoride followed by low power laser. The animals were sacrificed after 48 days; the molars were extracted and prepared to determine the dental caries lesions area by optical microscopy, enamel microhardness and analysis of the calcium and phosphorus ratio (Ca/P) by energy dispersive spectroscopy. The results were statistically analyzed by ANOVA (p LF was smaller than that for G F and G FL groups but no statistical difference was observed. There was no significant statistical difference between the microhardness of the G C and G L groups and among G FL , G LF and G F groups. Regarding to the calcium and phosphorus ratio, it was not observed significant statistical differences among the groups. These findings suggest that low-intensity laser radiation associated with acidulated phosphate fluoride reduces the caries area and could be an alternative in the prevention of the dental caries. (author)

  5. Effects of Low Intensity Continuous Ultrasound (LICU on Mouse Pancreatic Tumor Explants

    Directory of Open Access Journals (Sweden)

    Despina Bazou

    2017-12-01

    Full Text Available This paper describes the effects of low intensity continuous ultrasound (LICU on the inflammatory response of mouse pancreatic tumor explants. While there are many reports focusing on the application of low-intensity pulsed ultrasound (LIPUS on cell cultures and tissues, the effects of continuous oscillations on biological tissues have never been investigated. Here we present an exploratory study of the effects induced by LICU on mouse pancreatic tumor explants. We show that LICU causes significant upregulation of IFN-γ, IL-1β, and TNF-α on tumor explants. No detectable effects were observed on tumor vasculature or collagen I deposition, while thermal and mechanical effects were not apparent. Tumor explants responded as a single unit to acoustic waves, with spatial pressure variations smaller than their size.

  6. Early phase interference between low-intensity running and power training in moderately trained females

    DEFF Research Database (Denmark)

    Terzis, Gerasimos; Spengos, Kostas; Methenitis, Spyros

    2016-01-01

    PURPOSE: The aim of the study was to investigate the effects of low-intensity running performed immediately after lower-body power-training sessions on power development. METHODS: Twenty young females participated in 6 weeks, 3/week, of either lower body power training (PT) or lower body power...... training followed by 30 min of low-intensity running (PET) eliciting 60-70 % of maximal heart rate. The following were measured before and after the training period: counter-movement jump, isometric leg press force and rate of force development (RFD), half squat 1-RM, vastus lateralis fiber type...... performed after lower-body power training impairs the exercise-induced adaptation in stretch-shortening cycle jumping performance (vertical jump height, peak power), during the first 6 weeks of training, which may be partially linked to inhibited muscle fiber hypertrophy and muscle fiber conduction velocity....

  7. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  8. The Misplaced Ruse: Strategic Military Deception as a Tool in Low-Intensity Conflict

    Science.gov (United States)

    2016-05-20

    potential in not just low-intensity conflict but in warfare in general. Levels of War Tactical 6 JP 1-02, Department of Defense (DoD) Dictionary of...number of other objects and “ pocket litter” that would lend credibility and legitimacy to the character and identity of the body. These things...included a ticket stub from a movie theater, receipts from various stores, and other personal belongings that one may have in their pocket and forget

  9. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  10. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  11. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.; Sole, J.

    1980-07-01

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  12. A standardized approach to study human variability in isometric thermogenesis during low-intensity physical activity

    Directory of Open Access Journals (Sweden)

    Delphine eSarafian

    2013-07-01

    Full Text Available Limitations of current methods: The assessment of human variability in various compartments of daily energy expenditure (EE under standardized conditions is well defined at rest (as basal metabolic rate and thermic effect of feeding, and currently under validation for assessing the energy cost of low-intensity dynamic work. However, because physical activities of daily life consist of a combination of both dynamic and isometric work, there is also a need to develop standardized tests for assessing human variability in the energy cost of low-intensity isometric work.Experimental objectives: Development of an approach to study human variability in isometric thermogenesis by incorporating a protocol of intermittent leg press exercise of varying low-intensity isometric loads with measurements of EE by indirect calorimetry. Results: EE was measured in the seated position with the subject at rest or while intermittently pressing both legs against a press-platform at 5 low-intensity isometric loads (+5, +10, + 15, +20 and +25 kg force, each consisting of a succession of 8 cycles of press (30 s and rest (30 s. EE, integrated over each 8-min period of the intermittent leg press exercise, was found to increase linearly across the 5 isometric loads with a correlation coefficient (r > 0.9 for each individual. The slope of this EE-Load relationship, which provides the energy cost of this standardized isometric exercise expressed per kg force applied intermittently (30 s in every min, was found to show good repeatability when assessed in subjects who repeated the same experimental protocol on 3 separate days: its low intra-individual coefficient of variation (CV of ~ 10% contrasted with its much higher inter-individual CV of 35%; the latter being mass-independent but partly explained by height. Conclusion: This standardized approach to study isometric thermogenesis opens up a new avenue for research in EE phenotyping and metabolic predisposition to obesity

  13. Sustained, Low?Intensity Exercise Achieved by a Dynamic Feeding System Decreases Body Fat in Ponies

    OpenAIRE

    de Laat, M.A.; Hampson, B.A.; Sillence, M.N.; Pollitt, C.C.

    2016-01-01

    Background Obesity in horses is increasing in prevalence and can be associated with insulin insensitivity and laminitis. Current treatment strategies for obesity include dietary restriction and exercise. However, whether exercise alone is effective for decreasing body fat is uncertain. Hypothesis Our hypothesis was that twice daily use of a dynamic feeding system for 3 months would induce sustained, low?intensity exercise thereby decreasing adiposity and improving insulin sensitivity (SI). An...

  14. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  15. Mitigating cutaneous sensation differences during tDCS: comparing sham versus low intensity control conditions.

    Science.gov (United States)

    Brunyé, Tad T; Cantelon, Julie; Holmes, Amanda; Taylor, Holly A; Mahoney, Caroline R

    2014-01-01

    Cutaneous sensations at electrode sites during the administration of direct current brain stimulation may inadvertently influence participants' subjective experience and task performance. The present study evaluated the utility of a methodological variation that substitutes sham administration with very low intensity (0.5 mA) current delivery. We used a 4 × 1 high-definition ring electrode transcranial direct current (HD-tDCS) system to target the left dorsolateral prefrontal cortex (Brodmann's Area 9). Four stimulation conditions were compared in a repeated-measures design: sham 2.0 mA and 0.5 mA intensity, versus active 2.0 mA and 0.5 mA intensity. During stimulation participants performed a cognitive interference task that activates the cingulo-frontal-parietal network, and periodically provided perceived sensation ratings. We demonstrate that a relatively low intensity control condition attenuates otherwise large differences in perceived sensation between active and sham conditions. Critically, behavioral task differences maintained between the two active conditions. A low intensity control stimulation condition may prove a viable methodological alternative to conventional sham techniques used in repeated-measures designs, though important limitations are discussed. Published by Elsevier Inc.

  16. [Suppression of visceral pain by action of the low intensity polarized light on acupuncture antinociceptive points].

    Science.gov (United States)

    Lymans'kyĭ, Iu P; Tamarova, Z A; Huliar, S O

    2003-01-01

    In experiments on mice, statistically authentic weakening of visceral pain has been shown after an action of low intensity polarized light from a device Bioptron on antinociceptive acupuncture points (AP). Pain was caused by an intraperitoneal injection of 2% acetic acid (0.1 ml/10 g). The intensity of pain was judged on duration and frequency of painful behavioral reactions (writhing, licking of abdomen), as well as on duration of sleep, eating and motor activity. In animals which immediately after injections of acetic acid were exposed to polarized light of low intensity for 10 min, applied on any of antinociceptive APs (E-36, E-43, VC-8, RP-6), the duration of painful behavioral reaction was determined to be reduced, while that of non-painful one increased. The comparison of the total duration of the writhing at control and experimental mice showed that an activation of AP E-43 induced the greatest analgesic effect (76.5%), from AP VC-8 it was 76.3%, from RP-6--46.8%, and from E-36--41.4%. We have concluded that the effect of polarized light of low intensity on APs was a convenient non-pharmacological method of treating visceral pain.

  17. Using Electromagnetic Microwave Field Combined With Laserotherapy in Postoperative Period of Patients With Purulent-Inflammatory Diseases of the Hand in Outpatient Clinic

    International Nuclear Information System (INIS)

    Rabenok, L.; Grimalsky, V.; Juarez R, D.

    2008-01-01

    The results of a treatment of 51 patients with purulent-inflammatory diseases of the hand in outpatient clinic are analyzed; a new method of treatment using electromagnetic (EM) microwave field combined with laserotherapy was applied. A portable apparatus was used that operates in the millimeter (mm) wave range in 4 regimes of an intensity 2-10 mW/cm 2 and a red laser of 0.65 μm wavelength of a low intensity 10-15 mW/cm 2 . A peculiarity of the method was an absence of any antibacterial medicine. An exposure of an influence was 10 min. The total course included 5-7 applications. An influence of low intensity EM radiation was started 15-20 min before the operation. The action was to the center of purulent inflammation and to the biological active points of acupuncture (G14, E36). Starting from the first day since the operation, the low intensity EM radiation was applied to the biological active points combined with laserotherapy to the wound in the sedative regime (the repetition rate 9-10 Hz) during 10 min. Clinical symptomatology, radiographic findings, the results of microbiologic, morphologic studies were analyzed as well and were satisfactory (without any complications)

  18. Microwave radiation improves biodiesel yields from waste cooking oil in the presence of modified coal fly ash

    Directory of Open Access Journals (Sweden)

    Yulin Xiang

    2017-11-01

    Full Text Available This paper studied the effects of using modified coal fly ash as a catalyst to convert waste cooking oil (WCO into biodiesel under microwave-strengthened action. Coal fly ash was modified with sodium sulphate and sodium hydroxide, and the obtained catalyst was characterized using FT-IR and X-ray diffraction (XRD. The experimental results showed that the modified coal fly ash catalyst improved biodiesel yields under the microwave-assisted system, and the maximum biodiesel yield from waste cooking oil reached 94.91% at a molar ratio of methanol to WCO of 9.67:1 with 3.99% wt% of modified coal fly ash catalyst (based on oil weight at a 66.20 °C reaction temperature. The reusability of the modified coal fly ash catalyst was excellent, and the conversion yield remained greater than 90% after the catalyst was reused 8 times. The produced biodiesel met the main parameters of the ASTM D-6751 and EN14214 standards. Keywords: Biodiesel, Modified coal fly ash, Microwave assisted system, Waste cooking oil

  19. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    Science.gov (United States)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  20. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  1. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  2. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 1: A cloud ensemble/radiative parameterization for sensor response (report version)

    Science.gov (United States)

    Olson, William S.; Raymond, William H.

    1990-01-01

    The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.

  3. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  4. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  5. Microwave-assisted synthesis of Gd{sup 3+} doped PbI{sub 2} hierarchical nanostructures for optoelectronic and radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: shkirphysics@gmail.com; AlFaify, S.; Yahia, I.S.; Ganesh, V.; Shoukry, H.

    2017-03-01

    In this work, we report the simple, low temperature and rapid microwave-assisted synthesis of undoped and Gadolinium (III) doped lead iodide with different morphologies, i.e. nanorods of average diameter ~200 nm and hierarchical (flower-shaped) nanosheets of thicknesses less than 100 nm. Prepared nanostructures were typify in details using a variety of analytical techniques that reveal the well crystallinity with hexagonal structure. We found that by changing the concentrations of Gadolinium (III) one can tailor the size and shape of nanostructures of lead iodide. The presence of Gadolinium (III) doping was assessed by energy dispersive X-ray analysis. Optical band gap and Photoluminescence intensity are found to be enhanced due to Gadolinium (III) doping. The value of Gamma linear absorption coefficient is found to be enriched with doping, which suggests its application in radiation detection.

  6. Effect of lead salts on phase, morphologies and photoluminescence of nanocrystalline PbMoO4 and PbWO4 synthesized by microwave radiation

    Directory of Open Access Journals (Sweden)

    Phuruangrat Anukorn

    2016-09-01

    Full Text Available PbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate and Na2MO4 (M = Mo, W in propylene glycol. The products were characterized by X-ray diffraction (XRD, scanning and transmission electron microscopy (SEM, TEM, Fourier transform infrared (FT-IR, Raman spectroscopy and photoluminescence (PL spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W stretching modes in the (MO42− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO32 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.

  7. Children, Learning and Chronic Natural Disasters: How Does the Government of Dominica Address Education during Low-Intensity Hurricanes?

    Science.gov (United States)

    Serrant, Ted Donaldson

    2013-01-01

    By the time today's Grade K students graduate high school in the Commonwealth of Dominica, they will have experienced five major and many low-intensity hurricanes (LIH). Between August and November each year, each hurricane, major or low-intensity, represents a major threat to their safety and schooling. This mixed-method case study investigated…

  8. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery

    DEFF Research Database (Denmark)

    Boushel, R; Ara, I; Gnaiger, E

    2014-01-01

    in prolonged low-intensity training of a small muscle group when the cardiac output capacity is not directly limiting. The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low-intensity exercise training alters regional muscle VO2 ....

  9. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  10. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  11. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Oludunsin Arodudu

    2016-12-01

    Full Text Available In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture. Estimates of the net energy gain (NEG and the energy return on energy invested (EROEI obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5–488.3 GJ·ha−1 of NEG and an EROEI of 5.4–5.9 for maize ethanol production systems, and as much as 155.0–283.9 GJ·ha−1 of NEG and an EROEI of 14.7–22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8–52.5 GJ·ha−1 and an EROEI of 1.2–1.7 for maize ethanol production systems, as well as a NEG of 59.3–188.7 GJ·ha−1 and an EROEI of 2.2–10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.

  12. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    Science.gov (United States)

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    Science.gov (United States)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  14. Study of microwave components for an electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    The working .... high voltage isolation, and low microwave radiation leakage to environment. ... material as air to see the real effects under actual environment. ..... chamber was in safe operation towards the permissible limit of microwave ...

  15. Microwave Powered Gravitationally Independent Medical Grade Water Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative microwave system is proposed for the continuous production of medical grade water. This system will utilize direct absorption of microwave radiation to...

  16. Electrostatic system of background suppression under detection of low-intensive ion beams

    International Nuclear Information System (INIS)

    Dubrovin, M.M.; Belyaev, V.A.

    2002-01-01

    Paper describes electrostatic system to suppress background at recording of low-intensive particle fluxes with transverse cross section exceeding the area of detector inlet aperture. Electrostatic system comprises 5 electrodes ensuring such spatial distribution of electrostatic field that enables accumulation of beam all ions with 30 x 40 mm 2 cross section at inlet aperture of secondary electron multiplier (SEM) with 9 mm diameter. In this case, ion trajectories prior to enter SEM are turned by 180 deg thus essentially improving signal/background ratio [ru

  17. Low-intensity extracorporeal shockwave therapy in the treatment of postprostatectomy erectile dysfunction

    DEFF Research Database (Denmark)

    Frey, Anders; Sønksen, Jens; Fode, Mikkel

    2016-01-01

    OBJECTIVE: The objective was to investigate the effect and feasibility of low-intensity extracorporeal shockwave therapy (LI-ESWT) as a treatment for erectile dysfunction (ED) after bilateral nerve-sparing radical prostatectomy (RP). MATERIALS AND METHODS: Patients who had undergone robot......-assisted bilateral nerve-sparing RP more than a year before entering this pilot study, had no preoperative ED and were suffering from mild to severe postoperative ED were invited to participate. Six treatments were given over a 6 week period, using the Duolith® SD1 T-Top machine. The effect of the treatment...

  18. SALIVARY CORTISOL RESPONSES AND PERCEIVED EXERTION DURING HIGH INTENSITY AND LOW INTENSITY BOUTS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2004-03-01

    Full Text Available The purpose of this study was to measure the salivary cortisol response to different intensities of resistance exercise. In addition, we wanted to determine the reliability of the session rating of perceived exertion (RPE scale to monitor resistance exercise intensity. Subjects (8 men, 9 women completed 2 trials of acute resistance training bouts in a counterbalanced design. The high intensity resistance exercise protocol consisted of six, ten-repetition sets using 75% of one repetition maximum (RM on a Smith machine squat and bench press exercise (12 sets total. The low intensity resistance exercise protocol consisted of three, ten-repetition sets at 30% of 1RM of the same exercises as the high intensity protocol. Both exercise bouts were performed with 2 minutes of rest between each exercise and sessions were repeated to test reliability of the measures. The order of the exercise bouts was randomized with least 72 hours between each session. Saliva samples were obtained immediately before, immediately after and 30 mins following each resistance exercise bout. RPE measures were obtained using Borg's CR-10 scale following each set. Also, the session RPE for the entire exercise session was obtained 30 minutes following completion of the session. There was a significant 97% increase in the level of salivary cortisol immediately following the high intensity exercise session (P<0.05. There was also a significant difference in salivary cortisol of 145% between the low intensity and high intensity exercise session immediately post-exercise (P<0.05. The low intensity exercise did not result in any significant changes in cortisol levels. There was also a significant difference between the session RPE values for the different intensity levels (high intensity 7.1 vs. low intensity 1.9 (P<0.05. The intraclass correlation coefficient for the session RPE measure was 0.95. It was concluded that the session RPE method is a valid and reliable method of

  19. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  20. Low intensity aerobic exercise and oxidative stress markers in older adults.

    Science.gov (United States)

    Bouzid, Mohamed A; Hammouda, Omar; Matran, Régis; Robin, Sophie; Fabre, Claudine

    2014-10-01

    This comparative study examined the effects of regular low intensity aerobic exercise on oxidative stress markers in older adults. The study was carried out on 15 sedentary subjects (age: 65.1 ± 3.5 years) versus 18 subjects performing fitness exercises (age: 65.8 ± 3.3 years). Before and after an incremental exercise test, oxidative stress markers were assessed. Superoxide dismutase was higher at rest and at the recovery for the physically active subjects compared with sedentary subjects (p aerobic exercise may be useful to prevent the decline of antioxidants linked with aging.

  1. Microwave warning device

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A device for warning a person carrying or wearing it of the presence of dangerous microwave radiation is fully powered by the radiations being detected. A very low-wattage gas-discharge lamp is energized by a broadly or a sharply tuned receiver circuit including dipole antennas or one antenna and a ''grounding'' casing element. The casing may be largely and uniformly transparent or have different areas gradedly light-transmissive to indicate varying radiation intensities. The casing can be made in the shape of a pocket watch, fountain pen, bracelet or finger ring, etc

  2. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Wegscheider, W. [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zurich (Switzerland); Mani, R.G., E-mail: rmani@gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2014-11-15

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R{sub xx} vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported.

  3. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C.; Wegscheider, W.; Mani, R.G.

    2014-01-01

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R xx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported

  4. Fundamental characteristics of microwave explosion pretreatment of wood. I, Properties of temperature development

    Science.gov (United States)

    Xian-jun Li; Ke-yang Lu; Lan-ying Lin; Yong-dong Zhou; Zhi-yong Cai; Feng Fu

    2010-01-01

    In this study, the effects of microwave radiation intensity, radiation time and initial wood moisture content (MC) on the properties of temperature development in Eucalyptus urophylla wood samples during the microwave explosion pretreatment have been investigated using a new microwave pretreatment equipment. The results show that 1) with the increase of microwave...

  5. The research and test of microwave preventer web

    International Nuclear Information System (INIS)

    Tao Songlei; Li Weicai; Ye Jian; Hong Tao; Tao Junbing

    2003-01-01

    To deal with the microwave's harm to the organism, a division-layer composed of several kinds of materials is set between the source of microwave and the protected target. By the use of the division-layer, the power density of field intensity of microwave will come up to a safe amount. The article puts forward a new microwave preventer for mobile telephone. Experiments show that the radiation power density nearby human brain can be reduced to 5 μW/cm 2 and below by using mobile telephone microwave preventer, which is in compliance with the state health standard for microwave radiation from the mobile phone

  6. Microwave off-gas treatment apparatus and process

    Science.gov (United States)

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  7. Radio and chemioinduced oral mucositis treatment: comparison between conventional drug protocol and treatments with low intensity lasers

    International Nuclear Information System (INIS)

    Alencar, Anelise Ribeiro Peixoto

    2011-01-01

    In this clinical study verified the effects of low intensity laser in the prevention and treatment of oral mucositis radio and/or chemical induced. Thirty one patients with head and neck cancer were selected before being submitted to cancer exclusive radiotherapy or radio and associated chemotherapy. The patients were distributed into three randomly groups as follows: group 1- (control) conventional medicine treatment; group 2 - conventional medicine treatment and daily laser therapy as soon as grade two oral mucositis appeared; group 3 - conventional medicine treatment and daily laser therapy to be initiated immediately before radiotherapy sessions.The irradiation parameters were: wavelength of 660nm, potency of 100mW, continuous mode, punctual application, 2J energy on thirty pre-determined 30 points, with 20s of exposure per point. The control group received medical treatment which consisted in using a set of preventive and therapeutic approach for acute radiation-induced adverse effects. Results were evaluated observing occurrence and grade of oral mucositis, score of pain, loss of body mass, use of nasogastric sound line, internment and interruption of oncologic treatment due to oral mucositis. The results showed that the preventive protocol as used was the most effective in prevention and treatment of oral mucositis and that its daily application contributed in relieving the painful symptomatology so collaborating to maintain and/or bettering the life quality of oncologic patients. (author)

  8. Gingival healing after gingivectomy procedure and low intensity laser irradiation. A clinical and biometrical study in anima nobile

    International Nuclear Information System (INIS)

    Amorim, Jose Claudio Faria

    2001-01-01

    For the present study seven patients presenting periodontal disease were selected in a way that they required the performance of gingivectomy procedure in the region of premolars in both sides, being this in the upper or lower region. After the surgical procedure one side was submitted to low intensity laser radiation, wavelength 685 nm, power 50 mW and fluency of 4J/cm 2 , contact mode. The other side was used as a control, not receiving any laser irradiation. Healing process for both sides, was clinically and biometrically evaluated and compared using photographs for the periods: pre-operative, immediate post-operative, 3, 7,14,21, 28 and 35 days. The analysis was performed by 3 specialists in Periodontology considering aspects of healing. Results were submitted to statistical analysis. Biometrical evaluation showed improvement of healing for the period of 21 and 28 days in the lased group. Clinical evaluation showed better reparation mainly after the third day for the active group. Laser group was considered to present an improved healing when compared to the control group. (author)

  9. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  10. No midterm benefit from low intensity pulsed ultrasound after chevron osteotomy for hallux valgus.

    Science.gov (United States)

    Zacherl, Max; Gruber, Gerald; Radl, Roman; Rehak, Peter H; Windhager, Reinhard

    2009-08-01

    Chevron osteotomy is a widely accepted method for correction of symptomatic hallux valgus deformity. Full weight bearing in regular shoes is not recommended before 6 weeks after surgery. Low intensity pulsed ultrasound is known to stimulate bone formation leading to more stable callus and faster bony fusion. We performed a randomized, placebo-controlled, double-blinded study on 44 participants (52 feet) who underwent chevron osteotomy to evaluate the influence of daily transcutaneous low intensity pulsed ultrasound (LIPUS) treatment at the site of osteotomy. Follow-up at 6 weeks and 1 year included plain dorsoplantar radiographs, hallux-metatarsophalangeal-interphalangeal scale and a questionnaire on patient satisfaction. There was no statistical difference in any pre- or postoperative clinical features, patient satisfaction or radiographic measurements (hallux valgus angle, intermetatarsal angle, sesamoid index and metatarsal index) except for the first distal metatarsal articular angle (DMAA). The DMAA showed statistically significant (p = 0.046) relapse in the placebo group upon comparison of intraoperative radiographs after correction and fixation (5.2 degrees) and at the 6-week follow-up (10.6 degrees). Despite potential impact of LIPUS on bone formation, we found no evidence of an influence on outcome 6 weeks and 1 year after chevron osteotomy for correction of hallux valgus deformity.

  11. Effects of fat adaptation on glucose kinetics and substrate oxidation during low-intensity exercise.

    Science.gov (United States)

    Pagan, J D; Geor, R J; Harris, P A; Hoekstra, K; Gardner, S; Hudson, C; Prince, A

    2002-09-01

    This study was designed to determine the effects of fat adaptation on carbohydrate and fat oxidation in conditioned horses during low-intensity exercise. Five mature Arabians were studied. The study was conducted as a crossover design with 2 dietary periods, each of 10 week's duration: a) a control (CON) diet, and b) a fat-supplemented (FAT) diet. The total amount of digestible energy (DE) supplied by the fat in the CON and FAT diets was 7% and 29%, respectively. During each period, the horses completed exercise tests at the beginning of the period (Week 0) and after 5 and 10 weeks on the diet. Tests consisted of 90 min of exercise at a speed calculated to elicit 35% VO2max on a treadmill inclined to 3 degrees. Oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured at 15-min intervals. For determination of glucose kinetics, a stable isotope ([6-6-d2] glucose) technique was used. Compared to the CON diet, FAT diet consumption for 5-10 weeks was associated with an altered metabolic response to low-intensity exercise, as evidenced by a more than 30% reduction in the production and utilisation of glucose; a decrease in RER; a decrease in the estimated rate of whole-body carbohydrate utilisation; and an increase in the whole-body rate of lipid oxidation during exercise.

  12. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    This review will focus on current data where substrate metabolism in arm and leg muscle is investigated and discuss the presence of higher carbohydrate oxidation and lactate release observed during arm compared with leg exercise. Furthermore, a basis for a possible difference in substrate partiti...... at comparable workloads. Finally, the influence and capacity of low-intensity training to influence metabolic fitness in the face of a limited effect on aerobic fitness will be challenged....... partitioning between endogenous and exogenous substrate during arm and leg exercise will be debated. Moreover the review will probe if differences between arm and leg muscle are merely a result of different training status rather than a qualitative difference in limb substrate regulation. Along this line...... the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  13. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  14. Single-crystalline Bi2Sr2CaCu2O8+x detectors for direct detection of microwave radiation

    International Nuclear Information System (INIS)

    Li, M.; Winkler, D.; Yurgens, A.

    2015-01-01

    We test radiation detectors made from single-crystalline Bi 2 Sr 2 CaCu 2 O 8+x flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4×12 μm 2 large rectangles embedded in thin-film log-spiral antennas. The SiO 2 layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ∼300 V/W and a noise equivalent power of 30 nW/√(Hz) has been deduced at 70 K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-μm) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors

  15. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  16. Small-scale angular fluctuations in the microwave background radiation and the existence of isolated large-scale structures in the universe

    International Nuclear Information System (INIS)

    Goicoechea, L.J.; Sanz, J.L.

    1985-01-01

    The relative fluctuation of the present temperature associated with the microwave background radiation (MBR) on a small angular scale, (deltaT/T) 0 , can be related for a general inhomogeneous cosmological model to the kinematical quantities, their gradients, and the Weyl tensor through the geodesic deviation equation. We apply this result to calculate the induction of temperature fluctuations in the MBR by a spherically symmetric cluster (or void) of matter or radiation or both, considered as a perturbation in a flat Friedmann universe, with negligible pressure. For an isolated object (void or cluster) with radius roughly-equal10 3 h -1 Mpc and located outside our present horizon, we have found, taking into account recent data on the anisotropies of the MBR at an angular scale 6 0 , that the relative mass fluctuation is bounded by deltaVertical BarM/MVertical Bar 2 h -1 Mpc and distance from the observer to the center approx. =10h -1 Mpc), the observational angular fluctuations of the MBR imply that deltaVertical BarM/MVertical Bar< or approx. =10%

  17. The amplitude and spectral index of the large angular scale anisotropy in the cosmic microwave background radiation

    Science.gov (United States)

    Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan

    1994-01-01

    In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.

  18. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  19. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Jany, Ch.

    1998-01-01

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp 2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  20. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  1. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  2. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  3. Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station.

    Science.gov (United States)

    Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L

    2015-02-01

    The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.

  4. Impact of a low intensity controlled-fire in some chemical soil properties.

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  5. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  6. Review Paper: A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Ehsan Rezayat

    2016-07-01

    Full Text Available Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas. Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research.

  7. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound.

    Science.gov (United States)

    Leung, Kwok-Sui; Lee, Wing-Sze; Tsui, Hon-For; Liu, Paul Po-Lung; Cheung, Wing-Hoi

    2004-03-01

    A clinical study was conducted to investigate the effect of low-intensity pulsed ultrasound (US) stimulation (LIPUS) on the healing of complex tibial fractures. Thirty complex tibial fractures were randomly assigned to the treatment with LIPUS (n = 16) or by a dummy machine (sham-exposed: n = 14). The fractures were immobilized by either internal or external fixations according to the clinical indications. LIPUS was given 20 min/day for 90 days. Fracture healing was monitored by clinical, radiological, densitometric and biochemical assessments. The LIPUS-treated group showed statistically significantly better healing, as demonstrated by all assessments. Complications were minimal in the LIPUS group. There were two cases of delayed union, with one in each group. There were two cases of infection in the control group. The delayed-union cases were subsequently treated by LIPUS and the infection cases were treated with standard protocol. Fracture healing in these patients was again treated by LIPUS.

  8. Tritium breeding experiments in a fusion blanket assembly using a low-intensity neutron generator

    International Nuclear Information System (INIS)

    Dalton, A.W.; Woodley, H.J.; McGregor, B.J.

    1987-01-01

    Experiments have been carried out to determine the accuracy with which tritium production rates (TPRs) can be measured in a fusion blanket assembly of non-spherical geometry by a non-central low intensity D-T neutron source (2x10 10 neutrons per second). The tritium production was determined for samples of lithium carbonate containing high enrichments of 6 Li(96%) and 7 Li(99.9%). The measured data were used to check the accuracy with which the TPRs could be numerically predicted using current nuclear data and calculational methods. The numerical predictions from tritium production from the 7 Li samples agreed within the experimental errors of the measurements, but 6 Li measurements which differ by more than 20 per cent from the predicted values were observed in the lower half of the assembly

  9. Muscle injury after low-intensity downhill running reduces running economy.

    Science.gov (United States)

    Baumann, Cory W; Green, Michael S; Doyle, J Andrew; Rupp, Jeffrey C; Ingalls, Christopher P; Corona, Benjamin T

    2014-05-01

    Contraction-induced muscle injury may reduce running economy (RE) by altering motor unit recruitment, lowering contraction economy, and disturbing running mechanics, any of which may have a deleterious effect on endurance performance. The purpose of this study was to determine if RE is reduced 2 days after performing injurious, low-intensity exercise in 11 healthy active men (27.5 ± 5.7 years; 50.05 ± 1.67 VO2peak). Running economy was determined at treadmill speeds eliciting 65 and 75% of the individual's peak rate of oxygen uptake (VO2peak) 1 day before and 2 days after injury induction. Lower extremity muscle injury was induced with a 30-minute downhill treadmill run (6 × 5 minutes runs, 2 minutes rest, -12% grade, and 12.9 km·h(-1)) that elicited 55% VO2peak. Maximal quadriceps isometric torque was reduced immediately and 2 days after the downhill run by 18 and 10%, and a moderate degree of muscle soreness was present. Two days after the injury, steady-state VO2 and metabolic work (VO2 L·km(-1)) were significantly greater (4-6%) during the 65% VO2peak run. Additionally, postinjury VCO2, VE and rating of perceived exertion were greater at 65% but not at 75% VO2peak, whereas whole blood-lactate concentrations did not change pre-injury to postinjury at either intensity. In conclusion, low-intensity downhill running reduces RE at 65% but not 75% VO2peak. The results of this study and other studies indicate the magnitude to which RE is altered after downhill running is dependent on the severity of the injury and intensity of the RE test.

  10. A case-control pilot study of low-intensity IVF in good-prognosis patients.

    Science.gov (United States)

    Gleicher, Norbert; Weghofer, Andrea; Barad, David H

    2012-04-01

    Low-intensity IVF (LI-IVF) is rapidly gaining in popularity. Yet studies comparing LI-IVF to standard IVF are lacking. This is a case-control pilot study, reporting on 14 first LI-IVF and 14 standard IVF cycles in women with normal age-specific ovarian reserve under age 38, matched for age, laboratory environment, staff and time of cycle. LI-IVF cycles underwent mild ovarian stimulation, utilizing clomiphene citrate, augmented by low-dose gonadotrophin stimulation. Control patients underwent routine ovarian stimulation. LI-IVF and regular IVF patients were similar in age, body mass index, FSH and anti-Müllerian hormone. Standard IVF utilized more gonadotrophins (PIVF demonstrated better odds for pregnancy (OR 7.07; P=0.046) and higher cumulative pregnancy rates (63.3% versus 21.4%; OR 6.6; P=0.02). Adjustments for age, ethnicity and diagnosis maintained significance but oocyte adjustment did not. Cost assessments failed to reveal differences between LI-IVF and standard IVF. In this small study, LI-IVF reduced pregnancy chances without demonstrating cost advantages, raising questions about its utility. In the absence of established clinical and/or economic foundations, LI-IVF should be considered an experimental procedure. Low-intensity IVF (LI-IVF) is increasingly propagated as an alternative to standard IVF. LI-IVF has, however, never been properly assessed in comparison to standard IVF. Such a comparison is presented in the format of a small pilot study, matching LI-IVF cycles with regular IVF cycles and comparing outcomes as well as costs. The study suggests that LI-IVF, at least in this setting, is clinically inferior and economically at best similar to standard IVF. LI-IVF should, therefore, as of this point not be offered as routine IVF treatment but only as an experimental procedure. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Effect of low-intensity pulsed ultrasound on bone regeneration: biochemical and radiologic analyses.

    Science.gov (United States)

    Pomini, Karina T; Andreo, Jesus C; Rodrigues, Antonio de C; de O Gonçalves, Jéssica B; Daré, Letícia R; German, Iris J S; Rosa, Geraldo M; Buchaim, Rogerio L

    2014-04-01

    The purpose of this study was to evaluate the effects of low-intensity pulsed ultrasound at 1.0 MHz on the healing process of fractures with bone loss in the rat fibula by alkaline phosphate level measurement and radiologic analyses. Thirty 70-day-old male Wistar rats underwent a bone resection of 2.5 to 3.0 mm between the proximal and middle third of the right fibular diaphysis. The animals were randomly divided into 3 experimental groups: reference (uninjured), control (injured only), and treated (injured and treated with 5 applications of ultrasound, interspersed by 2 days of rest, beginning 24 hours after the osteotomy). Euthanasia was performed at experimental periods of 7 and 14 days. The right hind limb was removed for radiologic analysis. The blood was collected via cardiac puncture to determine the serum alkaline phosphatase activity. The bone fractures had not been completely consolidated in the treated and control group when analysis of the bone took place. At day 7, the serum alkaline phosphatase activity was higher in the treated group (mean ± SD, 72.17 ± 7.02 U/L) compared to the control (65.26 ± 8.41 U/L) and reference (67.21 ± 7.86 U/L) groups. At day 14, higher alkaline phosphatase activity was seen in the control group (68.96 ± 8.12 U/L) compared to the treated (66.09 ± 8.46 U/L) and reference (67.14 ± 7.96 U/L) groups. The biochemical and radiologic results suggest that low-intensity pulsed ultrasound can be used as an auxiliary method to consolidate fractures and probably reduces the bone healing time, offering clinical benefits.

  12. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    Science.gov (United States)

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  13. [Low-intensity, evidence-based cognitive-behavioural therapy of a patient with Crohn's disease].

    Science.gov (United States)

    Antal-Uram, Dóra; Harsányi, László; Perczel-Forintos, Dóra

    2018-03-01

    Inflammatory bowel disease (Crohn's disease and colitis ulcerosa) is a chronic, long-term condition that causes chronic inflammation in the digestive tract, and shows an increasing incidence and prevalence worldwide. Changes in disease activity over time affect psychological distress which increases the risk of exacerbations. Beside somatic symptoms (such as abdominal pain, diarrhoea and weight loss), psychiatric comorbidity (in particular major depression, anxiety, social phobia) is common in patients with Crohn's disease. This case study illustrates the management and stabilization of a 21-year-old adult male patient with active Crohn's disease and with severe psychiatric comorbidity. The patient was diagnosed with avoidant personality disorder and dysruptive mood dysregulation disorder based on the results of psychodiagnostics (SCID-II structured clinical interview, MMPI personality inventory and disease-specific clinical questionnaires such as Beck Depression Inventory, Beck Hopelessness Scale, Social Cognition Questionnaire, Anger Expression Scale, Cognitive Emotion Regulation Questionnaire, Rosenberg Self-Esteem Scale). The main aim of psychotherapy is to increase the adherence to pharmacotherapy, to promote psychosocial functioning, to improve well-being and to enhance adaptive coping strategies. Low-intensity cognitive-behavioural psychotherapy was used which included psychoeducation, motivational interview, behavioural activation, patient diary, cognitive restructuring, problem-solving training, and family consulting. Twenty-five sessions were held weekly in outpatient form and 3 sessions of crisis intervention after the surgery at the hospital. The efficacy of the treatment was measured by self-reported questionnaires at baseline and at two follow-up sessions which corroborated a very significant decrease in the severity of depression, hopelessness, while emotional regulation and self-esteem became more adaptive. The remission of the above

  14. What does low-intensity rTMS do to the cerebellum?

    Science.gov (United States)

    Morellini, N; Grehl, S; Tang, A; Rodger, J; Mariani, J; Lohof, A M; Sherrard, R M

    2015-02-01

    Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation.

  15. SELECTIVE ACTIVATION OF THE RECTUS ABDOMINIS MUSCLE DURING LOW-INTENSITY AND FATIGUING TASKS

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2011-06-01

    Full Text Available In order to understand the potential selective activation of the rectus abdominis muscle, we conducted two experiments. In the first, subjects performed two controlled isometric exercises: the curl up (supine trunk raise and the leg raise (supine bent leg raise at low intensity (in which only a few motor units are recruited. In the second experiment, subjects performed the same exercises, but they were required to maintain a certain force level in order to induce fatigue. We recorded the electromyographic (EMG activities of the lower and upper portions of the rectus abdominis muscle during the exercises and used spatial-temporal and frequency analyses to describe muscle activation patterns. At low-intensity contractions, the ratio between the EMG intensities of the upper and lower portions during the curl up exercise was significantly larger than during the leg raise exercise (p = 0.02. A cross-correlation analysis indicated that the signals of the abdominal portions were related to each other and this relation did not differ between the tasks (p = 0.12. In the fatiguing condition, fatigue for the upper portion was higher than for the lower portion during the curl up exercise (p = 0.008. We conclude that different exercises evoked, to a certain degree, individualized activation of each part of the rectus abdominis muscle, but different portions of the rectus abdominis muscle contributed to the same task, acting like a functional unit. These results corroborate the relevance of varying exercise to modify activation patterns of the rectus abdominis muscle

  16. Low-Intensity Sprint Training With Blood Flow Restriction Improves 100-m Dash.

    Science.gov (United States)

    Behringer, Michael; Behlau, Daniel; Montag, Johannes C K; McCourt, Molly L; Mester, Joachim

    2017-09-01

    Behringer, M, Behlau, D, Montag, JCK, McCourt, ML, and Mester, J. Low-intensity sprint training with blood flow restriction improves 100-m dash. J Strength Cond Res 31(9): 2462-2472, 2017-We investigated the effects of practical blood flow restriction (pBFR) of leg muscles during sprint training on the 100-m dash time in well-trained sport students. Participants performed 6 × 100-m sprints at 60-70% of their maximal 100-m sprinting speed twice a week for 6 weeks, either with (intervention group [IG]; n = 12) or without pBFR (control group [CG]; n = 12). The 100-m dash time significantly decreased more in the IG (-0.38 ± 0.24 seconds) than in the CG (-0.16 ± 0.17 seconds). The muscle thickness of the rectus femoris increased only in the IG, whereas no group-by-time interactions were found for the muscle thickness of the biceps femoris and the biceps brachii. The maximal isometric force, measured using a leg press, did not change in either group. However, the rate of force development improved in the IG. Growth hormone, testosterone, insulin-like growth factor 1, and cortisol concentrations did not significantly differ between both groups at any measurement time point (pre, 1 minute, 20 minutes, 120 minutes, and 24 hours after the 6 all-out sprints of the first training session). The muscle damage marker h-FABP increased significantly more in the CG than in the IG. The pBFR improved the 100-m dash time significantly more than low-intensity sprint interval training alone. Other noted benefits of training with pBFR were a decreased level of muscle damage, a greater increase of the rectus femoris muscle thickness, and a higher rate of force development. However, the tested hormones were unable to explain the additional beneficial effects.

  17. Sustained, Low-Intensity Exercise Achieved by a Dynamic Feeding System Decreases Body Fat in Ponies.

    Science.gov (United States)

    de Laat, M A; Hampson, B A; Sillence, M N; Pollitt, C C

    2016-09-01

    Obesity in horses is increasing in prevalence and can be associated with insulin insensitivity and laminitis. Current treatment strategies for obesity include dietary restriction and exercise. However, whether exercise alone is effective for decreasing body fat is uncertain. Our hypothesis was that twice daily use of a dynamic feeding system for 3 months would induce sustained, low-intensity exercise thereby decreasing adiposity and improving insulin sensitivity (SI). Eight, university-owned, mixed-breed, adult ponies with body condition scores (BCS) ≥5/9 were used. Two treatments ("feeder on" or "feeder off") were administered for a 3-month period by a randomized, crossover design (n = 4/treatment). An interim equilibration period of 6 weeks at pasture separated the 2 study phases. Measurements of body mass (body weight, BCS, cresty neck score [CrNS], and morphometry), body fat (determined before and after the "feeder on" treatment only), triglycerides, and insulin sensitivity (SI; combined glucose-insulin test) were undertaken before and after treatments. The dynamic feeding system induced a 3.7-fold increase in the daily distance travelled (n = 6), compared to with a stationary feeder, which significantly decreased mean BCS (6.53 ± 0.94 to 5.38 ± 1.71), CrNS (2.56 ± 1.12 to 1.63 ± 1.06) and body fat (by 4.95%). An improvement in SI did not occur in all ponies. A dynamic feeding system can be used to induce sustained (daily), low-intensity exercise that promotes weight loss in ponies. However, this exercise may not be sufficient to substantially improve SI. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. Gimenes

    2015-01-01

    Full Text Available We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed, exercised control (C-Ex, sedentary diabetes (DM-Sed, and exercised diabetes (DM-Ex. Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73±0.49; C-Ex: 5.67±0.53; DM-Sed: 6.41±0.54; DM-Ex: 5.81±0.50 mm; P<0.05 DM-Sed vs C-Sed and DM-Ex. Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.

  19. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  20. Microwave Backscatter-Based Wireless Temperature Sensor Fabricated by an Alumina-Backed Au Slot Radiation Patch.

    Science.gov (United States)

    Lu, Fei; Wang, Haixing; Guo, Yanjie; Tan, Qiulin; Zhang, Wendong; Xiong, Jijun

    2018-01-16

    A wireless and passive temperature sensor operating up to 800 °C is proposed. The sensor is based on microwave backscatter RFID (radio frequency identification) technology. A thin-film planar structure and simple working principle make the sensor easy to operate under high temperature. In this paper, the proposed high temperature sensor was designed, fabricated, and characterized. Here the 99% alumina ceramic with a dimension of 40 mm × 40 mm × 1 mm was prepared in micromechanics for fabrication of the sensor substrate. The metallization of the Au slot patch was realized in magnetron sputtering with a slot width of 2 mm and a slot length of 32 mm. The measured resonant frequency of the sensor at 25 °C is 2.31 GHz. It was concluded that the resonant frequency decreases with the increase in the temperature in range of 25-800 °C. It was shown that the average sensor sensitivity is 101.94 kHz/°C.

  1. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingsong; Zheng Tong; Li Nan [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang Peng, E-mail: pwang73@vip.sina.com [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Abulikemu, Gulizhaer [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N{sub 2} atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N{sub 2} adsorption, acid-base titration, point of zero charge (pH{sub pzc}) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH{sub pzc} value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  2. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    Science.gov (United States)

    Liu, Qing-Song; Zheng, Tong; Li, Nan; Wang, Peng; Abulikemu, Gulizhaer

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  3. Ecologically safe regimes of generation and maintenance of artificial ionized regions in the stratosphere by microwave radiation

    Science.gov (United States)

    Matveyev, A. A.; Silakov, V. P.

    1996-10-01

    A mathematical model of the artificial ionized region created in the atmosphere in the intersection zone of two beams of powerful coherent TE microwaves is presented. The model is based on the solution of the nonstationary system of Maxwell equations and kinetic Boltzmann equation for electrons, as well as on a vast ramified kinetic scheme of plasma chemical processes in humid air. In the framework of such a model, it is possible to calculate, in a correct and self-consistent way, the electrodynamic and kinetic characteristics of the artificial ionized regions (AIR) created in air at various altitudes. The calculations conducted for the stratosphere had revealed the possibility of realization at great altitudes (~55 km) of the regimes of the AIR prolonged maintenance that simultaneously have the following advantages: they require the minimum energy expenditures, ensure good radio-reflecting properties of the plasma structure and do not lead even to local degradation of the ozone layer. Modeling of the kinetic and photochemical processes proceeding at the postdischarge stage had shown that the destructive action of the NOx molecules produced in the discharge on the stratospheric ozone is substantially limited by their diffusive transport beyond the AIR boundaries. Production of excess active hydrogen radicals HOx in the discharge does not exert any essential influence on ozone due to fast proceeding of the reactions of their mutual binding.

  4. Gyrotron: an application of the relativistic bunching of electrons to the generation of intense millimeter microwave radiation

    International Nuclear Information System (INIS)

    Caplan, M.

    1986-01-01

    The cyclotron maser or gyrotron is capable of generating high power microwaves at millimeter wave frequencies for applications in fusion heating, radar astronomy and communications. Analytic and numerical simulation models are developed that describe the behavior of these devices under realistic laboratory conditions including the effects of circuit geometry, beam thermal spread, and mode competition. In Chapter 2, a generalized linear theory for the gyrotron is presented in the form of an integro-differential equation that can be solved within various circuit geometries thus describing gyro-amplifiers, gyro-oscillatory and gyroklystrons. In Chapter 3 a complete description of a finite size electromagnetic particle simulation model is presented that describes gyrotrons operating in a TE/sub mn/ waveguide mode. In Chapter 4 simulations and theoretical analysis are made of gyrotron amplifiers operating in the TE/sub 01/ mode. In Chapter 5 the linear eigenmodes and eigenfrequencies of gyrotron oscillators are examined. In Chapter 6 the experimental development of a GHz gyrotron is presented. Theoretical and numerical predictions of oscillation thresholds and efficiencies compare favorably with experimental data

  5. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    International Nuclear Information System (INIS)

    Liu Qingsong; Zheng Tong; Li Nan; Wang Peng; Abulikemu, Gulizhaer

    2010-01-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc ) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  6. GSM 900 MHz Microwave RadiationInduced Alterations of Insulin Level and Histopathological Changes of Liver and Pancreas in Rat

    Directory of Open Access Journals (Sweden)

    Mortazavi S. M. J.

    2016-12-01

    Full Text Available Background: The rapidly increasing use of mobile phones has led to public concerns about possible health effects of these popular communication devices. This study is an attempt to investigate the effects of radiofrequency (RF radiation produced by GSM mobile phones on the insulin release in rats. Methods: Forty two female adult Sprague Dawley rats were randomly divided into 4 groups. Group1 were exposed to RF radiation 6 hours per day for 7 days. Group 2 received sham exposure (6 hours per day for 7 days. Groups 3 and 4 received RF radiation 3 hours per day for 7 days and sham exposure (3 hours per day, respectively. The specific absorption rate (SAR of RF was 2.0W/kg. Results: Our results showed that RF radiations emitted from mobile phone could not alter insulin release in rats. However, mild to severe inflammatory changes in the portal spaces of the liver of rats as well as damage in the cells of islet of Langerhans were observed. These changes were linked with the duration of the exposures. Conclusion: RF exposure can induce inflammatory changes in the liver as well causing damage in the cells of islet of Langerhans.

  7. Radiation losses in microwave K_u region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites

    International Nuclear Information System (INIS)

    Kaur, Talwinder; Kumar, Sachin; Narang, S.B.; Srivastava, A.K.

    2016-01-01

    Nanocomposites of substituted barium hexaferrite and barium titanate embedded in a polymer were synthesized via emulsion polymerization. The study was performed by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy, a vibrating sample magnetometer and a vector network analyzer. It is found that maximum radiation loss occur at 16.09 GHz (−14.23 dB) frequency owing to the combined effect of conducting polymer, suitable dielectric and magnetic material. This suggests that prepared material is suitable for radiation losses. Micro structural study reveals the presence of all the phases of the compounds comprises composite. Benzene ring absorption band (at 1183 cm"−"1) in FT-IR spectra illustrates the presence of polymer. Surface morphology reveals the presence of array of particles encapsulated by the polymer. - Highlights: • Composites having polymer, barium titanate and hexaferrite have been successfully prepared. • Effective radiation absorption and losses have been achieved. • Magnetic properties have made an impact on shielding effectiveness.

  8. Radiation losses in microwave K{sub u} region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Talwinder [Department of Physics, Lovely Professional University, Phagwara 144411 (India); Kumar, Sachin [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Narang, S.B. [Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005 (India); Srivastava, A.K., E-mail: srivastava_phy@yahoo.co.in [Department of Physics, Lovely Professional University, Phagwara 144411 (India)

    2016-12-15

    Nanocomposites of substituted barium hexaferrite and barium titanate embedded in a polymer were synthesized via emulsion polymerization. The study was performed by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy, a vibrating sample magnetometer and a vector network analyzer. It is found that maximum radiation loss occur at 16.09 GHz (−14.23 dB) frequency owing to the combined effect of conducting polymer, suitable dielectric and magnetic material. This suggests that prepared material is suitable for radiation losses. Micro structural study reveals the presence of all the phases of the compounds comprises composite. Benzene ring absorption band (at 1183 cm{sup −1}) in FT-IR spectra illustrates the presence of polymer. Surface morphology reveals the presence of array of particles encapsulated by the polymer. - Highlights: • Composites having polymer, barium titanate and hexaferrite have been successfully prepared. • Effective radiation absorption and losses have been achieved. • Magnetic properties have made an impact on shielding effectiveness.

  9. Study On The Effect Of Cooking Of Some Food Proteins By Short-Term Radiation (Microwave) On The Functions Of The Liver And Kidney In Albino Rats

    International Nuclear Information System (INIS)

    Al-Marzooq, M.A.

    2014-01-01

    Five groups of albino male rats, every group consist of seven rats, were used to study the effect of microwave proteins on liver, kidney functions and blood parameters. Control group was fed on 10% casein. The 2nd one was fed on 10% protein from microwave chicken. The 3rd one was fed on 10% protein from boiled chicken. The 4th one was fed on 10% protein from microwave kidney beans. The 5th one was fed on 10% protein from boiled kidney beans. The time of experiment was seven weeks. The biochemical parameters included (cholesterol, LDL, HDL, total lipids, triglyceride, SGOT, SGPT, ALP, creatinin, uric acid and amino acids). The group of rats fed on microwave chicken showed more increase in cholesterol level than the group fed on boiled chicken. The group fed on microwave kidney beans showed decrease in cholesterol level. The group fed on microwave chicken showed decrease in HDL and increase in LDL. The highest activity of SGOT was shown in group fed on microwave kidney beans followed by the group fed on microwave chicken. The groups fed on boiled kidney beans and boiled chicken proteins showed significant increase in SGPT activity. The group fed on boiled kidney beans have the highest activity of ALP enzyme; but the group fed on microwave chicken showed increase in the activity of ALP enzyme compared to the control group. The feeding of microwave chicken leads to increase in creatinine and uric acid levels in comparison to the control group. Microwave cooking leads to little increase in all amino acids in comparison to the control group

  10. The impact of high and low-intensity exercise in adolescents with movement impairment.

    Directory of Open Access Journals (Sweden)

    Francesca Liu

    Full Text Available Five to six percent of young people have movement impairment (MI associated with reduced exercise tolerance and physical activity levels which persist into adulthood. To better understand the exercise experience in MI, we determined the physiological and perceptual responses during and following a bout of exercise performed at different intensities typically experienced during sport in youth with MI. Thirty-eight adolescents (11-18 years categorised on the Bruininks-Oseretsky Test of Motor Proficiency-2 Short-Form performed a peak oxygen uptake bike test ([Formula: see text] test at visit 1 (V1. At visits 2 (V2 and 3 (V3, participants were randomly assigned to both low-intensity (LI 30min exercise at 50% peak power output (PPO50% and high-intensity (HI 30s cycling at PPO100%, interspersed with 30s rest, for 30min protocol (matched for total work. Heart rate (HR and rating of perceived exertion (RPE for legs, breathing and overall was measured before, during and at 1, 3 and 7-min post-exercise (P1, P3, P7. There was a significant difference in [Formula: see text] between groups (MI:31.5±9.2 vs. NMI:40.0±9.5ml⋅kg-1⋅min-1, p0.05. Both groups experienced similar RPE for breathing and overall (MI:7.0±3.0 vs. NMI:6.0±2.0, p>0.05 at both intensities, but reported higher legs RPE towards the end (p<0.01. Significant differences were found in HRrecovery at P1 post-HI (MI:128±25.9 vs. NMI:154±20.2, p<0.05 but not for legs RPE. Perceived fatigue appears to limit exercise in youth with MI in both high and low-intensity exercise types. Our findings suggest interventions reducing perceived fatigue during exercise may improve exercise tolerance and positively impact on engagement in physical activities.

  11. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  12. Cosmic microwave background at its twentieth anniversary

    International Nuclear Information System (INIS)

    Partridge, R.B.

    1986-01-01

    The role of cosmic microwave background radiation in cosmology is examined. The thermal spectrum, the large entropy in the universe, the large-scale isotropy of the radiation, and the small-scale isotropy or homogeneity of the radiation are analyzed in order to describe the properties of the universe. It is observed that the microwave background spectrum is thermal over a wide range, there is a significant detectable dipole anisotropy in the radiation, but no quadrupole anisotropy, and there is a high deree of radiation isotropy on angular scales between 1-5 degrees. 62 references

  13. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available The present study was designed to determine the underlying mechanism of low-intensity pulsed ultrasound (LIPUS induced alveolar bone remodeling and the role of BMP-2 expression in a rat orthodontic tooth movement model. Orthodontic appliances were placed between the homonymy upper first molars and the upper central incisors in rats under general anesthesia, followed by daily 20-min LIPUS or sham LIPUS treatment beginning at day 0. Tooth movement distances and molecular changes were evaluated at each observation point. In vitro and in vivo studies were conducted to detect HGF (Hepatocyte growth factor/Runx2/BMP-2 signaling pathways and receptor activator of NFκB ligand (RANKL expression by quantitative real time PCR (qRT-PCR, Western blot and immunohistochemistry. At day 3, LIPUS had no effect on the rat orthodontic tooth movement distance and BMP-2-induced alveolar bone remodeling. However, beginning at day 5 and for the following time points, LIPUS significantly increased orthodontic tooth movement distance and BMP-2 signaling pathway and RANKL expression compared with the control group. The qRT-PCR and Western blot data in vitro and in vivo to study BMP-2 expression were consistent with the immunohistochemistry observations. The present study demonstrates that LIPUS promotes alveolar bone remodeling by stimulating the HGF/Runx2/BMP-2 signaling pathway and RANKL expression in a rat orthodontic tooth movement model, and LIPUS increased BMP-2 expression via Runx2 regulation.

  14. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes

    International Nuclear Information System (INIS)

    Li, Lei; Yang, Zheng; Zhang, Hai; Chen, Wenchuan; Chen, Mengshi; Zhu, Zhimin

    2012-01-01

    Highlights: ► CM from LIPUS-stimulated osteocytes inhibits proliferation of osteoblasts. ► CM from LIPUS-stimulated osteocytes enhances differentiation of osteoblasts. ► LIPUS stimulates MLO-Y4 cells to secrete PGE 2 and NO. -- Abstract: Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE 2 and NO assay showed that LIPUS could enhance PGE 2 and NO secretion from MLO-Y4 cells at all time points within 24 h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE 2 from osteocytes may play a role in this effect.

  15. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  16. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  17. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Directory of Open Access Journals (Sweden)

    Sciuto Antonella

    2018-01-01

    Full Text Available Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2 producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2. Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  19. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  20. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Science.gov (United States)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  1. High-Prevalence and Low-Intensity Ichthyophonus Infections in Pacific Halibut.

    Science.gov (United States)

    Hershberger, Paul K; Gregg, Jacob L; Dykstra, Claude L

    2018-03-01

    Ichthyophonus occurred at high prevalence but low intensity in Pacific Halibut Hippoglossus stenolepis throughout the West Coast of North America, ranging from coastal Oregon to the Bering Sea. Infection prevalence in adults was variable on spatial and temporal scales, with the lowest prevalence typically occurring on the edges of the geographic range and highest prevalence consistently occurring inside Prince William Sound, Alaska (58-77%). Additionally, intra-annual differences occurred at Albatross-Portlock, Alaska (71% versus 32% within 2012), and interannual differences occurred along coastal Oregon (50% in 2012 versus 12% in 2015). The infection prevalence was influenced by host age, increasing from 3% or less among the youngest cohorts (age ≤ 6) to 39-54% among age-9-17 cohorts, then decreasing to 27% among the oldest (age-18+) cohorts. There was little indication of significant disease impacts to Pacific Halibut, as the intensity of infection was uniformly low and length at age was similar between infected and uninfected cohorts. These results suggest that Ichthyophonus in Pacific Halibut currently represents a stable parasite-host paradigm in the North Pacific. © 2018 American Fisheries Society.

  2. High prevalence and low intensity Ichthyophonus infections in Pacific Halibut (Hippoglossus stenolepis).

    Science.gov (United States)

    Hershberger, Paul K; Gregg, Jacob L; Dykstra, Claude L

    2017-10-13

    Ichthyophonus occurred at high prevalence but low intensity in Pacific Halibut (Hippoglossus stenolepis) throughout the west coast of North America, ranging from coastal Oregon to the Bering Sea. Infection prevalence in adults was variable on spatial and temporal scales, with the lowest prevalence typically occurring on the edges of the geographic range and highest prevalence consistently occurring inside Prince William Sound, AK (58-77%). Additionally, intra-annual differences occurred at Albatross - Portlock, AK (71% versus 32% within 2012) and inter-annual differences occurred along coastal Oregon (50% versus 12% from 2012 to 2015). The infection prevalence was influenced by host age, increasing from ≤ 3% among the youngest cohorts (≤age 6) to 39-54% among age 9-17 cohorts, then decreasing to 27% among the oldest (age 18+) cohorts. There was little indication of significant disease impacts to Pacific Halibut, as the intensity of infection was uniformly low and length-at-age was similar between infected and uninfected cohorts. These results suggest that Ichthyophonus in Pacific Halibut currently represents a stable parasite-host paradigm in the North Pacific. Received 04 May 2017 accepted 09 Oct 2017 revised 21 Sep 2017.

  3. Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty (TKA) by Bade et al

    DEFF Research Database (Denmark)

    Mechlenburg, Inger; Skoffer, Birgit; Dalgas, Ulrik

    2017-01-01

    Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially no diffe......Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially...

  4. Effects of low-intensity pulsed ultrasound on injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Camila S. Montalti

    2013-08-01

    Full Text Available BACKGROUND: Low-intensity pulsed ultrasound (LIPUS has been shown to stimulate tissue metabolism and accelerate muscle healing. However, the optimal parameters in the use of LIPUS are still not clear. OBJECTIVE: The aim of this study was to analyze the effects of LIPUS on muscle healing in rats subjected to a cryolesion. METHOD: Twenty rats were divided into the following groups: an injured control group (CG and an injured treated group (TG. Both groups were divided into 2 sub-groups (n=5 each that were sacrificed 7 and 13 days post-surgery. Treatments were started 24 hours after the surgical procedure and consisted of 3 or 6 sessions. After euthanasia, the muscles were submitted to standard histological procedures. RESULTS: Qualitative analyses were based on morphological assessments of the muscle. The histopathological analysis on day 7 revealed that the muscles in the CG and the TG presented an intense inflammatory infiltrate, a large necrotic area and a disorganized tissue structure. After 13 days, both the CG and the TG had granulation tissue and newly formed fibers. The TG presented a more organized tissue structure. The quantitative analysis of collagen indicated similar findings among the groups, although the qualitative analysis revealed a better organization of collagen fibers in the TG at 13 days. The immunohistochemical analysis indicated that, at both time points, the expression of cyclooxygenase-2 was upregulated in the TG compared to the CG. CONCLUSIONS: LIPUS used as a treatment for muscle injury induced a more organized tissue structure at the site of the injury and stimulated the expression of COX-2 and the formation of new muscle fibers.

  5. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    Directory of Open Access Journals (Sweden)

    Pounder NM

    2016-11-01

    Full Text Available Neill M Pounder, John T Jones, Kevin J Tanis Bioventus LLC, Durham, NC, USA Abstract: Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further ­investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001. Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. Keywords: LIPUS, ultrasound, compliance, patient adherence, medical device design

  6. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei, E-mail: geraldleelei@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Yang, Zheng [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Zhang, Hai [Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA (United States); Chen, Wenchuan [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Chen, Mengshi [Department of Biomechanics, Sichuan University, Chengdu (China); Zhu, Zhimin, E-mail: hxzhimin@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes inhibits proliferation of osteoblasts. Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes enhances differentiation of osteoblasts. Black-Right-Pointing-Pointer LIPUS stimulates MLO-Y4 cells to secrete PGE{sub 2} and NO. -- Abstract: Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE{sub 2} and NO assay showed that LIPUS could enhance PGE{sub 2} and NO secretion from MLO-Y4 cells at all time points within 24 h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE{sub 2} from osteocytes may play a role in this effect.

  7. Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling

    Science.gov (United States)

    Toosizadeh, Nima; Mohler, Jane

    2018-01-01

    In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098

  8. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells.

    Science.gov (United States)

    Houreld, Nicolette N; Masha, Roland T; Abrahamse, Heidi

    2012-07-01

    Low-intensity laser irradiation (LILI) has been used to modulate a variety of biological processes, including diabetic wound healing. The mechanism of action is thought to exist primarily with the mitochondria. This study aimed to determine the effect of irradiation on normal, diabetic, and ischemic mitochondrial electron transport chain (ETC) complexes. Normal, diabetic and ischemic human skin fibroblast mitochondria were irradiated in vitro at a wavelength of 660 nm and a fluence of either 5 or 15 J/cm(2). Non-irradiated mitochondria served as controls. Enzyme activities of mitochondrial complexes I, II, III, and IV were determined immediately post-irradiation. Normal, diabetic, and ischemic cells were irradiated and adenosine triphosphate (ATP) and active mitochondria were determined by luminescence and fluorescent microscopy, respectively. Irradiated diabetic mitochondria at a fluence of 15 J/cm(2) showed a significant decrease in complex III activity (P < 0.05). Normal (P < 0.01) and diabetic (P < 0.05) mitochondria irradiated at either 5 or 15 J/cm(2) showed a significant increase in complex IV activity. ATP results showed a significant increase in irradiated normal cells (5 J/cm(2); P < 0.05) and diabetic cells (15 J/cm(2); P < 0.01). There was a higher accumulation of active mitochondria in irradiated cells than non-irradiated cells. Irradiation at 660 nm has the ability to influence mitochondrial enzyme activity, in particular cytochrome c oxidase. This leads to increased mitochondrial activity and ATP synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  9. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    Science.gov (United States)

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  10. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury.

    Science.gov (United States)

    Warden, S J; Bennell, K L; Matthews, B; Brown, D J; McMeeken, J M; Wark, J D

    2001-11-01

    Ultrasound (US), a high-frequency acoustic energy traveling in the form of a mechanical wave, represents a potential site-specific intervention for osteoporosis. Bone is a dynamic tissue that remodels in response to applied mechanical stimuli. As a form of mechanical stimulation, US is anticipated to produce a similar remodeling response. This theory is supported by growing in vitro and in vivo evidence demonstrating an osteogenic effect of pulsed-wave US at low spatial-averaged temporal-averaged intensities. The aim of this study was to investigate whether low-intensity pulsed US could prevent calcaneal osteoporosis in individuals following spinal cord injury (SCI). Fifteen patients with a 1-6 month history of SCI were recruited. Active US was introduced to one heel for 20 min/day, 5 days/week, over 6 weeks. The contralateral heel was simultaneously treated with inactive US. Patients were blind to which heel was being actively treated. Active US pulsed with a 10 microsec burst of 1.0 MHz sine waves repeating at 3.3 kHz. The spatial-averaged temporal-averaged intensity was set at 30 mW/cm(2). Bone status was assessed at baseline and following the intervention period by dual-energy X-ray absorptiometry and quantitative US. SCI resulted in significant bone loss. Bone mineral content decreased by 7.5 +/- 3.0% in inactive US-treated calcanei (p 0.05). These findings confirm the negative skeletal impact of SCI, and demonstrate that US at the dose and mode administered was not a beneficial intervention for SCI-induced osteoporosis. This latter finding may primarily relate to the inability of US to effectively penetrate the outer cortex of bone due to its acoustic properties.

  11. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  12. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    Science.gov (United States)

    Jacobson, Robert B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  13. Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment.

    Science.gov (United States)

    Gurkan, I; Ranganathan, A; Yang, X; Horton, W E; Todman, M; Huckle, J; Pleshko, N; Spencer, R G

    2010-05-01

    The Hartley guinea pig develops articular cartilage degeneration similar to that seen in idiopathic human osteoarthritis (OA). We investigated whether the application of pulsed low-intensity ultrasound (PLIUS) to the Hartley guinea pig joint would prevent or attenuate the progression of this degenerative process. Treatment of male Hartley guinea pigs was initiated at the onset of degeneration (8 weeks of age) to assess the ability of PLIUS to prevent OA, or at a later age (12 months) to assess the degree to which PLIUS acted to attenuate the progression of established disease. PLIUS (30 mW/cm(2)) was applied to stifle joints for 20 min/day over periods ranging from 3 to 10 months, with contralateral limbs serving as controls. Joint cartilage histology was graded according to a modified Mankin scale to evaluate treatment effect. Immunohistochemical staining for interleukin-1 receptor antagonist (IL-1ra), matrix metalloproteinase (MMP)-3, MMP-13, and transforming growth factor (TGF)-beta1 was performed on the cartilage to evaluate patterns of expression of these proteins. PLIUS did not fully prevent cartilage degeneration in the prevention groups, but diminished the severity of the disease, with the treated joints showing markedly decreased surface irregularities and a much smaller degree of loss of matrix staining as compared to controls. PLIUS also attenuated disease progression in the groups with established disease, although to a somewhat lesser extent as compared to the prevention groups. Immunohistochemical staining demonstrated a markedly decreased degree of TGF-beta1 production in the PLIUS-treated joints. This indicates less active endogenous repair, consistent with the marked reduction in cartilage degradation. PLIUS exhibits the ability to attenuate the progression of cartilage degeneration in an animal model of idiopathic human OA. The effect was greater in the treatment of early, rather than established, degeneration. Published by Elsevier Ltd.

  14. Long-Term Low Intensity Physical Exercise Attenuates Heart Failure Development in Aging Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luana U. Pagan

    2015-04-01

    Full Text Available Background: Physical exercise is a strategy to control hypertension and attenuate pressure overload-induced cardiac remodeling. The influence of exercise on cardiac remodeling during uncontrolled hypertension is not established. We evaluated the effects of a long-term low intensity aerobic exercise protocol on heart failure (HF development and cardiac remodeling in aging spontaneously hypertensive rats (SHR. Methods: Sixteen month old SHR (n=50 and normotensive Wistar-Kyoto (WKY, n=35 rats were divided into sedentary (SED and exercised (EX groups. Rats exercised in treadmill at 12 m/min, 30 min/day, 5 days/week, for four months. The frequency of HF features was evaluated at euthanasia. Statistical analyses: ANOVA and Tukey or Mann-Whitney, and Goodman test. Results: Despite slightly higher systolic blood pressure, SHR-EX had better functional capacity and lower HF frequency than SHR-SED. Echocardiography and tissue Doppler imaging showed no differences between SHR groups. In SHR-EX, however, left ventricular (LV systolic diameter, larger in SHR-SED than WKY-SED, and endocardial fractional shortening, lower in SHR-SED than WKY-SED, had values between those in WKY-EX and SHR-SED not differing from either group. Myocardial function, assessed in LV papillary muscles, showed improvement in SHR-EX over SHR-SED and WKY-EX. LV myocardial collagen fraction and type I and III collagen gene expression were increased in SHR groups. Myocardial hydroxyproline concentration was lower in SHR-EX than SHR-SED. Lysyl oxidase gene expression was higher in SHR-SED than WKY-SED. Conclusion: Exercise improves functional capacity and reduces decompensated HF in aging SHR independent of elevated arterial pressure. Improvement in functional status is combined with attenuation of LV and myocardial dysfunction and fibrosis.

  15. The effects of low-intensity cycling on cognitive performance following sleep deprivation.

    Science.gov (United States)

    Slutsky, Alexis B; Diekfuss, Jed A; Janssen, James A; Berry, Nate T; Shih, Chia-Hao; Raisbeck, Louisa D; Wideman, Laurie; Etnier, Jennifer L

    2017-10-15

    This study examined the effect of 24h of sleep deprivation on cognitive performance and assessed the effect of acute exercise on cognitive performance following sleep deprivation. Young, active, healthy adults (n=24, 14 males) were randomized to control (age=24.7±3.7years, BMI=27.2±7.0) or exercise (age=25.3±3.3years, BMI=25.6±5.1) groups. Cognitive testing included a 5-min psychomotor vigilance task (PVT), three memory tasks with increasing cognitive load, and performance of the PVT a second time. On morning one, cognitive testing followed a typical night's sleep. Following 24-h of sustained wakefulness, cognitive testing was conducted again prior to and after the acute intervention. Participants in the exercise condition performed low-intensity cycling (∼40%HRR) for 15-min and those in the control condition sat quietly on the bike for 15-min. t-Tests revealed sleep deprivation negatively affected performance on the PVT, but did not affect memory performance. Following the acute intervention, there were no cognitive performance differences between the exercise and rested conditions. We provide support for previous literature suggesting that during simple tasks, sleep deprivation has negative effects on cognitive performance. Importantly, in contrast to previous literature which has shown multiple bouts of exercise adding to cognitive detriment when combined with sleep deprivation, our results did not reveal any further detriments to cognitive performance from a single-bout of exercise following sleep deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Low intensity laser therapy and functional orthopedics contribution in pain and temporo mandibular dysfunction treatment

    International Nuclear Information System (INIS)

    Lollato, Renata Fronzaglia

    2003-01-01

    Temporo Mandibular Dysfunction (TMD) is a term used to describe disorders which involve temporomandibular joint (TMJ), masticatory muscles, and associated structures, isolatedly or not, whose most frequent symptoms pain. Its etiology involve controversies, and among risk factors is Class 11 malocclusion. A lot of techniques are used for TMD treatment, and the most recent are Low Intensity Laser Therapy (LILT) and Functional Orthopedics (FO). The aim of this study was to evaluate pain and buccal mobility in subjects with Class II malocclusion and TMD symptoms, treated with LILT and FO associated or not. Eighteen subjects were selected and divided in three groups. Group 1 was treated with LILT, λ = 780 nm, 70 mW, 15 J/cm 2 per point, in six sessions during two weeks. The application was in three points around the TMJ and in masticatory muscles: masseter, temporalis, sternomastoid and trapezius, on both sides when there was pain. Palpation was made before and five minutes after application and subjects answered a questionnaire with a score for pain evaluation. Group 2 received functional orthopedics aparatology Planas Indirect Composed Plates, and was evaluated once a week during two weeks, after palpation and following the same score as group 1. Group 3 received both therapies at the same time, and the first application coincided with the aparatology installation. The evaluation followed the parameters of group 1. The results were statically analyzed , and in general form did not show significant differences. There was remission of pain symptoms in ali of the groups, and group 3 showed more rapidly results. This fact leaded us to a conclusion that the association of the LILT with FO was the best treatment for the pain symptoms remission in TMD. (author)

  17. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  18. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  19. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roelof

    PURPOSE: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. METHODS: Explants of porcine

  20. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  1. Low intensity behavioral treatment supplementing preschool services for young children with autism spectrum disorders and severe to mild intellectual disability

    NARCIS (Netherlands)

    Peters-Scheffer, N.C.; Didden, H.C.M.; Mulders, M.; Korzilius, H.P.L.M.

    2010-01-01

    This study evaluated the effectiveness of low intensity behavioral treatment (on average 6.5 h per week) supplementing preschool services in 3-6-year-old children with autism spectrum disorder and severe to mild intellectual disability. Treatment was implemented in preschools (i.e., daycare centers)

  2. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  3. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Bo Hu

    Full Text Available Human periodontal ligament cells (hPDLCs possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and

  4. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  5. Investigation of the cellular effects of Low Intensity Laser Irradiation (LILI)

    International Nuclear Information System (INIS)

    Esfandiary, H.

    1998-07-01

    Low Intensity Laser Irradiation (LILI) has become a therapeutic modality for the treatment of various conditions including acceleration of wound healing. Despite extensive experimental cellular research, the biological mechanisms underlying the success of this phenomenon remain unknown. This, in combination with the conflicting reported clinical results of LILI have prevented universal acceptance of this modality by health care professions. The aim of this thesis was to investigate further, in a systematic and well-controlled manner, the biological effects of LILI on two human leukaemic cell lines HL-60 and U937 in vitro. The laser diode used was a Gallium Aluminium Arsenide (GaAlAs) laser with a wavelength of 660nm, output power of 12mW and a chosen therapeutic energy density of 11.5J/cm 2 . Initially, intracellular thermal effects were examined following LILI by monitoring levels of several heat shock protein (hsp) family members over a 24h period. Levels of hsp70, 60, 90 and 27 were unaffected at the chosen LILI energy density of 11.5J/cm 2 . The effect of LILI on the cell cycle was also investigated at the molecular level by probing for protein and mRNA of a number of cell cycle regulatory factors. Levels of p53, c-fos, c-myc hsp70, bcl-2, TNF-α and several others was unaffected by LILI. Finally, the differential display method was used to detect any LILI-induced transcriptional changes in mRNA i.e. altered gene expression and again results were negative with LILI having no effect on gene expression. In conclusion, these results suggest that the biological effects of GaAlAs lasers at an E.D. of 11.5/cm 2 on two human leukaemic cell lines in vitro do not involve a stress response as measured by hsps, do not modulate levels of prominent cell cycle factors and do not induce changes in gene expression at the transcriptional level. These results seriously question the effectiveness of low energy lasers as 'real' therapeutic devices due to lack of any LILI

  6. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  7. Low intensity interventions for Obsessive-Compulsive Disorder (OCD): a qualitative study of mental health practitioner experiences.

    Science.gov (United States)

    Gellatly, Judith; Pedley, Rebecca; Molloy, Christine; Butler, Jennifer; Lovell, Karina; Bee, Penny

    2017-02-22

    Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder that can substantially impact upon quality of life and everyday functioning. Guidelines recommend pharmacological and psychological treatments, using a cognitive behaviour therapy approach (CBT) including exposure and response prevention, but access has generally been poor. Low intensity psychological interventions have been advocated. The evidence base for these interventions is emerging but there is a paucity of information regarding practitioners' perceptions and experiences of supporting individuals with OCD using this approach. Qualitative interviews were undertaken with psychological wellbeing practitioners (PWPs) (n = 20) delivering low intensity psychological interventions for adults with OCD within the context of a large pragmatic effectiveness trial. Interviews explored the feasibility and acceptability of delivering two interventions; guided self-help and supported computerised cognitive behaviour therapy (cCBT), within Improving Access to Psychological Therapies (IAPT) services in NHS Trusts. Interviews were recorded with consent, transcribed and analysed using thematic analysis. PWPs acknowledged the benefits of low intensity psychological interventions for individuals experiencing OCD symptoms on an individual and population level. Offering low intensity support provided was perceived to have the opportunity to overcome existing service barriers to access treatment, improve patient choice and flexibility. Professional and service relevant issues were also recognised including self-beliefs about supporting people with OCD and personal training needs. Challenges to implementation were recognised in relation to practitioner resistance and intervention delivery technical complications. This study has provided insight into the implementation of new low intensity approaches to the management of OCD within existing mental health services. Benefits from a practitioner, service

  8. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  9. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  10. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  11. Development of radiation detectors based on KMgF{sub 3}:Tb nano crystals synthesized by microwave; Desarrollo de detectores de radiacion basados en nanocristales de KMgF{sub 3}:Tb sintetizados por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Francisco J. Mujica s/n, Ciudad Universitaria, Col. Felicitas del Rio, 58030 Morelia, Michoacan (Mexico); Gonzalez M, P. R.; Mendoza A, D., E-mail: laura_garciasalinas@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-10-15

    The development of new thermoluminescent (Tl) materials of the size of KMgF{sub 3}:Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF{sub 3}COO){sub 2} and potassium K(CF{sub 3}COO), finally the synthesis of KMgF{sub 3}:Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF{sub 3} obtained without doping and doped with Tb{sup +3} ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of {sup 60}Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  12. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  13. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  14. Radiation Segmentectomy versus TACE Combined with Microwave Ablation for Unresectable Solitary Hepatocellular Carcinoma Up to 3 cm: A Propensity Score Matching Study.

    Science.gov (United States)

    Biederman, Derek M; Titano, Joseph J; Bishay, Vivian L; Durrani, Raisa J; Dayan, Etan; Tabori, Nora; Patel, Rahul S; Nowakowski, Francis S; Fischman, Aaron M; Kim, Edward

    2017-06-01

    Purpose To compare the outcomes of radiation segmentectomy (RS) and transarterial chemoembolization (TACE) combined with microwave ablation (MWA) in the treatment of unresectable solitary hepatocellular carcinoma (HCC) up to 3 cm. Materials and Methods This retrospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. From January 2010 to June 2015, a total of 417 and 235 consecutive patients with HCC underwent RS and TACE MWA, respectively. A cohort of 121 patients who had not previously undergone local-regional therapy (RS, 41; TACE MWA, 80; mean age, 65.4 years; 84 men [69.4%]) and who had solitary HCC up to 3 cm without vascular invasion or metastasis was retrospectively identified. Outcomes analyzed included procedure-related complications, laboratory toxicity levels, imaging response, time to progression (TTP), 90-day mortality, and survival. Propensity score matching was conducted by using a nearest-neighbor algorithm (1:1) to account for pretreatment clinical, laboratory, and imaging covariates. Postmatching statistical analysis was performed with conditional logistic regression for binary outcomes and the stratified log-rank test for time-dependent outcomes. Results Before matching, the complication rate was 8.9% and 4.9% in the TACE MWA and RS groups, respectively (P = .46). The overall complete response (CR) rate was 82.9% for RS and 82.5% for TACE MWA (odds ratio, 1.0; 95% confidence interval [CI]: 0.4, 2.8; P = .95). There were 41 (RS, 11; TACE MWA, 30) instances of progression occurring after an initial CR, of which 10 (24%) were classified as target progression (RS, one; TACE MWA, nine). Median overall TTP was 11.1 months (95% CI: 8.8 months, 25.6 months) in the RS group and 12.1 months (95% CI: 7.7 months, 19.1 months) in the TACE MWA group (P > .99). After matching, the overall CR rate (P = .94), TTP (P = .83), and overall survival (P > .99) were not significantly different between

  15. Biomarkers in volunteers exposed to mobile phone radiation.

    Science.gov (United States)

    Söderqvist, Fredrik; Carlberg, Michael; Hardell, Lennart

    2015-06-01

    For some time it has been investigated whether low-intensity non-thermal microwave radiation from mobile phones adversely affects the mammalian blood-brain barrier (BBB). All such studies except one have been either in vitro or experimental animal studies. The one carried out on humans showed a statistically significant increase in serum transthyretin (TTR) 60 min after finishing of a 30-min microwave exposure session. The aim of the present study was to follow up on the finding of the previous one using a better study design. Using biomarkers analyzed in blood serum before and after the exposure this single blinded randomized counterbalanced study, including 24 healthy subjects aged 18-30 years that all underwent three exposure conditions (SAR(10G)=2 W/kg, SAR(10G)=0.2 W/kg, sham), tested whether microwaves from an 890-MHz phone-like signal give acute effects on the integrity of brain-shielding barriers. Over time, statistically significant variations were found for two of the three biomarkers (TTR; β-trace protein); however, no such difference was found between the different exposure conditions nor was there any interaction between exposure condition and time of blood sampling. In conclusion this study failed to show any acute clinically or statistically significant effect of short term microwave exposure on the serum levels of S100β, TTR and β-trace protein with a follow up limited to two hours. The study was hampered by the fact that all study persons were regular wireless phone users and thus not naïve as to microwave exposure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Impact of aging and comorbidity on the efficacy of low-intensity shock wave therapy for erectile dysfunction.

    Science.gov (United States)

    Hisasue, Shin-ichi; China, Toshiyuki; Horiuchi, Akira; Kimura, Masaki; Saito, Keisuke; Isotani, Shuji; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Horie, Shigeo

    2016-01-01

    To evaluate the efficacy of low-intensity shock wave therapy and to identify the predictive factors of its efficacy in Japanese patients with erectile dysfunction. The present study included 57 patients with erectile dysfunction who satisfied all the following conditions: more than 6-months history of erectile dysfunction, sexual health inventory for men score of ≤ 12 without phosphodiesterase type-5 inhibitor, erection hardness score grade 1 or 2, mean penile circumferential change by erectometer assessing sleep related erection of energy shock waves generator (ED1000; Medispec, Gaithersburg, MD, USA). A total of 12 shock wave treatments were applied. Sexual health inventory for men score, erection hardness score with or without phosphodiesterase type-5 inhibitor, and mean penile circumferential change were assessed at baseline, 1, 3 and 6 months after the termination of low-intensity shock wave therapy. Of 57 patients who were assigned for the low-intensity shock wave therapy trial, 56 patients were analyzed. Patients had a median age of 64 years. The sexual health inventory for men and erection hardness score (with and without phosphodiesterase type-5 inhibitor) were significantly increased (P wave therapy (P wave therapy seems to be an effective physical therapy for erectile dysfunction. Age and comorbidities are negative predictive factors of therapeutic response. © 2015 The Japanese Urological Association.

  17. On the possibility of the patient's skin overheating during low-intensive phototherapy

    Science.gov (United States)

    Kokodii, Mykola G.; Korobov, Anatoliy M.; Timaniyk, Vladimir A.; Titova, Natalia V.; Burlibay, Aron; Omiotek, Zbigniew; Szatkowska, Małgorzata; Luganskaya, Saule

    2017-08-01

    This paper proposes a simple mathematical model of heating process of the human skin and adjacent inner layers with the LED radiation used in the prevention and treatment devices for various diseases. The problem takes into account the heat removal by blood flow to the vessels. It is shown that abnormal blood flow due to the compression of tissue can lead to severe heating of the body and its burn. This may result even from using small LEDs of 2,5-30 mW.

  18. Microwave-assisted grinding of metallurgical coke

    International Nuclear Information System (INIS)

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.

    2014-01-01

    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  19. Effects of UV and microwave radiation on biological material. A bibliographic survey on biochemical effects. Pt. 1. Der Einfluss von UV- und Mikrowellenstrahlung auf biologisches Material. Eine Literaturstudie ueber die biochemischen Wirkungen. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Fielitz, J; Boegl, W; Stockhausen, K; Kossel, F

    1977-01-01

    For the present study, ten publications on the effect of UV radiation were analyzed. In vitro tests were carried out with one biological substance and seven different human or animal organs and biocytocultures. In vivo, three bacterial strains were irradiated and four irradiation experiments were carried out on mice. As to the effect of microwave radiation, eleven publications were analyzed. In vitro tests were carried out with one biological substance and three animal organs. In vivo, one bacterial strain was irradiated and eight irradiation experiments were carried out on different types of animals. The study's aim was to obtain a survey on biochemical changes of the organisms. Phenomenological changes were given only when the corresponding articles contained further investigation results. Behavioral changes were not taken into account. The results published by the authors of the original papers were compiled in a kind of dictionary. All relevant data are listed in a defined order.

  20. Rapid degradation of azo dye Direct Black BN by magnetic MgFe{sub 2}O{sub 4}-SiC under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jia; Yang, Shaogui, E-mail: yangsg@nju.edu.cn; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-30

    Highlights: • MgFe{sub 2}O{sub 4}-SiC was first successfully synthesized. • MgFe{sub 2}O{sub 4}-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range. • Fast decolorization and high TOC removal of azo dye Direct Black BN with complicated structure could occur with MgFe{sub 2}O{sub 4}-SiC under MW radiation. • MgFe{sub 2}O{sub 4}-SiC had better MW absorbing property and higher MW catalytic activity than MnFe{sub 2}O{sub 4}-SiC under the same condition. • MgFe{sub 2}O{sub 4}-SiC was of practical use in the wastewater treatment. - Abstract: A novel microwave (MW) catalyst, MgFe{sub 2}O{sub 4} loaded on SiC (MgFe{sub 2}O{sub 4}-SiC), was successfully synthesized by sol-gel method, and pure MgFe{sub 2}O{sub 4} was used as reference. The MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N{sub 2} adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe{sub 2}O{sub 4}-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe{sub 2}O{sub 4}-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe{sub 2}O{sub 4}-SiC indicated that degradation efficiency of DB BN (20 mg L{sup −1}) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe{sub 2}O{sub 4}-SiC obviously decreased. The good stability and applicability of MgFe{sub 2}O{sub 4}-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation